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ABSTRACT

It is shown that each feasible point of a positive semidefinite linear
complementarity problem which is not a solution of the problem provides simple
numerical bounds for some or all components of all solution vectors. Conse-
quently each pair of primal-dual feasible points of a Tinear program which
are not optimal provide simple numerical bounds for some or all components of
all primal-dual solution vectors. For example each feasible point, that is
(2,W) >0, of the linear complementarity problem w=Mz+q2>0, 220, sz=0,
where M is positive semidefinite, provides the following simple bound for any
solution z of the Tinear complementarity problem:
iZI Z; < sz/min Wi g
where I = {1|W1>-0}. If W>0 then this inequality provides a bound on the
T-norm ||z]|; of any solution point. Similarly each feasible point (x,9)>0

of the primal linear program min cl

x subject to y = Ax - b >0, x>0, and
each feasible point (U,¥)>0 of the dual linear program max blu subject to
v = —ATu +¢ >0, u>0, provide the following simple bounds for any primal

optimal solution (X,y) and any dual optimal solution (0,v):

T

N 3(.;(<:T>'Z-bTG)/m1'n Vi g 151 u. < (c

R -b'0)/min §
. 1 1
ied

iel

where J= {i|V,>0} and I={il§,>0}. If ¥>0 we have a bound on |[X[[;, and
if §>0 we have a bound on [|d][;. In addition we show that the existence

of such numerical bounds is not only sufficient but is also necessary for the
boundedness of solution vector components for both the Tinear complementarity
problem and the dual linear programs.
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This material is based on work sponsored by National Science Foundation
Grant MCS-8200632.






SIMPLE COMPUTABLE BOUNDS FOR SOLUTIONS
OF LINEAR COMPLEMENTARITY PROBLEMS
AND LINEAR PROGRAMS

0. L. Mangasarian

T. Introduction

The Tinear complementarity problem of finding a (z,w) 1in the

2k-dimensional real space R2k such that
(1.1) w=Mz+qg>0,2z2>0, 2w = 0

where M is a given kxk real matrix, q is a given kx1 real vector

k
and z'w denotes the scalar product ) z;w
i=1

i is a fundamental problem

of mathematical programming which includes linear and quadratic programming
problems, bimatrix games [2] and free boundary problems [3]. An important
question of both theoretical and practical interest is the boundedness of
the solution set of (1.1) which already has received attention in [9,4,7]
in the form of necessary and/or sufficient conditions for this boundedness.
In this work we provide simple numerical bounds for some or all components
of any solution vector when M is positive semidefinite. In particular we
show that each feasible point (2,W), that is (Z,w) > 0, which is not

a solution of (1.1), contains information on the magnitude of some or all
components of all solution points. For example Theorem 2.2 provides the
following simple bounds for any solution (Z,w) of (1.1) in terms of any

feasible point (Z,W) when M is positive semidefinite

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
This material is based on work sponsored by National Science Foundation
Grant MCS-8200632.



A

- /\TA . A
HZIH1 z w/ min W _;
2/ min 2

ied

A

(1.2) [yl

[ A

- - AT/\ . N Fo)
HzI,wJH] < 2%/ min ;0 2500

denotes the

where 1 = {ilW;>0}, J = {i|?1>>0}, éI:= z; 4 and 1
l-norm. Note that since (Z,Ww) is not a solution of the linear complemen-
tarity problem (1.1) then both I and J cannot be empty. On the other hand
if W >0, then z; =72 and (1.2) provides a bound on the 1-norm Izl of
any solution (z,w) of (1.1). Similarly if Z >0, then WJ =w and (1.2)
provides a bound on l]WH]. Theorem 2.2 also characterizes the boundedness of
the set of all EI’ and the set of all WJ for I, dc {1,...,k} where
(z,w) 1is a solution of (1.1) and M is positive semidefinite. In particular
it shows that the set of all EI is bounded if and only if there exists a
feasible point (2,W) > 0 such that w; > 0; the set of all W; 1is bounded
if and only if there exists a feasible point (2,4) > 0 such that EJ > 03
and the set of all (EI,QJ) is bounded if and only if there exists a feasible
point (Z,W) > 0 such that (QJ,WI) > 0. Theorem 2.2 can be used, as in
Algorithm 2.6, to determine which components if any of the solution set are
bounded, without solving the Tinear complementarity problem (1.1). Theorem
2.2 also provides necessary conditions for the boundedness of solution com-
ponents of (1.1) when M is copositive plus, that is M satisfying (1.5)-

