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We present two results about witness functions for sets in NP and coNFP. First, any set
that has a polynomially computable function which honestly witnesses that it is not in
coNP must be at least NP-hard. It follows from this result that any set in NP—FP that
has a polynomially computable function that witnesses this fact must be complete for
NP. Second, if 4 is any set for which there is a polynomially computable function
which witnesses that it is not complete for NP, by merely witnessing that some fixed
set in NP is not in P4, then 4 must be in NPncoNP. Thus for two sets in NP—coNP,
there are no polynomially computable functions which witness that one is not polyno-
mially reducible to the other. In proving the first result we introduce the notion of a
k —creative set and prove that all k-creative sets with honest productive functions are
NP-complete. Since these sets seem not to be all polynomially isomorphic, we counter
the conjecture of Berman and Hartmanis that all NP-complete sets are isomorphic
with a conjecture that not all k-creative sets are isomorphic. The proofs we give are
recursion-theoretic in style, but quite straightforward and easy.
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* The results contained in this paper were initially presented (unfortunately
sometimes in incorrect form) by Paul Young at the 15th ACM SIGACT (Apr 1983) as
part of an extended abstract entitled, Some structural properties of polynomial
reducibilities and sets in NP.
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Witness functions for P # NP have been investigated by several previous authors,
Kozen [Koz-80], Kozen and Machtey [K&M-80], O'Donnell [0'D-79], and Joseph [Jos-83].
In [Koz-80] Kozen refutes the suggestion of Baker, Gill and Solovay [BGS-75] that it will
not be possible to prove that P # NP by diagonalization, by showing that there) exist
witness functions for P # NP if and only if there exist diagonals. However Kozen's work
gives only limited insight about the possible complexity of witness functions for
P # NP should they exist - essentially he shows that if there is a polynomial witness
function for P # NP, then a universal function for P must exist within VNP. Some addi-
tional insight is given in O‘Donnell's work, which shows that if P # NP but this is not

provable from Peano Arithmetic + Tp, (the true IT; sentences of arithmetic), then wit-

ness functions for P # NP must grow faster than any provably recursive function.
Similarly, in [Jos-83] it is shown that if it is consistent with a certain very weak arith-
metic theory, ET{Elem ), to believe that P = NP, then there can be no monotone ele-

mentary function which witnesses that P # NFP.

In this note we prove two simple facts about witness functions that are polynomi-
ally computable. We hope that these facts will be useful in explaining why proving P #
| NP is so difficult. Among other things, our results show that in NP, sets that are com-
plete and sets that are in co NP cannot be separated by witness functions that are poly-

nomially computable and honest.

It is commonly believed that the guestion of whether P = NP has certain struc-
tural similarities to Post’s problem - the problem in pure recursion theory of whether
there are incomplete r.e. sets. In discussing why there are no constructive arguments
in recursion theory for solving Post’s problem and why the Friedberg-Muchnik priority
arguments were required to solve it,l Rogers cites two theorems on the impossibility

of constructive solutions to Post’s problem:

1. For references to subrecursive, including polynomial, versions of the
Friedberg-Muchnik argument, see [Lad-75], [C&M-81] and [Sch-82].
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Theorem I, [Rog-87,pp. 162]. If A is recursively enumerable and constructively nonre-

cursive, then A is creative. (And hence 4 is complete.)

Theorem II, [Rog-67,pp. 162]. If A and B are recursively enumerable, and if 4 is con-

structively nonrecursive in B, then B is recursive.

Since it is easily seen that any creative set is complete, Theorem 1 shows that if
there is any computable witness function which shows that an r.e. set A is not recur-
sive, then 4 must already be complete. On the other hand, Theorem II shows that if
there is any computable function which witnesses that a set A is not complete, then A
must actually be recursive. Thus notions of "complete” and of "decidable” cannot be

"constructively” separated.

We show that if we restrict witness functions to be polynomial, then a version of
Theorem 1 holds for NP. We alsoc show that with the same restriction on our witness
functions, a strong version of Theorem II holds for NP vs NPncoNP. Qur proofs essen-

tially follow those in Rogers, [Rog-67].

