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ABSTRACT

In spite of the fact that much effort has been expended trying
to prove lower bounds for algorithms and trying to solve the P = NP
question, only limited progress has been made. Although most
computer scientists remain convinced that solutions will be found,
others (Hartmanis and Hopcroft, Fortune, Leivant and O’'Donnell,
and Phillips) have questioned the adequacy of Peanoc arithmetic for
computer science. This uncertainty has only been increased by
the recent work of Paris and Harrington showing that certain sim-
ple, finitistic, combinatorial statements are in fact independent of
Peano Arithmetic. In this paper we survey complexity theoretic
statements that are known to be independent of arithmetic
theories. In addition we survey recent results analyzing the arith-
metic quantifier structure of computational problems.
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1. Introduction

It has been fifty years since Godel showed that Peano arithmetic is inadequate for
a complete analysis and understanding of arithmetic and all its attendant branches of
mathematics (including computer science). In the intervening years, mathematicians
have come to believe and accept that, in spite of Godel's work, most arithmetic prob-
lems of real interest can in fact be handled by Peano arithmetic. Computer scientists,
whose mathematical training has largely been from this same school, have thus been
convinced that Peano arithmetic provides an adequate formal tool for analysis of their
programming languages and problems. However, in spite of the fact that a great deal
of effort has been expended trying to prove lower bounds for algorithms and trying to
solve the P = NP question, only limited progress has been made. ! Although most com-
puter scientists remain convinced that solutions will be found, others (Hartmanis and
Hoperoft [26], Fortune, Leivant and 0'Donnell [15], [44], [55], [16], and Phillips [61])
have guestioned the adequacy of Peano arithmetic for computer science. This uncer-
tainty has only been increased by the recent work of Paris and Harrington [56], [58],
showing that certain simple, finitistic, combinatorial statements are in fact indepen-
dent of Peano Arithmetic. In this paper we survey complexity theoretic statements
that are known to be independent of arithmetic theories. In addition we survey recent

results analyzing the arithmetic quantifier structure of computational problems.

2. Independence Resulls for Peano Arithmetic

In the early 1900’s many mathematicians were interested in obtaining a complete
axiomn system for all of mathematics. A variety of formal axiom systems were intro-
duced. Despite the fact that Godel later showed that all of mathematics can not be uni-
formly axiomatized, many of these formal systems have been very useful for proving
theorems in various branches of mathematics. One such formal system is Peano arith-
metic. Today it is generally believed that all of the theorems of real interest pertaining
to arithmetic and finitary combinatorics can be proved using Peano arithmetic. For
this reason most computer scientists believe that Peano arithmetic is an adequate for-
mal system for resolving questions concerning program behavior and complexityz. In

this paper we will survey results that question whether Peano arithmetic and certain

1. A notable exception is the recent result of Paul, Pippenger, Szeméredi and Trotter, [60],
showing that nondeterministic and deterministic linear time are not equal.

2. The recent results of Paris and Harrington, [58], [56], Fortune, Leivant and 0'Donnell, [15],
{44], [55], [16], which we discuss later, cast some doubt on this belief.
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other formal systems that are weaker than Peano arithmetic are adequate for resolv-
ing questions of program behavior and complexity. For this reason we will be discuss-
ing statments that are independent of these formal systems. (A statement is indepen-
dent of a theory T if it is expressible in the language of T but neither it nor its negation
is provable from T. If a statement is independent of a theory T, then the theory T is
inadequate for resolving its truth or falsity.) If natural statements concerning program
behavior are independent of Peano arithmetic or various other arithmetic theories,
then those theories are inadequate for answering natural questions concerning pro-

gram behavior.

Independence results can be proved using two fairly distinct techniques. Histori-
cally, independence proofs for arithmetic theories were primarily proof theoretic in
nature and involved a detailed arithmetization of the proof theory for the theories.
Although many of the more recent results have also been proof theoretic, they tend to
rely on results arising from the earlier arithmetizations that established bounds on
how rapidly functions can grow and still be provably total. Examples of this approach
are the results of Paris and Harrington [58)] showing that an extension to Ramsey’s
theorem is independent of Peano arithmetic and the results of Fortune, Leivant and
O'Donnell [15], [44], [55], [16], showing that the termination theorem for certain
strongly-typed programming languages is independent of Peano arithmetic. A second
technique for proving statements independent is model theoretic and involves con-
structing one model of arithmetic in which the independent statement is true and a
second model in which it is false. Considerable work concerning model theoretic tech-
niques for obtaining arithmetic independence results has been done by Kirby and Paris
[38] and is discussed briefly below. Many of the results that we discuss later will be

proved using model theoretic techniques.

