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ABSTRACT

The transportation problem with stochastic demands is a special
version of the stochastic linear programming problem with simple recourse.
It has many economic applications. In this paper we present a new algo-
rithm to solve this problem. Instead of discretizing the distribution
functions of the stochastic demands, we explore the problem's network
aspects and propose a forest iteration method to solve it. This method
jterates from one base forest triple to another base forest triple with
strictly decreasing objective values. Therefore, it converges in finitely
many steps. The nonlinear work in each step consists of solving a small

number of one-dimensional monotone equations.
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1. Introduction

Mathematically, the transportation problem with stochastic demands is
a special version of stochastic linear programming problem with simple
recourse [10] [117 [21] [22] [27]. However, because of its wide economical
applications and special network structure, it has attracted special
attention and consideration. Papers dealing with this problem inlcude
[1] [31 [4] [5] [61 [7] [19] [23] [24] [25] [26].

There are already several approaches to solving this problem. One
approach discretizes the distribution functions of the random demands and
approximates the stochastic transportation problem by an ordinary transpor-
tation problem of large size. This entails an increase in the number of
variables and an approximation error in case the distribution functions
are continuous, as is pointed out in [3] [6]. Another main approach uses
various convex programming algorithms and makes some modifications according
to the structure of the stochastic transportation problem. The convex
programming algorithms used there are the Frank-Wolfe convex programming
algorithms [1] [3], the Arrow-Hurwicz gradient algorithm [6] and the Dantzig
convex programming algorithm [23]. This approach also includes some general
methods for the stochastic linear programming with simple recourse [27].

In general, this approach is infinitely convergent. Elmaghraby [6] claimed
that his method is finitely convergent. However, at each step, a system of
nonlinear simultaneous equations is needed to solve and even infinitely many
tableaux may ensue at each iteration of his method. Some other approaches
only give bounds and approximate estimates to the solution [24] [25]. We

are not going to discuss all these approaches.



In this paper, we present a new method to solve this problem. This
method combines results from stochastic simple recourse problems and non-
Tinear network optimizations. It iterates from one base forest triple to
another base forest triple with strictly decreasing objective values. The
concept of base forest triple and other forest triples will be defined
later. Since the number of base forests is finite, this method, the
forest iteration method, converges in finetely many steps. The nonlinear
work in each step consists of solving a small number of one-dimentionsl mono-
tone equations. The focus of this method is to find an optimal forest.

The final error of the optimal solution depends only on the data of the
optimal forest, and not on any intermediate iteration steps.

In Section 2, we state the formulation of the stochastic transportation
problem, as well as the sufficient and the necessary conditions for its
optimal solution. We prove that it has an optimal solution with nonzero
components only on a subset of a spanning tree of the transportation tableau.
In Section 3, we discuss the graphical properties of such subsets, i.e.
forests. In Section 4, we discard the nonnegativity restriction and solve
the minimization problem in a forest. The minimization problem is then
split into k small problems if this forest is a k-tree forest, and the non-
linear work consists of solving a one-dimensional equation on each tree. If
we know the optimal forest in advance, then this immediately yields an
optimal solution. In general, we can make a guess about the optimal forest,
solve the minimization problem on this forest, then use the information from
this solution to make a better guess. This leads to the forest iteration.

In Section 5, we discuss the general idea of forest jterations. In Sections




6 and 7, we discuss the techniques in forest iteration, i.e., cutting, con-
necting and pivoting. In Section 8, we give the algorithm and the conver-
gence theorem. In Section 9, we discuss how to extend this method to the
stochastic minimal cost network flow problem. Numerical examples are

given in Section 10.



2. The Optimal Solutions of Stochastic Transportation Problem

The standard formulation of the stochastic transportation problem with a

dummy node is as follows [3] [19] [23] [24] [25] [26]:

A ]
min C.:X:s 7T d.(w,)
xow i=1 =1 W1 = I
n+l _
s.t. JZ] X1J = a}., i=1,...,M,
m (2.1)
Lx = 9 .=],-cu, - Py
121 X1J WJ J n+1
xij >0, ¥i and Jj,
where n+1 is the dummy node,
+ -
Aw.) = q. W, -£.)dF.(E.) + q. ~w,)dF.(E.). 2.2
bylng) = 4], Ly-ggdar ey ], ey (2.2)
i i

a: the total amount available at 1, a; > 0.
c..: the cost of shipping one unit form i to J, Cij > 0.
: the quantity of items shipped from i to Je.

w.: the total amount supplied to Jj, this value should be determined.

gj: the observed value of gj‘

gj: the random variable for demand at J.

