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ABSTRACT
We describe a basic theory for the estimation of the rates of convergence of
iterative methods for the solution of the systems of linear equations which arise in

the numerical solution of elliptic boundary value problems. This theory is then

applied to finite-element equations solved via certain block or point iterative

methods. There is a special emphasis on the "point" SOR iterative method.
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INTRODUCTION

Consider the system of linear algebraic equations
(1) AU = F
which arises from the discretization of a boundary-value problem for an elliptic
partial equation
(1. 1) Im = f in Q, Bu = 0 on 230 .

A direct iterative method for the solution of (1) is provided by a "splitting"

A =M - N, where the matrix M has an inverse and it is not too difficult to solve
problems of the general form MX = Y. Then, after choosing a guess UO one uses
the splitting to construct successive iterates {Uk} by the formula

(1.2) Mokt = nuk + F

This iterative scheme leads one to study the eigenvalue problem

(1.3) AMU = NU .

It is well~known that this scheme is convergent iff

(1.4) p :=max|A] <1 .

Moreover, smaller p implies faster convergence (see [17]).

This report is concerned with a method for determining the asymptotic behavior
of p =p(n), n> > where n is the order of the matrix A. This theory is of
interest both for mathematical reasons and for practical reasons. At this time let
us concentrate on the practical value of the theory.

A typical result obtained from this theory is of the form

1.P

(1.5) o= 1= (2)

where the exponent p 1s known exactly and the coefficient A0 is given as
A, = Re A_, where A . is the "minimal" eigenvalue of an eigenvalue problem
0 min min
(1.6) Iu = AQu in £, Bu = 0 on 232 .

In the formula (1.6), the operator Q is a differential operator of lower (than

L) degree. Hence, p, the "order" (in 1/n)) of the rate of convergence is well-



determined. But, the coefficient AO is = in general - given implicitly as an

eigenvalue of a problem which is just as hard as (if not harder) than the original

problem (1.1).

Of course, a knowledge of the order p is very useful in comparing competitive
schemes. Still, one can only make a complete comparison of the efficiency of these
schemes if one knows the coefficients AO. Nevertheless, even without exact
knowledge of AO’ the theory is still useful.

(A) There are cases - model problems - in which one can compute the eigenvalues.
For these model problems a precise comparison is possible. And, as is
frequently the case, one can hope the gqualitative nature of this comparison
extends to more general problems.

(B) In many cases the operator O is a zero'th order operator i.e. there is a
function g > 0 and Qu = qu. In these circumstances there are many cases in
which AO is monotone decreasing in g. That is, if

(1.7) 91 > 9y, ¥x € Q; then Ao(qz) > AO(q1) .

Thus, qualitative information about O provides qualitative information about

A

0° This is the case for second order elliptic operators with nice boundary
conditions (e.g. Dirichlet Conditions) and for all self-adjoint problems.

(C) There are cases where one is considering a "scale" of schemes, e.g., the "k~
line schemes", and the parameter of the scale (say k) appears explicitly in the
formula for Ao(k). In these cases one can make useful comparisons of the
schemes.

(D) Finally, there are cases where one is dealing with a continuous family of
iterative schemes =~ say depending on a parameter w (e.g., SOR type
schemes). In such a case it is desirable to have qualitative information about

the dependency of p{w) on w®w. This qualitative information may then be used

to formulate adaptive schemes to optimize the choice of w.



Such eigenvalue problems have been studied intensively - see [5-9,12,15,17-
19]. While we cannot give a complete discussion of the earlier results, it is
useful to recall some of this history and comment on some of the current activity
along these lines.

One of the most useful ideas is the concept of schemes which satisfy "Property
A" or "Block Property A" - see [1,12]. This theory enables one to connect the
eigenvalues of the block Jacobi method with the associated block SOR methods. Thus,
when this important condition holds, one can estimate SOR methods in terms of the
Jacobi methods. More importantly, there is a simple algorithm for an adaptive
method for determining the optimal w®w (see [7]).

Garabedian [6] considered the case where L is a second order operator. Let
(1.8) e¥ = u - 0%, then m(eX™! - €Ky = —pek .
Formally taking At = ah, a = constant, Garabedian recognized - in the point SOR

case - that (1.8) is a formal difference approximation to a time dependent equation

of the form

o€ 328 823
(1.9) Py T Y Py T TP pyee

Thus, the separation of variables transformation

e(x,y,t) = rao(x,y)e_>‘t

leads to the elliptic eigenvalue problem

(1.10a) Le = AQe
where
9 9
= - — - b — .
(1.10b) Q b b4 - 2 3y

Garabedian then argues that the slowest rate of decay of e(x,y,t) vyields the rate
of convergence. This heuristic approach leads one to a "formula" for the asymptotic
behavior of p as n + ©. While Garabedian never completed the details of a

rigorous proof; in all the cases he studied, the results obtained by this method are



correct. Garabedian then went on to use this "result" to obtain a formula for the
optimal choice of w.