For background we begin with a brief discussion of some of the more important

early independence results for Peano arithmetic.

2.1. Godel's Theorems

In 1900 Hilbert, [28], posed the problem of whether a complete axiomatization
could be given for mathematics. At that time he and many other mathematicians
believed that there should be a sound and complete set of axioms from which all the
true statements of mathematics could be derived. In 1931 Gddel showed that this is not
the case. In his paper, "On formally undecidable propositions of Principia Mathema-
tica and related systems I", [17], Godel showed that for any theory containing very

minimal arithmetic axioms there are sentences that are true but unprovable:
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Theorem (Gbdel): In every consistent formal system that contains a certain amount of
finitary number theory, there exist undecidable propositions [neither they nor their
negations are provable]. Moreover, the consistency of any such system cannot be

proved within the system.

Although Gd&del's theorem showed the impossibility of finding a set of axioms from
which all the true theorems of arithmetic could be derived, until very recently no
naturally occurring true statements about finitary arithmetic had been found that
could not be proven from the Peano axioms, an axiomatic system which is more than

adequate for applying Gédel's theorem.

Gédel’s proofs of these results were proof theoretic in nature and involved a

lengthy arithmetization of the proof theory for arithmetic.

Other independence results that are important for historical reasons include
those following from the proof of Ryll-Nardzewski, [65], showing that Peano arithmetic
is not finitely axiomatizable. Among other reasons, these results are important
because they use purely model theoretic techniques. The proofs construct nonstan-
dard models to show that for any finite class of axioms for Peano arithmetic there are

induction axioms that are independent of the axioms.

2.2. Ramsey’s Theorem

As mentioned above, the result of Paris and Harrington, [58], [56], is startling
because it represents perhaps the first example of a naturally occurring, nonme-
tamathematical, statement about the natural numbers that is true but not provable
from Peano arithmetic. Their result is that a simple extension of the finite version of
Ramsey's theorem, [63], is independent of Peano arithmetic. The standard finite ver-

sion of Ramsey’s theorem is the following:

Theorem (Ramsey): For all natural numbers e, r, k there is an integer M such that, if
all of the e-element subsets of M are partitioned into r disjoint classes then there is a
homogeneous subset of M of size at least k. (By homogeneous we mean that all of its

e-element subsets were placed in the same r-class.)

The extension to Ramsey’s theorem that Paris and Harrington show is independent
of Peano arithmetic is obtained by requiring that the homogeneous set be relatively
lorge, where relatively large means that the cardinality of the set is greater than its

minimal element.

This result has had considerable impact for two reasons: First, it has caused

mathematicians and compuler scientists, whose work is often combinatorial, to
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question whether other fairly natural combinatorial statements may be independent of
Peano arithmetics. Second, Paris’ proof, [56], is essentially model theoretic. Thus the
proof has sparked a new interest among mathematicians and computer scientists in
the use of nonstandard models. For example, some of the ideas used by Lipton, [45]
arise naturally from the work of Kirby and Paris, [38], that developed the model
theoretic techniques initially used ([56], [50]) for obtaining Ramsey independence
results.

2.3. The Impact of Independence Results on Computer Science

Independence results in computer science have a history that goes back more
than fifteen years (Fischer [14], Young [72], Hartmanis [25], Hartmanis and Hopcroft
[26], Gordon [20], and Phillips [61]). The notion of a provably recursive function was
introduced by Kreisel as early as 1952, [41]. In a somewhat later paper, [42], Kreisel
showed that the recursive functions provably total using Peano arithmetic are exactly
the same as those provably total using intuitionistic or Heyting arithmetic [27]. In [14]
Fischer studied the class of provably recursive functions in detail and compared them
with the class of total recursive functions. Somewhat later Young, [72], studied optimi-
zation among provably equivalent programs and showed that questions of speed-up and
optimality are dependent, not on the function computed, but instead on the particular
program that is chosen to compute the given function. Later Gordon, [20], and Baker,
[2], studied properties of complexity classes of provably recursive functions and ana-
logs of the P=NP problem for provably polynomial (deterministic and nondeterminis-

tic) programs.

The first paper that exzplicitly investigated independence results relating to com-
puter science was presented by Hartmanis and Hopcroft, [26]. They showed that the
Godel incompleteness results for arithmetic could be coded into many problems of
interest to computer scientists. Specifically, their paper contains the following results
(for F any formal system adequate to prove the Gddel incompleteness results):
Theorem (Hartmanis and Hopcroft): For every F we can effectively construct an i such
that ; is recursive and P** = NP can be neither proved nor disproved in F.