Fj: the marginal distribution function of gj’ which is known.
qg: the salvage cost per unit of excess inventory at Jo q}iz 0.
q}: the penalty cost per unit of inventory shortage at J, q} > 0.

m
let a= ) a;. a is the total amount available. We can suppose
i=1

éj has support Qj <[0,a]. Then (2.2) becomes:

- + j "'a
65 () -qujo (-8 dF 5 (£5) + qjjw.(aj-wj>dFj(aj>. (2.3)
J

According to [11] [21], we know that ¢j is continuous and convex and that




+ + +
30 (w.) = [-q.+q.F.(w.), -q; +q.F.(w.)], .
¢J(wJ) [ 9; qJFJ(wJ) a; qJFJ(wJ)] (2.4)
where qj = q; + q}' Here we assume left continuity of distribution
functions. If Fj is continuous, then
] 4+ .
00.{Ww.) = d.lw.) = -q. + q. . .
d5(w5) = 93(uy) = -qy + qF(w,) (2.5)

Since the feasible region is compact and the object function is
continuous, (2.1) is aiways solvable. According to convex program theory

[16] [17], (x,w) 1ds an optimal solution if and only if there exist
n+l

Ue IRm, veR such that:
n+l
jz]xjj = a,, i=1,...,m,
m .
i§1X1J = Wy J=1,...,nH,
%13 >0, ¥i and j, (2.6)
u, + % f_cij, ¥i and J,

Xij(cij'ui'vj) =0, ¥Yi and j,

-y ea¢j(wj), j=1,....n,

where ¢

'i;n"'] = 0’ 1=]3'--3m-

If we fix w 1in (2.1) and only minimize on x, we have an ordinary
transportation problem of the original size. Denote it by T(w) . It can

be easily solved by transportation algorithm [2] [8] if and only if

n+l
weS = {wjw>0, )

W.=al,
j=1 J
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Theorem 2.1 (2.1) has an optimal solution (x*,w*), where w*eS and

*

Xy = 0 except on a subset of a spanning tree of an mx (n+1) transpor-

tation tableau.

Proof Suppose (X,w*) is an optimal solution of (2.1). Solve the trans-
portation problem T(w*); we get an optimal solution x* whose com-
ponents are zeros except on a subset of a spanning tree of mx (n+1)
transportation tableau [2]. Checking the feasibility of (x*,w*) and
comparing the objective values of (x*,w*) and (X,w*), we know (x*,w*)

is also an optimal solution of (2.1). 0

This suggests that we consider subsets of a spanning tree of a trans-

portation tableau. We do this in the next section.

m n+l

We use cx to denote ) } c.

n
x,. and ¢(w) to denote ) ¢.(w.),
i=1 j=1 1371] =1 J J

and so on. If we use x and w without subscripts, then we always mean

mx(n+1) i+l

R and weR .
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3. Forests in a Transportation Tableau

Suppose we have an mx (n+1) transportation tableau T with m rows

and n + 1 colunmns.

Definition 3.1 We call a pair of integer indices (i,j) a cell of T if

T<i<m1<j<n+1. Agraphis a set of cells, whose cells are con-

nected if they are in the same row or column. A tree is a connected graph

without cycles., A spanning tree is a tree whose row indices run through-

out {1,...,m} and whose column indices run throughout {1,...,n+1}. A
forest is a graph each of whose components, i.e., connected parts, is a tree,

and whose row indices run throughout {1,...,m} 0

Notice that a group of trees does not necessarily form a forest. In
Fig. 1, we have a forest of two trees. If we add two cells, say (1,2) and
(3,1), to the left tree, it is still a tree but the whole graph is not a
forest at all because we have a cycle {(1,1), (1,2), (2,2), (4,2), (4,7),
(3,7), (3,1)}.

We know that the number of the cells of a tree is no more than m +n
and that a tree is a spanning tree if and only if it has m + n cells [2].

Unsurprisingly, this is also true in general for a forest.

Theorem 3.2 The number of the cells of a forest is no more than m + n.

More exactly, the number of the cells of a k-tree forest is no more than
m+n+1-k. A forest is a spanning tree if and only if it has m +n

cells. A forest can always be expanded into a spanning tree.

Proof The key property of a forest is that there is no intersection between

two row {column) index sets of two distinct component trees of a forest.



Suppose that we have a k-tree forest f, whose component trees are
t],...,tk. Suppose there are m,  row indices and np column indices
for a component tree th. Then th is a spanning tree of an m, X Ny
transportation tableau. The number of cells of th is m o+, - 1.

Since we know

) )

m_=m, n, <n+1,

h=1 ! h=1 1T
k

and since the total number of nodes of f is } (mh-knh-l), we get our
h=1

first conclusion. Since a k-tree forest has no more than m +n + 1 - k
cells, it is a spanning tree if and only if k =1 and it is spanning.