Our notation follows that in [Rog-87] and [M&Y-78], except that we cannot use arbi-
trary complexity measures and programming systems. Our programming system uses
both deterministic and nondeterministic programs which have a syntactically check-
able condition that any nondeterministic computation is required to be single valued.
(In fact for our purposes, nondeterministic programs may be permitted to output only
1.) ¢i(z) is the output (if any) of program i on input z. In addition, ¢ is a natural run-
time complexity measure for such a programming system, i.e., it is one that is nor-
mally considered reasonable for investigations of P and NP. We define
Wi=gort z : wi(x) ] and define:

P&) =gay § Wi : program i is deferministic and

@i (x)d implies &;(z) < |i|-|z|* + |1] },

NP®) =4 § W0 gi(x) 4 implies &;(z) < [i] |z |* + 1] 3.



Thus P = UP®) and NP = NP¥),
k k

We begin with a weak definition of polynomial creativityz.

Definition. Let kg be any fixed integer. A set C € NP is kg—creative if there is a poly-
nomially computable function f (a productive function) such that for all i which wit-
ness that #; € NP(k"),

f@) € CnW; or F(3) € C-W,.

The idea behind this definition is that a set C is creative if f is a polynomial witness,

not, fully to the fact that C is not in NP, but merely to the fact that C is not in NP*?.
Thus a very strong analogue to Theorem 1 above would be that every kg creative set is
complete. Unfortunately we are unable to prove such a theorem. Recall however that
a function f is polynomially honest if its running time is bounded by some polynomial
in its value. For example, every polynomially computable function whose arguments
are within a polynomial of the outputs is polynomially honest - polynomially comput-
able functions that are not honest must have very small outputs for some inputs. If a
set C is not in coNP, then for every infinite #; in NP there is a value fo(i) that is
greater than 4 and such that fo(i) € CnW; or fo(i) € C—W;. Thus it seems not
unreasonable to restrict our attention to witness functions that are greater than the
identity function, or, what is an even weaker restriction for polynomially computable
functions, those that are polynomially honest.3 Our first result is a polynomial analogue

to Theorem L

2. Ko and Moore, [K&M-81], have given ancther natural definition of polynomial
creative sets. However, using their definition they have shown that there can be
no polynomially creative sets even in DTIME(2P°Y).

3. A similar argument for restricting one's attention to witness functicns at
least as big as the identity is made in [Jos-83]. There however one is considering
elementary functions as witness functions. Since an elementarily bounded search
over an elementarily computable function still leaves one with an elementary
time-bound, the restriction in [Jos-83] is more reasonable than the corresponding
restriction in this paper, since we are here concerned with polynomial computa-
tions. ‘
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Theorem 1. Every kg-creative set with a polynomially honest productive function is
NP-complete. (In fact, complete with respect to Karp reducibility.)

Proof. To simplify nbtation we first give the proof under the assumption that the
productive function f is not just honest, but that it grows at least as rapidly as the
identity. Let C be a Icp creative set with productive function f and let 4 be any set in
NP. In particular let A bein NP®) for some fixed k. We must show that 4 is Karp redu-

cible to C. Define a polynomially computable function g such that

0if|z|*> |y|* andy € 4
eew)(2) = * otherwise :

Here, given that A is nondeterministic, ¢g4(;) is to be computed in the most obvious
nondeterministic fashion. First test whether |z [1’co > |y |*; this takes time proportional
to |z ]k". Next test whether ¥ € A using the nondeterministic algorithm for A4; this

takes time proportional to |y |¥ which is less than |2 [k". If both of these are true then

output 1 and otherwise diverge. By suitably "padding” the instructions for g(y), we can
also make lg(y)lk" > |y |*¥. Clearly, g{y¥) can be computed in time approximately
ly 17

But we now have that y € A iff Wyq) =1 2: |z|k°> [y|*3iff g(y) € Wy But
by construction W) € NP¥ and ¢ is kg-creative with productive function f. Thus,

since f(g(¥)) >gy). v € Aiff f(g(y)) € Wy) and because f is a productive func-

tion for C, f{g(y)) € Wou) iff f{g(y)) € C. Thusy € Aiff f(g(y)) € C, so Cis

Karp complete.

