PIECEWISE-LINEAR APPROXIMATION METHODS
FOR NONSEPARABLE CONVEX OPTIMIZATION

by

B. Feijoo
and

R. R. Meyer

Computer Sciences Technical Report #521

December 1984

PIECEWISE-LINEAR APPROXIMATION METHODS
FOR NONSEPARABLE CONVEX OPTIMIZATION

B. Feijoo and R. R. Meyert

Abstract

An algorithm is described for the solution of non-separable convex optimization problems.
This method utilizes iterative piecewise-linear approximation of the non-separable objective
function, but avoids the curse of dimensionality commonly associated with grid methods
for multi-dimensional problems. It is, in fact, a practical approach for linearly-constrained
large-scale optimization problems, since the direction finding subproblems reduce to linear
problems. The method is particularly appropriate for nonlinear networks, since i1t preserves
the network structure of the constraints. A global convergence proof is given under the
assumptions that the objective function is Lipschitz continuous and differentiable and that

the feasible set is convex and compact.

T This research was supported in part by NSF Grant MCS8200632

1

1. Introduction

The problems to be considered are convex optimization problems of the form:

min f(x) (P)

st.xe F

where f is a convex function on the compact convex set F C R™. We further assume
that a hyper-rectangle H = {x } 1 < x < u} is given such that F C H and [is Lipschitz
continuous (i.e., Vx,y€ H, |f(x)— f(y)| < L|jx - y||) and differentiable on H .

The algorithm to be described is an iterative descent method based on a procedure P
that for a given non-optimal point x € F | returns a set P(x) C F with the property that
Vye P(x), d=1y — x is a descent direction for f at x. A line search is then performed
along the direction d and a new iterate found. More precisely, for a feasible point x and

a descent direction d we consider the problem:

mﬁin f(x+6d)
st. x+0deF (S)
g >0,

and define a search map § by S(x,d) = {y ’ y=x+6*d, and 6* solves (S) } For sim-
plicity we initially assume exact line searches. The convergence proof is easily extended to
any of the inexact line searches based on Armijo-Goldstein rules (see, e.g., [Luenberger, 84]).

A proof for a modified Goldstein search is given in the Appendix.

In this general setting the algorithm is defined as follows:

Algorithm 1.1:
Step 0: Let x' be a starting feasible solution and j « 1.
Step 1: If x’ satisfies the stopping criterion then stop,

else

compute X7 € P(x7?).
Step 2: Let d7 := %’ — x?. Obtain x?*!' € §(x?,d?). Set j « 7+ 1 and go to Step 1.

We define the shifted function f,(x):= f(x)— f(z). Our procedure P involves ap-

proximating fy; by a separable function s,, that will be called the underlying separable
approzimation to fy, centered at x’. A method of separable optimization is then used to

obtain %’ with the desired descent property. In the case in which the feasible region F is

given by a set of network constraints and the separable approximation is piecewise-linear,

2

then the approximating problem can be transformed into a linear network problem that

can be solved using the very fast algorithms available for such problems.

Note that any other procedure P that produces a descent direction and defines a
closed map will give rise to a convergent algorithm (see section 3). For example, it’s well
known that optimization of the linearized objective function will produce a descent direction
provided that x' is feasible and non-optimal, and this procedure is closed. In the linearly

constrained case this is the well-known Frank-Wolfe method.

In section 2 we will describe in detail the nature of the underlying separable approx-
imations. Section 3 contains a discussion of the piecewise-linear approximation method
used to attack the separable subproblems in order to obtain the desired descent properties,
and a convergence proof for algorithm 1.1 under the assumption that the stopping criterion
is optimality of the current iterate. Section 4 includes computational considerations with
emphasis on 1) generating only the needed segments of the piecewise-linear approximation
and 2) the linear programming or network subproblems that result when F has appropriate

structure.

2. Underlying separable approximations

Let z be a feasible solution of the problem (P). We define the underlying separable approz-

imation to f, as follows:
7"
s2(x) =Y s{(z,)
i=1

where s(zz)(a:,) = fo(z+ (z, — z;)e*), i.e., all variables except the 7-th (which has value z;)
are fixed at their values at the point z, and e is the ¢-th canonical unit vector.

Our first lemma establishes some useful properties of the function s, .