We can connect two component trees of a forest into one component tree of
this forest if we add a cell (i,j) where i is a row index of the first
tree and j s a column index of the second tree, or vice versa. In this
way, we can connect (expand) a forest to a tree and finally expand it to a

spanning tree, O
We now associate these concepts to points in Rmx(n+1). Let

€ Rmx(n+1). Let Gr x, the graph of x, be the graph associated with

the set

{(1’5)|X1j750}-
Then Theorem 2.1 can be rewritten in our forest terminology.

Theorem 3.3 (2.7) has an optimal solution (x*,w*), where w*eS and

Gr x* is a forest of the transportation tableau. (1




Definition 3.4 If (x*,w*) 1is an optimal solution of (2.1) and Gr x* s

a forest, then we call this forest f* = Gr x* an optimal forest of (2.1),

and (x*,w*; f*) an optimal forest triple of (2.1). 0

If we know such an optimal forest, then (2.1) becomes an equality

constrained problem:

min ) L d.(w,)
xow  (1,3)efr 9N ey, 9T
s.t. P Xes = a., 1=1,...,M, 3.1
(i,)efe 9 (3-1)
. X.. = W., JeN
(i,j2)1€f* ij W.J J e l\.f:-k-

Here we use Nf to denote the column index set of a forest f. We also use

M, and Nt to denote the row and column index sets of a tree t. Then

t

U M= {1,...,m},
tef
(3.2)

NtnNS = ¢, MtnMS =¢ if t, scf, t#s, t, s trees.

If j¢é Nf*, then W = 0 in (3.1).
Can (3.1) be easily solved? In the next section, we answer this

question affirmatively.
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4, Minimization on a Forest

We now consider

min LoociiXe. ) . (w,)
xow (i,j)ef 9 W jeNf 3

s.t. Y. o X.. = 2, i=1,...,m, (4.1)

L Xes = Wes JeN,
I I M

where f is a forest.

Theorem 4.1 If f is a k-tree forest, k > 1, then (4.1) can be separated

into k minimization problems:

min L C.iXss Y ba(wy)

X,w (i,j)et LU JeNt 3

s.t. Li Xes = a., ieM,, (4.2)
(1,506t 9 t

s X.s = We, JeN,
L PR B AL

where t's are component trees of f.

Proof Since there is no intersection of any two pair of row (column) index

sets of two distinct component trees of a forest, we get the conclusion. O

We now discuss problem (4.2) for a tree t. There are two kinds of
component trees of a forest. There is at most one tree with the dummy node
n + 1 and the other trees do not involve the dummy node. We discuss them

separately.
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A. Minimization on a tree with the dummy node.
The right tree of Fig. 1 is an example. The necessary and sufficient

conditions of optimal solutions on such a tree t are:

1: x.. = a., ieM,_,
(agfle 9T
s OX.. = W., JeN_,
(i,jZfet i
u; vy = Cij’ (i,d)et, (4.3)

- V. Aw.), jeN,,
VJ€3¢J(WJ)aJ€ t

According to the theory of the transportation problem [2] [5], the
third and the fifth expressions of (4.3) form a triangular linear system
in us and Vj . Therefore, we can easily get us and Vj from them.
Then, we can use the fourth expression and Vj to determine wj. Similarly,
the first and the second expressions of (4.3) form a triangular system of
xij . We can easily get Xij from them now. The practical solution
procedure for a tree can be found in [2].

B. Minimidefbnlbhyéytree without tﬁquumﬁy node,

The left tree of Fig. 1 is an example. The necessary and sufficient

conditions of optimal solutions on such a tree t are:

' =a,, ieM,,
e Xis T et
Z‘i X.s =W'3 J€Nt,

(i,jlet 9 (4.4)

=
+
<

1]

C.ijs (1:J)Et,

i
<
m

2;(ws), Je k.
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We can fix a jO € Nt and assume vg = 0. This condition and
0
the third expression of (4.4) form a triangular linear system. Using
them, we can get a set of solutions {u?, v? | (i,j)et}. For general

Vj , the solutions are

0 0

u; = uy - vjo, ie:Mt,

0 (4.5)
AR SV j
VJ VJ VJO, JeNt.
From the first and second expressions we know

w, = )} a.=:a,. (4.6)

]eNt J 'ieMt ! t

From the fourth expression of (4.4) and from (4.@), we know W.,

J
je:Nt, are nonincreasing function of Vj . Expecially, for continuous
0
. . “1,, + 0 .

distributions, from (2.5), we have w. = F, .=V, =V, ) N,.

