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ABSTRACT
This paper presents an optimistic concurrency control algorithm which
uses multiple versions of data to increase concurrency for read-only transac-
tions. The algorithm is developed incrementally from the original serial valida-
tion proposal of Kung and Robinson. The performance of this multiversion seri-
al validation algorithm is investigated and compared to that of its single version
counterpart using a simulation model. Results obtained from the model indi-

cate that multiversion serial validation can significantly improve performance
for certain transaction mixes.

1. INTRODUCTION

Optimistic concurrency control algorithms have been proposed for use in both
centralized and distributed database systems by a number of researchers [Bada79,
Casa79, BayeB0, KungB1, Bhar82, Ceri82]. Underlying most of these proposals is the
belief that locking is an overly pessimistic approach to concurrency control because
transactions are blocked in some circumstances where they could actually proceed
without compromising serializability. Optimistic algorithms allow transactions to run
unimpeded until they reach their commit point, requiring that they be subjected to a
test at commit time to ensure that committing a transaction will not compromise the
consistency of the database. Transactions failing the commit-time test are restarted
to avoid inconsistencies. Various optimistic algorithm proposals differ mainly in the

details of their commit-time tests.

The focus of this paper is a modified version of the optimistic concurrency control
algorithm which Kung and Robinson refer to as serial volidation [KungB1]. The original
algorithm is reviewed, and then a new optimistic algorithm based on the use of times-
tamps is presented and shown to have exactly the same semantics as the algorithm of

Kung and Robinson. This timestamp-based serial validation algorithm is then extended



to use multiple versions of data to enhance concurrency for read-only transactions.
Simulation studies performed using a centralized concurrency control performance
model [CareB3] are used to demonstrate that multiversion serial validation indeed
offers significant performance improvements for mixes of small update transactions

and large read-only transactions.

2. SERIAL VALIDATION

The serial validation (SV) algorithm [KungB1] requires that the readsets and wri-
tesets of all transactions be recorded as they execute. These readsets and writesets
are the sets of items which the transaction reads and writes, respectively. Transac-
tions are allowed to execute freely until commit-time, writing their database changes
into a list of deferred updates. Each transaction is subjected to a commit-time valida-
tion procedure in a critical section (a section of code which excludes other transac-

tions from making concurrency control requests simultaneously). This validation

procedure validate(T);
valid .= true;

foreach 7, in RC(T) do
foreach z, in readsef (7) do
foreach z,, in writeset(7T,;) do
if z, = r,, then
valid : = false;
fi;
od;
od;
od,
if valid then
commit writeset (T') to database;
else
restart(7);

end;

Figure 1: Informal description of original SV algorithm,




procedure is used to ensure that committing the transaction will not leave the data-

base in an inconsistent state.

Let RC(T) be the set of recently commilted transactions, ie., those which com-
mit between the time when T starts executiﬁg and the time at which T enters the criti-
cal section for validation. Transaction T is validated if readset (T) n writeset (T) = ¢
for all transactions T, € RC(T). If T is validated, its updates are applied to the data-
base; otherwise, it is restarted. Intuitively, T is allowed to commit if and only if no
other transaction has updated any data items which T read during the time while it
was performing its reads and computing its database updates. An informal description

of the serial validation algorithm is given in Figure 1.

3. TIMESTAMP-BASED SERIAL VALIDATION

To facilitate the addition of multiple versions to the serial validation algorithm, a
new version of serial validation with different but provably equivalent semantics will be
described. In this version, each transaction is assigned a startup timestamp, S-7S(T),
at startup time, and each transaction receives a commit timestamp., C-TS(T), when it
enters its commit processing phase. A write timestamp, TS(z), is maintained for each
data item z; TS(z) is the commit timestamp of the most recent (committed) writer of
z. A transaction T will now be allowed to commit if and only if S-TS(T) > T'S(z,) for
each object =z, in its readset. Each transaction T which successfully commits will

update T'S(x,,) to be C-TS(T) for all data items x, in its writeset.

An informal description of the timestamp-based SV algorithm is given in Figure 2.
This algorithm is semantically equivalent to the original SV algorithm. The equivalence
proof is based on showing that the new algorithm commits exactly those transactions
which would be committed by the original SV algorithm, restarting all transactions

which it would restart as well.

