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0. ABSTRACT

A communicafions adaptor IS a processor that provides efficlent inter-

snachine message transport. This thesls proposes a deslign for a communications

adaptor called SODA which also provides Interprocess communications facilities.

The primitives provided by SODA are tailored to the needs of distributed operating

systems and high-level distributed programming languages, and are deslgned for

simplicity and uniformity. Our work makes three Important contributions to com-

puter sciencs:

(1)

)

(3

Available communications adaptors are not complete In the sense that addi-
tional kernel software Is required to support process naming, creation and
destruction. SODA Is a novel communications processor which combines the
Intermachine message-passing capabiiities of a communications adaptor and
the Interprocess communicatlion facilities traditionally supplled by an operat-
Ing systems kemel. As a result of combining these two functions, distributed
operating systems can be bullt at reduced cost and with improved perfor-

fance.

To take advantage of increasingly mors Inexpensive processors, and to help
achieve our goals of simpllcity and reduced cost, we require that client pro-
cessors are not multlprogrammed. As a consequencs, the SODA primitives
require careful design to avoid imposing limitations on applications code. An
Important result of this thesis is to demonstrate that a uniprogrammed sys-

tem can function well In a distributed network.

Most message-based systems provide an active SEND and a passive
RECEIVE primitive. Tl_le SODA primitives provide an actlve RECEIVE and an
active EXCHANGE as well. Our implementation shows that these primitives
can be Implemented with approximately the same performance as an active

SEND. As a result, new styles of interprocess communication are feasible.



We demonstrate the utlility of the SODA primitives with numerous programming
examples, including a2 new solution to Dijkstra's "dining philosopher's” problem. A
compact and efficlent SODA implementation Is presented which suggests that an
inexpensive SODA processor should be possible to build, thus enabling inexpen-
slve processors to afford to possess a SODA interface. Finally, the design

rationale for SODA Is given.




1. INTRODUCTION

The cost of processors Is continuing to decline. As a result, it is becoming
feasible to distribute computations among physically distinct nodes to achieve
better performance, extensibility, enhanced rellability, and improved resource

sharing capabilities [1].

Ina distributed envircnment, an operating system no longer need consist of a

monolithic collection of utllities such as file servers, command interpreters, and

device drivers supported by a complex kamel. Instead, services may be scat-
tered throughout the network. System utliity processes can be treated like appli-
catlons processes. We will refer to a process in a distributed system as a client

process, since it uses the services provided by the operating systems kernel.

Our view of an operating system kernel is that It I8 an entity which providss
just those services which all client processes will require. The kemel of a distri-
buted operating system should not be concemed with providing direct support for
system utllities. Instead, the kemel need only provide a vehicle for resource
gharing that ls necessary if client processes are 1o cooperate. We feel that this
vehicle defines a necessary and sufficient functionality needed to construct a

distributed operating system.

As the role of the kemel decreases, the Importance of the communicatlons
Interface Increases as efficient interprocess communication becomes the predom-
Inating concern of the kemel. This thesis represents an effort to reduce system
cost and Improve performance by combining the functlons of a distributed operat-
ing systems kemel and a communications Iinterface into a single entity called

SODA.



1.1. Kernel Requirements

In a distributed network, all nodes contain kemels supporting the same func-
tion which presents a uniform interface for all client processes, and allows cllients

to share the resources of the entire network.

The kemel of a distributed operating system should provide a reliable mes-
sage exchange service, and mechanisms for process naming, process synchroni-

zation, process creatlon and process destructlon.

The notlon of simplicity Is hard to pin down, yet it Is cited by almost every
author as a desired feature of his softwaré. Wirth's programming language Pas-
cal [2] and Patterson's computer architecture RISC [3] are examples of the
successes of the design goal of simplicity. Hansen [4, 5] is emphatic that simpli-
city is one of the major ingredients of a rellable system. Yet, In spite of its
widespréad uée, there Is no well-accepted definition. Certainly, size is a factor.
Glven two implementations, we might say the smaller one Is simpler, but it may
require construction in a highly obtuse or inetflclent manner while the larger one
does not. Given two sets of operating system kemel primitives we might claim the
smaller one Is simpler but it may be quite difficult to perform ordinary tasks with It.
Thus, an Important requirement for a set of kemel primitives is to balance simpli-
city and size. Size can be measured by the number of primitives and the size of
the kemel code. Simplilcity is a more subjective metric: Programming effort for

both kernel and application program implementation must be evaluated.

A distributed operating systems kernel should be well-sulted to the needs of
high-level distributed programming languages and sophisticated systems pro-
grams. It Is not enough that it is possible to implement a given specification. The
primitives provided should make for efficient programming or, at the least, should

simplify construction of high-level language compllers.
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If computers become cheap enough, 1t should be practical to allocate a single
processor to each process and to each peripheral device on a network. With this
compleata distribution of activity, the overhead and complexity of multiprogram-
ming Is eliminated. As a result, Interprocess communication efficiency becomes a
key lg;sue in determining system performance. Further, a kernel that supports only
a single client process can be kept simple. One important thrust of this thesis is
-an axploratbn of the extent to which the restriction of ona process per proces=

sor facilltates the design of a simple, powerful, and uniform kemel.

Traditional operating systems kernels will ‘hide the details of memory
management and device handling from the cllent. In a distributed environment
these functions are not required by all clients. Further, In a heterogeneous net-
work, the needs of each client for these services will vary widely from node to
node. . Thus, to be consistent with our kemel philosophy that only universally
naeded services be provided by the kemel, we exclude memory management and

device handling capabillities from our kernel requirements.

1.2, Communications Adaptors

A comnmunications adaptor (CA) Is a processor that provides efficient
intermachine message transport. An example Is the Arpanet IMP [6]. However,
most proposals for communicatlons adaptors support only intermachine rather
than interprocsess communication (IPC). Support for IPC must include process
naming facllities and synchronization mechanisms. Thesa functions are typically
provided in exIisting systems by high-level programming languages or operating

systems kernels.

Spector [7], Mockapetris [8] and Leblanc [9] among others have recently

pointed out the need for more powerful communications adaptors. In addition to



providing an IPC capability, a CA should meet the following requirements:

Uniformity
A CA should permit different nodes to communicate by providing a standard
network interface.

Reliabllity
The CA must use a communications protocol that ensures rellable in-order
transmission of messages. ,

Efficlency
The CA should free the host processor from the burden of supplying rellable
message transport protocols [8] This is especially important for very high
speed networks, as host performance may be severely degraded if the host
must spend a large portion of its time managing the low-level details of com-
munications protocols.

Low Cost

A CA should be inexpensive so that even cheap processors may use one
without adding significantly to the cost of the processor. As a result, the CA
implementation should be compact so that a small processor (perhaps even a
single chip) can perform the CA functions.

1.3. SODA

We have discussed our requlreménts for a distributed operating system ker-
nel and for a communications adaptor. Our thesis is that it Is possible to combine
the two: We show that it Is feasible to design a CA which provides operating sys-
tems support (at least in a uniprogramming environment) in addition to message
handling capabiiities. In addition, we show that this CA can be implemented com-
pactly and Islmply enough that an inexpensive hardware realization (possibly in
VLS!) should be possible.

In a typical SODA network, each processor possesses a SODA interface that
provides IPC facilities. Some clients may provide a database service or a time
service; some may control peripheral attachments such as disks or terminals; and

still others may be avallable for executing application programs.
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A SODA Interface provides a simple and powerful set of primitives that pro-
vide efficient IPC mechanisms. it will allow a node to function without further ker-
nel support In a distributed environment. Thus, in addition to the ability to send
messages rellably to another machine, SODA will support communication between

clianis,

Our work makes three major contributions to the field ot distributed operating

systems research:

(1) We show that an inexpensive communications interface can be built which
supplies a set of primitives sufficient for processes to cooperate efficiently

In a distributed environment without additional kernel support.

(2) We explore the kinds of communications ‘primitlves that are necessary to
support high-level applications in a system consisting of networked unipro-
grammad processors. i ‘ '

(3) Most message-based systems provide an actlve SEND and a passive
RECEIVE primitive. The SODA primitives provide an active RECEIVE and an
active EXCHANGE as well. Our implementation shows that these primitives
can be Implemented with approximately the same performance as an active

SEND. As a result, new styies of interprocess communication are feaslible.

In the remainder of this thesis, we present the design of SODA and support
our claim that an inexpensive communications adaptor which provides IPC support
can be constructed. We will also show that SODA is simple both to use and to

implement.

Chapter 2 surveys related work. Chapter 3 describes the SODA design in
detall. In chapter 4 wae illustrate the power of SODA by presenting examples of
how SODA can be used to build distributed programming language constructs and

solve typical problems in the construction of a distributed operating system.




Chapter 6 supports our claim that SODA Is slmplé by reporting on a compact and
efficient experimental implementation. Chapter & also substantiates our claim
that active RECEIVE and EXCHANGE can be implemented with performance com=
parable to active SEND. In chapter 8 we explain the reasons for some of the
decisions we made In designing SODA and discuss possible extensions. Finally,

chapter 7 summarizes our results and suggests directions for future research.
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2. RELATED WORK

inter-process communications facilitles are provided by processors, operat-
ing systems kemels, and programming languages. Most provide mechanisms to
create and destroy processes and to enable them to exchange data. In this
chapter we will examine some other work in thess three areas. Olir survey Is
meant to lllustrate common features found in local area networks and Is not

comprehensive.

2.1. Definitions

To assist In this discussion, we define some terms with the help of five taxo-
nomles of parallel processing: Cashin [10], Spector [7], Andrews and
Schneider [11], Bacon [12], and Finkel [13]. Plasmeijer [14], Goodenough [1 5}

and Casey [ 18] also provide some useful termlnblogy.

PROCESS ALLOCATION
Several processes may coexist on a single physical machine. If the number
of processes. allowed Is one this Is called uniprogramming, and if more than
one process is allowed it is called nudt'lpmgrmmnulg

PROCESS CREATION
Loading a program cn a (foreign) processor may require that the processor
being loaded be named specifically of it may be anonymous. The code that
is loaded may be active (a process with its own locus of control) or passive

(such as a procedure that may be called remotely).

SHORT TERM SCHEDULING
When there is a choice of selecting from a set of suitable processes, priori-

tias may be provided to grant the mcre important processes better access
to the CPU.

PROCESS INDEPENDENCE ,
When a process is creatad, it may have no loglical connection with Its parent
(be indapendant) beyond cbtaining some Initial capabilitles, or it may be
] nt on Its parent. For example, it may ba required to inform the
parent about its termination or to ask the parent for permission to perform
certain functions.
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PROCESS DESTRUCTION

A process may be terminated by another process or by its own volition. Ter-
mination may be immediate, asynchronously interrupting the process to be
terminated, or delayed (the process to ba terminated has a chance to clean
up before dying). Notiflcation to other processes about the death of another
process may be aufomatic of explicit (the dying process must specificaily
Inform others).

EXCEPTIONS

(1)
(2

(3

Exceptions (that may take the form of speclal messages) may be ralsed syn-
chronously or asynchronously In a process and may or may not be pro-
pagated through a chain of ancestors of the process. Either the process
ralsing the exception, the process recelving the exception, or both may be
disrupted. There are three categories of exception handiing [16]:

ESCAPE excaptions that require termination of the operation raising the

exception.

NOTIFY exceptions that forbid termination of the operation raising the
exception and require its resumption after the handler has completed its
actions.

SIGNAL exceptions that permit the operation raising the exception to be
elther terminated or resumed at the exception handier's discretion.

MESSAGE SY NCHRONIZATION

1) Non-Blacking (asynchronous) Send/Receiva

- The sender or receiver proceeds immediately after Issuing a send or recelva.

2) Simple Rendezvous (synchronization send)
Whichever party arrives first (at a send or receive) waits for the other. At
that point, parameters are exchanged and both parties continue.

8) Extended Rendszvous (remote procedura call)

Extended rendezvous is the same as simple rendezvous except that the
sender remains blocked after rendezvous until the receiver replies. The
remote procedure call discussed in 84.2.2 is in this category.

NONDETERMINISM CONTROL

When several conditions can become simultaneocusly true, the corresponding
actions may be handled in a predictable fashion or picked at random. Con-
ditions may include the states of local variables, the contents of messages,
and the synchronization of two parties engaged in rendezvous. Guarded
Commands [17] are available as a mechanism for handling nondeterminism.
Other proposals, such as altemation of paths in path expressions [18] are
similar. Guarded commands may be used tc select one of several send (out-

) or receive (input guards) requests. When non-determinism-
control Is applied to the receiving of messages it is referred to as .salactive
raceipt.

TARGET GROUP SPECIFICATION (N-out/M-in)

N is the number of possible destinations a sending process can specify ina
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single "send" primitive; M is the number of sources a receiving process can
specify In a single "racalve” primitive. ~

COMMUNICATION METHOD
Processes exchange ‘data either by sharing memory of gxchanging mas-
sages. In the former mathod, processes communicate by addressing memory.
Synchronization methods alm at ensuring atomic data access. In the latter
method, processes address each other. Synchronization methods alm at
coordinating process activity. Either method may be used to emulate the
other.

PROCESS NAMING
There are two essentlal ways in which processes may be addressed:
1) Facility Names : |
The sender need not know the exact name of the receiver but must know
some attributes that describe the function of the receiver.

2) Explicit Names ' )

The sender must specify an axact destination name. Names may he created
dynamically or at compile time. Some means must be provided to giva the
sender access to a well-known name. The name may be published (available
in & manual) or discoverable (available by making inquiries to a name server).

PORTS ,

A port Is a queueing point for messages which Is either ‘pound to the name of
a process or-has Its own independent identity. An input portis a port which
may be written by several processes and read by one process. An o

port Is a port which may be read by several processes and written by one
process. A free portis a port which may be read and written by several
processas. .

LINKS
A link combines the notlon of capability [19] with that of a logical communi=
catlons path. Additionally, an end of a link may be moved to another process
transparently to the process at the other end of the link. Notifications about
process and link destruction, restrictions on passing links to other
prgiczsses, and limitations on the type of message sent on a link may be
Included.

MESSAGE SCREENING

Certaln messages addressed to a cllent are never dellvered to the client.
This is because the kernel that recelves incoming messages for demultiplex-
Ing among cllents rejects some messages. Most systems provide for at least
the rejection of messages not addressed to a particular processor. A rejec-
tlon may also be based on client-supplied information such as size or type
information bound to the message.. The purpose of screening is to avoid
Interrupting the receilving client to handle messages that may more effl-
clently be processad by the kemel.
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COMMUNICATION PATH

Once a logical communication path has been sat up, It may allow only one-

way conversation (simplez), two-way conversation (duplez), or it may
allow an arbitrary number of parties to communicate (party lina).

MESSAGE PATHS

Messages may have 1o be routed by Intermediate machines (not the final

destination) In which case the cost of sending a message Is not uniform.
Alternatively, messages may be sent directly to the destination machine.

22 Programming Languages

We discuss here & variety of proposals for progfamming languages designed

to be used In message-based distributed anvironments.

22 1. Communicating Sequential Processes (CSP)

CSP [20] achleves message synchronization by simple rendezvous. Target
group spacification is ox;e—outlone-ln; process naming is explicit by both parties
in & communication. Guardef:l commands are used to control nondeterminism. Input
guards may be used within guarded commands but output guards are not allowed
(later implementations [21,22] provide output guards). The lack of output Quards
complicates some algorithms because reading and writing are not symmetric. The
explicit naming requirement makes it difficult to provide fibrary éervlces since
such a service would have to know the name of its requester a priori. Messages

are screened by the data types of the enclosed obj'ects.

222 Distributed Processes (oP)

pp[23]is a proposal for a uniprogrammed system designed to handle real-
time events. Target group specification is one-out/many-in as the receiver does
not specify its callers and the sender explicitly names the receiver. Message
synchronization Is by extended rendezvous. Guarded commands and regions pro=

vide nondeterminism control. An initlal statement is executed untll it terminates or
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walts for a condition within a guarded region to become true. At that point, exter-
nal requests (equivalent to extended rendezvous) can be processed which possi-
bly cause a condition in-an eariler operation to become true. Screening on param-
eter types In a remote invocation Is performed. The guarded command structure
ditfers from Dijkstra's [1 7] in that if all guards fall, the‘ process waits for a ran-
dom guard to become true instead of skipping the statement. Because the sender
is blocked until the operation it Invoked completes, highly concurrent algorithms
sre difficult to expréss. Also, implementation of DP could be quite difficuit since
guards must be reevaluated In the context of their own containing scope (guard-

ing conditlons may include the state of local variables).

2.2.3. Input Tools Processes (ITP)

ITP[23,14] Is based on a language (input Tool Model (ITM)) [24] designed
especlally for management of input-driven interactive programs. This model is
simllar to Path Expressions [1 8] Program control is managed by a parser that
matchas "Input rules" to determine the next procedure to call. When an Input
activates a "tool", that tool executes and passes control pack up to the enc!oséé
Ing tool, Informing that tool that It has successfully matched the pattem named by
the enclosed tool. This activity continues until the outermost set of input rules is

matched. A small number of pattern matching primitives are providad.

ITP builds on ITM by adding send and receive primitives. "Receive” specifles
a message and the type of the message. 'Send" gives a message that must
match the type specification in the corresponding receive. To name a destination,
vgend” may use the process name and/or an entry name {"basic tool name"). A
receiver may receive from any sender or a particular sender. Broadcast Is

achieved by omitting the process name in a send operation. Additionally, a form of
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group broadcast may be specified ("Interleaved process sat"). Message syn-
chronization is by simple rendezvous and target group specification varies from
one-out/one-in to many-out/many-in. A form of guarded command ("'setectad pro-
cess set") Is also available. The parser in ITM is modifled to manage the addi-
tional features provided In {TP. An exception handiing mechanism in ITM ("'escape
tools") is being considered for usa in ITP.

2.2.4. ADA

ADA [26] Is a language not strictly designed for a distributed impiementation.
Message synchronization is by extended rendezvous; a form of guarded command
is avallable to control nondetem\lnism and target group specification ls one=
out/many-in. Exceptions are not automatically propagated and only failure
axceptions may be ralsed asynchronously. Exceptlon Handling is in the ESCAPE
category. The sharing of memory and actlvation records among tasks (tasks may
be nested) precludes a stralghtforward message-based communication unless the

language Is restricted.

2.2.5. *M0D

*MOD [28,27] Is a proposal based, like ITP, on an existing language
(Modula) [28] and provides a hybrid comrﬁunlca’don approach. Processes on a
given machine may communicate via shared memory and provision of multiproces-
sors offers a chance to Improve performance (but is not required). Non-local
processes communicate via ports. Selective receipt Is provided by regions.
Ports provide either asynchronous or extended rendezvous communication. A pro-
cess may be created to run In parallel with the parent, or the parent may wait for

the process to complete and return a value (a functional process). The target
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group specification is one-out/many-in. Processes are independent so strict
bottom-up termination of a task hierarchy is not required. Short term scheduling
tlexibility Is provided by assigning priorities to processes. *MOD has as a major
design goal the ability to provide as much flexibility as possible (to avoid con-

straining the user to its design decisions).

22 8. Communication Ports (CP)

‘CP [20] is a uniprogramming proposal based ‘on DP that adds two more
features: a way to specify a set of acceptable senders, and a mechanism for the
.receiver to "disconnect” callers at will. The first feature implies that target group
specification includes one-out/one-in (along with one-out/many-in as in DP). The
second feature allows flexible scheduling of request handling. As a result, both
" simple and extended rendezvous are avallable. A wldg class of scheduling prob-
lems can be solved with »disconnect”, and less expﬂcit interaction (e.g., asking
permission to proceed after a send) may be required in some client-client com-

munlcation protocols.

227 Extended CLU (ECLU) and ARGUS

ECLU [30,31] Is similar to *MOD In many aspects. Guardians (a collection of
processes that communicate via shared memory) are the fundamental entities in
ECLU. A guardian communicates with another via strongly typed messages which
are sent asynchronously. Guardians provide ports to recelve messages on. If a
recelving port runs out of room for a message, the message Is simply discarded
and higher-level protocols are used to determine the necessity of resending.

Further, messages are not guaranteed to be received in the order sent.
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ARGUS [32] Is a later version of ECLU in which guardians supply (instead of
ports) a new process invocation (handler) for each message receipt. Both ECLU

and ARGUS provide mechanisms for ensuring railability In the presence of crashes.

2.28. Plits

Plits [33] Is a language proposal that includes both asynchronous sending
and modest typechecking of messages. A message consists of a set of name-
value palrs (slots) that are packaged and shipped out as a data record. Message
screening mechanisms reject meésages of improper structure, but type checking
s not automdtic so messages about which nothing Is known can be recelved. In
addition, a "transaction kaf" may be specified in a send or receive. The "tran-
saction key" Is some additional (network-wide unique) information the client sup-
plles about a message that a recelver may inspect as a way of scresning incom-
ing messages. The target group specification is one-out/many-in but may ba res= ”
tricted to one-out/one-in with the transaction key.