(2.5) 5= Fy ay-v; VJo)/qJ) Jeh,
We can write P(v, ) =) w. and (4.6) becomes

J : J
0 JsNt
PQVjO) =, (4.7)

for a nonincreasing function P. We can solve this one-dimentional ‘equation

(4.7) to get vy o By (4.5), we get u, and vy By the fourth expression
0

of (4.4), we get wj. Similarly to A, from the first and second expressions

of (4.4), we get Xij°

We see that the nonlinear work of (4.1) is no more than solving k

one-dimensional equations.
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Remark 4.2 Since the solution work of (4.7) comprises the main nonlinear

work of our method, we analyse it more carefully:

(1). To solve one-dimensional monotone equations is not difficult even
if the expression is implicit. We can even use the bisection method to
solve them.

(2). In the next sections, we shall see that in the intermediate stage
of our iterations, the solution of (4.1) is used in cutting to get a new
forest triple. The focus is to get a new forest. Therefore, it is not
necessary to solve (4.7) exactly in the intermediate stage of our
iterations.

(3). When an optimal forest is in hand, we can use bisection method or

other one-dimensional methods to solve (4.7) to any precision without

[ much difficulty. o |
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5. Forest Iteration and Base Forests

Unfortunately, (4.1), though easily solved, usually will not give an
optimal solution of (2.1). The optimal solutions of (4.1) may not be non-
negative at all. Therefore, they may be infeasible for (2.1).

A reasonable way to solve this problem is as follows. We make a guess
about f* and solve the associated problem (4.1). If the solution is not
optimal, we make a better guess about f* using the knowledge we have
gotten from the former guess. This is the general idea of the iteration.
Then we get f]’fZ""’fr"" until fR = f* for some optimal forest f*,

Therefore, we have a TARGET: a certain optimal forest f*. To reach

this target, we need a travel PRINCIPLE. A simple principle is the strictly

decreasing objective value principle, denoted by SDOVP. However, if (4.1)

has no nonnegative optima1 so]ution, it is nonsense to talk about its optimal
objective value. Therefore, we consider nonnegative feasible points of (4.1).

In general, such a point is called a forest point.

Definition 5.1 If (x,w) 1is a feasible point of (2.1) and f = Gr x is a

forest, then we call (x,w) a forest point and (x,w; f) a forest triple. 0

We move from one forest triple to another forest triple according to
SDOVP. However, even if we move from one forest to another distinct forest
in each step, it is still possible that we wander in several nonoptimal
forests, i.e., a well-known phenomenon of zigzagging [9] may occur. To
avoid such situation, we need some LANDMARKS which we shall not pass more

than once. Here is such a landmark:
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pefinition 5.2 If (x,w;f) is a forest triple and the corresponding part

of (x,w) is an optimal solution of (4.1) associated with f, then f

ijs called a base forest and (x,w:f) is called a base forest triple.

Remark 5.3 We have

X.‘J > 0, v(1s\])€fg

(5.1)

Xiy = 0 ¥(1.9) £,

in this case, i.e., the corresponding part of x as an optimal solution of

(4.1) 1is positive. 0

Remark 5.4 According to Definitions 3.4 and 5.2, optimal forests are
base forests with the lowest objective value and (x*,w*;f*) in that

definition is a base forest triple with the lowest objective value. 0

Remark 5.5 Since the number of base forests is finite, if we move from
one base forest triple to another base forest triple according to SDOVP,

we shall reach an optimal forest triple in finitely many steps. 0

There are two other landmarks: complete forests and total forests.
We shall introduce them in Section 6.

To make the forest iteration successful, we need some techniques:

1. Cutting introducing more zero Tevels to prune trees, sometimes
splitting trees.
2. Connecting — cancelling some zero restrictions to connect trees.

3. Pivoting

pivoting from one tree to another tree.

We shall discuss them in the next two sections.
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6. Cutting

The problem is that: 1if we have a forest triple (x,w;f), which is

not a base forest triple, how can we get a base forest triple (X,w;f) with
cX + o(w) < cx + ¢(w) ? (6.1)

From now on, we shall talk about an optimal solution (X,w) of (4.1)

and mean that (X.,Ww)e g (n+1) g+l

» that the corresponding part of
(X,W) s an optimal solution of (4.1) and that the other components are

Zeros.