Lemma 1: All transactions which are committed by the original SV algorithm (0-SV)

are also committed by the timestamp-based SV algorithm (T-3V).
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procedure validate(T);
begin
valid := true;
foreach z, in readset(7) do
if S-TS(T) < TS(z,) then

valid ;= false;
fi;
od;
if valid then

foreach z,, in writeset (T) do
TS(zy) := C-TS(T);

od;
commit wrifesef (T) to database;
else
restart(T);
end;

Figure 2; Informal description of timestamp-based SV algorithm.

Proof: Suppose some transaction T is committed by O-SV but restarted by T-SV. Let
RC(T) be the set of recently committed transactions, those which committed between
the time when T started executing and the time at which it entered the validation criti-
cal section. Since 7 is committed by O-SV, it must be true that
readset (T) n writeset(T,,) = ¢ for all transactions T, € RC(T). Since T is restarted
by T-SV, it must also be true that TS (z) > S-TS(T) for some z € readset(T). However,
TS(z) > S-TS(T) implies that z was written by a transaction which committed subse-
quent to the startup of T, as 7S(z) is the commit timestamp of the most recent writer
of z and S-TS(T) is the startup timestamp of T. Thus, £ must be in writesetf (T ) for
some transaction 7,; € RC(T). This contradicts the assumption that O-SV comrnitted

T, proving the lemma. =

Lemma 2. All transactions which are restarted by the O-SV algorithm are also res-

tarted by the T-SV algorithm.



Proof: Suppose some transaction 7T is restarted by 0-SV but committed by T-3V. Let
RC(T) be the set of recently committed transactions, those which committed between
the time when T started executing and the time at which it entered the validation criti-
cal section. Since T is restarted by O-SV, it must be true that some z € readset(T) is
also in writeset (T, ) for some transaction T, € RC(T). Since T is committed by T-SV,
it must also be true that TS(z) < S-TS(T) for all z € readset(T). However,
TS(x) < S-TS(T) implies that £ has not been written by any transaction which com-
mitted subsequent to the startup of 7, as T'S(z) is the commit timestamp of the most
recent writer of z. Thus, x cannot be in writeset (T, ) for any transaction T, € RC(T).

This contradicts the assumption that O-SV restarted T, proving the lemma. =

Theorem: The set of transactions committed by the T-SV algorithm is precisely that
set of transactions which would be committed by the O-5V algorithm, so the T-SV algo-

rithm preserves the semantics of the 0-5V algorithm.

Proof: The theorem follows directly from a combination of Lemmas 1 and 2. =

A consequence of this theorem is that, since the original SV algorithm is known to
guarantee serializability [KungB1], the timestamp-based SV algorithm also guarantees

serializability.

For typical transaction mixes, it is expected that RC(T) will tend to be larger than
one and the writesets of transactions will not be overly large. The timestamp-based SV
algorithm will entail less CPU cost than the original SV algorithm for such mixes. In
the original version, the commit-time test involves checking |RC(T)| writesets for
each object z,, whereas a single timestamp is checked for each z, in the timestamp-
based version. The timestamp-based SV algorithm involves an additional cost for
updating TS(z,,) for each =,,, but this is unlikely to be significant compared to the cost
reduction for testing the readset. Thus, the new algorithm is likely to be more eflicient

than the original version of the algorithm.



4. MULTIVERSION SERIAL VALIDATION

There have been a number of recent papers proposing the use of multiple versions
of data to increase potential concurrency [Reed7?8, BayeB0, SteaBl, SvobB81, Bern8z,
ChanB2]. In most of these algorithms, the idea is to allow long read-only transactions
to read older versions of data objects while allowing update transactions to create
newer versions. This section describes a multiple version variant of serial validation

which is based on ideas borrowed from a proposed multiversion locking algorithm

[ChanB2].

The multiversion locking algorithm of interest here was proposed for use in the
Ada-comnpatible database management system under development at CCA [ChanBR2].
This algorithm, which will be referred to as the CCA wersion pool algorithm, uses two-
phase locking to synchronize update transactions and allows read-only transactions to
run using older versions of data items. The CCA proposal includes schemes for imple-
menting version selection efficiently and for dealing with maintenance and garbage col-
lection of old versions in a bounded buffer pool, but we will only be concerned with the

concurrency control aspects of the proposal.