2.3. Operating Systems

We discuss here some other distributed operating systems kemels. A kernel
differs from a language primarily in the level of services provided. As an axampie,
a programming language may provide remote procedure call as a primitive; how-
ever, It may be implemented on top of a kemel that provides other forms of mes-

sage synchronization.

23 1. Arachne

Arachne [34] Is a distributed operating system with capability-based com-

munication (simplex links). Both asynchronous send and asynchronous receive
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are possible, but the latter Is restricted to a speclal "catcher” routine that has
limited access to other service calls. Target group specification is one-
out/many-in. A set of "channels' may be specified to select among senders that

possass a link to the recelver.

Process creatlon Is anonymous: a new process Is loadaed on any free
machine. Arachnels a multlprogramming system with a non-preemptive scheduling
mechanism. Processes are dependent. It is intended that each client speaks to
a “resource manager' process to obtain standard operaﬂng systems services. A
"connector" program that provides a semi-automatic service to bind process

names of a set of cooperating processes together is available [35]

One aspect of Arachne is that many system facilitles normally provided by
the kemel can be provided .as client programs. A disadvantage is the ad-hoc
features necessary to support this goal (such as having clients with special
powers to load processes via the filesystem). In addition, the ability to place
restrictions on link use (such as disallowing link duplication) is often more of a

hindrance to problem solution than a help and is not used much In practice.

2.3.2. Gaggle

Gaggle [36] supports a uniprogramming discipline along'wlth the concept of
@nks. Both synchronous and asynchronous send and receive are possible and may
be freely mixed. Gaggle supports byte streams, and the kemel buffers bytes
transported betweén the user and the system. A number of predefined links to
system utliitles are provided at process creation time. Gaggle is similar to

Arachne except that Gaggle links support duplex communication.
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2.3.3. Thoth

Thoth [37]Is a message-based muitlprogrammed system designed for porta-
bility. All messages are 8 words in‘length. The most relevant (to our discussion)

feature of Thoth are its unique message-passing primitives. They are:

(1) rid := Send(mesg, pid)
A synchronous send. "mesg' Is sent to the process named by "pid’". When
the message has been replied to (by the Reply primitive), the sender is
unblocked and returned the process id ("'rid") of the receiver that issued the
Reply (need not be the same as "pid"). "mesg" will be overwritten by Reply.
(2) Receive (mesg, pid)
A blocking receive. The recelver blocks untll a message from process "pid”
arrives. Then the message Is stored In "mesg’. The pid need not be speci-
fled In which case any message addressed to the recelver is obtained.

(3) Reply (mesg, pid)
Reply to process "pid", unblocking that process and supplying "mesg” as a
retum value.

(4) Forvard (mesg, fromid, toid)
A non-blocking directive that causes "mesg" to be sent to process 'told” but
appear to have been sent by process “fromid”. Process 'fromid" must be
currently blocked awaiting a Reply. ‘ -

2.3.4. Charlotte

Chariotte [38] Is, like Arachne, a link-based multiprogrammed system but in
this cass, links are full duplex. Charlotte is built on top of a nugget [39] which is
a communications kemel. The nugget provides rellable machine to machine mes-
sages with asynchronous notification of the client (the Charlotte kemel) upon
successful recelpt and send completion. Selective recelpt Is not provided by the

nugget.

in Charlotte, both sending and recelving are asynchronous but notification of
completed sends or message receipt Is synchronous. Charlotte also provides a

way to cancel either a pending send or a pending receive operaﬂon.
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2.4. Hardware Support

Some message-based systems are improved by hardwarae support. This sup-
port may take the form of providing dadicated microprocessors (which may be
microcoded) to perform protocol tasks, specialized protocol chips, of processors
with message-passing instructions incorporated into their native instruction set.

We discuss here some proposals that provide hardware assistance for IPC.

24.1. Cm* and Star0S

Cm* [40] is a multiprocessor architecture that supports either shared
memory or messages. A cluster of machines with local memory are Interconnected
via a map bus. Clusters themselves are interconnected by a K-map. The K-map
is microcoded to provide (in conjunction with host software) the desired IPC prim-
ftives. A major consideration for using Cm* Is the relative cost of accessing
memory. Intercluster references are more time-consuming than inmtracluster refer-

gnces which In turn are more time-consuming than local references.

-

Star0S [a1]is a capability-based operating system that executes on Cm*.
it provides mailboz pﬁvaes for IPC. A mailbox s an object that can buffer a
single data word or a single capability. Sending to and receiving from a mailbox is
asynchronous. A process may assoclate (register) a signal with a glven mailbox
and block on that signal until receipt on that mallbox occurs. if a mailbox is full, a
send to it fails immediately. Support for mailboxes is partially provided by micro-

code and partially by software.

2.42. leoc

Leo [42,43] Is a system of eight uniprocessing computers designed to act

as a single personal workstation. It employs a microprocessor (an intel 8085) to
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perform message handling tasks. Each processor (and hence, each process) Is
statlically named by its function (l.e., the fileserver is on a fixed processor which
always contains the flleserver process). One processor s allocated for applica-
tlons programs; the remalnder havs pre-defined functlons (e.g., editor, printer,
tty-driver). Most forms of message synchronization lncluding asynchronous send

and rendezvous synchronization are possible.

The transport.protocol»works as follows:

(1) The requester client Issues an order to.a server cllent which Is a message of
a small fixed maximum length (160 bytes). Orders are sent asynchronously
and are queued by the destination kemel. At most ona uncompleted order

between server and requester may exist so space for orders can ba stati-
cally prealiocated. :

(2) The requester issues a WAIT for a response. When the response arrives,
the order Is said to have complated.

(3) The server cllent issues & WAIT command. The server then blocks until an
order is available. WAIT may select a particular sender. A special kind of
order Is provided (telegram) which will interrupt the server. :

(4) The server Issues zero Or More TRANSPORT commands that cause data to be
transfemred in either direction. The requester should not tamper with data
being sentby a TRANSPORT command until the request completes.

(5) The server issues a response that, llke an order, contains at most 150
bytes. A responss may Interrupt the requester when Issued as a telegram by
the server. ‘ g7

The size of an order is sufficient to handle most needs of the system and the
TRANSPORT facility Is used rarely (primarily for flle trancfer). Telegrams are

currently used only for handling error conditions [44].

2 4.9. The Intel iAPX432

The 1APXA432 [46] provides microcode support for a wide range of IPC
mechanisms. The computer architecture supports distributed IPC in a unified
model that treats all objects (messages, processes, data structures) In a similar,
capability-based fashion (all object access is via an object descriptor that

i defines access rights to the object). The 1APX432 is a shared-memory system



22

that supports messages as & communication vehicle as do Thoth [37], and
Demos [46]. Messages are sent via ports. Message synchronization is simple
rendezvous: The sender Is plocked until a recelve is performed on the assoclated
port. Both input and output ports are provided. A mechanism ('surrogate
receive") Is provided to receive on several ports by setting up a single port to
that a group of ports can send. Port queues may be dynamically rearranged.
Exceptions are classifled by severity and are either treated as normal messages

or emergency messages that interrupt the current process.

2 4 4. The Distributed Computing System (DCs)

in DCS [47,8,48] processors are connected In a ring. A ring interface pro-
vides the line driving mechanism which, in addition to managing low-level line pro-
tocol;s (e.g., bit stuffing and error detection), helps support the higher-level com-
munication protocol. In particular, the interface, In conjunction with host
software, provides process name screening based on assoclative pattern lookup,
and a software éequenclng protocol that eliminates duplicates. The interface
itself provides four kinds of acknowledgements that assist the software proto-

cols:

(1) The message was addressed to a nonexistent process.
(2) The message was successfully delivered to at least one process.

(8) The message was not accepted by any process but the address was recog-
nized by at least one interface.

(4) The message was recognized by at least two hosts; at least one of which
accepﬁed the message and at least one of which did not accept the mes-
sage.

Because process names are matched associatively, addressing Is completely
locatlon Independent and the process migration mechanism (but not necessarily

the pollcy) Is trivial. However, It Is probably not a practical approach for building




23

elther very fast or very inexpensive Interfaces that must minimize the amount of
logic used. Broadcasting can be achleved by using the same name for several
processes. When a service Is requested, that request Is broadcast throughout
‘the network and bids on the request are retumed. Process names may be

Installed by the DCS kernel In the Interface name table on behalf of clients.

The DCS system provides threa 1PC primitives:

(1) Send(precessname, message)
Block the sender until "message" Is delivered to the queus maintained by the
destination process specifled by "processname’’.

(2) Ctri(processname, message) )
Same as Send but deilver “message” to the DCS kernel.

(3) Recv(Buffer, Timeout)

Wait (or time out In "Timeout"” clock ticks) for a message to appear on the

“local essage ‘quaus ;and:place the first: message from the queue in "Buffer’.
if "Buffer" is NiL, retum the status (empty/nonempty) of the massage
queua. - .

' 2.45. Intel Israel 82588

intel [49] has developed a sophisticated ethemet controlier that serves as
a protocol co-processor. In this system, the 825886 chip shares memory and con~
trol lines with the CPU and provides a relativety high-level Interface o the ether-
net. Besldes providing the standard line protocol functions such as bit
stuffinig/unstuffing, random backoff, collision detection and enforcement, it also

provides channel-like buffer management and broadcast addressing capabilities.

The cllent may provide linked lists of commands that inform the 82586 of a
~ Bst of buffers to be transmitted. Once the list Is prepared, the buffers named in
the command list are transmitted without client Intervention. On receipt of a mes-
sage, the 82586 automatically buffers the message and Inserts it into a linked
st of incoming messages maintained In client memory. A buffer of the sizé of the

incoming message |s allocated for each arrival. The client may specify that an
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Interrupt should be generated when a given number of frames have been
received. The 82588 does not provide reliable transmission primitives, but it does

provide powerful primitives useful for high speed data transmission.

2.4.8. TCP

Tcp [60] is a communications protocol designed for packet switched net-
works to support hosts possessing quite different transmission rates and laten-
cles (e.g., high-bandwidth high latency satellite and moderate-bandwidth low
latency conditioned phone lines). Hosts will be quite diverse so the protocol must
be provide a fairly low-level -gservice that can be uséd by all cllents. TCP is sdp-
ported by a datagram service (1P) [61]. TCP provides rellable messages
exchanged over a full-duplex path batween two unique sockets (a socket identi-

fles a client process).

TCP message primitives are connection-based (l.e., require an axplicit con-

nection to be established before communication can begin) and include:

(1) Open (foreign_socket, ...): connection_jd ,
Open a connection to a foreign host. Open must be executed by both ends
of a connection.
(2) Send (connection_id, buffer. o)
Dellver "buffer” to a remote queue.
(3) Receive (connection_id, buffer, |
if no data is avalilable, the receive request Is queued and control retumns to
client; otherwise "huffer' is fllled from the receive queue. in the former
cass, the client will be Informed via Interrupt when a messags has. arrived.
(4) Close (connection_id)
Half-close a connection. Messages will no longer be sent from the closing
side but may still be received by it. )

(5) The client Is informed by software interrupt of events such as the avallabil-
Ity of a message or a connectlon failure. »

The main objections to using TCP in a local network are that connections are
expensive to set up and tear down; a prohibitive cost in an environment whera

connections are frequently established and broken. Also, TCP provides many
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features (such as windowing to handle high-bandwidth, high-latency message

traffic) that are not required In a local network environment.

2.4.8.1. TCP Hardware

Quanta Microtique [62] has announced a TCP chip that supports a single
TCP connection; several chips may possibly be "ganged" to provide multiple con-

nactlons.

Mockapetris [8] has proposed a filter which Is a highly speclalized and very
fast processor that, togsther with a microprocessor that has DMA access to host

memory can perform most of the TCP protocol without host intervention.
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2.5. Conclusions

We surveyed several proposals for the support of distributed programming.
if an operating system is to'support several distributed programming languages it
must not restrict the style of Interprocess communication. For example, an
operating system that provides only synchronous SEND and RECEIVE primitives
would not be well-suited to Implement a language that supports asynchronous
SEND and RECEIVE. On the other hand, if an opera_tlng system makes no design
decisions and supports a wide class of IPC mechanisms, it becomes large and

complex; certalnly not In keeping with our stated goal of simplicity.

Available operating systems and hardware support so far has been geared to
particular styles of programming; the needs of a system that supports several
styles of IPC have not yet been completely met. LEO, for axample, provides a
flaxible set of message passing primitives but the process naming mechanism
supports only static interconnections. In the next chapter, we present the
design of a communications Interface (SODA) that can support a large class of

{PC mechanisms and that has a small, unified set of primitives.
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8. SODA PRIMITIVES

This chapter presents the SODA primitives. The purpose of this chapter Is to
explain what SODA Is, ot ‘how It Is used (chapter 4), how it Is implemented

(chapter 5) or why itis the way It Is (chapter 8).

3. 1. Definitions

CLIENT .
A process executing on a particular client processor.

KERNEL
The SODA machine that supplles interprocess communications facilities to
the client. The kemel and client communicate by shared memory. We use
the terms "SODA kernel'" and SODA interchangeably.

REQUESTER -
The client that Initlates a data exchange.

SERVER -
The cllent that completes a data exchange requested by another. The same
client may be a requester in one data exchange and a server In another.

HANDLER
A section of cllent code that .Is executed In response to an Interrupt gen-
erated by the kernel. When the handler is Invoked it enters a BUSY state.
When the handler completes It returns to an IDLE state.

TASK
The main part of the client program that Is always executing unless the
handler has been invoked. when the handler completes, the task continues
from the point of interruption.

BUFFER
A descriptor that indicates the size and location of a contlguous region of
shared (between client and kemnel) memory. ‘

MID
A network-wide unique identifler (machine 1d) assligned to each node. A ker-
nel will detect messages directed to the address specified by its MID or to
ali kernels (BROADCAST messages). ,
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9.2 Architectural Assumptions

We assume the existence of a SODA network as shown in §1.3. Each node in
the network Is composed of two processors: a kemel processor and a client pro-
cessor. The kemel processor provides the SODA primitives; the cllent processor
executes an application program. The client processors need not be Identlcal but
the attached kernel processors must all provide the same functlonality. Also,
each cllent processor must have the same sized bytes (8-bits) so that message
transfer between two machines always makes senéé. Each kemel processor has
a small amount of private memory for performing its own work as well as access 1o

-some parts of the client processor's memory.

The cllent processor may Issue commands to the kernel via control! lines, and
the kemel will delay retumn of control from such a command untll the command
completes. On some machines (such as the PDP-11), & busy bit in a device
reglstar‘ wiil be cleared to Indicate commard completion. The effect of this delay
is to suspend cllent execution until the kermnel completes the command (l.e., kernel
commands are executed atomically). In most cases, the kemel returns as soon as
it has noted the client command. Some SODA primitives may require & short,
bounded Interval before control is retumed to the cllent. The kemel may also
Interrupt the cllent processor. SODA commands are atomic: The kemel will not
interrupt the client when executing a command on behalf of the client. Every ker-
nel has a connection to a high-speed, local area r;etwork with broadcast ca;:ablll-
ties. The client can only access the network by Interaction with its kemel co-

processor.

The client processor may be attached to peripheral devices. The operation
of these devices Is Independent of the operation of the kernel. However, the

interrupt mechanism used by the kemnel may be shared with other peripheral dev-
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lces.' For example, on a PDP-11, the SODA kemnel may Interrupt the cllent by

asserting an interrupt in the same way that a disk interrupt is issued.
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The SODA kemel provides ten primitives to the client. These Include:
request for bidirectional data transfer (non-blocking with asynchronous notifica-
tion of the destination client); the data transfer itself (synchronous, with asyn-
chronous notification of completion given to the requester); control of asynchrony
by disabling/enabling asynchronous notifications; and a name service by which
cllents can advertise and discover services with private or well-known names.

Additional mechanisms allow one client to terminate or initiate another.

The SODA kermel provides a compact set of primitives sufficlent to enable an
attached client to function as an active member of a community of clients., The
features provided by the kemel fall roughly into three categories: message pass-
ing primitives, naming facilities, and process conirol functions.

8.3. Message Passing Primitives

The SODA kernel provides reflable point-to-point message exchange service
which means that, in the absence of processor crashes, messages exchanged
batween two cooperating machines are guaranteed to arrive safely, in order, and
without duplication. SODA makes some guarantees about behavior in the pres-
ence of crashes (discussed below). We assume that the kernel can detect errors
dus to transient subnatwork problemé such as packet coliisions or nolse-induced
errors and that a packet retransmitted enough times will eventually arrive undam-

aged.

Messages may vary In size from zero bytes up to a fixed maximum. Mes-
sages are only axchanged by distinct processors; thera Is no provision for local

messages.
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3.9.1. REQUEST

To initlate data transfer, the requester Issues a REQUEST that specifies the
SERVER SIGNATURE (defined in §3.4.1) of a destinatlon server, a one-word argu-
ment, and two buffers. REQUEST Is non-blocking: When it has been noted by the
requester's kemel, a tm.nsa.ct%a'n. id (TID) Is returned to the cllent and the client
is allowed to proceed. If the server named in the REQUEST does not exist, an
error will be detected when the requester kernel attempts to process the request

d'the requester's handler will be Invoked with an UNADVERTISED error status.
TID's Issued on a given client processor are guaranteed to be unique. The pair
<MID, TID> (called the REQUEST ER SIGNATURE) uniquely Iidentifies a request

across all time throughout the entire network.

The r‘equeiter's kernel establishes a connection with the server's kemel and
informs the latter (\;Ia the server's handler) that a request has been made. The
server's hanaler Is provided with an indication that a REQUEST has been made,
the REQUESTER SIGNATURE, the particular SERVER SIGNATURE used by the
REQUEST, the argument, and the buffer sizes supplied by the REQUEST. The
server need take no immediate action on this request and may simply exit the

handler.

3.3.2. ACCEPT

Eventually, the server may decida to honor or "complete” the request. It
does this by Issuing an ACCEPT which causes data t0 be exchangéd and the
requester's handler to be Invoked. ACCEPT specifies a REQUESTER SIGNATURE, a
one-word argument, and two buffers. When the ACCEPT completes, the contents
of the first buffer supplled by the assoclated REQUEST will be transferred to the

first buffer supplled by the ACCEPT and the contents of the sacond buffer sup-
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plled by the ACCEPT will be transferred to the second buffer supplied by the
REQUEST. In addition, the argument will be provided to the requester's handler.
Zero-length buffers may be specified to inhibit data transfer in one or both direc-
tlons. The REQUEST is termed & PUT, a GET, an EXCHANGE, or a SIGNAL, depending
on whether data Is transferred from requester to sender, from sender to requeé-
ter, both ways, or neither way, respectively. if the ACCEPT encounters a reques-
ter which has crashed, a CRASHED status Is immediately returned and the server

is unblocked.

The kemel blécks the server until the data exchange is complete and tilen
returns tha server a status code Indlcating the success or fallure of the ACCEPT.
The requester is informed via its handler when the ACCEPT has completed and is
told how much data was transferred In each direction by’ the ACCEPT. ACCEPT
blocks unﬁl data exchange ls complete but It !s guaraf;s'teed to complete within a
bounded amount of time. If an ACCEPT encounters a BUSY or CLOSED requester
handler (§3.3.4), then the ACCEPT will complete and the handler interrupt will be

queued by the requester's kemel.

The remainder of this section discusses some of the more subtie detalls of

the message-passing primitives.

(1) Results are unpredictable if the requester accesses the buffers given in a

REQUEST before it is notified of request completion.

(2) There is no way for a server to inspect the first buffer before sending the

second In a single ACCEPT.

(3) REQUESTS issued from the same requester to the same server will aiways be

delivered (but not necessarily ACCEPTED) in the order they are issued.
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(4) The effect of passing overlapping buffer arguments 10 either ACCEPT or

REQUEST is undefined.

(6) Only a fixed number (MAXREQUESTS) of uncompleted requests from any one
requester are permitted. The REQUEST fails If more than MAXREQUESTS

requests remain uncompleted.

(8) ‘An-ACCEPT will fail (and be returned a CANCELLED status) if issused by a dif-
ferent cllent (on a different processor) than that named In the matching
REQUEST. Thus a client may not attempt to ACCEPT a REQUEST It did not
receive by guessing REQUESTER SIGNATURES.

if a REQUEST encounters a handler that Is CLOSED and/or BUSY in the
server, the requester's kemel will keep trying o deliver the request. After a
REQUEST has been delivered, it is monitored by the requester's kemel. If the
server should crash, the REQUEST will complete with a faillure indlcation. A client
that lcops forever Inside its handler or never opens its handler is not considered
to have crashed. The SODA kemel provides a means to terminate such cllents

(33.6.3).