Some years ago, Parter [8,9], developed a theory which was limited to self
adjoint L, symmetric A and N. More recently Parter and Steuerwalt [12-14] have
extended that theory to include non-self-adjoint I, non-gelf-adjoint splittings,
parabolic problems and SOR methods. The treatment of SOR raises some interesting
mathematical questions which we mention in Section 3.

In the last few years a group of active researchers at the Université Libre de
Bruxelles under the guidance of R. Beauwens (see [2-4]) have been studying these
problems in depth. They - and Parter and Steuerwalt [14] have discussed appropriate
generalizations of the method of Garabedian. However, it seems that the Belgian
school has not discussed many of the rigorous details.

In Section 2 we describe the general theory. In Section 3 we discuss the
application to finite-element methods. In this section we describe the theoretical
results of [13] for k-line block Jacobi, Gauss-Seidel and SOR and the results of
[14] point SOR.

The results for finite-difference equations are contained in [12].

A GENERAL APPROACH

For simplicity we develop'the basic ideas within the framework of the simplest
finite-element approach to the boundary-value-problem (1.1), (1.2).

Consider the following "elliptic boundary value problem". ILet § be a smooth
domain in R and let Hm(Q) be the usual space of functions with generalized Lo
derivatives of order m. Let

'ﬁm C H_(2)
be a subspace and let B(u,v) be a bilinear form which is continuous and coercive

~ ~

over Hm— We seek a function u € Hm which satisfies



(2.1) B(u,d) = F(¢), ¥ € Em
where F(¢) 1is a continuous linear functional defined on ﬁm'

Let {Sh}, 0 <h < hg, be a family of finite-dimensional subspaces of ﬁm'

h

1,¢2,...,¢h} be a basis for §,. The discrete problem (1) arises from

Let {¢ n

problem (2.1) restricted to S,. That is, find ot e S, such that
(2.2) B(U",4) = F(4) ¥bes, .
Setting
(2.3) aj4 = B(¢?,¢?), £y = F(¢?), gh =) uj¢?
the problem (2.2) takes the form (1) with
(2.4) U= (uqug,eee,u)’,  F o= (£q,8,,...,6)7 .
Following the discussion in Section 1 we imagine a splitting (1.3) of the

n X n matrix A. Our theory starts with the following heuristic approach:

Assumption A.1: Suppose there is an exponent p > 0 and an operator © defined on

Hm(Q) such that ©hPN ~ 0 in the following weak sense: for all gufficiently
smooth ¢,¥ € ﬁm let Qh, g be their projection into S, and let 5 and @ be
the corresponding vectors of coefficients. Then, we assume that
(2.5) hPo*NY + J] $lovlax, h > o .

Remark: Given a splitting, the discovery of p and 0O is part of the "art" of
this method. We will have more to say about this subject later.

Having made this assumption, let X # 0 be an eigenvalue of (1.5) with
eigenvector U. Then MMU = NU and A(M - N)U = (1 - XA)NU. Thus

AU = Ll_:_ﬁl.(hPN)U .

AhP

That is, for every ¢ € S, we have
(2.6) B(Uh,¢) = nif) smuMax + E(4, UM ,

where



and the "error" E(¢,u) is "small" if ¢,Uh are smooth.
From this starting point we see that we need some further technical assumptions

to complete the theory.

Assumption A.2: Consider the eigenvalue problem: Find A and v € ﬁm such that
(2.9) B(v,$) = A J] $loviax, ¥ e ﬁm .
We assume there is a minimal eigenvalue Am = A0 + iT. By minimal we mean that for

any eigenvalue A, it is true that

(2.8a) 0 < AO € Re A ,
and, if Re A = AO then
(2.8b) Al 2 ]Aml .

Assumption A.3: The eigenvalues of the family of discrete problems (2.6)

approximate the eigenvalues of the limit problem (2.9) and vice-versa.

Remark: It is usually not difficult to prove A.3. In many cases it follows from

the standard theories of spectral approximation (see [8]). However, it is an

essential point. In dealing with this condition one raises many'technical questions

about "spectral approximations" and estimates which are used to establish (A.1).
Finally, we require some information about the eigenvalues X of (1.5) which

satisfy [|X]| = p.

Agssumption A.4: Either

(2.%9a) p <1 and p itself is an eigenvalue,
or there is a constant Cop > 0 and for every

h, there is an eigenvalue X with
1 -2
l

(2.9b) IA] = p and
hP

| <cq -



Remarks: Both (2.%a) and (2.9b) have been used. In particular, (2.9b) was used in
[13] to give a new convergence theorem — as well as an estimation of rates of
convergence = for certain non-self-adjoint, nonpositive type problems.
The basic results are:
Theorem 1: Let (A.1), (A.2) and (A.3) hold. Then
p> 1 - ADP+ omP) .
If (A.4) also holds, then
p = 1 - thp .