Theorem (Hartmanis and Hopcroft): For every such F, there exists an algorithm (which
can be explicitly given) whose running time is n?, but there is no proof in F that it runs
m}f and Paris, [39], have shown that a simply described (and computable)

number theoretic function introduced by Goodstein, [19], is not provably recursive. A nice
discussion of this is given by Cichon, [8].



in time < 2%,

Calude and Paun, [7], extended these results by explicitly constructing instances of the
totality, finiteness and halting problems that are independent of F.

Although the results of Hartmanis, Hopcroft, Calude and Paun show that there are
statements of apparent interest to computer scientists that are independent of Peano
arithmetic, none of these early papers relating independence results to computer sci-
ence produced results that could be described as surprising: All of the results were
obtained by straightforward diagonalizations and by coding standard Godel undecid-
able sentences into questions of computer science. The resulting programs and prob-
lems could hardly be expected to arise in practice or to give insight into real problems.
A fact that is nicely illustrated by results of Hajek [22], [23] and Grant [21] showing
quite clearly that such codings of incompleteness results give little or no insight into

the independence of P =? NP from Peano arithmetic.

2.4. The Termination Theorem for Polymorphic Typed Programming Languages

In [55], O’'Donnell presented the first natural example of a statement concerning
programming languages that is true but unprovable using Peano arithmetic. This work
has subsequently been extended by Fortune [15], Leivant [44], O'Donnell [16], and Stat-
man, [68]. They show that for certain strongly-typed programming languages similar
to CLU, ALPHARD, MODEL and RUSSELL, the question of program termination for pro-
grams which in less sophisticated languages would be trivial straight-line code is

independent of second order Peano arithmetic. The results begin by observing the

Termination Theorem: Every program containing only total operations and nonrecur-

sive function definitions and applications is total.
They then go on to prove

Theorem (Fortune, Leivant & O'Donnell): The Termination Theorem for the Polymorphic

Typed Programming Language is independent of second order Peano arithmetic.

The implication of this work is twofold: First, if languages become too sophisti-
cated, verification of simple correctness may become literally impossible unless
increasingly sophisticated formal systems are available®. Second, the theorem rein-
forces the view expressed earlier by Hartmanis and Hopcroft that Peano arithmetic

may be inadequate for solving some of the long-standing open questions of computer

4. Additional work on logics for reasoning about programs using nonstandard models has
been done by Andreka, Nemeti and Sain, [2], [3].



science.

The proof of Fortune, Leivant and 0'Donnell is proof theoretic and uses the same
sort of techniques as those used by Paris and Harrington in [58]: O'Donnell et al show
that a universal function for the polymorphic typed programs that contain only total
operations and nonrecursive function definitions and applications must grow faster
than any function that is provably total in second order Peano arithmetic. This work
has recently been extended by Statman [68], who has characterized the functions com-
putable by polymorphic typed programs as ezactly those functions provably total

using second order arithmetic.

2.5. P =7 NP and Models of Arithmetic

Recently, Dimitracopoulos and Paris [57] have used model theoretic technigues to
investigate the possible independence of computational statements. They show that the
P = NP and NP = coNP questions are related to certain natural problems concerning
definability in nonstandard models of complete arithmetics. For example, they show
that P = NP if and only if there is a nonstandard model of arithmetic in which elements
are "equivalent” whenever they cannot be distinguished by any standard polynomial
time program. Additional work on sufficient conditions for P = NP to be consistent with

Peano arithmetic has been done by Kowalezyk, [40].

3. Complexity Theory and Weak Arithmetic Theories

The independence results surveyed in the preceding section were primarily con-
cerned with Peano arithmetic and its extensions. Computer scientists have recently
given considerable attention to the study of formal systems that are weaker than
Peano arithmetic. Although it is undoubtedly true that independence results for full
Peano arithmetic are of primary importance, weaker fragments of arithmetic seem to
be more tractables. and perhaps as a result, there is a rapidly growing body of work
relating complexity-theoretic results to such fragments. Most of the systems studied
are not rich enough to prove all of the theorems that interest computer scientists.
Nevertheless computational complexity theoretic independence results for these sys-

tems are of interest for a variety of reasons: (i) for better understanding exactly how

5. Complete arithmetic is the theory that has as axioms all of the {rue sentences about addi-
tion and multiplication on the natural numbers.