The semantics of the CCA version pool algorithm are actually quite simple, and can
be explained as follows. As in timestamp-based serial validation, transactions are
assigned startup timestamps when they begin running and commit timestamps when
they reach their commit point. In addition, transactions are classified at startup time
as being either read —only or updafe transactions. When an update transaction reads
or writes a data itemn, it locks the item, as it would in normal two-phase locking, and it
reads or writes the most recent version of the item. When an item is written, a new
version of the item is created; versions of items are stamped with the commit times-
tamp of their creator. When a read-only transaction wishes to access an item, no lock-
ing is needed. Instead, it simply reads the latest version of the item with a timestamp

less than its startup timestamp. Since the timestamp associated with a version is the



commit timestamp of its writer, each read-only transaction T is made to read only ver-
sions which were written by transactions which committed before 7 even began run-
ning. Thus, 7 is serialized after all transactions which committed prior to its startup,
but before all transactions which are active but uncommitted during any portion of its
lifetime.

The CCA version pool algorithm is an enhancement of a known concurrency control
algorithm, two-phase locking, that permits read-only transactions to read older ver-
sions of objects. In this way, serializability is guaranteed for update transactions in the
usual way, and it is guaranteed for read-only transactions by having them read a con-
sistent set of older versions of data determined by their startup time. Conflicts
between read-only transactions and update transactions are eliminated, increasing the
level of concurrency which can be achieved using the algorithm. This idea can be
applied outside the domain of locking; in particular, it can also be applied to serial

validation.

A multiversion SV algorithm can be developed in a manner which follows naturally
from the CCA version pool algorithm. Transactions are again classified as read-only or
update transactions at startup time. Update transactions record their readsets and
writesets, performing the timestamp-based validation test developed in the previous
section. As in the CCA version pool algorithm, versions are stamped with the commit
timestamp of their creators, and read-only transactions read the latest versions of
items with timestamps less than their startup timestamps. As a result, the serializabil-
ity of update transactions is guaranteed by SV semantics and the serializability of
read-only transactions is guaranteed by making sure they read consistent, committed

versions of data.

An informal description of this multiversion SV algorithm is given in Figure 3. It is
assumed that an appropriate version selection mechanism provides each transaction T

with either z[TS(T)] or z[current] when it reads z. z[7TS(T)] denotes the most



procedure validate(T);
begin
valid := true;
if not readOnly(T) then
foreach z, in readset (T) do
if S-TS(T) < TS(z,) then
valid := false;
fi,
od;
if valid then
foreach z,, in writeset (T) do
TS(zy) ;= C-TS(T);
od;
commit wrifeset (T) to database;
else
restart(7T);
fi;
f

end,

Figure 3: Informal description of multiversion SV algorithm.

recent version of z with a timestamp less than TS(T), and z[current] denotes the
most recent committed version of z. The version selection mechanism returns
z[TS(T)] in response to a read request from a read-only transaction, and it returns
x[current] in response to a read request from an update transaction. It is also
assurned that new versions are created and stamped with C-T'S(T) when writeset(T) is

comrmitted to the database.

In the course of his experimental work using Cm* Robinson also suggested and
implemented a multiversion variant of serial validation [RobiBRa, RobiBRb]. The algo-
rithm presented in this paper differs in the versions which are selected for use by
read-only transactions. Here a read-only transaction reads the most recent commit-
ted version which preceded its startup; in Robinson's implementation it may read
somewhat older versions. As Robinson pointed out, his scheme has the property that a

read-only transaction which executes after the completion of an update transaction



may not see the effects of the update transaction. This can be a problem, especially in
the case where a single user submits both transactions. The algorithm of this paper

does not have this pr‘operty.T

5. PERFORMANCE STUDIES

In this section, the performance characteristics of the SV and multiple version SV
algorithms are investigated using a simulation model presented in [CareB3]. Before
reporting the experimental results, the simulation model and some modeling details

for the two algorithms will be described.

5.1. The Simulation Model

This section outlines the structure and details of the simulation model used to
evaluate the performance of the two algorithms. The model was actually designed to
support the performance evaluation of a variety of centralized concurrency control

algorithms [Care83].

5.1.1. The Workload Model

An important component of the simulation model is a transaction workload model.
When a transaction is initiated from a terminal in the simulator, it is assigned a work-
load, consisting of a readset and a writeset, which determines the objects that the
transaction will read and write during its execution. Two transaction classes, large and
small, are recognized in order to aid in the modeling of realistic transaction work-
loads. The class of a transaction is determined at transaction initiation time and is
used to determine the manner in which the readset and writeset for the transaction
are to be assigned. Transaction classes, readsets, and writesets are generated using

the workload parameters shown in Table 1.