3.3.3. CANCEL

_ If the requester tires of walting for a REQUEST to be ACCEPTED, it may CAN-
CEL the request. CANCEL may block the requester for a short (bounded) time.
CANCEL retumns a status code indicating whether the CANCEL was successful or
not. CANCEL fails whenever the REQUEST completed (for any reason, including
REQUEST failure) before the CANCEL could take effect. in other words, If the
handler Is Invoked to indicate the completion or failure of a given request, cancel-
ing that request will always fall. CANCEL will delay the requester only long

enough to ensure that completion is not imminent and to guarantee that a server
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attempting to ACCEPT a cancelled REQUEST will be informed of the cancellation.

3.3.4. OPEN, CLOSE, ENDHANDLER

When the handler Is Invoked, control passes temporarity from the TASK (§3.1)
to the handler. Handler invocations do not nest. If a request completion
encounters a BUSY or CLOSED handler, the handler interrupt is delayed until the
handler Is IDLE and OPEN, but the server Is not delay_ed by issulng an ACCEPT to a
BUSY or CLOSED requester. ‘As long as a REQUEST has a valild address, the
requester's kemel will keep trying to deliver the REQUEST to a server with a BUSY
or CLOSED handler. ENDHANDLER is used by the client to signal the termination of
the handler. The handler and task share portions of the same memory. To provide
synchronization, the client may use the CLOSE primitive to disable the handier and
the OPEN pﬂﬁtTﬂVG to reenable it. The handler is only invoked if It is OPEN and n.Ot
currently executing (IDLE). OPEN and CLOSE may be issued from within the task
or the handler. If executed from within the handler, they have no visibie effect
untll ENDHANDLER is executed.

To summarize the uses of the handler: it Is Invoked to inform a server of an
incoming REQUEST and it Is also invoked to Inform a requester of REQUEST comple-
tion. The handler is either BUSY or OPEN/IDLE or CLOSED/IDLE. The handler may
only be Invoked when OPEN and IDLE.

3.4. Naming Facilities
We discuss In this section the ways in which one client may address another

in a REQUEST.
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3.4.1. ADVERTISE, UNADVERTISE

A server may ADVERTISE one or more PATTERNS to which it will respond. It
may also UNADVERTISE a previously ADVERTISED pattem. A PATTERN is simply a
bit string confalning PATTERNSIZE bits. PATTERNSIZE Is large enough that the
number of available distinct patterns Is effectively Inexhaustible given reason-

able assumptions -about the rate at which new patterns are generated.

The server name used in.a REQUEST Is called a SERVER SIGNATURE and con-
slsts of a <MID, PATTERN> palr. If, when a request 1s recelved by a server, the
pattern in the server signature does not match aﬁy advertised pattern, the
request Is completed by the server's kemel and the requester's handler Is
invoked with an indication that the request failed. If the pattern 'matché and the
server handler is OPEN and IDLE, the server handler Is invoked and supplied the
pattem usad in '.che SERVER SIGNATURE, the REQUESTER SIGNATURE, the argument, .
and the sizes of the buffers given by the REQUEST.

The requester Is not Informed about a successful match untii the server
lssues a ACCEPT. Once a REQUEST has been delivered to -the server handler,
screening on the pattern is no longer applied. Thus, UNADVERTISE on a pattern will
not affect a REQUEST that has arrived at the server handler but not yet been
ACCEPTED.

9.4.2. GETUNIQUEID

GETUNIQUEID supplies the client with a pattem that is unique with respect to
all Invocations of GETUNIQUEID throughout the entire network. Ideally, unique ids
are generated at random (see dlsws;hn in §5.4). There are no restrictions on
the distribution of pattems; clients are free to Inform other cllents of the

existence of a pattern. The pattern retumed by GETUNIQUEID must contain less
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than PATTERNSIZE bits. This permits clients to use preassigned well-known
names containing defined fields by reserving a bit in the pattem for distinguishing

between random patterns (generated by GETUNIQUEID) and well-known patterns.

it Is perfectly valid for several clients to ADVERTISE the same pattern. Using
GETUNIQUEID to create all pattems ensures that no unintentional duplicates
axist. SODA makes no requirement about the distribution of patterns created by
GETUNIQUEID, so it may be possible for maliclous cl!ef\ts to guess pattems adver=
tised by other cllents fairly easily. Any security mechanism should rely instead on
the unforgability of the requester MID seen by the server and the unforgability of -
REQUESTER SIGNATURES (§3.3.1) in ACCEPTS.

9.4.3. RESERVED and CLIENT PATTERNS

There are two classes of pattems (dlétingu,ishad by a bit in the pattern).
One class Is primarily used by SODA itself, and may not be either advertised or
unadvertised by the cllent. The other class is for cllent use. The former
{RESERVED PATTERNS) are bound to routines built Into the kemel, and execution
of these routines cannot be Impeded by the client handler state. The latter

(CLIENT PATTERNS) are bound by tha cllent via ADVERTISE.

3.4.4. DISCOVER

When a requester knows a pattem advertised by one or more servers, but
not the Iidentity of a spscific server (rt# MID), it may use the special BROADCAST
identifier In place of the MID in the server signature. Such a request Is broadcast
o each node In the network and interpreted by the assoclated kemnel. If the pat-
tem In the server signature has been advertised by the server, the MID of the

server Is retumed to the requester's kernel. After sufficient time for all nodes to
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respond has elapsed, the requester's kemel retums a list of MIDS that matched
the pattemn to the requester client. This kind of request (DISCOVER) is semanti-
cally equivalent to a GET from the point of view of the requester. The second
buffer supplied In the REQUEST is used to store MIDS (up to the number that will
£t In the buffer) and the requester handler is invoked to announce the completion
of the request. DISCOVER Is completely transparent to server clients: no informa-
tion about a DISCOVER is ever presented to a cllent. SODA makes no rellability

guarantees about DISCOVER'S.

8.5. Process Control Functions

In this section we discuss mechanisms for creating and terminating client

processes.

8.5.1. DIE

When a cllent wishes to terminate, It executes the DIE command. This com-
mand causes the kernel to reset its Intemal state and to clear all advertised
cllent p;ttems, Uncompleted REQUESTS which ‘were Issued to a cllent that sub-
sequently crashed or died via the DIE command will fall with a CRASHED return

status.

8.5.2. Boaoting

After a client has dled, the node Is eligible to receive a new client. The ker-
nel advertises one or more RESERVED PATTERNS (BOOT PATTERNS) that are Indi-
cative of the type of client processor and attached peripherals. Clients may DIS-
COVER the MID of machines of that type and then attempt to boot a particular

machine by using the boot pattern and the newly-discovered MID. The requester
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lssues a GET that uses the signature <MID, BOOT, PATTERN>. If the server
machine is still available, SODA UNADVERTISES the BOOT PATTERN, creates a new
pattern via GETUNIQUEID (the LOAD PATTERN), converts the LOAD PATTERN into a
RESERVED PATTERN, and ADVERTISES the LOAD PATTERN. Finally, the LOAD PAT-

TERN Is returmned as the value of the GET.

Any cllent attempting to use the BOOT PATTERN in a REQUEST once It has
been UNADVERTISED receives an immedlate completion interrupt indicating a
fallure. SODA guarantees that the LOAD PATTERN will never conflict with any of
the preassigned RESERVED PATTERNS (the BOOT PATTERNS and KILL PATTERN).

if a cllent Is successful in obtaining a LOAD PATTERN, it may begin booting
using the <MID, LOAD PATTERN> signature In a series of PUT's that are ACCEPTED
by SODA. Contiguous client memory Is used for the ACCEPT buffers. A SIGMNAL
(§3.3.2) using the LOAD PATTERN informs SODA to start the newly-booted client
executing In lts handler. When that handler completes and executes
ENDHANDLER (§3.3.4), the new cllent begins executing its task. A second SIGNAL
using the LOAD PATTERN will terminate the server regardiess of its handler state.

This mechanism allows the parent of a process to kil it at any time.

3.5.3. Killing

When the client dies, the BOOT PATTERNS are advertised again. SODA aloa

has aduvsrtised at all times a KILL PATTERN. A client issuing & SIGNAL using the
signature <MID, KILL PATTERN> will cause the client associated with MID to die.
The KILL PATTERN is used to stop runaway clients and will cause client death

regardiess of whether its handler Is available or not.

The kill action bound to the LOAD PATTERN Is identical to the action bound to

the KILL PATTERN. The difference is that the KILL PATTERN is a well-known pat-
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tem that is distributed only to privileged cllents, whereas the LOAD PATTERN may
pa used by the parent of a client or other clients Informed by the parent. The
LOAD PATTERN Is created anew with each new client Instantiation.

Some nodes may contain ROM bootstrap programs. Pressing a RESET button
causes a core image to be loaded, the BOOT PATTERN to be unadvertised, and

execution to begin In the handler.

3.5.4. ChmgingRESERVEDPATrms

The machine with MID O has the privilege to alter the reserved KILL and
BOOT patterns on all nodes In the network. Each kemel has a pulit-in handler .
bound to the reserved pattern SYSTEM. This handler will only accept REQUESTS
from machina 0. The argument in the REQUEST specifies the action to be taken:
(1) Add a new BOOT PATTERN.

(2) Delete an existing BOOT PATTERN.

(3) Replace the KILL PATTERN.

8.8. Crash Semantics

There Is no special mechanism needed to reestablish communications with a
processor that crashes and reboots. No explicit connection between server and
requester is ever set up. All that Is required to send a message to a cllent is a
valld SERVER SIGNATURE. In this section we discuss SODA behavior in the pres-

ence of cllent processor crashes.

8.6.1. Failed REQUEST and ACCEPT

Whenever the cllent processor crashes in such a way that SODA can detect

the crash (by dying, being killed, or entering a hardware state which indicates a
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hardware failure and that the kemel can detect), kemel state Is lost. REQUESTS
uncompleted by the crashed client will cease to be monitored and servers
attempting to ACCEPT a REQUEST Issued by a crashed cllent will be informed
about the crash by the retumn value of ACCEPT. Further, if the crashed requester
processor Is rebooted, "stale” ACCEPTS for REQUESTS left uncompleted as a

result of a crash will fail and a CRASHED status will be retumed to the server.

A REQUEST will fail and be retumed a status of CRASHED If the server
crashes at any point before the server issues an ACCEPT. Similarly, an ACCEPT
will fall and be returned a CRASHED status if the requester has crashed before
the ACCEPT Is Issued. Once an ACCEPT is issued, no guarantees are made about
informing the server about requester crashes or the requester about server
crashes. CRASHED Is distinct from CANCELLED that Is retumed to a server
attempting to ACCEPT a CANCELLED réquat.

Any attempt to ACCEPT a completed REQUEST will result In a CANCELLED
status retumed to the server Issulng the ACCEPT unless the requester cllent
crashes and recovers before the ACCEPT Is issued. In this case, CRASHED is

returned. A cllent which executes DIE is treated as a crashed processor.

3.6.2. Probes

REQUESTS are monltored by a probing mechanism after delivery to the
server handler. A proba Is a short message sent periodically by the requester's
kemel to verify that the server is still allve. It several successive probes fail, a
crash Is reported. It Is not possible for a server to crash and reboot In such a

way as to escape detection by the probing mechanism.
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3.7. Summary of the SODA Primitives

9.7.1. Kernel-Client Interface

The kemel has access to all buffers used In REQUESTS and ACCEPTS, memory
avallable for cilent core images (used during booting), and a "communications
region” that is used for transmitting arguments and status information between

kemnel and client.

8.7.2. Naming

The SERVER SIGNATURE is the palr <MID, PATTERN>.

The REQUESTER SIGNATURE Is the pair <MID, TID>. ,

RESERVED PATTERNS are bound to routines in the kemnel; CLIENT PAT-
TERNS are bound to routines in the client.

3.7.3. Addressing Primitives

PATTERNS contain PATTERNSIZE bits. 4
GETUNIQUEID retums a pattemn containing less than PATTERNSIZE bits.

A client may discover Its own MID by examining the location MY_MID in the com-
munications region.

9.7.4. Message Passing Primitives

4. REQUEST (SEngElLSIGNATURE. ARGUMENT, PUT_BUFFER, GET_BUFFER

If MAXREQUESTS remain uncompleted, a REQUEST is ignored by the kernel.
it Is the responsibility of the client to count the number of uncompleted
REQUESTS. ARGUMENT Is a single word suppiied to the server handler
upon handler Invocation.

5. ACCEPT (REQUF_SI'ER_SIGNATURE. ARGUMENT, GET_BUFFER, PUT_BUFFER):
STATUS

STATUS is any of (SUCCESS, CANCELLED, CRASHED).

ARGUMENT is a single word supplied to the requester handler upon RE-

QUEST completion.

8. CANCEL (REQUES['ER_SlGNATURE) : STATUS




STATUS is any of (SUCCESS, FAIL).

3. 7.5. Handler Control Primitives

7. OPER()
-8 CLOSE()
9. ENDHANDLER()

The handler must be OPEN and IDLE in order to be eligible for execution. ACCEPT
completion Interrupts will be queued by the requester's kemel If the requester's
handler Is unavailable when the ACCEPT Is issued. REQUEST interrupts ara not
queued by the server's kemnel. If the handler is BUSY when a REQUEST arrives,
the REQUEST will be retried by the requester kemel. As long as queued compla-
tion interrupts are present, the handler Is considered BUSY. If client Cq issues an
ACCEPT followed by a REQUEST to another cllent C, the ACCEPT will cause an
invocation of C4s handler before the REQUEST will. The cllent may execute any
SODA primitive, including ACCEPT, within the handler.

8.7.8. Handler Arguments

in addition to an argument indicating the reason for the handler Invocation
(REQUEST_COMPLETE, REQUEST. " ARRIVAL, BOOTING), the following arguments are
provided to the handler: ’

(1) On incoming REQUESTS, the REQUESTER SIGNATURE as well as information
supplled with the REQUEST: the PATTERN part of the SERVER SIGNATURE, the .
REQUEST ARGUMENT, and the sizes of tha two buffers.

(2) On request completion, the nature of the completion (CRASHED, SUCCESS,
UNADVERTISED), the ACCEPT ARGUMENT, the REQUESTER SIGNATURE of the
REQUEST being completed and the amount of data transferred In each direc-
tion by the corresponding ACCEPT.

(3) On booting, the handler is provided with the MID of the parent client and Is in
the OPEN state. ‘

8.7.7. Process Control Primitives
10. DIEQ)

§.7.7.1. Reserved Patterns Interpreted by the Kernel

1. KILL_PATTERN
2. BOOT_PATTERN(S)
3. LOAD_PATTERN

The KILL_PATTERN and BOOT_PATTERNS are bound at SODA creation time; the
LOAD_PATTERN Is bound at boot time.



4. EXAHPLES

in this chapter, we present examples of SODA applications. We show how
SODA Is used to implement typlcal operating system utilities and distributed pro-
gramming' lanhguage constructs. This chapter begins with a discussion of a pro~
gramming language which makesl SODA mors convenient to use. Wa next consider
how SODA can be used to construct higher level communicatlion facilities; present
some scenarios for SODA use In a distributed operating system; and illustrate

uses of SODA with programmed examples.

4.1. SODAL: a Programming Langusge for SODA

SODAL borrows from familiar programming languages such as MODULA [28],
¢ [63], and Pascal [2]. A SODAL program is divided into three parts: INITIALIZA-
TION, HANDLER and TASK procedures. The INITIALIZATION procedure Is actually
the handler invoked during booting. The HANDLER procedure is the client-provided

Interrupt handler invoked on REQUEST arrival or completion. An ENDHANDLER call is

implicit at the end of the INITIALIZATION and HANDLER parts. A DIE call is implicit
at the end of the TASK procedure. The cllent may supply other procedures as

well. Varlables are either local to & unique procedure or global to all procedures.




Skeleton SODAL Program

= Predefinead types:

— MACHINE._ID, TRANSACTION_JD, PATTERN are defined by the kernel
= implementation.

— type STATUS = (REQUEST_COMPLETI ON, REQUEST_CRASHED,

- REQUEST_UNADVERTISED, REQUEST_ARRIVAL, REJ. ECTED)
= REJECTED is discussed in §4.1.2.

~ (BOOTING is also a STATUS value, but the Initialization section

—is providad for the handler invocation that has a Stetus of BOOTING)
— The constant OK'is used in REQUESTS and ACCEPTS for a dafault

— argument when the argument is not specifiad by tha client.

type REQUESTER_SIGNATURE =
record
Mid : MACHINE_ID;
Tid : TRANSACTION_ID;

end;
type SERVER_SIGNATURE =

record
Mid : MACHINE_ID;
Patt : PATTERN;
- end; .

<global declaratlons>

Handler (Asker : REQUESTER _SIGNATURE;
Arg : integer; Status: STATUS;
Invoked_Pattern: PATTERN;

PutSlize, GetSize: integer);

<local declarations)>

gin
<handler code>
end;

Initialization (Parent_Machineld: MACHINE_ID)
<local declarations>
gin
<Initlalizatlon code>
end;

- Task()

<local declarations>
begin

<task code>

end;



4.1.1. Blocking and Non-Blocking REQUESTS
SODAL provides the type BUFFER wtilch is a record consisting of the address

of a buffer and Its size.

type BUFFER =
record
Address :-integer;
Skze : integer;
end;

Objects are coerced Into BUFFERS as necessary. SIGNAL, PUT, GET and
EXCHANGE are varlants of REQUEST supplying the necessary buffers (as defined
In §3.3.2).

SIGNAL (srv : SERVER_SIGNATURE; Arg : integer):

TRANSACTION_ID;
PUT (srv : SERVER_SIGNATURE; Arg : integer; outbuf: BUFFER):

TRANSACTION_ID;
GET (srv : SERVER_SIGNATURE; Arg : integer; Inbuf: BUFFER):

TRANSACTION_ID; '
EXCHANGE (srv : SERVER_SIGNATURE; Arg : integer;

inbuf,outbuf: BUFFER): TRANSACTION_ID; ]

A blocking REQUEST Is a REQUEST which does not allow the requester to proceed
untll the REQUEST has been éompletad by the server (with data transfer unless
the REQUEST is a SIGNAL). To provide blocking request primitives the SODAL com-
piler generates code as shown In the following example. The resulting blocking
primitives are called B |_SIGNAL, B_PUT, B_GET, and B_EXCHANGE. When a blocking
REQUEST completes, the Status (REQUEST_COMPLETED, REQUEST_CRASHED,
REQUEST_UNADVERTISED) associated with the request completion is returned.
When a blocking primitive is Issued from within the handler, SODAL requires the
abliity to modify the saved program counter (PC) that is normally installed upon

handler exit. This allows SODAL to retumn the cllent to an altermmate point in the
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task which will idie until the blocking REQUEST completes, at which time the cllent
PC is reset to point to the code just after the blocking REQUEST. If the client is
not permitted access to the PC, SODAL will not allow blocking REQUESTS to be
jssued from within the handler because such REQUESTS must necessarily
deadlock (there Is no way to recelve a request completion while BUSY in the
handler).



Implementation of B PUT

— tha following variables are hidden from the SODAL programmer:

var
tid : TRANSACTION_ID;
CompletionAwaited, done: Boolean;
“ratpe, Intpc: integer;
status: STATUS;

Task()

begin
an?L_‘i?UT (..., OK, message); — invaocation of SODAL primitive .

B_PUT (server: SERVER _SIGNATURE; arg: integer; buf: BUFFER): STATUS

‘done := FALSE;
tid := PUT(server, arg, buf);
if InHandler then — blocking REQUEST within handlar
retpc := RETURNPC(); —save point where B_PUT would return
R —1in current handler invocation
cleanstack(); — make stack look like it did befors
: —~call of B_PUT , ,
intpc := END_INT_PC; —sauva point in task where hondler narmally
' ~ raturns to after ENDHANDLER is ezecuted
END_INT_PC := wait; —alter point of return cfter ENDHANDLER
~ s0 it is possible to field complation

- inferrupi
{nHandler := FALSE;
CompletionAwaited := TRUE;
ENDHANDLER(); — Fnter wait state; only completion
- interrupts can be handled now.
fi;
wait:

while (not done) do A
idie(); — idle is a procedurs that does nothing. We discuss
—idle in §5.2.1.

end;
return (status);
end;

48



Handler (Asker : REQUESTER _SIGNATURE;
Arg : integer; Status: STATUS;
Invoked_Pattem: PATTERN;

PutSize, GetSize: integer);

inHandler := TRUE;
if (Status <> REQUEST, ARRIVAL) and (Asker.Tid = tid) then

.done := TRUE; - PUT was ACCEFPTED
status := Status;
if CompletionAwaited then
CompletionAwaited := FALSE;
END_INT_PC := Intpc; —restore return point to whers it
—was af time of blaocking REQUEST

goto retpc; —nezt statemeant after blocking REQUEST

fi;

fi;
inHandler := FALSE;
end;

48
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For the server, SODAL provides ACCEPT_SIGNAL, ACCEPT_PUT, ACCEPT_GET,
and ACCEPT_EXCHANGE to complete SIGNAL, PUT, GET and EXCHANGE or their
blocking relatives. These are implemented as ACCEPTS with NIL buffers (with size
0) filled in for the missing buffers (if any).