(1.6) below. In Theorem 2.8 we give bounds for the unique solution of the

positive definite linear complementarity problem.




Because a linear programming problem is a special case of the linear
complementarity problem [2], the bounds of Section 2 can be used to obtain

bounds for solutions of the dual Tinear programs

(1.3a) min c'x s.t. y

AX - b >0, x >

v
o

(1.3b) max bTu s.t. v -ATu +¢c>0,u>0

1

where A dis an mxn real matrix, c and b are nx1 and mx1 real
vectors respectively. In [8] Robinson and in [6] this author both gave
bounds for solutions of linear programs which involved a constant which
was difficult to evaluate in general. By contrast in Section 3 we provide
bounds for solutions of (1.3) which involve no constants or parameters.
For example Theorem 3.1 provides the following simple bounds for any solu-
tion (X,y)- (U,v) of the dual Tinear programs (1.3) in terms of any pair

(%,9) - (4,¥) of primal-dual feasible points:

IE: (cT - bT6) /min ¥,

A

|
J'| 1 1€J1
hy T/\ T/\ - ~
HYHIH < (c'x-b u)/mnlui€H
1%, > 1l < (€78 -b"a) /min G0y, 5 G 1)
(1.4) L. - 1 1
H%J1;®?—bMMmyk%
v T" T/\ N A
HVJZH] < {c'x-b u)/mm X'ieJZ
Y v T" T/\ . A ~
“ulz,vdzn] < (c'x-b u)/nnn {y?eIZ’XjEJZ}

where J; = {i|01?>0}, J, = {i[§i>>0}, I = {i]G;>0} and I, = {1y, >0},
In Theorem 3.4 we consider a nonsymmetric dual linear programming pair and

provide numerical bounds for its solution set.



We describe briefly now our notation. A1l vectors will be column
vectors unless transposed to a row vector by a superscript T. For a vector

X in the n-dimensional Euclidean space R", |[|x|| will denote an arbitrary

1

n —

but fixed norm and le“p will denote the p-norm ”x[[p:= (2 [xilp)p
i=1

where 1 <p <= and |[[x||_:= max [x.|. For an mxn real matrix A,
1<i<n '

A, denotes the ith row and Aes denotes the jth column, while ]]AHp

denotes the matrix norm subordinate to the vector norm H-l]p, that is

I[A]]. = max ||Ax]| . The consistency condition Iax]] < Al 1ix]
p I1x]] =1 P p= p p
P

follows immediately from this definition of a matrix norm. For a subset
Jdc{1,...,n}, Xg Or Xi_gs will denote those components X of the vector
x in R" such that ied. Similarly for I1<{1,...,m}, AI will denote
those rows Ai of A such that 1ielI, while A,J will denote those
columns A of A such that jedJ. A vector of ones in any real finite

° .

J
dimensional Euclidean space will be denoted by e. A kxk real (not

necessarily symmetric) matrix M is said to be copositive [2] if

(1.5) 2>0=2Mz >0

M s said to be copositive plus [2] if it is copositive and

(1.6) 250, 2Mz = 0= (M+M)z = 0

A kxk real (not necessarily symmetric) matrix M is said to be positive

semidefinite (definite) if

zTMz:; 0 (>0) forall z #0

Note that a positive definite matrix is also positive semidefnite, while

a positive semidefnite matrix is also a copositive plus matrix.