Lemma 2.1. s, satisfies the following properties:

(1) s, Is a separable, Lipschitz continuous, differentiable convex function on H ;
(2) s4(2) = 0;
(3) Vsu(z) = V/[,(2) = V[(z).

Proof: The Lipschitz continuity, differentiability and convexity of s, are inherited from
those of f,. Property (2) is easily checked from the definition of s,. Property (3) is also
straightforward: Let 1 < j < n, then

ds, B ds(z‘])

x _ o,
oz, N dz,

(z,) = V/i(z+(z, ~ z,)e’) e’ = oz, (z + (z; - zj)e7)

hence, letting x = z we get
Os, df,
z) = 2
dz, (dz, (2)

and this concludes the proof. §

The concepts of feasible direction and descent direction are needed for the discussion

of the following results. We now give a formal definition of these terms.

Definition 2.2. Given x € F, we will say d 1s a feasible direction at x if there is an
& > 0 such that x+ ad € F for all o € [0,&]. Given x € F and [we say that d is
a descent direction for f at x if there is an & > 0 such that f(x + ad) < f(x) for all
ael0,4].

It’s well known that if f is convex and differentiable, d is a descent direction for f

at x if and only if Vf(x)-d < 0.

The following lemma establishes the relationship between the optimal solution x* of

(P) and that of the underlying separable problem centered at x" .

Lemma 2.3. A feasible solution x” is an optimal solution of the separable problem:

min sx-(x) (SP(x"))

st. xeF

if and only if x* is an optimal solution of the original problem (P).

Proof:
=]

Let d be a feasible direction at x”, (if d doesn’t exist, then F = {x*} and the lemma
is trivial). Since x” is optimal for (SP(x")) we have Vsx.(x*)-d > 0. But by lemma
2.1(3) we have Vsyx. (x") = Vf(x*) so Vf(x")-d > 0 also, and by the convexity of f,
f(x"+ad) > f(x"), YVa > 0. This is true for any feasible direction at x", hence x” is an

optimal solution of (P).
<]
Follows by reversing the roles of sx- and f. B

The next lemma establishes a key descent relationship between f and its separable
approximations. It shows that it suffices to find a feasible point that improves the separable

approximation in order to get a descent direction for the original objective function.

4

Lemma 2.4. Let y, z¢€ F,if s,(y) <0, then d =y — z Is a descent direction for both

s, and [at z.

Proof: Since s, is convex and differentiable and s,(z) = 0, then for every x € F we

have

thus
Vsg(z) - (y ~ 2) < s2(y) <0

from lemma 2.1(3) we then have

Vi(z)-(y-2)<0

so d is a descent direction for both s, and f at z. B

3. Piecewise-linear approximations and convergence

Since the problem (SP(x)) is still a nonlinear programming problem, we consider now
an algorithm based on the solution of a piecewise-linear direction-finding problem at each
iteration. In this section we describe in detail the piecewise-linear approximating functions
to be used in our procedure P and prove that, for this choice of P, algorithm 1.1 produces

a sequence of iterates converging to an optimal solution of (P).

Given a feasible point z of (P) and a vector A = (Ay,...,A,) > O of gridsizes, a

piecewise-linear approximation f to s, is defined as follows:

flz,0,%) =) fi(z,A,z)
=1

where
sz + (ki — DA) + "z — (i + (ks = D)A))}
for (kz - 1))\1 g I, — 24 S ki)‘i
- kZ:1,2,4..,sz-
fi(z, A z;) =
sz — (ki = DN) + ¥ {xs — (2 — (ks — 1A))}
for ‘ki/\i S T, — &, S ——(]Cz b 1)/\1
ki ey 1,2,...,82
and _ ,
otk ez ki) = sy (2 (R - 1A}
1)\z
—k; {S;(Zz - kz)‘z) - sz — (k, ~ 1)’\1)}
_C T —
[A7

and s, and s, are chosen so that z, + s,A, = u, and 2z, ~ s!A; = [, (For notational
simplicity, we assume that at any iteration all segments used to construct an approximation
ﬂ are equal; in practice the segments near the boundaries defined by [, and u, are generally
smaller than A;, but this poses no problems in utilizing the theory to be developed since the
proofs below merely utilize the fact that A, is an upper bound on segment size. Moreover,
the segments of f,, may be generated as needed starting at z,, and it is seldom necessary to
generate more than a few such segments. In a sense, fl is implicitly rather than explicitly

generated).