Theorem 6.1 (Cutting) Suppose we have a forest triple (x,w; f), which is

not a base forest triple. Solve the problem (4.1) associated with f and

get an optimal solution (X,W). Then
cX + o(W) < cx + ¢(w). (6.2)

If 1= {(i,§)|(i,3)ef, §1j< 0} = ¢, then (X,W;f=Gr &) 1is a base

forest triple. If I # ¢, then

0<8<1, (6.3)
where
6 = min —1— - (6.4)
(i,3)el *Xi37%;
Let
Xij = Xi5 - e(xij- Xij)’ Yi and j, (6.5)

and Tet w' correspond to x', f' = Gr x'. Then (x', w';f') is a forest

triple and
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cx' + ¢(w') < ex + ¢lw), (6.6)
flogf. O (6.7)

Proof Since (x,w;f) is not a base forest triple, by definition (5.2), we

get (6.2). Since

X 3 >0, ¥Y(i.,j)elcf,

?(ij <0, ¥(i,j) eI,

we get (6.3). Hence x' > 0 and we know (6.7). By convexity and (6.4),
we get (6.6). (See Fig. 2,3). 0

There is an interesting fact about cutting:

Theorem 6.2 Cutting always splits at least one tree except in the single
case for which cutting makes only one cell to zero level and this cell is

the only cell in the dummy node column.

Proof Use the notation in the proof of Theorem 6.1. We divide the cells
of f into two categories: corner cells and non-corner cells. A cell
(i,j)ef 1ds called a corner cell of f if there are i' # i, j' #J such
that (i',j)ef, (i,3')ef. It is not difficult to see that if we delete
from f only some corner cells, then f must be split. It suffices to prove
that only corner cells can be deleted except the case mentioned in the
theorem.

According to (6.4) and (6.5), only (i,j)'s for which Qij < 0 may
be deleted. It therefore suffices to prove (i,j)el = (1,j) 1is a corner

cell except the mentioned case.
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Since Wj, j#n+1, is determined by - Vje 3¢j(ﬁj) and (2.3), we
know that Qj >0, j#n+1,

If (i,j)ef and there is no j' such that j' #j and (i,j')ef,
then Qij =a; > 0. If (i,j)ef, j#n +1 and there is no 1i' such
that i' # i and (i',j)ef, then 21.3.=wj3_o. Therefore, if (i,j)el,
(i,j) is not a corner cell, then
(1) 3 =n+1,
(2) there is j' #n + 1 such that (i,j')ef.
(3) there is no i' # i such that (i', ntl)ef, otherwise (i,j) will
be a corner cell by (2).

This is exactly the exception case mentioned in the theorem. 0

Theorem 6.3 Suppose we have a forest triple (x,w;f), which is not a base
forest triple. By repeating the cutting technique described in Theorem 6.1

at most n times, we obtain a base forest triple (X,w;f) satisfying (6.1).

Proof By (6.7), the number of cells of the forest is strictly decreasing.
Since the number of cells of a forest is no more than m + n and no less

than n, and since (6.6) holds, we get the conclusion. 0

Remark 6.4 When we solve (4.1) in the cutting process, it is only necessary

to solve (4.2) on those trees which are newly created. 0

Suppose (x,w; f) is a base forest triple and (u,v) are the corre-
sponding multipliers of the optimal solution (x,w) of problem (4.1)

associated with f. Then we have
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————d
—
Cond
[ 4}

X..
1 (6.8)

-V. € ad)j(w_i), j=1,...,n,
v =0,

Comparing (6.8) with (2.6), we know that (x,w;f) 1is an optimal forest

triple if

V(i,j)éf. (6.9)
We now define two further landmarks:

Definition 6.5 A base forest triple (x,w;f) is called a total forest

triple if (6.8) holds and for every component tree t of f,

u. tv. <c

i j= ij, V1€Mt) JENt- (6']0)

A base forest triple (x,w; f) is called a complete forest triple if (6.8)

holds and there is a spanning tree T > f such that

u. + v, <c.

g H Vs <oy YLI)eE. 0 (6.11)

In the next section, we shall see how we can get such a special base
forest triple. Notice that an optimal forest triple is both a total and

a complete forest triple.
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Figure 2.

Cutting
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Figure 3. Cutting with Splitting
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7. Pivoting and Connecting

Theorem 7.1 (Pivoting) Suppose (x,w;f) is a base forest triple but not

a total forest triple, i.e., there is a component tree t of f for which
(6.10) does not hold. Solve the linear transportation problem with w

fixed on t:

min } ) Ci%45 ¥ PEEACH

, R SN
X 1eMt Jz—:Nt JENt
s.t. 'gN Xi5 = 8 1¢5Mt,

Jely | (7.1)

Z X.. = W., jEN "

jeM, 1Y J t

t
xij > 0, Vi eMt, jeNt ,

and get a basic optimal solution {Rij ie Mt’ jE‘Nt}. Let

Xeo = X,

ij = %jy> for other (1,3) (7.2)

and Tet f = Gr X. Then (X,w;f) is a forest triple with
cX + ¢(w) < cx + o(w) . (7.3)