ACCEPT_STATUS = (SUCCESS, CANCELLED, CRASHED);
ACCEPT_SIGNAL(requester: REQUESTER_SIGNATURE, Arg: integer):
ACCEPT_STATUS;
ACCEPT_PUT(requester: REQUESTER_SIGNATURE; Arg: integer; outbuf: BUFFER):
ACCEPT_STATUS;
ACCEPT_GET(requester: REQUESTER_SIGNATURE; Arg: integer; inbuf: BUFFER):
ACCEPT_STATUS; .
ACCEPT_EXCHANGE(requater: REQUESTER_SIGNATURE; Arg: integer;
Inbuf, outbuf : BUFFER): ACCEPT_STATUS;

4.1.2. Exception Handling

If the client uses the pl;lmltlves incorractly (e.g.. issues more than MAXRE;
QJESTS non-blocking REQUESTS) or gets back an qne_xpected resutt (e.g.,
CRASHED), a SODAL exception handler may be invoked. Typically, an exception
‘handler will make an intelligent attempt at reaxecuting the failed command: For
example, a non-blocking REQUEST issued when MAXREQUESTS REQUESTS are
already pending can be postponed until some pending request Is completed. This
strategy will work most of the time but will fail If a server which can complete a
pending REQUEST must first recelve the postponed REQUEST. The CRASHED

exception may be handled by retrying after some delay or terminating the client.

For nalve clients, library exception handlers might be suitable. In some appli-
catlons, however, the client may require highly-speclalized exception handling
tools. A more detailed discussion of error recovery Is beyond the scope of this

thesis. The Interested reader is referred to [15,25].
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SODA pemits the server to ACCEPT with a smaller buffer than REQUESTED
which could ceuse invocation of an excaption handle? put Is not necessarily an
indication of an error. For example, in reading a flle using GET, the requester may
be provided with a partially-filled final chunk. To disambiguate errors from normal
raturns; the argument given with ACCEPT may be used as an arror indlcator. In
the preceding exampie, if thers Is an error reading the file, the server should indl-
cate that all Is not well by supplying an appropriate argument. We will follow a
conventlon that negative arguments denote error conditions. In SODAL, the
REJECT statement s provided to handle typlcal error cases. REJECT is Imple-
mented as an AC.CEPT with both buffers NIL and an argument of -1. REJECT will
cause the requester handler to be Invoked but no data will ba transferred.
REJECTED REQUESTS will be retumed a value of REJECTED.

A frequent use of ACCEPT Is to complete the REQUEST that has Jjust arrived
(l.e., caused the current handler invocation). For this purpose, SODAL provides
ACCEPT_CURRENT which lesues an ACCEPT for the present REQUEST.
ACCEPT_CURRENT Is implemented as an ACCEPT with the REQUESTER SIGNATURE
of the present requester filled In. It Is ilegal to use ACCEPT_CURRENT outside of
the handler (because a new REQUEST could arrive before ACCEPT_CURRENT is

executed, leading to semantic ambiguity).

ACCEPT_CURRENT_SIGNAL(Arg: integer) : ACCEPT_STATUS;

ACCEPT CURRENT PUT(Arg: integer; inbuf: BUFFER) : ACCEPT_STATUS;

ACCEPT CURRENT GET(Arg : integer; outbuf: BUFFER) : ACCEPT, - STATUS;

ACCEPT_CURRENT_EXCHANGE(Arg: integer; inbuf,outbuf : BUFFER) : ™.
~ ACCEPT_STATUS; : o o
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4.1.3. Naming Constructs

The broadcast facility of SODA Is made more convenient through the DIS-

COVER primitive provided by SODAL.

DISCOVER takes a pattern as an argument and retums a SERVER SIGNATURE. itis
Implemented by using the:special BROADCAST identifier In a GET, with a buffer big
enough to contain one response. DISCOVER will block until a response is obtained.
More sophisticated clients who require a list of responses of who can take alter-

native action if no responses arrive may use the SODA primitlvegdlrec’tly.

Casts are available to convert tid-mid pairs into REQUESTER SIGNATURES and

mid-pattern pairs into SERVER SIGNATURES:

<mid, tid> — cast the mid, tid pair into a REQUESTER SIGNATURE
<mid, pattem> — cast the mid, pattern pair into SERVER SIGNATURE

A literal pattemn Is represented as an octal number prefaced by a "%" marik:

const Well_Known_Pattern = %0345;

4.1.4. Queueing Constructs

Because SODA provides no queueing of messages, It Is very common for the
server cllent to do its own queueing. SODAL supplies queueing operations to

facilitate writing server code.

SODAL provides the QUEUE type. The client specifies the length of the
queue and the type of object it will contain. Other languages, such as SIM-

PAS [64] provide similar queueing constructs.
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var Name_Queue : QUEUE [3] of REQUESTER_SIGNATURE

declares Name_Queue to ba a queue of three elements, where each element Is a

REQUESTER SIGNATURE. There are six operations supported for ob jects of type

- QUEUE:
EnQueus(object, queus) — insart "object” at end of queue "quaus”
— raisa exception if there is no room on the queue,
DeQueue(queue): object — remove and return object at head of "queue”

- roise exception if queue empty.
1sEmpty{queue): Boolean — rgturn TRUE if quaue is empty, else FALSE
IsFull(queue): Boclean — raturn TRUE if queue is full, else FALSE
AlmostEmpty(queue): Boolean — refurn TRUE if queue has a single element left
AlmostFull(queue): Boolean  —return TRUE if queue can hold one more item

4.1.4.1. Entries and Completions

Thev.sserv'ef signature serves as .an eniry point to the server. The data that are
avallable to the server upon handler Invocation (request signature, buffer sizes,
atc.) are callad the tag. The server makes a scheduling decision based on the
tag Information which determines when the ACCEPT of a REQUEST will take place.
A completion occurs when the requester is Informed that a REQUEST has been
ACCEPTED.

SODAL provides a syntax for manipulating entries and completions. insids
the handler, the client may use ENTRY and COMPLETION Inside case statements as

follows:
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case ENTRY of — process incoming request
pattem_J: begin ... end;

;;attem__l_c: begin ... end;

esac;
case COMPLETION of — a request has been comngpleted
tid_1: begin ... end;

-f.t.l.d _n: begin ... end;

esac;

where ENTRY and COMPLETION are bound to the Invoked_Pattern and Tid field of
the Incoming REQUESTER SIGNATURE respectively. The case labels may be vari-
ables or constants. If the handler is invoked for a request arrival, only the ENTRY
case will be considered; if the handler Is invoked fbr a request completion, only
the COMPLETION case will be eligible for execution. Another pcssiblllti would be
for SODAL to provide the lllusion of separate handiers for ENTRY gnd COMPLETION

. interrupts.

4.2, Higher Level Communications Facilities

in this section we discuss how SODA can be used as a basis for constructing ‘

higher level IPC primitives.

4.2.1. Ports and Priority Queues

An input port Is a queueing point (and a name to refer to it) for incoming
messages. A number of different processes may write data to the port; a single
process reads data from the port. Priority Queues are input ports that allow for
priority scheduling of incoming messages. The implementation of input ports and
| priority queues is straightforward in SODAL. The server providing the port adver-
tises the name of the port and enters a polling loop In the task. Port customers

lssue B_PUTs to write on a port. When a request arrives which uses that name,
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the server handler enqueues the requester's signature. The polling loop tests Iif
the queue Is non-empty. If so, the first requester from the queue Is removed and
ACCEPTED. If the queue for holding request slgnatures becomes fuli, the server

handler will CLOSE its handler until the queue Is no longer fuil.

in SODA, ports aré useful to provide fair access to‘ the server. The faster
port requests can be enqueued, the closer a true FIFO ordering of Incoming
requests Is approached (this point is discussed further in §8.13). The entries on
a port queue are quite small, so a long queus will not require excessive étorage
space. Data sent to the port is not buffered so clients writing on the port cannot
do work In parallel with the port reader. '
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Implementation of Ports

— Ezample of an inpul port-implementation
— We bind the operation Port_Op to the port;

— this operation is invoked whan data is read from the port.

var
port: PATTERN;
portq: Queue[...] of REQUESTER_SIGNATURE;

Initialization (Parent_MachinelD : MACHINE_ID)
begin
1= Bouees -

port
. ADVERTISE (port);
end;
end;

Task()
var buffer: BUFFER;
begin
loop
if not IsEmpty(portq) then
OPEN; =—if closed befora, must be raom in poriq now
ACCEPT_PUT (DeGueue(portq), OK, buffer);
Port_Op (buffer);
£i;
forever;
end;

Handler (Asker : REQUESTER _SIGNATURE;
Arg : integer; Status: STATUS;
Invoked_Pattern: PATTERN;

PutSize, GetSize: integer);
var l: inteper;

gin
case ENTRY.of:
OTHERWISE: begin
EnQueue(portq, Asker);
if IsFull(portq) then CLOSE; fi; —no room in portq

e8as;

case COMPLETION of:
— handle completion of B_PUT here as describad in
-§4.1.1

esac;

end;
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Priority queues are implemented by adding a priority field to each queue
entry. The argument provided with the REQUEST is used as a priority. The poliing
ioop In the task then selects the entry with the highest priority for complstion.
The queus entries may be stored In a sorted data structure, such as a heap, for

efficlent access to the highest priority entry.

4.2.2. Remote Procedure Call

Remote procedure call (RPC) is a very eommonmstyle of communication In dis-
tributed systems. A complete discussion of the issues Involved in RPC may be
found in [55]. RPC is similar to a normal procedure call except that the caller and
subroutine are on different machines. Should the machine executing the remote
subroutine crash, the caller-should be informed so that the call may be repeated
using a different machine. We do not present daiails of how the exception han-

dilng mechanism should be designed for managing crashes.

We present here a possibia implementation of RPC in SODA. The caller Issues
a PUT to pass parameters to the remote subroutine and then a blocking GET to
retrieve results from the remote call. The server will Invoke the remote subroutine
when both PUT and GET have been received, ACCEPT“ING the PUT to obtain the in
parameters. When the remote routine completes, the out parameters are returned
by. ACCEPTING the GET, which also unblocks the caller. The pattem used in the

PUT -and GET is bound to a particular subroutine in the server.
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Implementation of RPC

— Coda for issuing the remaote procedure call
-ignores type chacking

consat
PROC_PATT = %0123; .
remote; procedure = <.., PROC_PATT>;
Tazk()
var out_params, In_params: BUFFER;

gin
B_PUT(remote_procedurs, OK, out_params); —invoke remota prac
B_GET(remote _procedure, OK, in _params); — get results

end;

— Coda for the remote procedure. :
— Only shous how to procaed when server provides a single procedure "proc”
- for remate invocation.

const PROC_PATT = %0123;
var In_params, out_params: BUFFER;
call_ready, got_inparams: Boolean;

caller: REQUESTER_SIGNATURE;
Task()

begin
ADVERTISE (PROC _PATT);
got_inparams := FALSE;
call_ready := FALSE;
while (not call_ready) do idleQ); end; —wait for PUT and GET to arrive
proc (In_params, out _params); — invoka procedure; oul_params are
— passed by reference
—and fillad with the return value
ACCEPT_GET (caller, OK, out_params);
end;




Handler (Asker : REQUESTER _SIGNATURE;
: integer;
Status: STATUS; invoked_Pattem: PATTERN;
PutSize, GetSize: integer);
begin
case ENTRY of
PROC_PATT: begin
if not got_inparams:then
ACCEPT_CURRENT_PUT(OK, in_params);
got_Inparams := TRUE;
else
caller := Asker;
call_ready := TRUE;
2 H
end;
esacs;
end;

69
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4.2.3. Remote Memory Reference

A Remote Memory Reference (RMR) is the access by one processor to the

memory of another. Atleast two primitives are needed for RMR:

PEEK(dest, address, sizs, value)
— return contents of "size" words starting at location
- "address” on processor "'dast” and place in the reference
- ter "valua"

POKE(dest, address, size, value)
— install "value" which has "'size" words in
— location "address" on processor "dast"

In addition, some synchronization mechanism (e.g. semaphores or test-and-set

primitives) should be provided.

PEEK and POKE may be directly implemented in SODA. The server establishes
a well-known RMR entry point. PEEK is implemented by a GET; POKE is imple-
mented by a PUT. The SERVER SIGNATURE MID is the destination processor, the
argum;nt indicates the location In remote memory being referenced, and the
buffer size shows the number of words being stored or fetched. Synchronization
to protect critical séctbm is provided by OPEN and CLOSE or by scheduling
ACCEPTS appropriately. We consider other RMR Issues in §6.16.3.

4.2.4. Virtusl Circuits

A wvirtual circuit Is a. Ioglckl communications channel between two
processes. [t Is sometimes called a link when it is possible to change the binding
of an end of the virtual circuit to a process dynamically (l.e., after the circuit is
established).

A link end Is represented by a table entry maintained by each client that
contains a REQUESTER SIGNATURE indexed by a small integer (link id). When a
cllent wishes to issue a REQUEST, it uses a link id instead of a SERVER
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SIGNATURE. SODAL replaces the link id with the SERVER SIGNATURE stored in the
iink table. Oncs a link is established, the SERVER SIGNATURE bound to the link id

may change.

One possible link-based protocol Is now described. To use links, various
message passing primitives must be provided. These primitives will require spa-
clalized message formats: For example, some messages may contain enclosed
links. When a child process is creatad It will possess a distinguished link to its
parent by which the child may obtain other links. A process that possesses two
finks may INTRODUCE" the two assoclated processes. As a result, the two
processes have a link between themselves. A link end may be DESTROYED when
the process owning it does not require the link any longer. A process attempting
to send a message along a link that has a déstrayed end will be informed of the
destruction. Finally, a process may declde to MOVE an end of a link to another
process. The MOVE should be transparent .to‘ the process at other end of the link.

We present a SODAL algorithm for link moving here.
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Implementation of Link Moving

- hen twa processes are INTRODUCED, one holds the MASTER

— end of tha link and the other holds tha SLAVE end.

~ Tha SLAVE must become MASTER in order to move its end of a link.
— When a link is moving, REQUESTS issued over it are REJECTED and
— maust be reissued when the link has completed ils move.

‘LlnkEntry =

Machine: MACHINE_ID;

Patt: PATTERN;

State: (MASTER, SLAVE);

installed: (INSTALLED, BEING_INSTALLED);

end;
—illegal to issue REQUESTS on a link with

— Installad <> INSTALLED
const ’
LINK_SERVICE = %...; —uell-known entry for managing links
LINKMAX = ..; — mazimum size of link table

var
Link_Table: array [LINKMAX] of LinkEntry; .
cursiot : integer;. — where a free link table eniryis
Moving: array [LINKMAX] of Boolean; '
RequestTable : array[MAXREQUEST S] of Transaction_ld;
— halds uncomplated client requests (which use links).

Handler (Asker : REQUESTER_SIGNATURE;
Arg : integer; Status: STATUS;
invoked_Pattern: PATTERN;

PutSize, GetSize: integer);

var
OtherEnd: MACHINE_ID;
MNewlink:
record
new, _master: MACHINE_ID;
new_pattermn: PATTERN;

. end;
patt: PATTERN;
Curlink: integer;
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case ENTRY of ,
LINK_SERVICE: begin — Instoll new MASTER link end of moving link
patt == GETUNIQUEID(); — create new signaturs for link
ADVERTISE (patt);
linkid := curslot;
cursiot := NextSiot(); - find fraa slot in link table
‘ACCEPT_CURRENT: EXCHANGE (OK; OtherEnd, patt);
Link_Table[linkid] := {OtherEnd, patt, MASTER, BEING_INSTALLED{;
— ok to receiva on this link but wait until previous
- master tells me that the link is completely installed
— befora issuing requests on il ‘
end;
Otherwise: begin — a regular client request has arrived
- saarch LinkTabla for linkid
Curlink := Find (Invoked_Pattern);
if Moving[CurLink] then REJECT; .
- the REQUEST must be reissued when the link
- end has completed the current move
elsif Arg < O them -~ special use of link

case Arg of
=1: begin — Request to becoma MASTER of the link
if not Moving[ Curlink] then “

ACCEPT_CURRENT_GET (OK, SUCCESS);
LinkTabie[ CurLink].State := SLAVE;

else ‘
WantToMove{ Curlink] := Asker;
- awe will ACCEPT ufter the mova completes
- and let the SLAVE ask again to be MASTER

end;

-2: begin — link has moaved; update link table
ACCEPT_CURRENT_PUT (OK, Newlink);
UnkTable[CurlLink].Machine := NewLink.new_master;
UnkTable[Curlink].Pdtt := NewLink.new_pattern;
FlushRejectedLlist(Curlink);

— retry any rejected REQUESTS (which may fail again)

-3: begin — ok to use newly-maved link end
ACCEPTCURRENT_SIGNAL (OK); ; :
UnkTable[Curlink].Installed := INSTALLED;

end;

esac;
fi;

esac;

case COMPLETION of:
- Store any REJECTED requests on RejectedList; these must be reissued
- because they were issued to a link in transit

esac;

end;
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Initialization (Parent_Machineld: MACHINE_ID)
var i: integer;

begin
fori:= 1 to LINKMAX do Moving[i] := FALSE;
curslot := 1;
ADVERTISE (LINK_SERVICE);

Task()
begin

— clignt code
end;

LINKMOVE (NewPartner: integer; CurrentPartner: integer);
— move link bound to CurrentPartner to NewPartnar
var newpattem, oldpattern: PATTERN;

slave_end: MACHINE_ID; ‘

Moving[ CurrentPartner] := TRUE; 4
BecomeMaster (CurrentPartner); —if MASTER, go chead; if SLAVE,
’ - try to become MASTER .

oldpattern := LinkTable{ CurrentPartner].Patt; -
. oldmachine := LinkTable[CurrentPartner].Machine;

newmachine := LinkTable[NewPartner].Machine; ‘

— move link to new machine; get pattern bound to new link end
B_EXCHANGE (<newmachine, LINK_SERVICE>, OR, oldmachine, newpattern);
— tell CurrentPartnar how to change its tables and to :
—reissua REJECTED requests

B_PUT (<oldmachine, oldpattem>, -2, {newmachine, newpattern}); -

— tall new MASTER it's ok to REQUEST on the link

- (indicating that SLAVE changes ara installed) . :

—1we could saue one message by instructing the SLAVE ta do the .
— move for us. Then the final synchronizing SIGNAL is not neaded.
B_SIGNAL ( <newmachine, newpattem>, ~3);

Moving{ CurrentPartner] := FALSE; .

if WantToMove[CurrentPartner] <>NiL'then

ACCEPT_GET (WantToMove[ CurrentPartner], OK, FAILED);

— ok for Current Partner to try to bacome MASTER again
WantToMove[CurrentPartner] := NiL;

2

fi;
end;




BacomeMaster (linkid: integer)
var stat: (SUCCESS, FAILED);

begin
While LinkTable[linkid].State = SLAVE do begin
— ask to become MASTER
B_GET (<LinkTable[linkid].Machine, LinkTable{linkid].Patt>, -1, stat)
if (stat = SUCCESS) then B
LinkTable[linkid].State := MASTER;
fi; — alss, try again; MASTER end has moved
end;
end;

686
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4.2.5. Rendezvous Applications

Some distributed algorithms call for a symmatric rendazvous to take place
betwaen two processes. The desira is that If a process attempts to exchange
'mes“sa’g'es"thh**sanefset"df-‘pmcesses,ntt-»-wm perform the exchange with -exactly
ong othar process from the set. Each process Involved will know of the pairing.
Once paired, the processes ‘exchange Information and then disengage from the
rendezvous. Symmetric rendezvous Is required in certain situations; for example,
to Include output guards in Communicating Sequential Processss [21,22]

Daadlock can occur if for example the rendezvous attempt Is blocking and
process Py attempts to rendezvous with process P, when Pois trying to rendez-
vous with P4 at the same time. Livelock could resuit in the above scenario if both
P4 and Py discover that there is a possible deadlock and each aborts and restarts .
its rendezvous attempt. If the timing Is synchronized, the same potential
deadlock Is detected and the backoff is repeated. A careful Implementation must
ensure that deadlock does not occur and allow one of the conflicting rendezvous

requests to succeed.
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Deadiock Danger in Symmetric Rendezvous
MAMAMAMMWMMAMMMAMAAMMW
A requests rendezvous with B; B requests rendezvous with A

A can accept B's request; B can accept A's request

Acceptable Solutions:
9. A Initiates and B accepts, of
2. B Initlates and A-accepts

Unacceptable Solutions: .
1. A Initlates and B initiates and no progress made, or
2. A Initlates and B Initlates, both accept

A lgss strict mechanism called asymmaetric rendezvous splits processes into
two groups: the initiators and the acceptaors of a rendezvous. An initiator may
attempt to rendezvous with only one other process. An acceptor however may
rendezvous with any one of a number of Initiators. This form of rendezvous is
relatively easy to implement because the asymmetry obviates the unacceptable

symmetric rendezvous situations.