Even though the formulation locks complicated, the idea 1s simply to approximate each
of the s. by the standard piecewise-linear approximation centered at z;, with gridsize A; .
It follows from the convexity of s that sg)(mi) < fl(z,A,xi) for all z; € [l;,u,]. This

property is used in the convergence proof below.

Given the iterate x’ constructed in iteration j, we define an approximating problem

min > %A, z)) (AP(x?,A%))
2==1

st.xe F

that will be the basis for our procedure P for finding the search direction.

Procedure P(x7):

Step 1: If j =1, then choose A' such that 0 < A <u-1,
else
for a € (0,1) let A7 — aA?™ 1.

Step 2: Obtain an optimal solution %7 of (AP(x?,A%)).
If f(xl, A?,%7) = 0, then A’ «— oA’ and repeat Step 2,
else

stop, returning {%X’} .

It should be noted that f is defined in such a way that f(z,A,z) = 0 and thus the
test in Step 2 of P determines if the mesh is fine enough to produce a descent direction
for f (and hence for s, and f). In each call to P the mesh size is reduced by a factor
of o. If this reduction is not enough to produce an improvement in the piecewise-linear
approximation we repeatedly cut down the mesh size until such an improvement is achieved.
We know from earlier results for piecewise-linear approximations of separable furictions (see,
e.g., |[Kamesam and Meyer, 82]) that if X’ is not an optimal solution for (SP(x’)), then

for a small enough A7 a better feasible solution will be found, i.e., f(x?,A7,%’) < 0. In

6

most cases in practice, however, only the initial optimal solution is needed. It is shown
in theorem 3.5 below that an improved solution of the approximating problem yields a
descent direction for f and consequently the objective values of the iterates form a strictly

decreasing sequence.
The next three lemmas establish the uniform convergence of the approximating func-

tions considered

. . K _ K .
Lemma 3.1. If K is an index set such that x? 255 X, then sy, EASAN sg uniformly.

Proof: See Appendix.

Lemma 3.2. If A7 25,0 for K C N. Then f(z,A7,%) 28K, s,(x) uniformly in x and

Z.

Proof: Let € K, z€ F and x € F. Then if we define E;, = |f~i(z,A7,mi) - s(zi)(:z:i)l,

we have

{f(z,Aj,x) - SZ(X)I < ZEi

An estimate for E; in the presence of a Lipschitz condition for s(zi) is well known (see, e.g.,
[Thakur, 78]):

I//\7
B, < 1
T2

So now we have that
f(z, A7, %) — < = E Al A
]f(z’ ?) S |) 2 ”

and since we have A7 2% 0 the convergence is uniform. B
K K _ Y K
Lemma 3.3. If A7 255 0 and w*1 255 % for K C N then f(x3+1,A7,.) 255 55

uniformly.

Proof: Since
F A7, %) = s2(x)] < [T A, %) = syaes (%)] + [sgot2 (%) = sx2(x)]

the result follows from lemmas 3.1 and 3.2. §

The following theorem uses the continuity properties of the approximating functions
to show that the optimal solutions of the approximating problems have the appropriate

continuity property.

Theorem 3.4. Let x°, X< F and K C N be an index set such that

(1) x AN

(2) %7 is an optimal solution of (AP(x7,A%)), for j€ K with ¥’ ELLN S
(3) 25 0.

Then X is an optimal solution of (SP(x")).

Proof: Let x™ be an optimal solution of (SP(x")) and choose ¢ > 0. By lemma 3.3 and
the continuity of syx-, 3 N such thatfor j € K, j > N we have |f(x7, A7, %X)—sx-(%)| < ¢,
Vx e H and |sx- (X7) — sx-(¥)| < €. In particular

F(XL,A,X77) < sy (X77) + € (1)
sx+ (%) < sx- (%) +e (2)
and similarly
sx(%7) < f(x7,A7,%7) + ¢ (3)
but from (2) and (3) we get
sx- (%) < f(x?,A7,%7) + 2¢ (4)

On the other hand, since x** € F and %’ is optimal for (AP(x7,A’)), we have

f(xJ,A‘j,ij) < fN(XJ,AJ,X”) (5)
b (

so combining inequalities (1), (4) and (5) yields

sx-(X) < sx-(x"7) + 3¢
Since ¢ is arbitrary, sx- (%) < sx- (x**) and the optimality of X is established. B

Theorem 3.5. In algorithm 1.1 with P defined as above, if X7 is not an optimal solution
of the original problem (P), then f(x7*!) < f(x7).