The proof is relatively straightforward. See [13].

EXAMPLES: THEORY

This approach has been used to estimate the rates of convergence for many block
iterative schemes for elliptic difference equations - particularly by Parter [9,10];
Parter and Steuerwalt [12] and the Belgian school [2~4]. In this section we
describe the application to certain finite-element equations.

Consider the Dirichlet problem for a second order elliptic operator defined on
2, the unit square. That is
(3.1) Im = £, (x,y) € Q; ulx,y) =0 for (x,y) € 3Q
where

Lu := -[(auy,), + (bu,)y + (buy)X + (cuy)y] + dqu, + d.2uy + dgu

and L is uniformly elliptic with dg > 0.

Let Ax,Ay be chosen and consider the finite-element subspace S, of Tensor

products of hermite cubic splines. That is, on each rectangle

N

Xk x <€ Xk+1, y.j < Yy < yj+1

the elements of S, are cubic polynomials in (x,y) which are completely
determined by the 4-vectors

- 2
(3.2) Ukj = (Ukj,h(ux)kj,h(uy)kj,h (qu)kj) .

Moreover, we choose the bagis of 5, to be that basis for which the {Ukj} are the



correct interpolation conditions. We use these subspaces in a regular finite
element approach to the approximate solution of the boundary-value-problem (3.1).
In this way the equations (2.1) lead to a system of equations (1.).

Because the basic unknowns are described by the 4-vectors Ujk we choose to
write the matrix A in a double subscript notation. That is: a typical term of

AU has the form

2 2

0 1 ~1
(3.3) ) +) a (hu )+ ) a (hu ) + ) a5, ou ™ Uy o

ajk,cuucu jk,ou x oU jk,ou y ou
The matrix A 1is sparse, but nevertheless, in the general case each row of
A contains 36 non-zero entries. This complexity in A is frequently reflected
in N as well. Hence, it appears it is not too easy to study the bilinear form
V*NU and verify (A.1). However, in this case - and the discerning reader will
appreciate that similar simplifications occurs in all "nodal" finite-element spaces
- the basic nature of §; yield estimates which enable one to ignore certain terms

in V*NU. Specifically we have:

Theorem 3.1: Let

h = /AxAy .

1 -
There is a constant K > 0 such that, for every wu,v € S, and every b € Cc () we

have
2
(3.5a) n? ) |vij;2 < KIvIZ
i,3 2
(3.5b) n2 .2. uijvij¢ij =[] uvédxdy + 8(u,v,9) ,
1,3
2 2 2 2 2
(3.5¢) n? ) ['Vi,j = Vi1, lvig - vi, 4411 ?] < ®RTIVVIC
i,j 2
6 o o
1 2 2 2 2
(3.54) h2 ) ) (Ax) (Ay) I(D“u)ijl < knIvall
i,j lal=1 2
o, +B8 a,+B
1 2"Pa
(3.5¢) w2 ) { ) (Ax) | (Ay) I(Dau)ij(DBv)ijl} < Kn(u,v,h)

i,3 laf+[8]>1



where

(3.6a) I8(u,v,6)| € K[1 + 1V$l_In(u + v,u = v,h)

with

(3.6b) n(u,v,h) = hiflul, Vvl + Uvi_ IVal, + hiVul_ IVal,. ] .
L2 L2 L2 L2 L2 L2

Proof: See Section 7 of [13].

Having established these estimates we now turn to a class of splittings which
includes the block Jacobi methods and the point Gauss=-Seidel methods but not the SOR
methods.

We suppose our splitting satisfies

Property S:

(i) If a;-. = 0, then

i3 =m.. = 0 ,

044 1]

(ii) If aij # 0 and nij ?£ 0, then nij = -aij

For such schemes we consider the bilinear form V*(th)U~
As we attempt to find Q and verify Assumption (A.1) our task is simplified by
the estimates of Theorem 3.1. Using (3.5c¢) we see that we need only consider the

terms of the form

2

h 2 n,. v,.u o
- ij,ouij o
1,3,0,m J,0u 13 OU

Then, using (3.5¢) we may rewrite this expression as

2 -
(3.7) n? ) v..,u,,() n,. )+ o(1) .
oy 137E3 0 id,om

Moreover (3.5b) suggests two basic facts:

2 —
(3.8) n ) v..u,,( ) n,.
i,j 17 17 o,u 173,0u

) = || alx,v)¥(x,y)ulx,y)dxdy

and, in order to determine the function g we need only a rough evaluation of the

}.