In the event that f is not greater than the identity but is instead merely polyno-

mially honest, one simply replaces the condition ]g(y)[lco > |y |* by a condition that

makes g(y) not only this big, but also big enough to guarantee that

IFlg@N®o> ylk. =

Theorem 1 leaves open the question of whether k-creative sets exist. Fortunately,
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they do, and Theorem 2 provides an interesting class of k -creative sets:

Theorem 2. Let f by any polynomially computable, polynomially honest, one-one func-

tion. Define

Kf = {f@): &(F @) <li]-lf@)I* + |4] 3§,
then K}‘ is k-creative, with f as an honest productive function.

Proof. One easily verifies that K}‘ is in NP by observing that since f is polynomi-
ally computable and polynomially honest, given ¥ one can guess a value z and verify
that f(z)=vy in polynomial time. Once this is done, checking that
. (y)=<|z| |y|* + |z| can easily be done in nondeterministic polynomial time. f

itself is the required productive function for K}‘ since given any W; € NP¥,

Fi) € Wi = pu(F@)
@ (F @)= il |FENF + i
<> f(i) € K§. =
Simple as they are Theorems 1 and 2 give a whole new class of siructurally

defined sets in NP. Before proceeding, we would like to look at this class more care-

fully.
A Momentary Diversion

In studying 'natural” NP-complete sets, Berman and Hartmanis, [B&H-77],
observed that all of the "natural” NP-complete sets have polynomially computable pad-
ding functions. This fact, together with the fact that in recursive function theory all
"complete” sets are recursively isomorphic, is apparently the basis for their conjecture
that all NP-complete sets are polynomially isomorphic. We would like to address the
question of whether the sets defined by Theorems 1 and 2 are all polynomially iso-
morphic. To do so, first recall the classical proof from recursion theory that all "com-

plete” sets are recursively isomorphic.
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The proof breaks into three parts. First one defines creative sets and proves that
all "complete" sets are creative. Second one proves that all creative sets are
cylinders4. And finally one easily proves that all sets of the same many-one degree that
are cylinders are in fact isormnorphic. How much of this proof can be carried out in a
polynomial setting? Clearly, the last step can be since it is just the basis of Berman
and Hartmanis' observation that all "natural” NP-complete sets are polynomially iso-
morphic. However, to the extent that the remainder of the proof cannot be carried
out, it is evidence that the Berman Hartmanis conjecture fails, since, knowing the
existence of k-creative sets, all k-creative sets must be cylinders if their conjecture

were to hold.

Thus, since the sets defined by Theorems 1 and 2 are already creative, it seems

reasonable to ask whether they are cylinders in a polynomial sense.

Definition. A set C is a polynomial cylinder if there exists a polynomially computable

and polynomially invertible function p, a padding function, such that for all x and ¥y,

z € Ciff p(zy) € C.

With this definition we can try to adapt the recursion theoretic proof to show that all

creative sets are cylinders and hence polynomially isomorphic.

Although the standard technique from [Rog-87] does not adapt in a polynomial set-
ting unless the productive function f is both one-one and polynomially invertible, a
similar problem in quite a different setting was faced by Schnorr in [Sch-75] where he
used a new technique credited to an anonymous referee. This technique has been used
again in [MWY-78] on problems similar to Schnorr’s, in [M&Y-78] in a different setting,
and again in [Dow-78] in a setting similar to that of this paper. The technique does not
allow us to produce a polynomial padding function, but it does go part way: If Cisa k-

creative set for which there is a productive function f € P%*~Y then we can construct

4. A set C is a cylinder if it is recursively isocmorphic to B x N, for some set B.
Therefore a set that is a cylinder has a padding function.
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a pseudo polynomial padding function p. However, p, lacks polynomial invertibility

and is one-one only on the complement of the set:

Theorem 3. Let C be any k-creative set for which there is a productive function
f € P®-D, Then the set C has a pelynomially computable function p such that for all

zandy,z € Ciffp(r,y) € C.Furthermore, p is one-one on C.