CSP without output guards and ADA [25] are languages that require asym-

matric rendezvous.

4.2.5.1. Communicating Sequential Processes (CsP)

We describe the asymmetric rendezvous mechanism avallable in CSP and dis-
cuss how It can be lmplementéd in SODAL. Then we present Bernstein's algorithm
[21] for adding cutput guards to CSP in SODAL. The following description of CSP
is due to Bernstein [21].
Central to the language are the input and output constructs and the use

of Dijkstra’s guarded commands [1 7]} The former are used by a process
o control the flow of information from or to a device or another process.
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They have the form <process name> ? <target variable> and <process
name> ! <expression>, respectively. The process name identifles the
pracess with which the communication Is to take place, and the value of
the expression In the output [!] command must match the [type of the]
target variable in the Input [?] command in order for information to be
transferred. . Matching commands are executed simultaneously in the
named processes and thus either process may be forced to wait for the
other.

A guarded command has the form G-C, where G.is a guard and C a com~
mand list. A guard consists of a (possibly empty) list of Boolean expres-
slons and declarations that may be followed by an input command. Output
expressions may not appear in guards. The guard fails if any of the
.Boolean expressions -have value "false” or if the process named in the
Input command has terminated. The command list Is executed if all
Boolean expressions are "true" and the input statement is executed.
Guarded commands may be combined into an alternative command having
the form:

[ 61-'01 n Gz-’Cz... U Gn-’cn]
which specifies the executlon of exactly one of its constituent guarded

commands. Consequently, If all guards fail, the aiternative command faiis.
If more than one guard Is exscutable, an arbitrary one !s.selected. IR

To Implement CSP guarded commands In SODA, we require that all ocutput
commands cause a REQUEST to be Issued. Each cllent maintains a list of arriving
output command REQUESTS. When an input guard is evaluated, the list of avail-
able output commands is scanned for a matching entry. If an alternative command
cannot proceed because it Is awaiting a matching output command, the cllent
enters a polling loop that terminates when the output command list is updated to

include a matching output command.

The requirement that an input command fail when the named process -ter-
minates complicates matters slightly. We cannot have input commands cause
REQUESTS (which automatically fail upon termination of the destination client) to
be Issued because there Is no way to ensure that exactly one REQUEST will be
ACCEPTED, even if all remaining REQUESTS are CANCELLED immediately when the
first REQUEST completes. One way to detect terminated processes s to issue a

special REQUEST for each Input guard in an alternative command list. This
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REQUEST Is never ACCEPTED by the destination. However, SODA guarantees (via
the probing mechanism) that a REQUEST will complete with failure should the des-
tination terminate. When the evaluation of an altermnative command completes, all

of these special REQUESTS may be CANCELLED.

Bemsteln presents an algorithm that allows output guards in CSP. We have
already discussed the possibility for deadlock when symmetric rendezvous Is
implemented; Bernstein's algorithm avoids this danger. We detail below an imple-

mentation of Bernstein's algorithm in SODAL.
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Bernstein's Algorithm
- Bernstein’s algorithm for CSP with output guards.

var
State: (ACTIVE, QUERYING, WAITING);
Matched: Boolean;
QueryPending: Boolean;
Delayed: Queuel[..] of REQUESTER_SIGNATURE;

Handler (Asker : REQUESTER_SIGNATURE;
Arg : integer; ‘Status: STATUS;
Invoked_Pattern: PATTERN;
PutSize, GetSize: integer);
begin
case ENTRY of :
MY_NAME: begin — got a query
if State = WAITING and <Arg indicates a valid type> then
ACCEPT_CURRENT_PUT (OK, variable)
Matched := TRUE;
State := ACTIVE;
else if ((State = QUERYING) -and <Arg indicates a valld type> and
GueryPending and (MY_MID > Asker.Mid)) then :
- el”:Eenqu,aue(l)‘elayed, Asker); — wa will delay the query
REJECT; -— ACTIVE or no maich or QUERYING and
, ~ MY _MID < Asker.Mid.
— If ACTIVE, we may eventually issue a REQUEST to the
— REJECTED client when we enier an alternative command
B. and the REJECTED client is WAITING.
end;
eaac;




Initialization (Parent_Machineld: MACHINE_ID)

gL

Matched := FALSE;

ADVERTISE (MY_NAME);

QueryPending := FALSE;
end;

Task()

begin
State := ACTIVE;
loop
if <Alternative Command> then
EvalAitCmd();
elss
<avaluate next statement>;
<get next statement>;
until <no more statements>;

end;
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EvalAltCmd()

var
I: integer;
result: STATUS;

begin
State := QUERYING;
<select guards in some order for evaluation. WLOG let this order
be G4, Gg) « Gp; set GuardList to contain the guards>;
forl:= 1 ton do begin
CurrentGuard := Gy ;
<avaluate all Boolean expressions in CurrentGuard>;
if <not all Boolean expressions are TRUE> then
<remove G from GuardList>;
else -
if <CurrentGuard has no input for output commands> then
State := ACTIVE;
<Execute command list I>;
return;
else
P := <SERVER SIGNATURE bound to process named In guard>;
QueryPending := TRUE;
resuit := B_PUT (P, <type of variable>, <value of variable>);
— try ta rendazuous; succeed if other guy is WAITING and
. = can match tha variabla type. May be delayed hare
— if othar guy is also QUERYING.
QueryPending := FALSE; ‘
case result of: *
REQUEST_FAILED: begin — Pdied
<remove G from GuardList>;
end;
REJECTED: begin — P didn 't match or was not in WAIT state
if not IsEmpty(Delayed) then
ACCEPT_PUT (Dequeue(Delayed), <variable>);

fi;
— elsa do nothing: P may match eventually or
- may attempt to query us .

end;
REQUEST_COMPLETED: begin - Success .
State := ACTIVE;
<Execute command list 1>;
Jreturn;
end;
o383
fi;

i
end; — for loop
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State := WAITING

while not Matched do idle(); end;

Matched := FALSE;

— State sat to ACTIVE (atomically) in handler

end;

~ Example: Suppose P, is querying P, whao is querying Py who is querying P,.
—PgdelaysP ; Py dalmysP s P, REJECTS Py unblacking P,'s queTy.
-~ Py ACCEPTS P, wz.blackmg P,’s query; P, ACCEPTS P,.
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4.3. Seenarios for SODA Use

In this section we discuss how SODA can address two important issues in a
distributed operating system: How processes locate each other; and how

timeouts for IPC primitives can be provided.

4.38.1. Connection HMethods

There Is an obvious bootstrapping problem with entries: How does a cllent
obtain an entry point for ancther? There are three basic ways. In the first .
method (compile-time interconnaction) a pattem that is known by the client at
compile time Is used and the associated MID Is discovered by issuing broadcast
REQUESTS. In the second (load-fime inferconnsction) a group of related
processes Is loaded by a connector process that modifles each process' core
image to use specific REQUESTER SIGNATURES. AltematlQely, the connector may
provide specific REQUESTER SIGNATURES at cllent Initialization time by sending
REQUESTS containing signatures to the clients. In the third method (run-time
interconnection) a swifichboard process may be interrogated to obtain an entry

point while a process is running.

A connector Is used to load processes on different machines and establish
communications paths between processes. The connector will boot the number of
‘SODA machinas necessary for the application. :In so:doing, it obtains the MIDS of
each machine. Each cllent specifies which modules it will communicate with. For
each connection, the connector creates a REQUESTER SIGNATURE by concatenat-
ing the result from a GETUNIQUEID call to the MID of the cllent's machine. The
connector will then modify the cllent core image to use the new REQUESTER SIG-

NATURE.
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~ Connector has loaded cliant C: on machine M P and cliant C'g
- on machine ¥, na specification file, the user states that
-C,and C, showld have a commaunication path between them.
Initialization(...) — C, s initialization saction

begin
ADVERTISE(?p);

end;

Task() — C, s task

PUT (<?m,7p>, OK, buffer); — talk to C,

end; ‘
case ENTRY of
?p: ACCEPT (buffer, OK);
23803
d v
~ 1. connactor gets a new pattern P from GETUNIQUEID
- 2. connactor obtains machines M, and M, for booling

— 3. connector changes "?p" in the core images of c,
—and C,to be P end ?min C, to-be M,

— 4, connactor loads C‘ cm.Hl and Cgonﬂg

A connector can be thought of as a linkage editor which, instead of tightly
linking separate modules together, links them loosely together by establishing
entry points used for Intermodule communication. A connector establishes com-
munication paths in a manner quite similar to the way the MULTICS [56] linkage
editor makes segments "known’. A connector In a distributed computing environ-
ment Is used in the Chariotte [38] and-Arachne [36] operating'systems.

Connectors may be used to establish policy on node allocation. If a client
wishes to boot a set of machines, it may be required to use a-connector/manager
process to obtain the required free nodes. Kemel pattern screening prevents
cllents from outside the set from Inadvertently communicating with members

within the set.
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4.3.2. Timeouts

SODA does not provide timeouts with any of Its communications primitives.
Therefore, It must be possible to abort a communication attempt in order to allow
an Impatient client to continue (or even break a potential deadlock) after trying

to contact another client.

One way to Implement timeouts Is to register a wakeup REQUEST with a
timeserver utility (which possesses a hardware clock) prior to initlating a
REQUEST to a potentially slow server. Such a REQUEST could be a simple (non-
blocking) SIGNAL with the delay specified in the REQUEST argument. The
timeserver notes the delay and REQUESTER SIGNATURE. When the delay has
axplred, the REQUEST Is ACCEPTED, thus notifying the requester that the alarm
has expired. The requester may then CANCEL outstanding requests to other

cllents and attempt alternative action.

4.4, Programmed Examples
We now present five detalled examples using SODAL. The examples were

chosen primarily to illustrate the completeness of the SODA primitives. The exam-

ples we present are:

1) two-way-bounded buffer
2) four-way bounded buffer
8) readers-writers
4) dining :philosophers
-5) file server

4.4.1. Two-'Way Bounded Buffer

in this problem, producer processes (such as teletype drivers) are producing
data and dellvering it to a consumer process (such as afile server) that performs

buffering to better match speeds with the producer. in the event the producer is
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too fast, however, the consumer must provide backpressure In order that Its

buffers ars not overrun.

in our solution, a producer uses a double-buffering scheme In order that It
may work while the consumer is processing the producer's last request. The con-
sumer performs buffering on two resources. First, the consumer saves REQUES-
TER SIGNATURES in a queue when it cannot immediately buffer a request, which
helps ensure that Incoming requests will be bs processed in the order of arrival.
Bacause the SODA kernel does no request queueing of Its own, falr access to the
handler Is achieved by making the handler code as short asA possible. Second, the
consumer buffers data from producers so that producers may work In parallel with
the consumer. Flow control on REQUESTER SIGNATURES is achieved by CLOSING
the handler when the request signature queus filis. Flow control on data s
. managed-because a producer will not Issue a new request until Iits most. recent
request has been ACCEPTED.



78

Two-Way Bounded Buffer -

- Producer Process

const
CONSUMER_PATTERN = %...;

ready : Boolean;

item1, Item2: BUFFER;

current : BUFFER;

consumer : SERVER_SIGNATURE;

Initialization (Parent_Machineld: MACHINE_ID)

begin .
{tem1.Slize := ITEMSIZE; {tem2.Size := ITEMSIZE;
item1.Address := getspace(lTEMSlZE); item2.Address := getspace(lTEMSlZE);
current := Itemi;
consumer := DISCOVER (CONSUMER _PATTERN); — locale consumer
ready := TRUE; .
end;

Handler (Asker : REQUESTER _SIGNATURE;
Arg : integer; Status: STATUS;
Invoked_Pattem: PATTERN;
PutSize, GetSize: integer)

$? Status = REQUEST_COMPLETION then ready := TRUE; fi;

Task()
var tid: TRANSACTION_ID;
begin

current => Slze 1= o.;
current -> Address := ..; - produce some daia
while not ready do idie(); end; — wait for last regquest to complate
ready := FALSE; '
PUT (consumer, OK, current); — send data to consumer
if (current = Item1) then — swap buffers so we can produce
- as other bufferis being consumed
current := ltem2;
else
current := itemi;
fi;
forever;
end;
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= CONSUINer procass
- Can consume data from a sat of producer processes

const
MAXQSIZE = ...
MAXPORTSIZE = ...;
CONSUMER = %oe}

var
Produced, FreePool : Queue] MAXQSIZE] of BUFFER;
Pending : Queue[MAXPORTSIZE] of REQUESTER_SIGNATURE;

-work, tmp : BUFFER;

Taak()

ver
work, tmp: BUFFER;
begin

CLOSE();
if not Q.leue_Empty(Produced) then

work := DeQueue(Produced); - obtain data to consume
else

work := NiL;

Bi:
if not Gueue_Empty(Pending) then — Produced na longer full
tmp := DeQueue({FreePool); - get frae tuffer
ACCEPT_PUT (DeQueue(Pending), OK, tmp); — obioin data
Encueua(Produced, tmp); — Buffer data for eveniual consumption
" - Pending no longer full
OPEN();
if not (work = NiL) then
_data (work); - consume daia
ﬂ'E:'l(tlleua (FreePool, work); — raturn buffer to free pool
forever;
end;
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Handler (Asker : REQUESTER_SIGNATURE;
Arg : integer; Status: STATUS;
Invoked_Pattermn: PATTERN;
PutSize, GetSize: integer); co

var tmp: BUFFER; il
begin
if Status = REQUEST _ARRIVAL then
if Queus_Fuli(Precduced) then —no more buffers
EnQueue (Pending, Asker); — soue this request
if Queue_Fuli(Pending) then CLOSE(); fi; —no raom for naw requests
tmp = DeQueus(FreePool); - gat a frae buffer A
ACCEPT_CURRENT_PUT (OK, tmp); — fill it with dala Jrom producer
EnQueue(Produced, tmp); — quaua it far guvenfual consumplion
ﬁ; . . -
ﬂ;
end;

Initislization (Parent_Machineld: MACHINE_ID)

begin
Pending := NIL;
<lnitialize FreePool by enqueueing MAXQSIZE empty buffers>;

ADVERTISE (CONSUMER);
end;
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4.4.2. Four-Way Bounded Buffer

This example illustrates how SODA can be used to manage a complex
schedullng situation. Two cllents are each attached to similar davices. The dev-
lces maintain Intemnal buffers and follow a CNTRL-S/CNTRL-Q flow-control proto-
col to start and stop the device. Each client reads from its device and sends the
data to the other client. Further, incoming data from each cllent is buffered.

Thus, each client is both a producer and a consumer.

The task In each cllent polis the device input-ready and output-ready regis-
ters. When the devics has produced some data, it is shipped off to the remote
cllent which then buffers this data in a FIFO queue. When the device Is ready to

accept some data, the client takes an item off of its queue and writes the davice.

An lntarestlng use of EXCHANGE appears In this algorithm. When the remote
client buffer ls written, a status is retumed. The status indicates whether or not
the remote buffer is full. Becausa the EXCHANGE used Is blocking, the producing
client ls Informed immedlately of the remote buffer situation and Its devics is
stopped.
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Four-Way Bounded Buffer

— This client is attached to a device and communicates with

— another clisnt attached to a similar device.

— Tha device produces data (when input_ready) and accepts

~ data (when output_teady). The device will stop producing upon hearing
— CNTEL-S ond start again hearing CNTRL-Q.

— Each client trias to read data from its device and

— send tha data to ths remote device. Incoming data is buffered

— by the client and must be Jlow-contralled.

const
OTHER = ...; —machine id of other client
RESTART = %...; — pattern used for restarting remate client

BUFFER_DATA = %...; —pattern used for remote buffering enlry
RemoteRestart := <OTHER, RESTART>;
RemoteBuffer := <OTHER, BUFFER_DATA>;

type STATE = (CONTINUE, FULL);

var
DevBufFull, PartnerBufFull, PartnerBufEmpty,
RemoteClientStopped: Boolean;
status : STATE;
data: BUFFER;
Q : Queus [...] of BUFFER;

Initialization (Parent_Machineld: MACHINE_ID)

begin
DevBufFull := FALSE;
PartnerBufFull := FALSE;
PartnerBufEmpty := FALSE;
RemoteClientStopped := FALSE;
end;
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Task()
begin
loop
— read data from device (READ loop) .
if not PartnerBufFull and (DEV. _IN_STATUS = DATA _AVAIL) then
— device has produced sorne data
data := DEV_IN_BUF; —raading DEV JN_BUF resats DEV_IN_STATUS
case data of
ICNTRL-S': DevBufFull := TRUE; - davice 's buffer is full
ICNTRL-Q': DevBufFull := FALSE; - davice 's buffer is emply
OTHERWISE: begin
— send data to other client
B_EXCHANGE (RemoteBuffer, OK, data, status);
if status = FULL then — other guy is now full
PartnerBufFull := TRUE; — shuls down READ laop until
— this can take effect in
— WRITE loop
£ii;
end;
es8cs
fi;

— gtore data in device (WRITE loop)
if not DevBuffull and (DEV. _OUT_STATUS = READY) then
— device ready to accept date
i PartnerBufFull then — othar clignt's buffer is full
PartnerBufFull := FALSE;
DEV_OUT_BUF := 'CNTRL-S; — Stop device from producing more
— shuts down READ loop
- (DEV_OUT_STATUS
— awill niot be DATA_AVAIL)
elsif PartnerBufEmpty then  —other client 's buffer is empty
PartnerBufEmpty := FALSE;
DEV_OUT_BUF := 'CNTRL-Q'; — Restart device
elsif not GueueEmpty(Q) then
data := DeQueus(Q); . ,
DEV_OUT_BUF := data; — store data in device
if IsEmpty(Q) and RemoteClientStopped then
RemoteCllentStopped := FALSE;
B_SIGNAL (RemoteRestart, OK); ~—rastart othar client



Handler (Asker : REQUESTER _SIGNATURE;
Arg : integer; Status: STATUS;
Invoked_Pattem: PATTERN;

PutSize, GetSize: integer)
const SIZE = ..

var
free: BUFFER;
RetumStatus: STATE;
begin ~
case ENTRY of
BUFFER_DATA: begin — Buffer data from other client
{frea.Address := getspace (SIZE);
free.Size := SIZE;
ReturnStatus := CONTINUE;
if AlmostFull(Q) then
RemoteClientStopped := TRUE; - stop remote producer now
ReturnStatus := FULL;

i .
ACCEP’T___CURRENT__EXCHANGE (OK, free, RetumStatus); B
EnQueuse(Q, free); -

end;
RESTART: begin — ok to produce again and restart device
ACCEPT_CURRENT_SIGNAL (0K);
PartnerBufEmpty := TRUE;
end; ,
© esac;
end;

84
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4.4.3. Dining Philosophers

This famous problem was first proposed by Dijkstra [57]. We assume that
the reader Is famillar with this problem. We propose a somewhat different solution
than the one given by Dljkstra. Thera are five philosopher processes, gach of
which owns one fork. Additionally, there is a deadlock-detector process and a
timeserver process. The philosophers think, try to grab two forks, eat, put back
the forks and iterate. The deadlock detector process is periodically awakened by
" .the timeserver process. Once awekened, the deadlock detector attempts to
detect a deadlock by asking the philosophers what their state is. |f a deadlock is
found, one philosopher is asked to give up his fork so that the other philosophers
can eat. To ensure falmess, & philosopher will not be asked to retum his fork
twice before all other philosophers have returmed thelr fork once. To Implement .
this faimess policy, a list (LIST, __(_)F___NICE_EHILOS) of philosophers who have been
asked to returmn a fork Is maintained. In addition, we have taken‘care (see pro-
gram, balow) that onca a philosopher releases lts fork, it will be assured of

cbtaining that fork before its successor uses It twice.