i hi titute the -
integrals which constitu {nlj,(m

-10~



These arguments have been carried out in complete detail in [12]. If
G%u "iy,0n = 3130
converges to a function q(x,y), then A.1 is satisfied where the phrase
sufficiently smooth merely means ¢,V € 31(9)- If qgl(x,y) > 0 then A.2 is
satisfied. Because we only require ¢,) € Hq, it is an easy matter to obtain A.3
from the standard theory of Spectral Approximation [8]. Finally, the verification
A.4 rests on the fact that these block schemes satisfy block property A. Even so,
in the non-self-adjoint case, it is not easy. The main results are
Theorem 3.2: Consider the k-line (horizontal block Jacobi scheme) applied to
(3.3a). Let PO be the minimal eigenvalue of the elliptic eigenvalue problem
(3.92) Ld = de(x,y)d in R, ¢ =0 in 23Q .
Then, the radius of convergence of this iterative scheme is given by
(3.10a) o (k) ~ 1 = =2 kT (Ay)2 .
J 12 0

Since these schemes satisfy block property A the theory of Young [18] gives

estimates
peg(K) » 1 - 2 kPO(Ay)z, Pk ) = 1 - 2(2 kr,) ' 2ay
Theorem 3.3: Consider the'“point" Gauss=Seidel iterative scheme. Let r := Ay/Ax
and let
alx,y) := ’}5—: [ra(x,y) +-;" clx,y)] .
Then
p 21 - Anh° + o(n?)
where AO is the minimal eigenvalue of the problem
Iu = Agu in §, u=0 on 3N .

The "point" SOR splitting does not satisfy property S. Moreover, this scheme
does not satisfy property A. To illustrate the application of the theory in this
case we consider the simplest case, i.e.

(3.11) Lu = -(uxx + uyy) .

-1 1=



We write the matrix A as A =D - W - W* where D is the diagonal of A and W
is strictly lower triangular. With w = 2 - Ch, C > 0, the SOR iteration is

described by

% (D - mW)Uk‘+1 = % [wW* + (1 - w)D]Uk + F .
Then
ch
(3.12) BN = hiw* - % D] + =D + 0(n®)D .

Using the estimates of Theorem 3.1 we find that
210 i, 9+1 ui,j}

156 _ -
2 Vij[175 h

V*(hN)U = h? ) C
i3 ,

(3.13)

(V) auy o=

y) 139157 ()

.1+ e(u,v)

102 “i+1,j'“i,j] N gf )
10 ijVviy

) -
+n® ) vij[175 h L
1,] 1,3

where €(u,v) is o([“uHH + UVHH ]2)- Thus (A.1) holds with
1 1

156 102
. = —_— o — .
(3.14) Qu C 175 u 175 u, + uy

Unfortunately, in this case the phrase "sufficiently smooth" would seem to reguire
more than ¢,¥ € 31(9)- This fact also makes the proof of A.3 more difficult.
Nevertheless it is true that A.3 holds. BAs for (A.4), we do not know. Nevertheless
we may apply Theorem I and obtain an inequality. Then, assuming that equality

actually holds we use the Garabedian substitution

(- A 202

5 (395 + v)}

u = vexp
to obtain an "exact" formula for p(w) provided that ®w = 2 - Ch > 0. For each

w, let p(w) denote the value so obtained. Then (W) is a lower bound (and is
probably egual to) the true value of p(w). Using this formula we obtain a

~

candidate for the optimal w. This approach yields

b
~ 27 1/2
(3.15a) B, =2 - cph, o= Tk [41029]
(3.15Db) p(B) > 1 - Efz-ﬂi%;§l~h = 5@, -
[4109]

-2



It is both more interesting and more convenient to take ¢ = (2 - w)/h as the

independent variable and consider the function

1 - E(w)
h

(3.16) Ao(c) =
The results are qualitatively like the results obtained by Young in the case of
(block) property A. We have

Case 1: 0 < ¢ < Cpye Then

A (o) = 22 m(175) ¢

0 (410201 /% g

(3.17)

Notice, (3.17) asserts that in the range Eb € w < 2, the quantity S(m) is

asymptotically linear in w.

Case 2: cp < ¢ < 2/h. Then

_2/2m(175) ¢ _ 1 2 5.2 1/2
(3.18) AO(C) = —[—4—;—0;—5]—:‘—75 -(-;1: -[—4——1—'0—2—(5-}— [(156¢) 217(41029) ] .

Observe that

:

(3.19) gg Ay (e)

c=c, +
b

Thus, just as in the case when property A applies, it is better to over—estimate

~

mb than to underestimate wb- Moreover, the function is linear for ® > wb and
decreases sharply for w < Eb' Finally, we emphasize that p(w) has a unique

minimum. Hence, if we could believe that plw) = p(w) we could use these facts to

develop an adaptive approach for the determination of Bb.
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