2. Bounds for Solutions of Positive Semidefinite Linear Complementarity

Problems

We begin by a simple but useful identity.

2.1 Lemma Let M be a kxk real matrix and let q be a kx1 real

vector. Then for any z and Z in rK such that ET(ME~+q) =0 it

follows that

(2.1) 2T(Mz+q) = 2 (Mz+q) + 2 (M2+q) + (z-3) M(z-3)

Proof By direct algebraic verification. a

Before establishing the principal result of this section, we need to

define some sets. Let I and J be subsets of {1,2,...,k}. Define

S:= {(z,w)]z>0, w=Mz+q>0}

S:= {(z,w)|(z,w)eS, 2"w = 0}

SIJ:= {(Z,W)l(Z,W) € S’ (ZI’ WJ) >O}
S;gi= zpwy)|(z,w) ¢S}

(2.2)
Zy:= {(z,w)[(z,w) €S, z;>0}
Z;:= {z7|(z,w) €S}, Z:= {z](z,w) €S}
Wpe= {(z,w)](z,w) €S, wy>0}
WI:= {wII(z,w)e-g}, W:= {w|(z,w) ¢S}

With these definitions we are able to characterize the boundedness of the
set of solutions of linear complementarity problems and to give simple

numerical bounds for those components of the solution set which are bounded.



2.2 Theorem Let M be a kxk copositive plus matrix, let S # ¢ and

let I and J be subsets of {1.,2,...,k}. Then

(a) W, # ¢« ZI bounded
(b) L 9 “WI bounded

(c) S;; # ¢ <S;; bounded
If in addition M is positive semidefinite then

(a’') (i) Wy # ¢ = (i1) ZI bounded < (iii) /W; # ¢ and
- AT/\ . ~
||le|1 < 2% /min G

¥Z.¢Z

I I’ Y(Z,Ww) el

(b") (i) Z; # ¢ = (ii) WI bounded < (iii) /Z; # ¢ and

ligll, = 5T [ min 2,

Yw, e W

1€%1°
(c') (i) Syp 9= (i1) §IJ bounded <= (iii) /S;; # ¢ and
Z
WJ 1
V(EI,WJ)€SIJ, ¥Y(Z,W) GSJI

}

ATA . ~ A
< :
< Zfmin {2, W

jel

Proof First by Lemke's algorithm [2], it follows that S#¢ since S # 0.

(a) MWe shall prove the contrapositive implication.




WI =¢e=Mz+q>0,2z2>0, MIz+qI > 0 has no solution

T

T Uy
“=Mu<0,u>0,0¢#% > 0 has solution
-q u

(By Motzkin's theorem of the alternative [5])

= uly <0, u>0, gu <0 has solution, or
MTu <0, u20,qu=0,0¢#u; > 0 has solution
=u'y <0, u >0, qu=0,0# u; >0 has solution

(un < 0 alternative excluded by S # ¢)
=yl = 0, My <0, u>0, un =0, 0#u; 20 has solution
(Since M 1is copositive)
= Mu = —MTu 20, u>0, un =0, 0 #u; 20 has solution
(Since M s copositive-plus)

=%+ el forany (Z,w)eS, any A >0 and u >0,
Mu=-Mu >0, qu=0,0¢u; >0

= -ZI unbounded.
(b) We again prove the contrapositive implication.
Iy =¢ =M +q20,220,2 >0 has no solution

. MTu),
“>Mu<0,u>0,0f# T < 0 has solution
qu

(By Motzkin's theorem)

—Mu<0,u>0,qu=0,0%(Mu) <0 has solution
= Z 1=

(Alternative un < 0 is excluded by S # ¢)
=M= -Mu>0, u>0, q'u=0, 0# (Mu) =-(Mu) 20 has solution
(By copositivity plus of M)
=Z+ ez forany (Z,W)eS, any A >0 and u >0,
Mu= -M'u 20, qu=0, 0# (M) 20

= WI unbounded.