Proof Since Xi5 > 0, ¥(i,j)et and since (6.10) does not hold, this is a
nondegenerate case and x is not an optimal solution of (7.1). Therefore,

(7.3) holds. 0

Remark 7.2 If we do some cutting after a pivoting as described in the last
section, we shall get a base forest triple with Tower objective values. If
we repeat this process, we shall get a total forest triple in finitely many

steps since the number of base forests is finite. 0
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Theorem 7.3 (Connecting) Suppose (x,w; f) is a base forest triple and

u, +v., >c. . forapair (in.in)s ineM_, JaehN,, (7.4)
i i igdo 0°Y0 0 S 0"t

where s and t are distinct component trees of f, (u,v) is the multiplier

described by (6.8). Pick j] such that (io, j])e s. Since

a. = ) X. . >0, such j, always exists. If F is continuous,
i . & ind 1
0 (10,3) es 0
then there exists Socmo such that for 0 < § < 60 and
X = 8§, W, =w., +86,
Todo Jo Yo
X: = =X; 5 =6, w, =w, -8, (7.5)
Tod1  tod i 9
Xee ® Xoy W = Wy for other (i,j) and j,

and (x,w; f = Gr x) 1is a forest triple with
cx + o(w) < cx + ¢(w). (7.6)

X . is small enough, X > 0. This proves that
i5dy 0 —

(x,w; ) is a forest triple. From (2.5), we know ¢ 1is differentiable.

Proof Since >0, if §

e(8):= (cx+¢(w))- (cx+g¢(w))
= (ciojow]-oj])6+¢j0(wj0+6)-¢jo(wj0)+¢j](wj1-6) - cbj](wj])
= ciojo-uio-vj1-k¢jo(wj0)'—¢j](wj]).

C. . -U. =-V. + v. +4¢. Y =v. -0 (w. ).
Todo u1o VJo Jo ¢30(W30) VJl ¢J1( 31)

The second equality of ¢ (0) is due to (10,j1)e s, therefore
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C. . . . .
Tod o N

From (2.5) and (2.6), we have

- VJO=:¢30(Wj0), "y, =¢3](WJ])3
we have
0> 01030 . u}.0 - vj0==e'(0)
This implies for & small enough, (7.6) holds. 0

Remark 7.4 This connects s and t to a tree. We can connect several
groups of trees at the same time. The & can be found by using (7.5) and
S, oL

trying {8, o> 7s... If we combine this technique with cutting, we shall
A

get a complete forest triple in finitely many steps as in Remark 7.2 for

total forests. 0

Remark 7.5 Theorem 7.3 also covers the following case: Nf F {1,...,n+11},

Nt = {1,...,n+1}\Nf, i.e., Wj = 0. In this case, we expand a tree instead
0
of connecting two trees. 0
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8. Convergent Forest Iteration Methods

Now we can give the algorithm. Let E be the expectation of § .

~

0

Algorithm 8.1 (Forest Iteration A]gorithm) Let w~ be an estimate of the

optimal solution w*. For example, we may choose w0 = £ or some approx-

~

imate values provided in [24] [25]. Solve T(wo) by the transpor-

tation algorithm. Suppose we get a basic optimal solution x0 and

fo = Gr xO. Then (xo,wo,fo) is a forest triple.

1. Suppose we have a forest triple (xz, wz;fz) that is not a base forest

triple. Use the cutting technique to get a base forest triple

%% YY) such that

i+ oY) < oxtr oWty . (8.1)

2 L =2 =L
L
) of the problem (4.1)

(x l,wx,?l) is an optimal

2. Check (6.9) for the multipliers of (RQ,W
associated with FX. If (6.9) holds, then

forest triple. Otherwise, use the pivoting and connecting techniques

(X2+1 w£+] 2+1

to get a forest triple } such that,

2+1

ex + ¢(wz+1) =%

< i+ o). (8.2)

Go to step 1.

Theorem 8.2 (Convergence Theorem) If F is continuous, then Algorithm 8.1

converges in finitely many steps with SDOVP.

Proof This follows from (8.2) and the finiteness of the number of base

forests. |

If (xg,w ; fz) is already a base forest triple, let (Xx",w™; f )"(xﬁ,wx;fﬁ).
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There are many choices in Step 2. We can choose pivoting and connect-
ing according to max (u14-v.- Ci')' Alternatively, we can do pivoting
(i,0) ¢f b
first until we get a total forest triple, or we can do connecting first
until we get a complete forest.