8. This point is disputed in a recent dissertation by Marker, [48]. He shows that any Turing
degree coding nonstandard models of DeMillo and Lipton's theory PT, must lie above 0.
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powerful proof tools must be in computer science, (ii) for classifying the proof-
theoretic complexity of results in computer science, and (iii) as precursors for
independence results either for richer axiom systems or for more interesting state-
ments. In addition, for some of these weak theories the independence of specific com-
putational statements is equivalent to their independence from full Peano arithmetic.
This is because several of these theories include in their axioms all of the true or prov-
able arithmetic sentences that have very restricted quantifier structure (at most one
alternation of quantifiers). Many important open questions of computer science can be
expressed by such simple sentences. For example, the formal sentence which asserts
that "P = NP" is of the form (Jy)(™vz)S(z,y) where S involves only bounded
quantifiers. Similarly, the formal sentence that asserts that "P # NP" is of the form
(vz)(3y)R(x,y) with F involving only bounded quantifiers. Statements asserting the
equivalence or inequivalence of NP and coNP also have a fairly simple form. Analyzing
the quantifier structure of these computational statements is dependent on obtaining
suitable arithmetic characterizations of sets in NP, and considerable work in this area

already exists:

3.1. Quantifier Structure of Sets in NP and coNP

Some of the earliest work on arithmetically characterizing sets in the class NP

was done by Adleman and Manders [1]. They showed that:

i) If membership in a set S is expressible by a Diophantine predicate in the form:

n € Siff Qyulyil=sp(n])) - Oyl Isp(n | N[ Ps(niyr....4) = 0]

where p and FPg are polynomials, then S € NP.
ii) If S € NP, then membership in S can be expressed by the Diophantine predi-

cate:

n € Siff Qyuly =21 ™Dy - Ty lym (<RI Qg (nyy, .. ym) = 0]

where q and @g are polynomials.

In somewhat later work Stockmeyer [69] and Wrathall [71] considered the classes



of sets definable in the form:
@1 n e sif (Puslvl=pn)) - (Sveslvel<pelin )

[PL(nyy, . . Ye)]

where the quantifiers alternate and the matrix of the expressicn, PL(n Yy,...Y). is &
predicate computable in polynomial time. (Earlier Karp [36] had observed that the
class NP is exactly the class of sets definable in this way using only one existential
quantifier.) Although it is not known whether the sets definable by predicates of the
form (3.1) form a hierarchy based on numbers of alternating quantifiers, it is known

that such a hierarchy has more than one level iff P # NP.

Recently, an exact arithmetic characterization of NP has been given by Kent and
Hodgson [37]. They defined a class of predicates that they call the Fzponential
FExistential Bounded Arithmetical Predicates and showed that the class NP is exactly
the class of sets definable by Exponential Existential Bounded Arithmetical Predicates:

Definition (Kent and Hodgson): A set of natural numbers, S, is said to be definable in
Ezponential Ezxistential Bounded Arithmeticel form if and only if,

n < S’Lff H[(E’ylézpl“nn)..(E'y,cSZP’““nI))
(vz:=q,(In]))  (Vzmsgm(In )]

[Ps(n.yr . Y21 2Zm) = 0]

where p; and g; are polynomials and Pg is a polynomial and the Il in front of the

quantifier prefix indicates that an arbitrary permutation of quantifiers is allowed.

A hierarchy of arithmetic predicates called the Bounded Arithmetic Predicates
that is similar to the Exponential Existential Bounded Arithmetical Predicafes was
introduced by Harrow [24]:

Definition (Hérrow): A set is defined by a Bounded Arithmetic Predicate if and only if
n € Siff (Fy1=p(n))(Vy2=pa(n)).. (Que=pe (N )@Yk +1=Pk +1(n))

[Ps(m.y1, - - Yesr1) = 0]

Harrow showed that the Bounded Arithmetic Predicales define exactly the same
class of sets as the Rudimentary Predicates (RUD) studied by Smullyan [67], by
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Wrathall [71], and by others.

Extending these results, Wrathall [71], and independently Hicks and Meloud [54],
showed that for a restricted class of Rudimentary Predicates called the Positive Rudi-
mentary Predicates (R*), E* = RUD only if NP = coNP. (Additicnal results relating
rudimentary predicates to complexity classes and classes of formal languages have
been obtained by Nepomnjascii, [53], [52], [54], Paris and Wilkie, [59], and Yu, [73].)