(c)

§IJ bounded implies 21 bounded and WJ bounded. By (a) above it

follows that WI # ¢, and by (b) above it follows that Z‘J £ ¢. Let
(Z,w) e Wy and let (Z,W)e ZJ. Then

Z+Z  WHW _

("‘z‘""‘é“)dd”“x = Su1

The implication (i)<(ii) follows from (a) above. The implication
(ii)«=(iii) is evident. We now establish the implication (i)=(ii1)
by means of Lemma 2.1. Let (Z,w)e Wy and Z e 2I' Then by Lemma 2.1

and the positive semidefiniteness of M we have

2R3=2Tm2+q);2Tm2+q)+2Tm2+q);2¥m2+qh

v

HEIH] min W, _p
Hence

- AT/\ . ~
“ZIH] <z w/m1n Wi

The implication (i)<«(ii) follows from (b) above. The implication

(ii)<(ifi) is evident. We now establish (i)=(iii). Let (’i,w)ezI

and let WI eWI. By Lemma 2.1 and the positive semidefiniteness of

M we have

Hence

Again the implication (i)<=(ii) follows from (c) above. The implica-

tion (ii)<=(iii) is evident. To establish (i)=(iii), let (E,W)esJI




and let (EI,QJ) €Syy- Then by Lemma 2.1 and the positive semidefi-

niteness of M we have

AT/\ -TA . AT- "‘TA /\T- E . n ~
22 zW 2wzt 2y > Wﬁl] min {z; ;. ;}
Hence
21| < 2Ta/min 2, 5. . ) 0
Wy 1 = jed?® Tiel

2.3 Remark The sets I and J of Theorem 2.2 above may be taken as single-

tons in which case the bounds in (a'), (b') and (c') simplify respectively to

- /\T/\/A - - A ~
. for z. . . . .
zwfwg fo Teg,(g,m)em

N
In

=1
N

/\T/\ A - = A ~
Z w/zi for w;els, (Zi’wi)e Z

- AT/\ - A ~ - - - A A
.t W, .y W s W . ..
z W, < Z w/mm {zJ,w1} for (21’“'3) ESTJ’ (Z,w) ESJ,'

2.4 Remark The positive semidefiniteness assumption plays an indispensible
role in obtaining the numerical bounds of parts (a'), (b') and (c') of
Theorem 2.2. It is unlikely that such numerical bounds can be obtained for
the copositive plus case. Whether the forward implications of parts (a),
(b) and (c) of Theorem 2.2 also hold under a copositive plus assumption is
an open question. However when I = {1,2,...,k}, the forward assumption
of (a) does hold for a copositive plus M. See Theorem 2, (ii)<*<>(ix) [71.
The following corollary which is a direct consequence of part (a') of
Theorem 2.2 provides a practical method for determining which components of
the solution set are bounded and which are not without solving the Tinear

complementarity problem (1.1).

2.5 Corollary Let M be a kxk positive semidefinite matrix and let

S # ¢. There exists a partition Iul of {1,2,...,k} such that
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(2.3) ZI is bounded, 2L is unbounded

or equivalently such that
(2.4) wI to, WL = ¢

One way to determine the partition Iul of the above corollary for
a given linear complementarity problem is to solve at most N(I) Tinear
programs, where N(I) is the number of elements in I, as in the follow-
ing Algorithm 2.6. This algorithm determines the partition Iul of
{1,2,...,k} for a positive semidefinite linear complementarity problem
(1.1) such that 21 is bounded and 2L is unbounded, by determining wI
such that wI # ¢ and WL such that WL = ¢. The algorithm which does
not solve the linear complementarity problem, solves at most N(I) (but

potentially considerably fewer) linear programs.