In practice, some demands may be stochastic while the rest are deter-

ministic. Also, not all of the cells may be available. The formulation

then is
k+n
min ) CasXso ¥ ) 0.(w,)
Xy (i,3)es WA g2k 90
k+1<j<k+n

X.. < a,, i=l,...,m,
s.t. (i,j)es W 1

s 9 '=]3--'s + s
wJ J k+n

o~
.
=<
—e
Cda
il

X:: >0, ¥i and j.

where S 1is the set of available cells and Wj’ j=1,...,k are the known
(deterministic) demands. Obviously, our forest discussion still holds with

1ittle change.

Remark 8.3 As pointed out in Remark 4.2, the focus of our method is to get
an optimal forest. Before an optimal forest is obtained, the exact iteration
value of (x,w) is not so important compared with the iterated forest f.

When an optimal forest is in hand, we can use the method described in Section
4 to get an optimal solution to arbitrary precision without much difficulty.
Furthermore, the error of the optimal solution depends only on the data of

the optimal forest. This is another merit of our method.
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9. Stochastic Minimal Cost Network Flow Problem .-

The ideas described above can be applied to the minimal cost network
flow problem with stochastic demands. The formulation of a minimal cost
network flow problem with stochastic demands is as follows:

n
min Fooc,xes v ) o (w)
xon (1,3)es TN pemey TROTK

s.t. ) Zj Xij - . Zj in-i ai, i=1,...5%,
(1,3)eS (1,3)eS
Lj xs- 25 X.o = by, 1=241,...,m, (9.1)
(i,3)eS J (3,1)eS J
Xo. = Z' = W,, i=mtl,...,Nn,

j J X.s
(i,3)es U (§,i)es I 7
X.._>__O, V(i,j)ESs

where S is the set of all arcs, ai's are amounts of supplies available at
i=1,...,%, b,'s are amounts of supplies available or demands required, de-
pending on their signs, at 1i=8+1,...,m, -wi's are the total amounts supplied
to di=m+l,...,n, where the demands are stochastic, W, < 0. The ¢k's

have the same formula as in (2.2). We also can introduce a dummy node n+l,
and discuss forests, base forests, optimal forests and in fact everything we

have done for the stochastic transportation problem. Everything is similar.

We use multipliers u instead of (u,v) and we can replace v. by -u

J j+m

wherever Vj appears; we use

Toa;t L oby+ Iowg=0 (9.2)
1eLt 1eMt 1eNt
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instead of (4.6), and so on. In fact, the only change is that we use
negative values to represent demands. The algorithms, theorems and

results are all similar.



10. Numerical Examples

We first give a simple, small example to illustrate our algorithm, then

briefly report our computational results for some medium and large exam-

ples.

In this example, m

= 4 n

-32-

= 5, cells (2,1), (3,1) and (3,3) are not

available. Instead of using column 6, we use column O as our dummy node
column. The other data are as in Table 1:
C
i a
i=1 j= i=3 i= j=
1 18 21 18 16 10 10
2 15 16 14 9 19
3 10 9 6 25
4 17 16 17 15 10 15
D 22 20 12 10 13
Table 1

We omit all subscripts in the tables of this section.
D, ¢ and x in our table represent a;, uj, Vj, Wj, Dj, ¢ and xjj correspond-
ingly. The j-th random demand is uniformly distributed in [0, D;] and qj

= 6Dj, q;7 = 0. Therefore,

di(wj) =

2 .
(Dj — Wj)z,
0,

it wj < 0,

if w; e [0, D,

if wj > Dj,

(10.1)

Therefore, a, u, v, W,
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and
—6Dj, if wj < 0,
¢'j(wj) = 16(wj - Dj), if wje[0, Dy,  (10.2)
0, if wj > Dj,

for j = 1,2,3,4,5.
We start from a poor starting point to illustrate our algorithms. Our
starting point is w = (9, 12, 12, 12, 12, 12). Solving T(W), we get x;

as in Table 2:

X

i a

=0 | j=1 | j=2|j=3] j=4] j=
1 9 1 10
2 12 7 19
3 12 12 1 25
4 12 3 15
w 9 12 12 12 12 12

Table 2

The objective value is 1228. In this table and the other x-tables in this sec-

tion, we omit O-entries to make the forest structure more obvious. The

corresponding multiplier (u,v) and uj + vj — cjj’s are as in Table 3:



u+ v-c
1 u
j=0 | j=1|j=2 | j=31]j=4]1]=9
1 0 -1 -7 -1 -3 0 0
2 -1 -2 0 -2 0 -1
3 -4 0 0 0 -4
4 0 0 -2 0 -2 0 0
\ 0 17 14 17 13 10
Table 3
According to (2.6), (4.3) and (10.2), we have
wi= Dj -vj/6, j= 12345 (10.3)
We get an optimal solution of (4.1) on the current forest in Table 4.
X
i a
i= j=1 | j=2 | j=3 | j=41 1=
1 23/6 37/6 10
2 55/6 59/6 19
3 53/3 47/6 -1/2 25
4 115/6 -25/6 15
w 23/6 115/6 5373 55/6 4716 34/3 |
Table 4

We see that after cutting cell (4,5) leaves the forest and that the forest
split to two trees: {(1,0), (1,5), (2,3), (2,5), (3,2), (3,4), (3,5)} and {(4,1)}.