Call a philosopher needful if he has obtained one fork and wants the other.
Philosophers flrst obtain their left fork and then their right fork before eating. A
needful philosopher's successor Is the nelghbor with whom he shares the allo~-

cated fork. The deadlock detector algorithm:

(1) Initially, set LIST_OF,_NICE_EHILOS to contain al! philosophers.

(2) On Dbeing awakened, select a random philosopher R from
LIST_OF_NICE _PHILOS. Ask R If it is needful. If not, the deadlock detector
goes back to sleep. If so, the philosopher reports the TID of its REQUEST for
the first (left-hand) fork.

(3) If R has responded that: it i1s NEEDFUL, the detector asks R's successor If it
Is needful. If not, the detector goes back to sleep. If so, it asks the suc-
cessor of that philosopher and so on. Only the first philosopher R is required
to report the TID of its first fork REQUEST; the others may simply report
whether or not they are neadful.
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(4) |f the detector gets back to the original philosopher R, it asks again if It is
needful and If so, what the TID of its outstanding REQUEST is. ITR is needful
and the TID is the same as the ons it reported the first time it was asked, R
must not have changed state between probes by the deadlock detector and
deadlock is announced.

(6) Remove R from LIST _OF _NICE_PHILOS. If this list Is now empty, reinitialize it
to contain all philosophers. R is now told to release the fork it owns to break
the deadlock. .

We show thqt a philosopher Is only told to release a fork If deadlock exists by
Induction (see dlagram, below). At the moment we ask R the second time and R is
In the same state, we know that R's left-hand neighbor L must want the fork R
has because we know that L was NEEDFUL. Now consider the left-hand neighbor
of L, L. We asked L' if it was NEEDFUL after we asked L. The NEEDFUL stateof L
is unchanged since we first asked it so L' must be In its same state as well. By
continuing with around the ring In this fashion, we see that all philosophers must
be In the same NEEDFUL state since the deadiock detector first inquired so

deadlock must exist. QE.D.
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Dining Philosophers

- Pisneservar Process
const' ALARM_CLOCK = %..;;

expire: integer;
detector: REQUESTER_SIGNATURE;
Taak()
begin
loop
<walt for clock tick on hardware clock>;
case expire of:
=1: skip;
O: ACCEPT(detector, OK);
OTHERWISE: expire := expira = 1;
esac;
forever;

end;

Handler (Asker : REQUESTER_SIGNATURE;
Arg : integer; Status: STATUS;
invoked_Pattern: PATTERN;
PutSize, GetSize: integer);

const INTERVAL = ..;

begin

case ENTRY of
ALARM_CLOCK: begin
axpire := INTERVAL;
detector := Asker;
end;
esac;
end;

Initialization (Parent_Machineld: MACHINE_ID)
expire := =1;

ADVERTISE (ALARM_CLOCK);
end;

88
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- Philosophaer Process
const — well-known patterns
GETFORK = %...;
PUTFORK = %...;
RETURN_FORK = %...5
CHECK = %..;
GIVE_BACK = %...;
LEFTFORK = %
HE_OWNS = 05
I_OWN = 1;.
var
forkstate : array[HE_OWNS..|_ OWN] of
(MINE, HIS, IDLE);
— ]_OWN my "'right” fork
— HE_OWN'’s (my left-hand naighbor) the left fork
myrequest : TRANSACTION_ID; — TID of my request for LEFTFORK
hisrequest : TRANSACTION_ID; — TID of his requsst for fork I control

Initialization()

begin
forkstate[HE__OWNS] := IDLE;
forkstate[|_OWN] := IDLE;
myrequest := hisrequest := NIL;
end; ‘

grab_my_fork() : Boolean;
- attempt to obiain my right fork which I conirol
war result : Boolean;

CLOSEQ); — critical section since forkstate changed by handler
if forkstate[I_OWN] = HIS :
then result := FALSE
else
rasult := TRUE;
forkstate[]_OWN] = MINE;
£i;
OPEN();
return (resuit);
end; ’
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Task()
begin

loop
think();
myrequest :=
SIGNAL (<LEFTFORK, GETFORK>, 0K);
while forkstate[HE_OWNS] <> MINE do idie();
while (not grab_my_fork() or
forkstate[HE_OWNS] <> MINE) do idie();
- n:)ed to retest forkstate in case we had to give the fork back
eat();
B_SIGNAL (<LEFTFORK, PUTFORK>, OK);
forkstate[l_OWN] := IDLE;
torkstate[HE_OWNS] := IDLE;
if hisrequest <> NIL then
forkstate[I_OWN] := HIS;
ACCEPT_SIGNAL(hisrequest, oK)
hisrequest := NIL
ﬁ; .
forever;
end; -

Handler(Asker : REQUESTER _SIGNATURE;
Arg : integer;
Which : PATTERN;
PutSize, Getsize : integer);
begin
case COMPLETION of
myrequest: begin
myrequest := NiL;
torkstate[HE_OWNS] := MINE;
end;
e8ac;




case ENTRY of

PUTFORK: begin
ACCEPT_CURRENT_SIGNAL (OK);
forkstate[l_OWN] := IDLE;

end;

GETFORK:

if forkstate[l_OWN] = MINE then
hisrequest := Asker;

else
forkstate[|_OWN] = HIS;
ACCEPT_CURRENT_SIGNAL (OK);

1 H

CHECK:

if forkstate[HE_OWNS] = MIRE

and forkstate[l_OWN] = HIS then
ACCEPT_CURRENT_GET (OK, myrequest)

else
REJECT;

fi;
GIVE_BACK: begin
uest :=
SIGNAL (<LEFTTFORK, RETURN_FORK>, oK);
forkstate[HE__OWNS] := HIS;

end;

RETURN_FORK: begin
forkstate[l_OWN] := MINE;
hisrequest := Asker;

end;
esac;

end;
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— Deadlock Detector process

const
CHECK = %...;
GIVE_BACK = %...;
ALARM_CLOCK = %

var .
AlarmServer : SERVER_;,SIGNATURE;
.. AlarmTID : TRANSACTION_ID;
Phil: array [1::5] of MACHINE_ID;
PossibleVictims: setof 1..5;
TimesUp : Boolean;
NextVictim: integer;

Initialization()

begin

<inttlalize Phil>;

" PossibleVictims :=[1,2,3,4,6];
NeaxtVictim := Random (PossibleVictims);
PossibleVictims := : :

PossibleVictims - [NextVictim];
TimesUp := FALSE;
AlarmServer = DI.SCOVER(ALARM__CLOCK);
AlarmTID := SIGNAL(AlarmServer, OK);

end;
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Task()

Current : integer;
CheckTID, FirstTID: TRANSACTION_ID;

begin
loop malinioop:
if TimesUp then
TimesUp := FALSE; '
i B_GET (<Phil[NextVictim], CHECK>,0K, FirstTID)
‘% REJECTED then continue mainioop;

m
Current := NextVictim;

repeat
Current := Current mod & + 1;
if B_GET ( <Phil[ Current], CHECK>, OK, CheckTID)
= REJECTED then continue mainloop; fi;
until Current = NextVictim;
if CheckTID <> FirstTID then
eontinue mainloop

fi;

B_SIGNAL (<Phil[NextVictim], GIVE _BACK>, OK);
if Possiblevictims = [] then

~ PossibleVictims := [ ,2,3,4,5};

fi;
NextVictim = Random (POSSibleVlt:tlms);
PossibleVictims :=
- possibleVictims - [Nextvictim];
fis
forever;
end;

Handler{Asker : REQUESTER_SIGNATURE;
Arg : integer;
Which : PATTERN;
PutSize, Getsize : integer);
begin »
case COMPLETION of
AlarmTID: begin
TimesUp := TRUE;
AlarmTID := SIGNAL(AlarmServer, OK);
end;
esac;

end;
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4.4.4. Concurrent Readers and Writers

This problem was Initlally posed by Courtols [68]. We wish to provide a con~
currency control service for a database. This service Is Invoked by requesting
permission to read or write (via START-READ or START_WRITE), performing the
read or write, and releasing the request (via END_READ or END_WRITE). We wish
to exclude readers from access to the data while a write Is In progress and writ=
ers from access to the data when reads or writes are in progress. This exclusion
must be fair in the sense that when a write request Is pending, no new read
reque'sts will be honored and when a write is in progress, those read requests
that have accumulated during the write are honored before any new writes may
begin. “

Wwe will use a separate client process (distinct from the databass itself)
" called the moderator to process the START_READ, START_WRITE, END_READ,
END_WRITE requests. We assume that the cllents accessing the database are
comrect in the sense that all reads are preceded by START_BEAD and followed by
END_READ; and all writes are preceded by START_WRITE and followed by
END_WRITE. This protocol can be enforced at compile-time given suitable pro-

gramming language features (such as *MOD regions) [26].




86

Readers and Writers

~ Moderator Client

var
ReadQueue, WriteQueue: Queue[...] of REQUESTER_SIGNATURE;
readcount: integer; —mumber of active readers
writecount: integer; ~— number of active writers (Oor 1)

Task()
loop
idie();
forever;
end; ) -

Initialization (Parent_Machineld: MACHINE _1D)

readcount := 0;
writecount := 03
end;

Handler (Asker : REQUESTER_SIGNATURE;
Arg : integer; Status: STATUS;
invoked_Pattern: PATTERN;

PutSize, GetSize: integer);
begin
case ENTRY of
START_READ: begin
if (IsEmpty (WriteQueue) and (writecount = 0)) then
ACCEPT_CURRENT_SIGNAL (OK);
readcount := readcount + 1;
else
ﬂ'En(lmaue (ReadQueue, Asker);

end;
STARTWRITE: 'begin
if ((readcount = 0) and (writecount = 0)) then
ACCEPT_CURRENT_SIGNAL (OK);
writecount := writecount + 1;
else
EnQueue (WriteQueue, Asker);
i
end;
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END_READ: begin
ACCEPT_CURRENT_SIGNAL (OK);

readcount := readcount - 1;
if ((readcount = 0) and not ISEmpty(WriteQueue)) then

ACCEPT_SIGNAL (DeQueue(WriteQueue), OK);
writecount := writecount + 1;
ﬂ; .
END_WRITE: begin
ACCEPT_CURRENT _SIGNAL {OK);
writecount := writecount = 1;
if not IsEmpty (ReadQueue) then

readcount := O3
while not IsEmpty (ReadQueue) do — handle waiting readers

ACCEPT_SIGNAL (DeQueue(ReadQueue),_OK);
readcount := readcount + 1;

elgif not ISEmpty (WriteGueue) then
ACCEPT_SIGNAL (DeQueue(WriteQueue), OK);
writecount := writecount + 1;
fi;
end;
esac;
end;
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4.4.5. File 3ervice

We present an outline of how a file service might be constructed. A cllent
wishing to open a file begins by locating the appropriata fila server via DISCOVER.
Then, the requester client issues a REQUEST using the well-known pattern OPEN.
The flle server creates a pattern via GETUNIQUEID, binds It to the file, and returns
this pattem to the requester. This pattem Is then used by the requester for

future transactions conceming the flle.
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His Server

- client protocal for using file seTver

1. — lacate file server

ts := DISCOVER (FILESERVER);

— Locate the MID of the appropriate: file server.

— FILESERVER is a well-nown nama speci, ic enough to

- locate the correct machine.

— For example, the pattern can indicate a subdirectory containing
- g particular file. :

2. —open file

var fd: PATTERN;

B_EXCHANGE (<fs.Mid, OPEN>, oK, "foo", fd); -
— Gat file descriptor pattern” fd* to be used for all transactions

- concerning file "foo" , :
- Pile opening errors are detacted upon tha first use of the file.

o

3. —usa fila (kind = seek, read, etc.)
B_EXCHANGE(<fs.Mid, fd>, kind, wrbuf, rdbuf);

— ask for something to be done with file " fao"
— kind is CLOSE. SEEK, READ, or WKITE

|
|
|
{
i




const
FILESERVER = %...;
OPEN = %

type FILE_OPERATION =

record
cllent: REQUESTER_SIGNATURE;
operation: integer;
{lledesc: integer;

end;

var

OpQueue: Queuel...] of FILE_OPERATION;

action: FILE_OPERATION;

FlleTable: array{...] of PATTERN;

Init_ializaﬁon {Parent_Machineld: MACHINE_ID)

begin
ADVERTISE (FILESERVER);
ADVERTISE (OPEN);

anﬂl - v "

Task()
begin.

loop :
while IsEmpty (OpQueue) do idie();
action := DeQueue(OpQueue);
perform (action); ,
- perform will ACCEPT action. client
~‘and execute raquested file operation

forever;

end;

Handler (Asker : REQUESTER _SIGNATURE;
Arg : integer;
invoked_Pattem: PATTERN;
PutSlze, GetSize: integer);
war fname: string;
begin
case ENTRY of
OPEN: begin
£d := GETUNIQUEID(Q);
ADVERTISE (fd);
ACCEPT _QURRENT_EXCHANGE (0K, fname, fd);
| := open (fname); '
FlleTable[i] := fd;

end;
OTHERWISE: begin
| := Find (Invoked_Pattern);
Enqueue (OpQueue, {Asker, Arg, 1});
end;
Ce88C;
end;

88
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4.5. Conclugions

A rudimentary language (SODAL) was outlined. This language can be used

either to Implement application programs directly or as an intermediate form for

-higher-level language primitives. “We demonstrated that-SODA is convenient for

providing both higher-level protocols (such as link management and file service)

- and high-tevel language constructs (such as remote procedure call and CSP-like

rendezvous) In a distributed environment.

SODA does not pro'vlde all possible primitives. For example, It lacks rellable
broadcast and highly-efficient remote memory reference primitives. However
SODA appears tt; be adequate for typical IPC needs. A SODA machine may join an
axlstlné network and communicate with and boot other nodes without recourse to
manager processes. A more dlscipilned approach (such as a centralized connec-

tor service that manages node allocation as well), can also be accommodated.

it Is difficult to judge the power of a system from a small number of exam-
ples. Nevertheless, the examples presented here cover a wide variety of typlcal
distributed applications. The SODA primitives have proved thus far to be powerful

and expressive.
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5. IMPLEMENTATION

in this chapter we discuss our implementation of SODA on a network of PDP-
11/28's connected by a 1 megabit broadcast bus: Computrol's Megalink [69].
included In our discussion will be details of the kernel-client Interface. We aiso
present performance results. Our goal In this discussion Is to show that SODA Is .

Implementable In an afflclent and compact manner.

. Development System

Our network conflguration conslsts of elight "bare" PDP-11/23's and a VAX-
11/780 running UNIX [60] which all have access to the Megalink. Al software
was developed on the VAX and then downloaded to the PDP-11's uslng the
Megalink.

§.2. Kernel Simulation

We simulated a SODA processor by implementing it in software. The SODA
kemel s a collection of routines running on a PDP-11/23. The implementation
must multiplex a single processor to perform the tasks of both client and kernel.
This additional overhead would not be présent on an ldeal two-processor SODA
node."

The kernel accesses physical addresses directly, whereas the client memory
is mapped so that it forms a logical address space extending from zero up to
86635, with some exceptions discussed beldw. Normally, tﬁe client process is
the only activity engaging the CPU. The kernel is only active when the client

executes a SODA primitive, an alarm expires, or a network interrupt arrives.



102

The Megallnk always operates out of two preallocated kemel buffers (the
input buffer and the output buffer). Messages are copled out of cllent space to
the output buffer for transmission and are copied from the input buffer into cllent

space upon receipt.

5.2.1. SODA<Client Interface

SODA and the cllent communicate by shared memory. A portion of cllent
memory Is mapped to coincide with kemel memory (the hterface sagment). Each
of the ten SODA primitives is invoked via a TRAP. All arguments are obtained from
the Interface seément. if TRAPS are replaced with control line access, this setup

corresponds well with the architecture lllustrated in §3.2.

To Invoke a SODA primitive which requires arguments (such as REQUEST or

"ACCEPT), the client first prepares a descriptor that contains the arguments and

places the address of this descriptor in the interface segment. Then the client
invokes the appropriate TRAP. The client should not alter the contents of the
descriptor until the descriptor is no Iongér needed. Descriptors used for
REQUESTS may safely be reused after the assoclated REQUEST completes. Other
descriptors may be reused as soon as the primitive completes execution because
all other SODA primitives block untll completed. There is a problem of concurrency
involved however. Descriptors are allocated (by the client) from a pool of free
descriptors. The cllent, when executing within the task, must be careful to avoid

inconsistent states of the free descriptor pool by using CLOSE and OPEN.

The client does not receive hardware interrupts or TRAPS but has direct
access to the 1/O registers which enables the client to perform busy-wait 1/0.
SODA Itself only requires access to the clock and the network device interrupts.

SODA will generate a software interrupt to invoke the cllent handler.
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When the client Is walting for a handler interrupt and has nothing else to do,
it may execute an IDLE instruction (analogous to the WAIT instruction on a PDP-
11) if ons is avallable. This Instruction will prevent the cllent from accessing
memory It shares with the SOI?A kemnel until an interrupt occurs, thus avoiding

unnecessary contentlon.

5.2.2. Communications Protocol

ACCEPT can never be prevented from executlnd by a requester cllent. This
ensures that there Is no deadlock when two clients issue ACCEPTS to each other
and also ensures that ACCEPT will complete within-a bounded amount of time.
when a requester kernel is Informed of an Incoming ACCEPT, the buffers for data
transfer are fllled by the kemel and the completion Interrupt Is queued If the
reciuqstar’ handler ls elther CLOSED or BUSY. When the cllent aexecutes
ENDHANDLER, SODA checks to see if any REQUEST completion indications are
pending. If so, control passes immediately back to the handler. Similarly, If the
cllent has CLOSED the handler, and completion indications have accumulated

since the CLOSE, OPEN will cause immediate handler Invocation.

If a REQUEST encounters a BUSY or CLOSED handler, the REQUEST will be
periodically repeated untll it succeeds or fails. Different REQUESTS to the same
server will always be delivered in the order lssued. However, REQUESTS to dif-
ferent servers will be issued even if some pending REQUESTS encounter BUSY or
CLOSED handlers. The rate of REQUEST retransmission decreases with the

number of retransmission attempts to avold flooding the bus needlessly.

The Megalink computes a cycilc redundancy check (CRC) checksum to
datect transmisslon emors. A message with an incorrect CRC is simply discarded.

An alternating-bit stop-and-wait protocol as described In [61] Is used by the ker-
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nel to achieve rellabllity in the presence of lost or mutilated packets. If a packet
is not acknowledged, SODA waits a random amount of time and tries again. SODA
assumes that the destination client has crashed if no response s heard after

retransmitting a packet to a destination a given number of times.

The retransmission rate'io obtain-en acknowledgement Is not ‘the same as
the retransmission rate to find the server handier OPEN and IDLE. In our imple-
mentation, the former rate is faster. Also, the number of retransmissions used in
an attempt to get an acknowiedgement Is bounded; the number of retransmissions
to find the .server handler OPEN and IDLE Is potentially unbounded. One
"retransmission” to find the server handier OPEN and IDLE may require several

actual retransmissions to reliably deliver a REQUEST.

it is crucial to have .a mechanism to establish Initlal sequence numbers for
transactlons between processors. One technique Is the three-way
handshake [62], In which a connection Is explicitly estabilshed by exchanging
packets. A simpler protocol Is the Delta-t protocol [63,64], which requires no
explicit connection establishment. Instead, Delta-t uses the fact that in A local
area network, the total time a message Is retransmitted (R), the time to convey a
message from sender to receiver (maximum packet lifetime (MPL)), and the max-
imum delay In acknowledging a packet (A) can be kept within tight bounds. We
outline the protocol here; more details are discussed in [83].

We define the interval At = MPL + R + A. If a processor P4 hears from a
remote processor Ppand no connection record exists, any sequence number used
by les accepted and used henceforth and a connection record Is created. If Py
hears nothing from P> in time MPL + At, P4 destroys the connection récord it has
with Pp and will again accept any sequence number from P> The interval MPL + At

is sufficlent for P5to complete all retransmissions (R), Pyto recelve the message
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and acknowledge It (MPL + A) and P> 1o receive the acknowledgement (MPL). It

ensures that P, has either crashed or has received an acknowledgement from P4

for Pés last retransmission.
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Typical Delta-t Situations

s iAXimum time spent in retranamitting @ message V

- maximum packet lifetime
—— maximum del‘az ‘before acknowiedgement 'take any SN' timer
SN Sequence } r : expires if client 1
. has been silent
| _2WPL + R + A ’
Client 2 ‘
Client 2 will insist
on correct SN
message arrives
for c??mt 2 4 - 5 i client 1 8 9
3 Stort timer to message arrives,
‘take any SN' |,  reset "take any'
sent timer
1 B2 o
6
Start Client 1 could 0K to send
Sending crash here new message
OK for client 1
to send after
Client 1 crash
JoMPL + R+ A
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When a message has amrived at a server handler but has not yet been
accepted, the requester kemel will issue periodic probing messages to the server
kemnel. If no response Is heard after retransmisslons in the interval MPL + At, the
requester kemel will report to its client that the server Is dead. Similarly, when a
REQUEST or an ACCEPT is Issued and no response Is heard after retransmitting

during the interval MPL + At, the destination is reported dead.

if Pp has indeed crashed, P> will walt 2*MPL + At before allowing any new
communications to begin after recovering. This delay ensures that all message
traffic and acknowledgements between Py and P have died out and that the

connection may safely be reestablished without introducing the possibility of
duplicate packets.

ifNis the number of nodes on the network, the number of connectlon records
& node must allow space for is N - 1. This Is due to the alternating bt stop—and-
walt protocol which requires a packet to ba acknowledgad bafore a new one may
be sent. Thus, at most one open connectlon for each node on the network may
axist at one time. If N Is quite largs, it may be possible to tighten this bound
further. If a node may only send and receive k messages within an interval of
2"MPL + At (dus to limited processor speed or network bandwidth) then only

space for k connection records need be maintained.