2.6 Algorithm (Determination of Iul = {1,2,...,k} such that ZI is

bounded, ZL is unbounded, for a positive semidefinite M)

Step 0: Set j =10, I,= ¢, Ly = {1,2,...,k}

Step 1: Solve the LP: max ) (Mz+q); s.t. Mz+q>0, 220
jel J
J
If LP is infeasible, LCP (1.1) is infeasible. Stop.
If LP max = 0, set I = I, L = {1,2,...,k}\1j. Stop.
If 0 < LP max < », set z()) = Z where z is an LP solution.
If LP max - =, set z(A) = z + Ad where Z + Ad is feasible

for all A >0 and J Mja > 0.

JeLj
Set %¥]=IjUHIMZQ)+%>O,X+w}
Liyg = (152500 ki\ iy
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Step 2: j+ 1~

Step 3: Go to Step 1.

2.7 Remark The LP solutions of Algorithm 2.6 can be used in conjunction

I€ZI'

In [1] Adler and Gale characterized the solution set of a positive

with Theorem 2.2 (a'iii) to give numerical bounds for ”EIll]’ z

semidefinite linear complementarity problem as the solution set of a system
of linear inequalities. Writing these inequalities requires the knowledge
of a solution to the complementarity problem. Determining which components
of the solution set are bounded by using these inequalities may require the
solution of as many as n linear programs in addition to solving the linear
compiementarity problem.

When M 1is positive definite, additional simple bounds can be

obtained as follows.

2.8 Theorem Let M be a kxk positive definite matrix with o > 0 being

I
the smallest eigenvalue of M;p4 and B > 0 the smallest eigenvalue of
M'1+(M'1)T - -

— . Then the unique solution (z,w) of the Tinear complementarity

(1.1) is bounded by

I2], + (2Tfo)

(2.52)  max {0, |||, @/ < Nzl

A

(W'2/8)

1
A
A

(2.50)  max {0, [|all, lill, < lldll, + (373/8)"

=MZ +q > 0.

=>

for any feasible Z > 0,

Proof By Lemma 2.1 we have that

T > (3-2)M(E-32) > all2- zng
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Hence
- "~ N - ”~ A ;’
1211, < 1211, + 12- 211, < N3l + (20/e)?

which gives the second inequality of (2.5a). The first inequality of (2.5a)

2 2

To obtain (2.5b) note first that since M is positive definite it is
nonsignular and its inverse is positive definite. Consequently the linear

complementarity problem (1.1) dis equivalent to

1 1

(2.6) 2= lw-wlg w20, uwz=0
Hence (2.5a) of this theorem applied to (2.6) yields (2.5b). O

We conclude this section by demonstrating, by means of a simple

example, that our bounds can be tight.

2.9 Example

(03 +()

(1) is the unique solution. By taking

For this problem X 1

i +120, %, =24 +120, we have by Theorem 2.2

A

Wy =W = w> 0,0

2 = |||, < inf (a+1)a+ V1) - gnf (2+7) = 2
~ 1>W>0 W 1>W>0




-13~-

3. Bounds for Solutions of Linear Programs

We begin this section with some results which are direct consequences
of Section 2. These results follow by considering the pair of dual Tinear
programs (1.3) as a linear complementarity problem with a skew-symmetric,
and hence, positive semidefinite matrix. Later on in this section we shall
obtain bounds for solutions of linear programs with explicit equality
constraints.

By considering the dual linear programs (1.3) as a linear complemen-

tarity problem [2] defined by (1.1) and

(3.1) M (b -AT) N c N X N v
. ) () () ()

the following theorem is a direct consequence of Theorem 2.2.