It is easy to see that the values of u; and v; in the first tree are the same
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as in Table 3. Therefore, the value of an optimal solution of (4.3) on the
first tree is also the same as in Table 4. Therefore, the second cutting will
take out cell (3,5). Now the forest has three component trees: {(1,0), (1,5),
(2,3), (2,5} {(3,2), (3,4)} and {(4,1)}. In the first tree, the values of u ,
v, x and w are still unchanged. The third tree is a one-cell tree. We
simply get wi = x41 = a4 = 15. From (4.4) and (10.2), we know that v
= 6(Dy-wy) = 42. For the second tree, this is an example of the case B
of Section 2.4. Let k = 2. We have vzo = 0 and V4O = -1. Therefore,

we have
v4 = vy - L. (10.4)

Similarly to (10.3), we have

wy= Dg — vp/6 = 20— v3/6,

waq = Dg — v4/6 = 61/6 — v2/6. (10-5)

However, we have wp + wgq = a3 = 25. This gives us an equation of v;:

P(Vz) = 181/6 - V2/3 = 25.

We get vy = 15.5. From (10.4), we have v4 = 14.5. From (10.5), we
have wy = 209/12, wy = 91/12. These are also the values of x3; and X34.
Therefore, we get a base forest triple. The data of this forest triple are

given in Table 5 and Table 6. A point here is that we haven’t calculated
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two intermediate forest triples at all The exact data in Table 4 are not so

important either.

X
1 d
j= ji=1 | j=2 | j=3 | j=4 | 1=
1 17/2 312 10
2 55/6 59/6 19
3 209/12 91/12 25
4 15 15
W 1772 15 209/12 | 55/6 91/12 34/3
Table 5
u+ v-c¢
1 u
j=0 | j=111]= i=3 1 i= i=>5
1 0 26 -5.5 -1 1.5 0 0
2 -1 -1.5 0 -0.5 0 -1
3 5.5 0 0 1.5 -5.5
4 25 0 -25.5 -25 -25.5 25 25
v 0 42 15.5 17 14.5 10 |
Table 6

The objective value is 964.541666667. From Table 6, we see that this
is not only a base forest triple, but also a total forest triple. The only place
of violating (2.6) is cell (1,1). We do a connecting. We can take j1 =0
and 8 = 1. This leads to decreasing the objective value to 943.541666667

and a forest comsisting of trees {(1,0), (1,1), (1,5), (2,3), (2,5), (4,1)} and
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{(3,2), 3.4}
Table 7 and Table 8.

Minimizing on this forest, we get new (x,w) and (V) in

X
i a
i= =1 | j=2 | j=31j=4]]j=
1 9/2 4 312 10
2 55/6 59/6 19
3 209/12 91/12 25
4 15 15
w 9/2 19 209/12 55/6 91/12 34/3
Table 7
ut+ v-c
i u
=0 | j=11j=2 ] j=3 | j= =3
1 0 0 -5.5 -1 -1.5 0 0
2 -1 -1.5 0 -0.5 0 -1
3 -5.5 0 0 -1.5 -3.5
4 -1 0 -1.5 -1 -1.5 -1 -1
v 18 15.5 17 14.5 10 |
Table 8
From Table 8, we know an optimal forest triple is at hand. The

optimal objective value is 916.541666667.

is determined by solving (4.1) on the optimal forest.

We see that the optimal solution

It will not be affected

by the intermediate iteration error and data out of the optimal forest. In all,

we have used three cuttings and one connecting.
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We have calculated some medium and large examples in DEC VAX-
11/780. We assume that each random demand is piecewise uniformly distri-
buted in five successive intervals and that these five intervals, the probabili-
ties in these five intervals and the penalty coefficient are distinct between
different columns. We count getting a new base forest triple as one itera-
tion. The following are the numbers of iterations for different problems
with different sizes. The sparse extent is the approximate percentage of the
unavailable cells. We use the mid point of the five intervals as the starting

supply value for each demand node.

number of number of
m n sparse problems iterations
extent calculated for convergence
6-9 7-13 10% 10 3-9
9-13 14-18 10% 10 6-12
26-28 36 50% 4 21-33
29-34 44 50% 4 33-36

Table 9
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