5.2.3. Acknowledgements

Acknowledgements (ACKS) are used to indicate successful receipt of a mes-
sage. Negative acknowledgements (NACKS) are used for efficiency reasons and
ermor condltlons.' All messages and acknowledgements carry the state of the
sender's end of the connection which enables the receiver to discard duplicate

packets. SODA requires different NACKS to Indicate BUSY handlers (recelpt of
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such a NACK will cause adjustment of the retransmission interval) and for various
errors (such as addressing a non-advertised PATTERN). All messages carry a bit
that Indicates whether the current Delta-t connection is open, which prevents a
message from appearing to contain a plggybacked ACK when a connection is not

currently active. -

A REQUEST may only be CANCELLED if the state of the server Is known. That
is, a REQUEST must be acknowledged (but not necessarily ACCEPTED) before it is

- eligible for cancellation.

Our SODA implementation expends considerable effort to piggyback informa-
tion on outgoing messages. As an example, when a REQUEST arrives at a server
handler, the acknowledgement is delayed momentarily to give the server a chance
to ACCEPT quickly. If the ACCEPT is Issued ‘soon after handler entry, the ack-

" nowledgement will be piggybacked on the ACCEPT.

in the best case, a PUT requires two messages to be sent: REQUEST+DATA
by the requester and ACCEPT+ACK by the server. Because the ACK could be lost
and because the ACK must carty information with it (the argument and the sizes
of the buffers specified in the ACCEPT), the server kemel must malintain the
‘ ACCEPT arguments as part of the connection state. Then, if the ACK is lost,
retransmissions by the requester will be acked with th_e appropriate Information.
For GETS and EXCHANGES, three messages are required: REQUEST+DATA by the
raquaster; ACCEPT+DATA by the server; and ACK by the requester. A REQUEST is
only sent with data (on a PUT or EXCHANGE) one time. Should the message get
lost or arrlva at a busy server handler, subsequent retransmissions do not include
the data. This reduces the amount of network traffic while allowing for efficient

communication between synchronized cllents.
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An EXCHANGE sent to a busy handler will require six (or more if the handler

stays busy for a long time) messages:

1. REQUEST+DATA (by requester)

2. BUSY (by server) = handler not available, try again

3. REQUEST (by requester)

4. ACCEPT+DATA (by server) -- made it to handler; accept Is immediate
6. DATA+ACK (by requester)

8. ACK (by server)

If the ACCEPT was not Issued Immediately when the REQUEST amived at the

server handler, at least seven messages are required:

1. REQUEST+DATA (by requester)

2, BUSY (by server)

3. REQUEST (by requester)

4. ACK (by server) — mads it to handler, not accepted yst
6. DATA+ACCEPT (by server)

8. DATA+ACK (by requester)

7. ACK (by server)

When a BUSY handler is encountered, the retransmission rate Is slowed slightly
from Its normal rate (by modifying the random backoff function). This adjustment
saves network bandwidth by allowing some time for the handler to complete

before wasting a retransmission.

We prepared two versions of SODA that approach piggybacking slightly dif-
ferently. Normally, when an ACCEPT for a GET or EXCHANGE is-issued scon after
the REQUEST arrives, an ACK plus DATA Is retumed 10 the requester's kemel. The
REQUESTER may have a new GET or EXCHANGE ready to send when notified of the
REQUEST completion. The new REQUEST could then be piggybacked on the ACK
for the data from the previous REQUEST. However, the server kemel is still await~
ing an ACK for the data It sent so the piggybacked REQUEST will initially

encounter a BUSY handler, causing a BUSY NACK to be sent to the requester ker-
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nel. The ACK will be processed by the server kemel separately from the new
REQUEST and the next retransmission by the requester kernel can then succeed

If the server cllent aexits the handler quickly.

in the other version (the pi‘pelv:m.ed version), when a REQUEST arrives at a
busy server handler, a BUSY NACK Is not Issued immediately. Instead, the
REQUEST (and data assoclated with it If it is a PUT or EXCHANGE) remains active
in the Input buffer for a short while. If the server handler becomes available
quickly, the input buffer may still contain a valid RE—QUEST which can be lrﬁmedl-—
ately processed. In the non-pipelined lmplementatlon; a BUSY NACK followed by a
retransmission of the REQUEST would be required. For handling steady streams of
REQUESTS, the slight overhead assoclated. with this method (e.g., the

ENDHANDLER routine must check the Input buffer for an active REQUEST) Is well-
Justified (§5.6).

5.3. Broadcast REQUESTS

When a broadcast REQUES:I' is issued, a single packet Is broadcast (using a
special machine Identifler recognized by all Megalink interfaces) to each node.
Any node that recognizes the pattern will send an acknowiedgement containing
the MID of the matching node. it is important that these ACKS be staggered as
otherwise several ACKS responding to the same broadcast REQUEST will collide.
We Implement this "staggering” by delaying an ACK to a broadcast REQUEST for

an Interval proportional to the (unique) machine Id of each node.

5.4. Pattern and Transaction 1d Generation

Our kernel implementation provides 48-bit PATI‘ERNS. Because we lack

associative hardware and because. pattemns are always checked on incoming
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REQUESTS, we placed a restrictlon on the use of PATTERNS which allows pattemn
lookup In a single operation. The first elght bits of a PATTERN are used as the
index Into an array of 256 PATTERNS. The client Is free to select any value for
these eight bits, but if two pattems are advertised that are identical In the first

slght bits, the second pattern overwrites the first.

GETUNIQUEID produces network-wide unique 40-bit pattems by concatenat-
ing an eight-bit serial number (unique to each machine) to a 32-bit counter. The
counter Is incremented each time a new unique pattern is created. The lnitlal.
value of this Integer Is derived from a monotonic clock function maintained by theﬂ
hoSt. VAX used for development. Each time a SODA kernel Is rebooted a new Initial

value Is sat.

Some SODA systems may wish to make it difficult for clients to guess vaiid
"PATTERNS. For such an implementation, PATTERNS should be random, yet still
guaranteed to be unique. One possible implementation method Is to concatenate
& number produced by a random number generator to the serial number/counter

pali' (8§6.16).

SODA semantics require that an ACCEPT issued to a requester cllent which
has crashed return an error. Transaction id's In our implementation are generated
from the same counter used to generate unique pattems. When a new client is
booted, the current value of the counter is recorded. When an ACCEPT Is issued,
it Is checked to ensure that it lles betwsen the present (maximum) value of the

counter and the (minimum) value of the counter recorded upon booting.

5.5. Performance Results

Our implementation requires about 8k bytes of text and data exclusive of 4k

bytes used for the Input and output buffers. Of this, about 4k bytes comprise the
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Delta-t protocol. No particular attempt was made to optimize our code; we
b‘ellave‘lt could be made even smaller. The SODA kernel consists of about 1400
ines of C and 400 lines of assembler code of which the Deita-t protocal
comprises about 750 lines of C code. The SODA kernel was rewritten several
times over a period of approximately six months while the SODA design was

changing. The final version took about six weeks to implement and debug.

Leblanc [9] implemented message-passing primitives in *MOD using identical
hardware. We present some of his results for comf:arison with our SODA imple~
mentation. A B_SIGNAL in SODAL (§4.1.1) requires 8.5 ms (exclusive of client
overhead) when the ACCEPT for the REQUEST Is done In the server handler. If the
B_SIGNAL REQUEST is queued by the server handler and ACCEPTED by the server
task that Is polling the queue of REQUESTS, the time increases 1o 10.0 ms (which
includes 0.7 ms for the queueing overhead). This latter situation is semantically
simllar to a synchronous remote port call (with a single-integer argument) in *MOD,

which requires 20.7 ms.

SODA SIGNALS (non-blocking) are more efficient (4.9 ms) because client
REQUESTS may be queued by the kernel while the current REQUEST is being
dellverad. When non-blocking SIGNALS are used In conjunction with queueing at
the server end, 5.8 ms are required. This Is semantically similar to the *MOD

asynchronous port call which requires 11.1 ms.

The first table (below) shows the speed of PUTS, GETS and EXCHANGES
using both pipelined and non-pipelined versions of the kemel. All measurement§
were made with MAXREQUESTS set to three, and with the ACCEPTS being done
immediately by the server handler. MAXREQUESTS values other ‘than one pro-
duced the same results. With MAXREQUESTS set to one, all REQUESTS become

blocking so no advantage due to double buffering accrues. Resutlts in the tables
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below are significant to the nearest millisecond. The timings for our comparisons
to *MOD were madas In a separate, more accurate test significant to the nearest

0.1 millisecond.

We present In the second table (below) a rough breakdown of the time spent
to lssue a SIGNAL. The context switch time Includes both REQUEST arrival and
REQUEST completion interrupts. The client overhead Includes the overhead of
A maintaining the descriptor pool (which is locked and unlocked with CLOSE and
OPEN) as well as the overhead for Invoking the trm;missim primitives (REQUEST
and ACCEPT). We derived the 4.8 ms time mentioned previously for SIGNALS by

subtracting this client overhead from the total time to perform the SIGNAL.

5.5.1. Simulation Overhead

We expect that performance would be greatly enhahced by an actual SODA

processor. We list some of the bottlenecks In the present implementatlon:

(1) The PDP-11 Is a slow processor {about 170,600 instructions/second). A
speclalized processor should be able to perform the SODA functions much

movre efficlently.

(2) The Megallnk Is a slow network (1 Megabit). its speed especially affects
the performance of sending long messages. Some current proposals [65]
promise dramatically increased bandwidth, extending Into the 10 gigabit
range.

(3) Assoclative pattern lookup hardware would not speed up our Implementation
because of the restrictions placed on patterns (§56.4). However, such

hardware would allow for an efficient implementation which conforms to the

exact SODA semantics as defined in §3.4.
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The cllent-kemel Interface requires software Interrupts for handler invoca-
tions and traps for SODA primitive invocations. in addition, the client must
maintain a descriptor pool for SODA commands. Because the number of
required descriptors Is bounded (by MAXREQUEST S), the descriptor handling
mechanism might well be placed in the kernel. Hardware interrupts anci
hardware control signals to Invoke SODA primitives would eliminate much of

the overhead In our present simulation.

A network Interface which copled messages into a high-speed Interface

buffer prior to copying Into client memory could reduce the frequency of

. fetranémlssions due to BUSY handlers. In the extreme case, If one buffer

were available for each node on the network, we could ellminate retransmis-

slons due to BUSY handlers entirely. As discussed In §5.2.3, even a simu-

" jated Interface buffer can ‘greatly improve performance for streams of

()

requests.

It would be desirable to be able to disassemble or assemble packets (Le.,
stripping or adding headers from/to data to form a packet) without having to
first copy headers and data from/into a single contiguous region. This
scatter-gather capability, already present on some available network dev-
lces such as the Pronet interface [68], improves performance by eliminating
redundant copies. For example, on a request completion which carries data,
the requester kemel could read the header into private kernel memory, and
then store the data directly into client memory. It Is best if the interface
can specify the whole gather at once (which the Intel Israel 82588 [49]
can do, but the Pronet can't). In our simulation, the entire packet must be
copled Into a kernel buffer before storing the data because there Is no way

to read the header (necessary to screen messages) beforehand.
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5.8. Summary

Wea have shown that SODA is implementable in a space-afficient manner and
can perform well. We also polnted out that SODA was implemented with a minimum
of effort; a fact that speaks well for the simplicity of the design. Careful atten-
tion to pigngacking acknowledgements led to significant performance improve-
ments. Under certain conditions, GETS and EXCHANGES can perform almost as
well as PUTS, which opens up the possibility of actively writing to or reading from
(actively obtaining data as opposed to passively receiving i) a resource using
rgmote requests at about the same r;ost per transactlon. Thus new styles of
communication are possible when contrasted with a system which provides only
active, unidirectional SEND and passive RECEIVE primitives. Black [67] has inves-
tigated the potentlal of providing passive and active | /O primitives In an c;bject-
based Systenu Finally, we illustrated ways in which a hardware SODA Implementa-

tion could offer improved performance cver our present simulation.
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8. RATIONALE

{n this chapter we discuss our reasons for the SODA design. Any good
design always balances two competing goals: simplicity and expressive power.
We wanted to make SODA simple so that an Inexpensive and efficient hardware
realization would be possible. At the same time, wa wanted SODA to be usable by
a large cllentele. Successful designs such as the RISC [3] machine or the Pas-
cal [2] language have concentrated on ezcluding features rather than adding
new ones. Thus, this chapter focuses attention on why certain capabliities were

not'included In the SODA design.

8.1. Messages

We selected a message-based system- as opposed to a shared memory-
pased one. Although the two forms are -equivalent In some sense [88] and one
can be implemented using the other, message-based primitives are higher-level in .
that they unify synchronization and data exchange [11). Further, message-
passing lends itself well to available local network technology which currently is
less expensive and more expandable than existing shared-memory architectures

which require costly switching networks.

6.2. Uniprogramming

We feel justifled In calling a SODA client uniprogrammed because each pro-
cessor executes one process and the handler does not maintain state between
invocations. The handler is seen as a temporary suspension of the task actlvity,
. not an independent process. If multiple processes or coroutines are required as
an organizational tool, they may be provided at the programming language level

(as opposed to the operating systems level) as in SIMULA [69] or Modula [28].
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There are many advantages to providing only one process per processor. 11
processors are cheap, It Is aconomically possible to dedicate processors for
real-time activitles. Without the requirement to multiplex the CPU, there Is no

need for an operating systems kernel to:
(1) Provide a complex operating system to schedule processeas.
(2) Muitiplex and demultiplex messages among differant processes:.

(3) Manage process contexts and buffers which must be locked Into memory

during IPC requests.

(4) -Provide separats local and remote message passing mechanisms.

We can also finesse soma complexity by making primitives, such as ACCEPT
and CANCEL, blocking. ina multlprogrammed system, it would be unacceptable to
delay all users while ﬁte»‘operatlng._system was servicing one users's 1/0 request,
bacause the goal of the operating system is to provide the Musion of a dedicated
machlne to each user. In a unlprogrammed system, no such lllusions ars neces-
sary Whether or not these blocking primitives cause a loss of efficiency for
some applications is a separate lssue. The important lssue is that primitives can
be made blocking only If their blocking nature cannot jead to uncorrectable
deadlocks. Because ACCEPT and CANCEL are guaranteed to completa In a
pounded -amount of time, they cannot cause any deadliocks which are impossible

to break.

We should point out that process migration Is still useful, atthough its use as
a process load baiancing technique Is cbviated. For example, & program may be
comglled on a machine attached to a disk contalning the program text, then move
to a high-speed processor to parform numerical tasks, and ultimately migrate to a

processor attached to a printer to produce output.
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8.3. Process Creation and Termination

The same basic mechanism used to send messages Is used to create
processes: A client DISCOVERS a free processor with the desired attributes and
lssues REQUESTS to it which coritain the core image. No speclal process creation
primitives are required. The booting mechanism thus conforms well to our desire

for uniformity.

it s necessary to provide special mechanlsqxs to terminate a process
bacause otherwise a malicious process could CLOSE its handler and loop forever
in Its task, effactively removing that_ processor from the system. We provide two
KILL patterns assoclated with a client termination action. One of these (the KILL
PATTERN) Is intended for use by -a system manager process to reclaim processors
from applcation processes which do not respond to system REQUESTS. The other
(LOAD PATTERN) Is Intended for use by the parent of a process to terminate a

runaway child.

6.4. Connectionless Protocols

Thera are two reasons for establishing connections: To maintain state (l.e,
sequence numbers) for reliable transport, and to represent the logical endpoints

of a conversation.

8.4.1. Maintaining State

SODA uses an underlying connectionless protocol (the Delta-t pratocol dis-
cussed In §6.2.2) to achieve reliable communication as contrasted with
conmnection-based pratocots such as TCP (§2.4.8) that require connections to be
explicitly established. Because many transactions in a local distributed environ-

ment tend to be single-shot exchanges [70] that do not Justify the cost of
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establishing a virtual circult, we have opted for a connectionless implementation.

There are three main disadvantages to using the Delta~-t connectioniess pro-

tocol as compared to a three-way handshake [83]. One Is that space for con-

nection state cannot be reclaimed as quickly. Connection closing in Delta—t can

require more time than In the three-way handshake by an amount proportlonal to' o

MPL. In a network where packets are routed between nodes, MPL can become
quite significant. In a local area network however, MPL Is typically quite small.
Further, there Is no difficulty if space for connection records can be preallocated.
. in our SODA Implementation, each node preallocates one oonr'rectlon record for
sach machine on the network. This approach may be feasible for small networks
(86.2.2). The second s that the Delta-t protocol requires a delay proportional to
MPL for crash recovery before the network can be rejoined. Again, if MPL is small
this is not ‘an Important consideration. The third Is that MPL must be bounded in
order for the protocol to work properly. It may be difficult to establish upper

bounds on MPL in a store-and-forward network.

8.4.2. Logical Connections

As pointed out In §4.2.4, SODA can be used to implement a connection-based

fink protocol. In an environment where broadcast Is expensive due to hardware

limitations, it may make sense to supply point-to-point connections. In such an

environment, swifchboards will be used to obtain Ioglcal connections. However,

when broadcast Is available, 1t provides an extremely valuable connectlon-making

tool because logical connections can be established by making Inquiries of all

clients on the network in paraliel. No centralized switchboards are then neaded.

The DCS system [47] provides a completely connectionless (dynamic)

process-binding mechanism In that all addressing Is done by associative pattem
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lookup. This sort of addressing may be impractical for very high speed interfaces
because the Interface must make an associative comparison for screening
(36.12). The Arachne system [34] provides a completely connection-based
(static) process-binding mechanism (links) which requires connections to be
established by the ancestors of a process. SODA takes an intermediate view. By
using DISCOVER, a connection may be dynamically determined. quever. all mes~
sage exchange requires a specific machine identifler to be used. In this way we
obtain the benefits of reliable message exchange and the flexibility of dynamic

Interconnection.

8.5. Feilure Handling

in the presence of processor failures, SODA ensures only that a processor
that fa-Ils detéétably will not keep an uncouﬁpletad transaction waiting. Higher-
level protocols such as the fwo-phase commit t71] may be employed to maintain

data integrity in the presence of crashes.

Because cllents can provide their own crash detection protocois, we did not
bulld in a crash detection scheme. If two cllents have been communicating and
one of them crashes and recovers, the living client will not be aware of the crash
unless the living client attempts to communicate with the recovering cllent before
the recovering client can readvertise its patterns. If it is important to inform the
living client of -the recovering status of cllent which crashed, the latter may delay
advertising its patterns untll it has agreed with the former about its status. All
cllents could advertise a pattern which is bound to a crash recovery actlon; this
pattern would be the only one available immediately upon crash recovery. If a ‘
client recovers from a crash, it sends a'REQUEST, using the crash recovery pat-

tem, to its partner. When the REQUEST Is ACCEPTED, the recovering partner may
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readvertise its service pattems. This scheme will also work If both partners

crash and recovaer.

We provided CANCEL primarily to provide transactions that have flnite patl-
ence. Timeouts were not included In the SODA message passing primitives
because the majorty of clients cannot know what realistic waiting intervais are.

Further, It is easy to add timeout services in SODA (§4.4.83, §4.3.2).

6.8. Asynchronous Receipt

Asynchronous recelpt was provided primarily because we wanted to provide
a flaxible scheduling capability. In addition, by polling a variable that is set In the
handler it is easy to simulate blocking recelves. With blocking receive it is Impos-
sible to be Informed of exceptlonal conditlons (such as timeouts or deadlocks or
high-priority requests) that necessitate the termination of a receive. Finally, the
ability to receive asynchronously prevents the deadlock situation which arises

when two cllents attempt to issue blocking sends to each other at the same time.