The above results show that the sets in F*, RUD, NP and coNP can all be defined by
formulas that have very restricted quantifier structure. Accordingly, one might expect
weak theories that restrict the quantifier structure of their axioms to be useful in
studying the relationship between these classes. Relationships between such weak

theories and the NP =? coNP questions have been investigated by Wilkie and others.

3.2. NP and coNP in Weak Theories of Arithmetic

Wilkie [70] related the question of whether NP = coNP to independence results for
a weak arithmetic theory. He showed that if Matijasevic’'s theorem, [49], is provable in
PA™ + IZg {(Peano arithmetic with induction restricted to bounded formulas), then NP =
coNP. The proof uses Adleman and Manders' result showing that the set of equations of

the form

az?+by=c, ab,c>0

solvable on the natural numbers is NP-complete. Manders [47] has observed that the
result can be strengthened to the system PA™ + IT’ where IS is the induction schema

for formulae with bounded gquantification of the form

(vr<2Wl™); (3z<2¥™), forn € N

A more model theoretic approach to the NP = coNP problem was taken by DeMillo
and Lipton [12]. They defined a weak theory of arithmetic, which they called the
Theory of Polynomial Time (PT), and showed that PT is rich enough to verify that NP =
coNP iff P = NP:

Definition {(DeMillo and Lipton): The language of PT includes symbols for all of the func-
tions and predicates that are computable in polynomial time. The axioms of PT are all

true sentences of the form (3z){(\vy)A(z,y), where A is quantifier free.

Definition (DeMillo and Lipton): A theory T is said to verify that NP = coNP if for each
S € NP, T =S € coNP.
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Theorem (DeMillo and Lipton): PT can verify NP = coNP if and only if P = NP.

 On close investigation one discovers that this result rests primarily on the fact
that the only functions a theory such as PT can prove total are the functions defined
by the terms or those defined by cases from the terms of the language. For PT these
functions are essentially the standard polynomial time computable functions since
specific symbols for each of these functions were explicitly added to the language of
PT.

A similar result relates the theory PT to the question of whether or not sets in NP

n coNP are decidable in polynomial time:

Definition (DeMillo and Lipton): Let S be a fixed recursive set and let A{z,y) and
B(z,y) be defined as follows:

(Ay)A(z,y) iff = € S and (3y)B(zy) iff z£ S
Now let
As(A.B) = (vz)[(Fy)A(z.y) or (32)B(z.2)].
Theorem (DeMillo and Lipton): Let S € NP n coNP. Then the following are equivalent:
S e P

PT |— As(A,B) for some A, Bin the language of PT.

Again, the proof of this theorem has little to do with NP or coNP, but rather
depends on the fact that essentially the only sets provably decidable using PT are the
standard polynomially decidable sets. This fact is well illustrated in a paper by Homer
and Reif, [30], where they generalize the results of DeMillo and Lipton to theories that

contain symbols for other classes of functions.

Motivated by the work of DeMillo and Lipton, Huwig, [31], has investigated the P =?
NP question within the category of idempotent, commutative semigroups. He shows
that this category is rich enough to express a P =? NP question; what’s more within
this category P = NP. Thus the theory of idempotent, commutative semigroups is not
rich enough to prove P # NP. In contrast he shows that it is rich enough to carry out

constructions such as the minimization of finite automata.

The results discussed in this section show that questions of provability in weak
theories of arithmetic are related to computational questions such as whether P = NP
and whether NP = coNP. However questions of which computational problems are

resolvable in weak theories of arithmetic and which complexity theoretic statements
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are independent of such theories, are of interest in their own right. Explicit indepen-
dence results and examples of complexity theoretic statements that are unprovable
have been obtained for some weak theories, and we survey some of these results in the

remaining two sections of this paper.

4. The Theory ET

One of the weakest fragments of arithmetic that has been used in studies of com-
putational complexity is the theory ET (theory of Exponential Time) introduced by
DeMillo and Lipton, [13]. The theory ET has as axioms all of the true universal sen-
tences from the first order language,

L{ET) = {0,1,+,*,-, maz(z,y), min(z,y), 2%, 3%, ...,
Po(z), Py(z), Pa(x), ...}

where the F; are new predicate symbols corresponding to each of the standard polyno-
mially time computable relations. (By a universal sentence, we mean a sentence of the
form Vz,VzZs YV, S(zi,....T,) where S contains no quantifiers, either bounded or

unbounded.)

DeMillo and Lipton add a new constant symbol e to the language of ET and define
a new class of predicates, which we call Ppgy, as follows:

(i): P, € Ppg; foralli,

(ii): Ppgz is closed under Boolean operations,
and

(iii): If A(z) € Ppgr, then so does (Fz<a)A(z).