Proof: Since x’ is not optimal for problem (P) we have, by lemma 2.3, that x’ is not
optimal for (SP(x’)). As mentioned above, we know that P will produce %7 such that
f(xJ,AJ,i’) < 0. The approximation f satisfies f(x7,A7,x) > sx:(x), Vxé& H. These
inequalities 1mply

sy (X7) < f(x7,A7,%7) <0
so by lemma 2.4 d’ is a descent direction for f at x’, and since x’*! € §(x?,d’) we have

the desired result.

From the preceding theorem it follows that {f(x’)} converges. We now show that the
limit of this sequence is the optimal value of (P) (we will assume that a full sequence {x’}

is generated, otherwise the method terminates at an optimal solution).

8

Theorem 3.6. The iterates x’ generated by algorithm 1.1, with P defined as above, have

the property that {f(x7)}%2, converges to the optimal value of the original problem (P).

Proof: Let {x’}%, be asequence of iterates generated by algorithm 1.1, and let {2},
be the sequence produced by step 1 of the algorithm. The sequences {x7}%2,, {x?“};’-il
and {5{7};”:1 are contained in F, a compact set, so they have accumulation points in F,
say X , % and X respectively. Without loss of generality there exists a set K C N, such
that

We want to prove that x” is an optimal solution of (P). Assuming X~ is not an optimal
solution of (P) we will get a contradiction. By lemma 2.3 x* is not an optimal solution
of (SP(x7)). Since A’ 28K, 0, by theorem 3.4 we have that X is an optimal solution of
(SP(x")), hence sx+(X) < 0. By lemma 2.4 d* := X — x* is a descent direction for [at

=

X .

Now consider the problem

mgin f(x™+60d7)
st. x"+60d"€F (8"
0<6<1

and let 6 be an optimal solution of (S). Defining x := x"+6°d* we have f(x.) < f(x").
Now let y?*! = x7 + #°d7 for d’ as defined in algorithm 1.1. Since 0 < #” < 1 we have
y’ € F and y’ EAN X.. Moreover f(x’*!) < f(y’?) because x’*! minimizes f over the
set {x|x=x7+0d’, xe€ F, § > 0}. In the limit we then have f(%) < f(x.) < f(x7),
contradicting f(%) = f(x").

So x" is an optimal solution of (P). B

Note that the proof of the theorem goes through if P is any closed mapping with the
property that if x is not optimal for (P) and y € P(x), then y — x is a descent direction
for [at x.

In the case of problems having network constraints and upper and lower bounds only,
there are other algorithms for separable functions (|Rockafellar, 84]) that produce a descent
direction and can be used in place of our piecewise-linear approach. Some research has to

be done, however, to establish the closedness of these algorithms.

4. Computational Implementation

The replacement of the nonseparable objective function by a piecewise-linear approx-
imating function is primarily useful in the case in which the feasible set F is given by a
set of linear constraints. In this instance, the approximating problems may be solved as
ordinary linear programs by the well-known techniques of separable programming [Bazaraa
and Shetty, 79]. At any iteration, in fact, the problem to be solved may be thought of as the
problem resulting from the application of a separable programming approach to a separable
function of the form s,(x). In the non-separable case the function being approximated
thus changes at each iteration. It is well-known that the piecewise-linear approximating
problems AP(x?,A’) may be solved by generating the segments of f, “as needed” and
that an optimal solution of such an approximating problem may generally be determined
and verified on the basis of a small number of segments computed in a neighborhood of x’

(see [Meyer, 83], [Kamesam and Meyer, 82]).