Praof. let S be a standard S? function; that is, for all e,y,k and
Z, 9.{y.k.x) = Ps(eyi)(*). What's more recall that S can be selected such that
<I"S‘(ta.y.k:)("‘c) = l(ég(y,]c,x))
for a linear function I, which is independent of ¢, ¥ and k. (See [M&Y-78] for details.)
Suppose that C is any k-creative set and f € P%*) is a polynomially computable

productive function for C. We can use the recursion theorem to find an index e such

that

yOif (3<z,i> <<y kD) f(S(e.z.7)) =F(S(e.y.k))]oryeC
voly k.z) = *+ otherwise.

Standard facts about well-behaved nondeterministic time measures and about the
complexity behavior of the recursion theorem and of Sy, functions in linearly bounded
measures ([M&Y-78]), imply that for all e, y, and k, Ws(yx) € NP¥®), provided that
the fixed point e is chosen sufficiently large. We claim, in addition, that f(S({e, ,)) is

the desired padding function. Two things need to be shown,

i (vy.k)y € Ciff f(S(ey.k)) € C, and
(i) F(S{e,,)) is one-one on C.

We begin by showing that f(S{e,,)) is one-one on C. For the sake of contradic-
tion suppose that ¥, z £ C but f(S(e.y.k)) = f(S(e,z,j)) for some k and 7. What's
more choose z and j to be minimal in the sense that there do not exist zg and 7o such
that <zgjo> < <z,7> and f(S(e,y.k)) = f(S(e,20.0)). Now consider Ws( ;). We
claim that Wse ;) =¢. If not, then there exists zy such that g.(z,7,z¢) 4, which

implies that there exist <z4,70> < <2,7> and



-9-

F(S{e.zojo)) = f(S(e.z.j)) = f(S(e.y.k)).
But this contradicts the minimality of <=z,7>. Therefore, Ws(,.;)=¢ and
S(e,z.j) £ Ws(e.».j). However since f is a productive function for C, we must also have
F(S(ez,j)) £ C.

Now  consider Ws(e.y k) By  construction Wseyk)=N. Therefore,
S(ey.k) € Wseyr) and thus, f(S(e,y,k)) € C. But our original assumption was
that f{(S{e.y.k)) = f(S(e,z,j)), so we have a contradiction since one can not be an
element of C while the other is an element of C. Therefore f(S(e,y.,k)) is one-one on
C.

We now need to show that for ally and k,

y € C iff f(S(eyk)) € C
Suppose that y £ C. Then M. f(S(e,y.k)) is one-one and thus for all k, Ws(syk) = ¢

Therefore S{e,y.k) £ Wseykx) and since f 1is a productive function for C,
F(S{ey k)£ C.

Similarly, suppose that y € C. Then for all k, Wspye) =N. Therefore,
S(e.y.k) € Wsqyi) and since f is a productive function for C, f(S{e.y.k)) € C.

Thus f{S(e,, )) satisfies the requirements of the theorem. ®

It is now important to notice first, that had f been one-one, p would also be one-
one, but, second, that even in this case p would not quite be a padding function that
makes C a polynomial cylinder. The problem is that p is not necessarily polynomially
invertible, and the only obvious way to make p polynomially invertible is for the pro-
ductive function f itself to be polynomially invertible. But f could have been any
one-one, polynomially honest, polynomially computable function. The only way for all
such f's to be polynomially invertible is for there to be no polynomially computable
"one-way" functions, a supposition that is widely believed to be false by cryptogra-

phers.
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In spite of some effort, we have been unable to show that k-creative sets have poly-
nomially invertible padding functions unless we know a priori that the productive func-
tions are not only of low complexity but are also polynomially invertible. Since
Theorem 2 guarantees that every honest, one-one, polynomially computable function,

tnvertible or not, is a productive function we are led to the following conjectures:

Conjecture 1. The k-creative sets are polynomially isomorphic only if polynomial

"one-way' functions do not exist.
Since we conjecture that "one-way" functions do exist, we also have

Conjecture 2. The k-creative sets are not all polynomially isomorphic, and hence
not all NP-complete sets are polynomially isomorphic - a direct contradiction of the

Berman and Hartmanis conjecture.

In any case, the k-creative sets give a new class of NP-complete sets for which the
Berman-Hartmanis conjecture seems to fail. (Assuming that not all NP-complete sets
are polynomially isomorphic, the "density” of NP-complete isomorphism types is

explored in [M&Y-84].)