Obviously, in the standard model, N (the standard natural numbers), the constant
symbol a can only be interpreted as a standard natural number, and of course each F;
can be correctly interpreted as the polynomially time testable relation that it is sup-
posed to represent. Thus, in the siandord model, for every interpretation of the con-
stant symbol @, all of the predicates in Ppg; are polynomially time testable. Further-
more, if we take any NP-complete set, for example SAT (the set of satisfiable Boolean
formulas in conjunctive normal form), then it can be expressed as

x € SAT iff (3y)S(xy)
where S is a polynomially time testable predicate. Therefore in L(£T) there is an
explicitly introduced predicate symbol Ps that represents 5. With this as motivation,

we can now state the primary result of DeMillo and Lipton:
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Theorem (DeMillo and Lipton): Let A be a quantifier free predicate in the language
L(ET) such that {r: (3y)A(z,y)} is NP-complete. Then for some predicate
p(z) € Ppar.

ET + (Wz)[(3y)A(z.y) = ¢(z)]

is consistent.

Before applying this theorem to NP-complete sets, one should bear in mind the
fact, mentioned earlier, that the sets in NP can be characterized as those sets
definable by using Kent-Hodgson Exponential Existential Bounded Arithmetical Predi-
cates. This characterization, along with one's general intuitions, makes it seem
unlikely that many (or even any) of the NP-complete sets can be defined in any
natural way by using arithmetical predicates that have no bounded—quantiﬁers7. On
the other hand, in the extended language L{ET) there is a {new) explicitly introduced
predicate symbol Pg for each polynomially time testable relation X. Therefore, for
every NP-complete set, such as SAT, one can substitute the associated predicate sym-
bol Ps that is in L{£T) in order to get the desired quantifier free predicates, A4, used in
the above theorem. Since, in the standard model, all of the predicates, ¢, in Ppg are
polynomially time testable, this theorem can be interpreted as saying that it is con-
sistent with the axioms of £7T to believe that P = NP.

Although such an interpretation may be tempting, it is not entirely reasonable.
Even in the language of Peano arithmetic there are obviously many different formal
sentences which assert that P = NP. Even for different notural sentences which assert
that P = NP, it is not clear that in theories as weak as FT that one can prove their
equivalence. Additional difficulties arise with the predicate symbols F;. One such
difficulty is the following: Although the axioms of ET are strong enough to guarantee
that polynomial time testable predicates like S5 and their corresponding predicate
symbols Pg agree in the standard model N, (since each true instance, e.g., Ps(3) or
notPg(3) is an aziom of ET), arithmetical predicates like S may involve so much
bounded quantification that the axioms of ET cannot guarantee that S and Pg agree in

all models of £7. In particular, it is not clear that there is any model of £T in which

(vz)[(Fy)Ps(z.y) if f ¢(x)]

holds and at the same time Ps agrees with S, which is the predicate it is supposed to

7. Matijesevic's Theorem tells us that there is a characterization that does not involve bound-
ed quantifiers, but not necessarily a natural one.
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represent; i.e., it is not clear that there are any models of ET in which the preceding
formula holds and {z: (3y)Ps(z,y)} "correctly” represents the set of satisfiable

boolean expressions in conjunctive normal form.

Even setting this aside, there are additional difficulties in interpreting what P=

NP means in models of theories as weak as FT:

First, we observe that the proof of DeMillo and Lipton’s Theorem does not use the
fact that the set { x| (3y)A(x,y)} is NP-complete. It uses only the fact that the relation
A is expressed by a quantifier-free formula in the language L{ET). Since every recur-
sively enumnerable set is characterized by some existential predicate (again, this is
Matijesevic's Theoremy), it is just as reasonable to assert that it is consistent with £7T to
believe that every recursively enumerable set is testable in polynomial time as it is to

assert this merely of every NP-complete set.

Second, it is not clear that in the models of 7T in which

(v)I@)ARY) <= o(x)]

holds for ¢ € Ppg; that all of the members of Ppg; are in fact testable in polynomial
time. In fact, it is not even clear in models of such weak theories what it should mean
to say that a set is testable in polynomial time. Here again, there are several
difficulties: It seems that in theories like ET, one may not even be able to prove that
different notions of computation, for example Turing machines, Markov algorithms, or
Loop programs are equivalent, or if they are equivalent that they are polynomially time
related. Thus, it seems that one must simply pick some notion of computation and

analyze that notion.