3.1 Theorem Assume that the dual linear programs (1.3) are both feasible
and hence both solvable. Let caret variables (X,¥), (G,¥) denote primal

and dual feasible vectors respectively, that is

T

~

(3.2) §=AL-b>0,%>0,V=-Al+c>0,02>0

and let bar variables (X,y), (u,v) denote primal and dual optimal vectors

respectively, that is

T

(3.3)  §=AX-b>0,%20 7=-Ai+c>0, 020, cx-bi=0

Let Jc {1,2,...,n} and let I < {1,2,...,m}. Then the following

equivalences hold, where the notation "Vid" is defined as

VXJ:= {EJIR solves (1.3a)}
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(al) 30,>0 < ¥X; bounded < 17;> 03 v(X.X), ¥0 s.t. 7,>0:
]])?J]l];(cTﬁ—bTﬁ)/min 7529

(a2) 3§/I>0 < Yii; bounded < EIS?I>0; ¥(u,0), ¥X s.t. §I>O:
< HGIH];(CTQ— bT6)/min § g

(b1) 3%,>0 = ¥¥, bounded «=><§§J>o; ¥(7,0), V& s.t. %> 0:
“VJ“ (c x—b u)/mm xJ 3

TA

(b2) 3G, >0 = vy, bounded <=><-]GI>0; ¥(7.8), ¥ s.t. 4;>0:
HYI”];(C X~

bT6)/min G, |

(c1) JvJ>0,u >O~‘=*V(xd,y1) bounded < JVJ>0,u1>O;V(x,x),Vu s.t.vJ>0,uI>O:

I
)-(J <(c X-b u)/mm {v ". }
jed? Tiel
1
(c2) EI§/I>0,>“<J> O@V(GI,VJ) bounded <= 3§/I>O,§J>O;V(ﬁ,ﬁ),v>“< s.t.§I>0,§J>0:
gI <(cT§—bTG)/m1'n {F: s %X o}
v ]= iel? "jed

3.2 Corollary The quantity cT& in parts (al), (b2) and (cl1) of Theorem 3.1

can be replaced by any upper bound o to min ¢Tx s.t. Ax > b, x > 0, while

the quantity bTG in parts (a2), (b1) and (c2) of Theorem 3.1 can be replaced

by any lower bound g to max bTu s.t. AT

u<c,uz>0.
Proof To prove the first part, set X in (al), (b2) and (c1) equal to a

solution X of (1.3a) and note that ¢k = c¢'x < a. To prove the second part,

set 4 in (a2), (bl) and (c2) equal to a solution iU of (1.3b) and note that

T T-

-b'u=-bucx-B. 0
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3.3 Remark When the index sets I, J are taken as singletons, the first
equivalence in each of the statements (al) to (c2) of Theorem 3.1 reduce to
Theorem 3b of Williams [12]. 1In [11] Williams characterizes boundedness of
components of feasible, but not optimal, points of Tinear constraint sets.
In[10] Williams characterizes the boundedness of the totality of all the
components (in contrast with individual components) of optimal points of
1inear programs. None of Williams' characterizations contain quantitative
bounds 1ike ours.

We turn our attention now to the nonsymmetric pair of dual linear

programs
(3.4a) min ch s.t. Ax =b, x>0
(3.4b) max bTu s.t. v = -ATu +c>0

and establish the following bounds for their solutions.

3.4 Theorem Assume that the dual Tinear programs (3.4) are both feasible
and hence both solvable. Let caret variables denote primal and dual

feasible vectors, that is

(3.5) AR =b, 20, 0=-ATG+c>0

and let bar variables denote primal and dual optimal vectors, that is

T T

b, k>0, V=-Ali+c>0,cx-bli=0

(3.6) AX

Let Jc{1,2,...,n} and Ic{1,2,...,m}. Then the following equivalences
hold:
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(a1) (i) 30J>0<=>(ﬁ) via bounded <= (ii1) 39J>0; ¥(X,X), ¥0 s.t. VJ>0:

T’\ T’\ - A
X-b'd)/min Ve

%, I, < (e
(a2) (i) 3Xx>0 and rows of A Tin. indep.*<>(ii) Yu bounded
< (iii) /3%>0 and rows of A lin. indep; ¥(u,u), ¥X>0:

llly < I aaD AL lell +(c'% - bTa)/min %))
1<i<n

(b1) (i) 3&;>0=(ii) ¥V bounded+=(iii) /Ix;>0; V(V,i), Y& s.t. X;>0:

v T" T/\ . ~
”VJ“];(C R-b0)/min R3ed

Proof (al): (ii) = (iii): Evident.