Specializing a bit further, it should be noted that when F is defined by network
constraints and the variables z,; correspond to arc flows, the approximating problems are
equivalent to ordinary linear network problems (see, e.g., [Jensen and Barnes, 1980], [Kao
and Meyer, 1981]). Of particular interest are large-scale multi-commodity traffic equilib-
rium problems (see. e.g., [Pang and Yu, 1982] and [Gavish and Hantler, 82]) arising from
urban traffic as well as computer networks. When the coupling between commodities takes
place only in the objective function, then the replacement of the non-separable function by
a separable functions allows the problem to be decomposed into a set of single commod-
ity networks, which in turn may be solved by the very fast techniques available for such
problems (see, e.g., [Glover, et al, 74] and [Grigoriadis and Hsu, 79]). Such an approach
also allows the individual single-commodity problems to be solved in parallel on parallel
computer architectures such as the CRYSTAL multicomputer [DeWitt, et al, 84]. Details
of the CRYSTAL implementation are described in [Feijoo and Meyer 84].

Although an arbitrary feasible starting point may be used in algorithm 1.1, in practice
in the absence of knowledge of a good initial point, x! is generated by solving a problem

of the form AP(%, %), where X is an arbitrary element of H and A? is typically (-’i—;l—) .

Thus far, three problems have been tested. All three are related to urban traffic
equilibrium problems. The sources of these problems are: Problem 1, [Pang, 83]; Problem
2, [Bertsekas and Gafni, 82]; and Problem 3, [Steenbrink, 74]. The nonseparable objective

functions for these problems are as follows:

Problem 1 : f= Zakfiz + bifi
k

10

Arcs Nodes Cmdts. Cnstr. Vars.
Problem 1 28 20 2 39 56
Problem 2 12 12 5 60 64
Problem 3 36 9 2 108 443
Table 4.1: Test Problems
Iter. Pivots 11/780 CRYSTAL Obj. value
Problem 1 32 474 8.25 s. 15.2 s. 1010540.6
Problem 2 12 650 6.47 s. 7.0 s. 47.858537
Problem 3 11 2266 47.20 s. 23.5 s. 16957.674

Table 4.2: Computational Results

Iter. 11/780 Obj. value
Problem 1 32 8.41 s. 1010540.6
Problem 2 6 6.68 s. 47.858538
Problem 3 106 39.83 s. 16957.674

Problem 2 :

Problem 3 :

where [, represents total flow on link k, i.e., the sum of flows of all commodities through

link k.

We ran tests using our algorithm and also MINOS ([Murtagh and Saunders, 83]). Ta-
bles 4.1 and 4.2 show the size of the problems and the results obtained using our algorithm.
Table 4.3 shows the results obtained using MINOS. All tests, except the ones done on
CRYSTAL, were run on a VAX 11/780 using the UNIX Fortran 77 compiler without op-
timization. The time shown for CRYSTAL is total elapsed time for the algorithm when it

is run in parallel on a collection of VAX 11/750 minicomputers, where the number of such

Table 4.3: MINOS results

/

i

[= }:akfﬁ + b fr
%

-

/

S

/i
=+

+f

k

computers equals the number of commodities in the problem.

11

Appendix

In this appendix we will give a modified proof of the main convergence theorem in the case
in which an inexact line search, based on Armijo-Goldstein tests, is used. For this case we

need to assume that [is continuously differentiable. We also give a proof of lemma 3.1.

First we define a modified Goldstein test so it takes care of the fact we are searching

inside a compact set. We denote by I the set of acceptable step lengths.

Modified Goldstein Test. Let x € F and let d be a descent direction for f at x. For
a given fixed ¢, with 0 < ¢ < %, define

Ax,d)={0|0>0,x+0d€F and ¢ < O(f,%x,d) <1~ ¢}

where
fx+0d) - 1(x)

2(0,x,d) := V(%) - d

If A(x,d) # 0, then I := A(x,d), else Ig := {0*},'where 6" = max{0 l x+60de F}.

The corresponding search map is
Sa(x,d)={y |y=x+0d, 0¢ Ig}

If we use this test in algorithm 1.1, let us consider how the proof of theorem 3.6 may
be extended. The first part i1s independent of the line search and thus the conclusion that

d* = % — x* is a descent direction is still true. It suffices to show that f(%) < f(x").