FEven when one has chosen such a notion, for example, the Loop programs of [8],
once one picks a predicate T that encodes sequences of computations, the T-predicate
involves so much bounded quantification that it is difficult to know how it behaves in
models of theories like ET.B However as we observed above, there is a reasonable T-
predicate that is testable in polynomial time, so it has a corresponding predicate sym-
bol, Pr, explicitly introduced in the language L(£T). Since Pr and T must agree on all
of the elements of N, one might use Pr as one’s definition of computation in models of
ET. Although T and Py will agree on N, T and Py suffer the same difficulties as S and

Ps discussed above. In particular, we cannot guarantee that they agree in

B. As pointed out by Csirmaz ([9], [10], {11]), similar problems arise for theories lacking
multiplication.
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nonstandard models of theories as weak as ET. Nevertheless, since the symbol Pr
obviously involves no bounded guantification, it is tempting to use it for analyzing com-

putations in models of ET. Doing so has shown that with this notion of computation:

Theorem: For every recursively enumerable set {z: (3y)A(z,y)} there is a formula
¢{(z) € Ppg for which it is consistent with AT to believe

(vz)[(Fy)A(z.y) = ¢(z)]

and that all formulas ¢ of Ppgr, have Loop programs which:
(a) correctly compute ¢ when they halt, and

(b) have a polynomial that bounds the number of steps of each computation.

Unfortunately, even if one accepts Pr as expressing a meaningful notion of compu-
tation, the preceding theorem does not guarantee polynomial time decidability. For
example, it is known that in models of weak fragments of arithmetic there can exist
programs that run for only a bounded number of steps but still do not halt, [35].
Whether this or some other malady plagues the computations described in the preced-

ing theorem, we are not sure, but nevertheless we have shown, [34], [33]:

Theorem: Under the same conditions as the preceding theorem, in the same model of
ET as constructed there; there are members, ¢, of Ppgs, that are not decided by any

loop program in the model.

Exactly which predicates of Ppg; can be tested in polynomial time in interesting
nonstandard models of theories like £7 is an open guestion. In spite of this and our
uncertainties about computations in models of theories like 7, we do know that the
study of fast algorithms in such models is closely tied to how computations behave in
the real world. There are theories very similar to ET for which, if there exist models in
which SAT is decidable in polynomial time, then in the standard model of computation
SAT has arbitrarily long initial segments that can be decided by short, fast programs.
If such short, fast programs for SAT do exist, then from a practical standpoint cne
might believe that SAT is "almost" polynomially decidable. We have obtained the follow-
ing results, [32], [33]:

Theorem: It is consistent with ET(Elem), (a theory that is quite similar to ET), to
believe that NP-complete sets are polynomially decidable iff in the standard model of
computation they have long initial segments that can be decided by short, fast pro-

grams 9

9. A similar result has been proved for Peanoc arithmetic by Kowalezyk, [40].



- 16 -

We certainly believe that NP-complete sets do not have long initial segments that
are easily decidable by short programs, but the proof of this seems quite difficult and
appears to be closely related to the question of whether or not they have small circuit
complexity. However, we do know that P-complete sets (with respect to log space redu-
cibility) and EXP-time-complete sets (with respect to polynomial time reducibility) do

not have long initial segments that are easily decidable by small programs and hence:

Theorem: It is not consistent with ET(Elem) to believe that polynomially complete

sets are linearly decidable or that EXP-time-complete sets are polynomially decidable.

5. Basic Number Theory

One theory that is strong enough to support unambiguous notions of computation
is Basic Number Theory (B). This theory is obtained by taking as axioms all of the I,
sentences (sentences of the form (Wx)(3y)A(x,y) where the matrix A is permitted
bounded quantifiers only) that are provable in Peano arithmetic. This theory has been
extensively studied by logicians (Goldrei, Macintyre, and Simmons [ 18], Hirschfeld and
Wheeler [29], Macintyre and Simmons [46], and Simmons [68]), and a great deal is
known about its models. Since Lipton [45] first suggested its usefulness in studies of
computational complexity, its adequacy as a basis for theoretical computer science
has been a matter of some debate. This issue has been thoroughly discussed else-
where, and we shall forego a thorough discussion of the adequacy of Basic Number
Theory, instead referring the interested reader to such discussion already in the litera-
ture (Lipton [45], Joseph and Young [35], and Leviant [43]). These authors do point out
that Basic Number Theory and closely related theories are adequate for proving many
standard theorems of mathematics and computer science, a point that has been made

much earlier, for example by Rogers [64], Chapter 14 (and in particular page 322).