Although the abllity to inquire about avallable messages (timeouts on recelve
glve the same capability) in a system with blocking receive alleviates some
scheduling problems, this kind of polling can be very inefficient. Some programs
such as the checkers program described In [72] enjoy lmproved‘performance
because the overhead needed to poll for an event Is not present. The situation in
the checkers program is this: A process Puses a vardable v. If a "petter’ value of
v Is discovered by a process @, P would like to start using the new value as soon
as possible, but P doesn't want to waste time polling for a message from Q that
could arrive at any time (or never). In SODA, the handler can si_mply update v

when update messages arrive.
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8.7. Flexible Scheduling

Communication Ports [29] pemit the server to scheduls the replles to
requests; that is, other requests may be processed by a server before it replies
to the first request. SODA usés a similar Idea: The notification given the server of
an Incoming transaction (REQUEST arrival at the server handler) and the notifica~
tion given the requester of a completed transaction (ACCEPT arrival at the
requester handler) are separate events with the latter action under control of the
server. A good example of the power of flexible schédullng is seen In our imple-
mentation of Bemstein's algoritim [21] (§4.2.6.1). Here it Is easy to delay
ACCEPTING a REQUEST when a possible deadlock exists until the REQUESTS have
been ordered by machine Id. Ancther example Is the readers-writers solution
given In §4.4.4. When a write finishes, the readers queue is flushed. All the
while, new read and write requests may arrive. it is then a simple matter to

schedule an Incoming write request ahead of new read requests,

Systems that provide built-in queueing of incoming messages (ports) usually
give a single FIFO queue, a (fixed, finite) set of FIFO queues, or at best a priority
queua or queues. By using a two-phase scheme (first the REQUEST, later the
ACCEPT) we allow the user to tailor the queueing discipiine to the application

while maintaining the simplicity of nat buffering messages In the kemel

8.8. Two-way data transfer

We belleve that a transaction should be capable of causing data to be sent
In either direction (from requester to server or vice versa) becausa It Is natural to
be able to either read or write from a server. We have shown that two-way
transfer can be efficlently implemented and that for streams, GETS can be about

as efficient as PUTS. Simultaneous two-way transfer (EXCHANGE) is quite useful
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for short two-way transactions such as file opening (§4.4.5).

6.9. Non-blocking Send

Non-blocking send Is important to provide in a uniprogrammed environment
because the cost of implementing non-blocking send from blocking send would be
high. To Implement non-blocking send with blocking send, a blocking send Is
lssuad to an auxillary process which immediately accepts the message (thus
unblocking the sender). This auxillary process then tries {o deliver the message
on behalf of the original sender. Ina urilprogrammlng environment, the cost of pro-
viding the auxiliary process {s the same as the cost of another processor. We
feel this Is too dear a price to pay for a simple and possibly frequent operation.
Further, blocking send s easily and cheaply implemented using non-blocking send
(84.1.1). ' ”

There are many potentlal uses for non-blocking send. With non-blocking
send, a client may issue a request for data before the data ls actually required.
Such anticlpatory requests could be used, for example, to implement pre-paging
from a utllity disk server. Non-blocking send is also important for programs which
require a high degree of parallelism. The double-buffering scheme employed In
§4.4.1 Is an example. Finally, utility servers should be able to Issue requests
without fear that a mallcious client can refuse to receive. With non-blocking
send, a server may always take an altemate action with respect to any uncom-

pleted send.

6.10. Synchronous ACCEPT and CANCEL

We did not make ACCEPT asynchronous because we can guarantee an upper

bound on the time ACCEPT takes to complete: Buffers have aiready been ailo-
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cated; data will be transferred in an amount of time bounded by the algorithm
used by the network to ensure fair access to the line in the presence of conten-
tion such as binary exponential backoff or token passing [73]. To make ACCEPT
asynchronous would add a third kind of handler invocation as well as slowing down
ACCEPT because of the extra interrupt. The kernel would also be complicated by
the necessity of queueing 'ACCEPT completion interrupts. CANCEL will aiso com-
plete in bounded time and Is synchronous for the same reasons ACCEPT Is. Mak;-
ing ACCEPT asynchronous is attractive, however, because message transfer
could then take place in parallel with server activity. Further research Is needed
to determine how Important an asynchronous ACCEPT would be to client effi-
clency; or, more to the point, what cllent programs could profitably do if they
" could execute In parallel with ACCEPT. Our results show that the overhead of an
ACCEPT can be quite significant, especlally when the ACCEPT Is issued well after
a REQUEST has arrived and data from a PUT or ‘EXCI-IANGE could not be pig-
gybacked with the REQUEST. |f SODA were oonverted to a multiprogrammed sys-

tem, there Is little doubt that ACCEPT would have to be made asynchronous.

8.11. Selective Receipt

When a REQUEST arrives at the client handler, the client is provided with the
glzes of the buffers Involved, the pattem the handler was invoked with, the
MACHINE ID and TID of the sender (REQUESTER SIGNATURE), and an argument. We
call this information the tag of a REQUEST. The buffer sizes allow the server to
perform ﬂqw control: A REQUEST need not be ACCEPTED until a buffer of the
correct size is avallable. The Invoked pattem allows the server to select an
operation relevant to the REQUEST. The REQUESTER SIGNATURE provides ACCEPT
with a retum address and allows some security (messages from unauthorized

senders may be REJECTED). The argument may be used to discriminate different
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uses of the pa&em, provide a priority on a message, give simple type information
about the messages being sent; it may even be used to send a short message
(e.g., a character from a terminal). Because there are so many uses of the single
Integer argument we elected to provide It in SODA. For the sake of symmetry, and
to allow error returns (such as REJECT) from an ACCEPT, ACCEPT also includes an

argument seen by the requester's handler.

Some systems require that an entire message be read before a scheduling
decision Is made. When messages are selected on the basis of complex data
types (lLe., more type Information than can readily be assoclated with the
REQUEST argument) or arithmetic expressions over the conténts of the message
as In Synchronizing Resources [74] the information supplied to the handler in the
tag Is not sufficient to make a scheduling decision. Higher levei protocols such as
the remote procedure call dlscﬁssed. in §4.2.2 must then be employed by SODA

éllents in order to read the message before releasing the sender.

There are two reasons for providing a short tag. The first Is that the tag will
be retransmitted frequently when the server handler Is BUSY or CLOSED and we
do not wish to consume excessive network bandwidth. The second Is that the
server must guarantee that space exists to buffer the tag. We did not want to
require that the cllent preallocate a lot of memory simply to meet the SODA
specifications. LEO [42,43] allows data to be transferred before: releasing the
requester. However, in LEO, the tag is 150 bytes and each server must preallo-
cate one tag buffer for each machine on the network. In a large network, this
could represent a considerable outlay of client space. Further, If only a single tag
were buffered, 150 bytes would likely consume a lot of network bandwidth due to

the necessity of retransmissions when the buffer is full.
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8.12. Screening

SODA provides two screening mechanisms. First, all messages specify a
specific processor (by MID) which allows rapld processing by the network inter-
face (l.e., a single oomparlson_) so that most spurlous message trafflc can readily
be rejected. This type of screening Is important when very high speed networks
are employed. Second, SODA checks the PATTERN In an address. This form of
screening Is done after the message has already been delivered to the kernel
(and therefore can be done by less expensive hardware) because lmproper pat-
temns requlre an error Indication to be returned to the requester. Improper MID'S

in an address are simply ignored.

Pattemn screening supports:once-only service (a server that accepts a sin-
gie mossage from one of a set of requesters can UNADVERTISE its pattemn when
the ﬂrst REQUEST arrives) as well as load control. If a server becomes swamped
with requests and other servers are ‘available that use the same pattermn as an
entry, UNADVERTISING the pattern will force requesters to DISCOVER other
servers using the same pattern. Another use for pattem screening is the support
of process groups. Cllents within a group can be assigned a set of unique ids by
a resource manager which are then ADVERTISED by the individual clients.
Attempts from clients outside the group to send ‘messages to clients Inside the

group will be scraaned out.

it is Important to have the pattemn screening performed by the kernel for
DISCOVER to work without necessitating client intervention. Bmadcaét in SODA is
not guaranteed to be rellable but the kernel should maka an effort to make it as
rellable as possible. By providing the DISCOVER machanism in the kernel, we at
least remove cumrent cllent state from further affecting reliability. We also can

take advantage of assoclative kemel hardware which clients can not be
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expected to provide.

8.13. Bufferless Kernel

in keeping with our desire to make the kernel small, the SODA kernel does no
buffering of messages. As a result, fairmess Is the responsibility of the cllent. If
the cllent does not service interrupts quickly, access to the handler becomes
more random. Because SODA provides flexible scheduling of ACCEPTS, It Is feasi-
ble to implement fast handlers that merely enqueue an incoming REQUEST for later
service by the task. By not putting buffering in the kemel we leave the issue of
flow control up to the cllent. Thus, it is important that the size of an incoming

message be avallable as a parameter to a handler invocation.

8.14. Patterns

We chose an extremely simple pattern matching facility: The ability to
advertise a set of fixed-length pattemsf From this, a cllent has the power of
regular expressions on a fixed-length string. The SODA hardware will requira fast
pattern comparison machinery, and very simple assoclative ‘pattem-matchlng
hardware can be used to find exact matches on fixed-length bit strings. Another
reason for not providing powerful regular expresslons Is to maintain security.
Powerful pattem-matching primitives would permit easy access to valid signa- '
tures with

DISCOVER(" * ") — "= matches all patterns

More complex naming strategies (such as name hierarchies or name retrieval
within a glven environment) can be provided by a name server client. DISCOVER
glves enough power to locate plausible servers which can support higher level

name binding facilities.
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The abliity to generate unique pattems Is important to provide local process
.groups &nd server entry points. Because GETUNIQUEID retums fewer than PAT-
TERNSIZE blts, well-known names In which semantlcs are assigned to particular
flelds within a pattem can be established by reserving a bit in the pattemn to indi-
cate the presence of a well-known ‘name. Well-known names can therefore be
used without any fear of conflicting with random pattems if all clients follow this
protocol.

8.15. Security

SODA was not designed to provide a high level of protection. Nonetheless,
there are several mechanisms which can be used to restrict unauthorized cllent

accoss:

(1) An ACCEPT from a server other than the one specified in the associated
REQUEST will fail.

-

(2) The client may use its own random number generator to create patterns. If
PATTERNSIZE is large enough that GETUNIQUEID returns a pattern containing
far less than PATTERNSIZE bits, the cllent can use its own random number
generator to provide part of a pattem and still ensure that the pattern is
unlque with respect to other cllents using GETUNIQUEID.

(3) The MID of the REQUESTER Is unforgable and given to the server on handler

invocation. The server may elect to REJECT those REQUESTS issued from

unauthorized nodes.

(4) RESERVED PATTERNS (§3.4.3) cannot be UNADVERTISED (allowing a‘client to
permanently reserve a node) or ADVERTISED (allowing a client to masquerade

as a free node In order to accept boot requests from another client).
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(6) The node with MID O can alter RESERVED PATTERNS. Therefore, the abllity to
boot and kill processes can be restricted by a system manager who has

access to the privileged processor.

8.18. DISCOVER returns a list

DISCOVER requests return a list of clients with matching pattemns. The
implementation will broadcast the DISCOVER query to all sites and wait an interval
aqfﬂcimt for many responses to arrive. ifonly a single response was allowed, it
might be impossible, due to line characteristics, to locate SERVER SIGNATURES for
several cllents advertising a given signature {e.g., the client processor physically
closest to the requester Is always discovered first). Because a set of clients
providing similar yet different services could ADVERTISE the same pattern, &n
unfair DISCOVER scheme could hide desired services from a.cllent. Location-. -
dependent DISCOVER responses cqul.d also hinder attempts by cilents t.o"dlstfi'- W
bute requests evenly among a set of resources, either to balance load or to

broadcast Information.

8.17. Primitives Not Provided

in this section we discuss some primitives that are potentlaily useful but
which are not included in SODA. SODA includes thosa primitives that we feel are
the most generally useful and the ones we present here can be implemented as
brary routines on top of SODA or could easily be added to the SODA kernel if

desirabie for efficiency reasons.
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6.17.1. Multicast

Some proposals, such as Leblanc's [9], provide a single maulticast primitive
which will rellably send a single message to each member of a process group.
There ailso exist ‘rellable broadcast techniques [75] that can provide specialized
services (such as maintaining backups of transactions or updating databases
that support multipla: coples). Such primitives take advantage of the particular
broadcast capabilities of a local area network to reduce the number of transmis-
slons required and may offer significant performance advantages over a group of

Individual, rallablé transmissions.

In SODA, if a client wishes to send a message rellably to several sites in a
group, it must issue a separate REQUEST to each site. Thus faf, we have not
seen enough practical uses for efficlent reliable broadcast in a loosely-coupled
network to jusﬁfy complicating SODA by providing a special rellable broadcast
primitive.

8.17.2. Remote Memory Reference

Spector [7] has advocated Iimplementation of specialized primitives to per-
form remote memory reference (RMR) in a message-based distributed environ-
ment. Howevaer, his results show that even a highly optimized implementation pro-
vides remote memory references which are two to three orders of magnitude
slower than local memory references. Shared-memory distributed architectures
are capable of speeds within an order of magnitude of local memory refer-
ences [78]. We feel that applications which rely on a remote memory reference
paradigm (i.e., those that require fine-grained parallelism) can not execute effi-

clently on a message-based architecture.
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A more efficlent RMR service could be added to SODA by providing a kernel
handler that services PEEK and POKE REQUESTS. This handler would be associ-
ated with a RESERVED PATTERN (§3.4.3) In the same way that the KILL PATTERN
ls. OPEN and CLOSE would affect the state of the kernel handler to provide syn-
chronization. More highly optimized PEEK and POKE primitives could be provided:
These would block until the PEEK or POKE returned, thus avoiding the overhead of

& compietion Interrupt.

8.17.3. Datagrams

SODA does not support unreliable messages (datagrams). While any sort of
protocol can be implemented on top of a datagram service, the additional layering
causes performance degradation. As an example, the PUP protocol [77] provides
a wide varlety of services layaréd on top of a datagrem service. However, each
layer in the PUP protocol causss & noticeable drop In performance from: the
preceding layer. We also feel that most applications will require rellable message
service. Nonetheless, there are applications (such as voice transmission or disk-
to-disk copy) which can be Implemented very efficlently using a datagram ser-

vice.

6.17.4. Hultipackets

Arbitrarily long transmisslons are. supportable by higher-level protocols that
packetize and reassemble large blocks of data. Our experience with typical tran-
sactions shows that most transmissions tend to be either small chunks or large
streams (e.g., a whole file). Although It may be posslbla' to achieve better perfor-
mance (e.g., by using windowing techniques) if the kemnel permits arbitrarily large

messages, our experience with sending streams of data indicates that perfor-
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mance can be quite good when done by tha cllent (§6.5)-

6.17.5. Bidding Support

A client which has advertised a service may be only one of a community of
servers that provide the sanie service. Such a client can be DISCOVERED and
then used. DISCOVER returns a list of .potential servers however and there is no
way to discriminate among the members of the list. By allowing ths cllent to
ADVERTISE values which are retumed as part of a broadcast REQUEST along with
MIDS, a server could Indicate how busy it Is. Then a requester should se.lect the

least heavily loaded server from the list.

8.17.6. REQUEST Forwarding

A patentially useful service would be to allow a server other then the one ‘
that received the REQUEST to ACCEPT it. This would be similar to the forwarding
capabiliity of Thoth [387]. We have already shown (§4.2.4) how link protocols can
be Iimplemented In SODA which allow ends of a logical connection {0 move tran-
sparently. Therefore providing a similar (but less powerful) ability in SODA does
not seem Justifled. o

8.17.7. Fine-grained Synchronization

CLOSE prevents all access to the handler. Allowing the handler to remain
OPEN for specific SERVER SIGNATURES would allow for more finely-grained syn-
chronization control. CLOSE could be parameterized to include a pattermn that
would leave the handler open to requests not using thl;s pattem. This affect
would not be the same as UNADVERTISING the pattern because requesters using

an unadvertised pattem are returned a fallure indication, whereas requests
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attempting access to a closed handler are kept on “hold” until the handler reo-
pens. So far, we have not found this feature necessary for writing programs in

SODA.

8.18. Conclusions

SODA, besides providing the basis for a distributed programming language
{SODAL), can also be used as an operating systems kernel In a distributed
environment. Cllents are expected to proﬁde their own device drivers and inter-
rupt handlers. Virtual memory, if avallable, is the concem of the client. No muil-
tiprogramming Is provided, and typical operating systems functions (such as file
service) are supplled by utllity processes. Finally, Incoming messages are
dellvered to the cllent without regard to any kemel-defined queueing discipline.
SODA only provides process management and interprocess comhaunlcatlon facill-
ties; that is SODA provides mechanisms for allowing pmceﬁses to cooperate in a

distributed environment, leaving policies to the clients [78].

We have figorously excluded features that we belleve do not add signifi-
cantly to the power of SODA. As a result, SODA presents a very small number of
primitives that can be Implemented efficiently. We feel that SODA has succeeded
n the effort to provide only those services which are useful to the majority of
cllents. We do not provide services that will be used-Infrequently and that non-
users of the services would be required to pay for In added cost or decreased

parformance.
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7. SUMMARY

Llné-level protocols such as X.26 [79] are no longer sufficlent for the needs
of sophisticated applications pmgmms and the requirements of high-speed local
networks. The goal of our work was to show that a communications adaptor
(SODA) which incorporates some of the power of an operating systems kernel and
which Is simple to use and implement Is a feasibility. SODA thus represents one of

the next generation of communication adaptors.

SODA combines ten primitives into a unique design which has exceptional
axpressive power. In chapter 4 we‘demnstrated the power of SODA by illustrat-
ing its application to real problems In local networking. We showed tha{ an effl-
clent and compact implementation was possible in chapter 6. Our implementation
experience strongly suggests that a §ODA processor could be constructed inex-
pensively. Finally, we Hlustrated the rationale behind the SODA design in .chapter
8. The rationale s important because it shows that operating systems design can

be guided by a logical, rather than an ad-hac, process.

7.1. Contributions to Computer Science

Our work makes three major contributions to the fleld of distributed operating

gystems research:

(1) We showed that an inexpensive communications interface can be built which
supplles sufficlent power for processes to cooperate in a distributed
environment without additional kernel support. Because one less layer of
support Is required, distributed systems can be made to perform better and

at a reduced cost.
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(2) We explored the kinds of communications primitives that are necessary to
support high-level applicatlons in a syStem consisting of networked unipro-
grammed processors.

(3) Our iImplementation shows that active RECEIVE and EXCHANGE primitives can
be implemented with approximately the same performance as active SEND.

As a result, new styles of Interprocess communication may bacome feasible.

in addition, we presented a novel solution to Dijkstra‘'s "dining philosopher's"

problem.

7.2, Directions for Future Work

We expect that SODA Is sufficlently simple to readily implement in VLSL.
Therefore, a major next step would be a VLS! SODA implementation which would
make It possible for even Inexpensive processors to possess a powerful communi-

cations adaptor.

SODA may be thought of as a proposal for a local network protocol standard.
Many more applications programs need to be written using the SODA primitives to
give us more confldence that SODA Indeed sufflces for most needs and that
extenslons, such as those proposed In chapter 8, are unnecessary. Our initial
experience shows us that SODA is more than adequate for typical high-level dis-
tributed applications.

Because SODA makes so _few requirements of the client processor and
because many client processors should be avallable In a SODA network, it may
prove advantageous to design extremely simple client processors for use In a
SODA system. A client processor with no memory management and only a SODA
processor for communication could be constructed cheaply. A SODA network con-

talning a very large number of inexpensive processors would then be feasible and
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present a significant amount of computing power to the network user community.

The employment of highly-tailored processors in a network environment will
soon be a reality because of advances In VLS! technology. Speclalized server
processors optimized for a particular application might well take advantage of a
completely distributed network architecture, If a powerful communications adaptor
were avallable to provide a uniform network Interface. The communications adap-

tor would play a crucial role in providing efflcient access to thess servers.

Flnally, we would be interested to explore hov; useful the SODA primitives
are In ather environments. It should be possible to Implement SODA on a shared-
memory architecture. By doing ‘thls,~ it may be possible to take advantage of the
higher communication spead for those applications which can afford the expense
of shared-memcry, and still provide the high-level SODA primitives to the client. It
should also prove possible to implement a kernel for a multiprogrammed machine
whera each process appears to have its own logical SODA Inteﬁace. ‘Thus, SODA
may have utility as a general model for Intarprocess communication independent

of architectural or multiprogramming constraints.
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