The difficulty of improving Theorem 3 to make all k-creative sets paddable sug-
gests that not only are not all NP-complete sets isomorphic, but that they are not even
all complete under one-one polynomial time reducibilities. On the other hand, the only
k-creative sets we know to exist do have one-one productive functions, thus they all
admit polynomial padding, and hence they are all complete under one-one polynomial

time reductions. This suggests:

Guestion 1. Do all k-creative sets have one-one productive functions? Are all NP-

complete sets complete under one-one polynomial time reductions?

The above results and conjectures suggest many additional questions, at least
some of which should be solvable without resolving F vs NFP. We list a few, the

interested reader should have little trouble finding more:
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Queslion 2. In classical recursion theory, all "many-one complete” sets are
creative. With our notion of k-creative, the polynomial analogue seems unlikely for
NP-complete sets. We would conjecture that not all NP-complete sets are k-creative.
In fact, we do not even know whether any "natural' NP-complete set is k-creative.
Additionally, it would be interesting to know whether there is some other "structurally”

defined class of NP-complete sets which are nof k-creative.

Question 3. What is the logical connection between Conjectures 1 and 27 For
example, is it possible to prove that NP-complete sets are all isomorphic iff 'one-

way'' functions do not exist?

Question 4. The construction of existing k-creative sets (Theorem 2 above)
required that the productive functions all be one-one and polynomially honest. Does

every k-creative set have a productive function which is one-one and honest?

Guestion 5. In order to even begin the construction of a pseudo-padding function
given in the proof of Theorem 3, we had to assume that the k-creative had a productive
function of low complexity (in P(k“)). Does every k-creative set have a productive

function in P*~1? We suspect not.

Question 6. Theorem 3 enables us to show that for many k-creative sets C, C can
not be weakly polynomially immune in the sense of nof having a subset which is the
range of a one-one polynomially computable function, p. On the other hand, the range
of this function p need not by polynomially decidable. Thus we ask whether k-creative
sets or their complements are almost polynomially immune in the sense of not having
subsets which are the range of polynomially computable one-one functions with polyno-
mially decidable ranges. A positive answer would imply that such sets are not all poly-
nomially isomorphic. In any case, the observation that for many k-creative sets, C, C
can not be weakly immune shows that proving that every NP-complete set is k-creative
is too hard: an affirmative answer implies P #/NP. Finally, we do not know what degree

of polynomial immunity, if any, is possible for k-creative sets.
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We now return to our discussion of the polynomial analogs of Theorems I and II.

A Second Result on Witness Functions for P » NP

Our second result on witness functions is analogous to Theorem Il above. It will fol-
low as a corollary to this result that any set that can be polynomially witnessed to be

incomplete for NP must be in NPnecaNP.

Theorem 4. Let B be any set and suppose that there is a polynomial witness to the fact
that B is not hard for NP. Le., suppose that there is a set A in NP and a polynomially
computable function A which witnesses that A is not polynomially reducible to #. Then
B isin NPncoNP.

In fact, A need only witness that A is not in P relative to B. That is, A £ PO.B,

Proof. Suppose that B is any recursive set for which there is a polynomially com-
putable witness function, h, to the fact that B is not hard for NP. Then the function h

must satisfy:

eP(h(i)) =1 1iff R(i) € A
for any program i which witnesses that WZ € P-B, QObserve that for any set B we
can construct a polynomially computable function g such that:
1 ifi € B
B _
0a(2) =\ otherwise,
For any reasonable choice of g, g () is a program which witnesses that W5; € P2,

However, we now have that

i € BAff Wie =10, 1,2 - 3 iff h(g(d)) € Wiy iff h(g(i)) € A
Thusi € B ifandonlyif h{g(i)) € A, showing that B isin NP.

To complete the proof, we must show that under the same conditions B is in NP.

But the proof is exactly the same: in the above proof simply take every occurence of 5

that is not as superscript, and replace it with 5. 2
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It is worth noting in the above proof we did not need that h is a function. It was
enough to have A be any nondeterministic polynomial process such that any value,

h(i), that it produces satisfies,

w8 € PW-E implies [pf(h(:)) =1 iff h(i) € Al
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