Let j € K and x/*! = x7 + 67d?, and suppose A(x’,d’) = 0. Then 6’ > 1 and
Q(#7,%x7,d’) > 1 —¢,since Q(8,x?,d’) — 1 as § — 0. Thus, Q(#7,x7,d’) > ¢ and

F(x7 +67d%) — f(x') < 97V f(x7) - d? (1)

On the other hand, if A(x?,d?) # 0 then 67 clearly satisfies (1). We thus conclude that

(1) is satisfied for all j € K. Now since x’*! = x7 4+ #7d’ we can write

9 — HXJ—H . X.JH
17|
1f we define X
- lx-x|

I

we have 87 2%, 4. Taking the limit in (1), we get

F(%) < f(x°) + BV f(x") - d* (2)

12

Note that # > 0, since §’ EASA implies Q(07,x7,d%) JER, 1, contradicting

0(67,x7,d?) < 1 - ¢. Then from (2), since Vf(x")-d < 0, we have f(%X) < f(x7).
This concludes the proof. #

We now prove lemma 3.1:

Given ¢ > 0, 3 N such that if j € K and j > N then [[x’ - X[|; < 555 . Then for

such ¢ we have

sxs (%) = s=(x)] < Z |85 (22) = sx(23)]

=D | for (7 + (25 — z])et) = Jx(%+ (22 — 7.)e’)]

IA

YU+ (20— 2l)et) = f(X + (z: — Z)e*)| + [F(x?) = f(%)]

IA

DL+ (m — 2l)et) = (% + (z: — zi)e) |l + [Ix7 ~ %|l1)

IN

> 2L|x? — %[y = 2nL|[x? - %[l < ¢

i=1

Since ¢ is arbitrary this concludes the proof.

References

1

10.

11.

13.

14

. M. S. Bazaraa and C. M. Shetty: Nonlinear Programming, theory and algorithms, John
Wiley and Sons, 1979.

. D. P. Bertsekas and E. M. Gafni: “Projection methods for minimum cost network flow

problems”, Mathematical Programming Study,17 | 1982, 139-159.

. D. DeWitt, R. Finkel and M. Solomon: “The CRYSTAL multicomputer: design and
implementation experience”, Technical report 553, Computer Sciences Department,

The University of Wisconsin-Madison, September, 1984.

B. Feijoo and R. R. Meyer: “Optimization on the CRYSTAL multicomputer”, Technical
Report 562, Computer Sciences Department, The University of Wisconsin-Madison,
1984.

B. Gavish and S. L. Hantler: “An algorithm for optimal route selection in SNA net-
works”, Research Report RC 9549, IBM T. J. Watson Research Center, Yorktown
Heights, N.Y., August, 1982.

. F. Glover, D. Karney and D. Klingman: “Implementation and computational compar-
isons of primal, dual, and primal-dual computer codes for minimum cost network flow

problems” | Networks, 4, 191-212, 1974,

. M. D. Grigoriadis and T. Hsu: “RNET the Rutgers minimum cost network flow sub-
routine”, SIGMAP Bulletin, 17-18, 1979.

P. A. Jensen and W. J. Barnes: Network Flow Programming, John Wiley and Sons,
1980.

. P. V. Kamesam and R. R. Meyer: “Multipont methods for nonlinear networks”, Techni-
cal Report 468, Computer Sciences Department, The University of Wisconsin-Madison,
1982.

C. Y. Kao and R. R. Meyer: “Secant approximation methods for convex optimization”,
Mathematical Programmang Study, 14, 143-162.

D. G. Luenberger: Linear and Nonlinear Programmaing, Second Edition, Addison-

Wesley, 1984.

. R. R. Meyer: “Computational aspects of two-segment separable programming”, Tech-
nical Report 382, Mathematical Programmaing, 26, 21-39, 1983.

B. A. Murtagh and M. A. Saunders: “MINOS 5.0 user’s guide”, Technical Report SOL
83-20, Stanford University, Stanford, 1983.

. J. 8. Pang, private communication, 1983.

14

15. J. S. Pang and C. S. Yu: “Linearized simplicial decomposition methods for comput-
ing traffic equilibria on networks”, Technical Report, University of Texas at Dallas,
Richardson, Texas, 1982.

16. R. T. Rockafellar, Network Flows and Monotropic Programming, Wiley, 1984.
17. P. A. Steenbrink: Optimization of Transport Networks, Wiley, London, 1974.

18. L. S. Thakur: “Error analysis for convex separable programs”, SIAM Journal of Applied
Mathematics, 704-714, 1978.

15