For our current purposes, it is enough to know that for models of 5 notions of
computation are invariant: Within 5 one can prove not only the equivalence of all of the
standard models of computation, but also that they are polynomially related. That is,
one can prove that the class of functions computable by Loop programs, Turing
machines, RAMs or Markov algorithms is exactly the class of partial recursive functions
and that the computation times are polynomially invariant. Therefore within models of
B a function is easily computable if and only if there is a Loop program that easily
computes it. However, as we shall see, in spite of the power of Basic Number Theory, it
lacks sufficient inductive power to prove a number of standard results of theoretical

and practical computer science.
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One of the first computational independence results for weak theories of arith-
metic was proved by Lipton [45] who showed that Rabin’'s Theorem is independent of
Basic Number Theory. It is rather easy to prove that there are recursive sets that have
no easy {e.g., linear or polynomial) decision procedures. In fact such a proof can be
carried out within Basic Number Theory. Rabin [62] proved a somewhat stronger
theorem, namely that there are recursive sets, S, for which every decision procedure
takes a long time (e.g., exponential or more) on all but finitely many arguments. It is
easy to see that for any such set S, neither S nor S can have an easy to decide subset.
It is also easy to see that for any set, S, whose characteristic function can be sped-up
almost everywhere in the sense of Blum [5], neither S nor S can have an easy to decide
subset. In 1978, Lipton, [45], showed that these results are independent of Basic
Number Theory:

Theorem (Lipton): For every standard (provably) recursive set S, there is a model of B
in which:
(i) Either S or S has a infinite easily decidable subset.
Therefore
(ii) Rabin’s theorem on the existence of almost everywhere difficult sets can not
be proved in 5,
and
(iii) Blum'’s theorem on the existence of functions that can be "sped-up" almost

everywhere cannot be proved in 5.

These results were strengthened by Leviant, [43]:
Theorem (Leviant): The proceeding results (i)-(iii) apply not just to provably recursive
sets § and the theory B, but also to all recursive sets S and to the stronger theory TH2

that has as axioms all ¢rue [l; sentences.

The two preceding theorems show that some esoteric(?) results of computational
complexity cannot be proved within Basic Number Theory and the even stronger theory
Tn, Some of our own work, [35], shows that, despite the fact that Basic Number
Theory and its extension Tp, are fairly powerful theories, these theories possess even
more fundamental limitations as formal theories for analyzing program behavior:
Theorem: There is a fairly large subclass, C, of the hypersimple sets (all of which are,

of course, recursively enumberable but in fact undecidable) and there are nonstandard

models of 7Ty, in which:
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(i) All members of C are decidable in linear time.
(ii) Bounded sets are not all decidable.

And
(iii) There are Single Loop programs that contain only subroutine calls and assign-
ment statements, which do not terminate despite the fact that each assignment
statement and subroutine call correctly terminates. (Recall that Single Loop pro-
grams contain no nested loops and execute each loop only a fixed (constant)

number of times.)

These results show that Basic Number Theory and the theory Ty, are inadequate

for distinguishing between undecidability and linear time decidability even for a fairly
natural subclass of standard undecidable sets, and that these theories are also inade-
quate for proving fairly routine statements about program termination for very simple

classes of programs.

6. Concluding Remarks

In the years 1976-1983 we have witnessed renewed applications of logical tech-
nigues to problems in theoretical computer science. Prior to this time, logic contri-
buted to computer science by providing underlying computational models for analyzing
computational structures and complexities, by suggesting fundamental approaches for
developing programming logics and exploring the consistency and completeness of
these logics, and by suggesting techniques for specifying the semantics of program-
ming languages. The work that we have reviewed here applies different techniques and
different ideas. Often using model theoretic techniques, fundamental questions about
computational complexity and the adequacy of proof procedures are investigated by
connecting these questions to the study of limited logical structures, specifically by
placing limitations on the syntactic structure of logical statements and by placing limi-

tations on axiomatic systems used to analyze program behavior and complexity.

Some of the work which we have surveyed provides deep, and perhaps unexpected,
connections between logic and computer science. Some gives evidence for the poten-
tial applicability of new model theoretic technigues. Some of the work seems, with the
advantage of hindsight, surprisingly straightforward. While the ultimate value of this
work, taken as a whole, is not yet clear, the work to date shows enough unity of tech-
nique, of ideas, and of fundamental approach to justify the hope that its most exciting

JApplications are yet to come.
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