(i) =(ii): We establish the contrapositive implication.

T T

;(V >0e>-A

J utcz>0, (-A

u+c;)J>0, £>0 has no solution
= -Ax - A‘JzJ= 0, ¢'x +c§zJ +n=0,x>0,0# (zJ,n) >0, has solution
(By Motzkin's theorem)
«<-Ax = 0, ch +n=0,x>0,0¢% (xJ,n) > 0 has solution
= (n=0) For each solution X of (3.4a), X+Ax is also a solu-
tion for any A>0, where Ax=0, c'x=0, x20, 0#x;20
(n>0 excluded, because it implies (3.4a) is unbounded below,
which is ruled out by primal-dual feasibility assumption)

= ] unbounded )-(J

Ta Ta o =Ts

(1)=(ii1): 'Rz c'x=bla=bla + X0 2bl +X92b0 + Xy
> b7+ |5l min G5 g
Hence
v T/\ TI\ . A
“XJ”] < (c'%-b'G)/min Vi

(a2): (ii1) = (ii1): Evident.
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(i)<=(ii): We shall prove the contrapositive implication.

Rows of A Tlin. dep. or‘A§ >0 such that AX = b

-ATu

<> Rows of A 1in. dep. or 0 # ( T) > 0 has solution
bu/

(By Motzkin's theorem)
<> Rows of A 1in. dep. or 0 # -ATu > 0, bTu = 0 has solution
{Case of -ATu:; 0, bTu > 0, ruled out because it implies
(3.4b) 1is unbounded above which is impossible by primal-dual
feasibility assumption)
= For each solution 0 of (3.4b), u + Au is also a solution
for any A > 0 where either bTu = 0, ATu =0, u#0 or

blu=0,0#-Alu> 0.

<

= J unbounded

(i)=(iii): Since ATi = ¢ - ¥ and rows of A are Tinearly independent
-1
N

it follows that u = (AA A(c-v) and hence

< Ty Al Clell, + 1190

=T
—
A

But

— _— 1

1<i<n

Hence

and consequently

Gl < ATy Al (lell. + (™%~ 678) /min &)
1 1 1 1§ﬁ§ﬁ i
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(a3): (ii) = (iii): Evident.
(i) = (ii): We shall prove the contrapositive implication.

lﬁ such that X; >0, X >0 and AR = b

v
J

¢=An1+v o,bﬂLzo,vz;m Qﬁ) # 0, has solution
u

(By Motzkin's theorem)

=aTy+v= 0, by = 0, v>0,vy;#0 has solution

(Case of bTu > 0, ATu +v=20,v >0, ruled out because

it implies (3.4b) is unbounded above which is impossible
by primal-dual feasibility assumption)
= For each solution (U,v) of (3.4b), (u+Xu, v+av) is

also a solution for any A > 0 where ATu +v =0,

blu=10,v20,vy#0.

= 1 unbounded VJ

(1)=(iii): bli<cR=cR-7x<c&-78<cR- TR
= = = 33

To - s
<cX - Hvdih min X5

Hence
llVJ”1 ;:(CTQ-bTG»/min Qjed 0

4. Conclusion

We have shown that every feasible point of a positive semidefinite Tinear
complementarity problem contains numerical information on the size of some or all
components of all solution vectors of the problem. Similarly each pair of primal-
dual feasible points of a linear program was shown to contain information on the
size of some or all components of all primal-dual solution vectors. Such bounds

may be useful in obtaining information on where solutions 1ie without actually

solving the problem. That such numerical bounds existed was not known, and the
results presented here can also be thought of as a quantification of some of the

duality relations that underly linear complementarity problems and linear programs.
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