TThe version selection mechanism presented here is equivalent to a "fix" mentioned by Robinson
[RobiB2a], but the details of this mechanism are different.
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Workload Parameters

db_size size of database

gran_size size of granules in database
num.terms level of multiprogramming
delay..mean mean xXact restart delay
small_prob Pr{xact is small)
small_meaon mean size for small xacts
large_mean mean size for large xacts

small xoct_type type for small xacts
large_ract_type type for large xacts

small _size_dist size distribution for small xacts
lorge_size_dist size distribution for large xacts
small_write_prob | Pr(write X | read Xg for small xacts
large_write_prob | Pr{write X | read X) for large xacts

Table 1: Workload parameters for simulation.

The parameter num_terms determines the number of terminals, or level of mul-
tiprogramming, for the workload. The parameter restort. delay determines the mean
of an exponential delay time required for a terminal to resubmit a transaction after
finding that its current transaction has been restarted. The parameter db.size deter-
mines the number of objects in the database. The parameter gran.size determines
the number of objects in each granule of the database. When a transaction reads or
writes an object, any associated concurrency control request is made for the granule
which contains the object. In modeling read and write requests, objects and granules
are given integer names ranging from 1 to db_size and 1 to ldb_size/gran_sizel,

respectively. Object i is contained in granule [ (i—1)/ gran_size] +1.

The readset and writeset for a transaction are lists of the numbers of the objects
to be read and written, respectively, by the transaction. These lists are assigned at
transaction startup time. When a terminal initiates a transaction, small_prob is used
to randomly determine the class of the transaction. If the class of the transaction is
small, the parameters smallmean, small zact type, small_size_dist, and
small_write_prob are used to choose the readset and writeset for the transaction as

described below. Readsets and writesets for the class of large transactions are deter-
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mined in the same manner using the large_mean, large_zact_type, large_size_dist, and

large_awrite_prob parameters.

The readset size for a small transaction is determined by the small dist and
small_mean parameters. The readset size distribution, given by small dist, may be
constant, uniform, or exponential. If it is constant, the readset size is simply
small_mean . If it is uniform, the readset size is selected from a uniform distribution
on the range [1, 2small_mean]. The exponential case is not used in the experiments of
this paper. The particular objects accessed are determined by the parameter
small_ract_type. This parameter determines the type, either random or sequential,
for small transactions. If they are random, the readset is assigned by randomly select-
ing objects without replacement from the set of all objects in the database. In the
sequential case, all objects in the readset are adjacent, so the readset is selected ran-
domly from among all possible collections of adjacent objects of the appropriate size.
Finally, given the readset, the writeset is determined as follows using the
small_write_prob parameter: It is assurmned that transactions read all objects which
they write (*'no blind writes'’). When an object is placed in the readset, it is also placed

in the writeset with probability small awrife_prob.

5.1.2. The Queuing Model

Central to the simulation model is the closed queuing model of a centralized data-
base system shown in Figure 4. This model is an extended version of the model of Ries
[Ries?7, Ries79a, Ries79b]. There is a fixed number of terminals from which transac-
tions originate. When a new transaction begins running, it enters the startup queue,
where processing tasks such as query analysis, authentication, and other preliminary
processing steps are performed. Once this phase of transaction processing is com-
plete, the transaction enters the concurrency control queue (or cc queue). For serial
validation, the transaction is immediately granted permission to access all objects in

its readset and writeset (subject to the constraint that it must be validated later). The
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Figure 4: Logical database queuing model.

transaction proceeds to the object gqueue and accesses the objects in its readset and
writeset, cycling through this queue once per read or write. It is assumed for conveni-
ence that transactions which read and write objects perform all of their reads before

performing any writes.

Eventually, the transaction will finish reading and writing and re-enter the con-
currency control queue. The SV validation test is applied at this time. If a decision is

made to restart the transaction, it goes to the back of the concurrency control queue
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after a random restart delay; it then begins running over again, re-reading and re-
writing each of the objects in its read and write sets. (It does not repeat its initial
startup processing phase, however.) Alternatively, the outcome of validation may be a
decision to commit the transaction. In this case, if the transaction is read-only, it is
finished. Otherwise, since it has written one or more objects, it must first enter the

update queue and write its deferred updates into the database.

Underlying the logical model of Figure 4 are two physical resources, the CPU and
1/0 (disk) resources. Associated with each logical service depicted in the figure
(startup, concurrency control, object accesses, etc.) is some use of each of these two
global resources. When a transaction enters the startup queue, it first performs its
startup-related 1/0 processing and then performs its startup-related CPU processing.
The same is true of each of the other services in the logical model. Each involves 1/0
processing followed by CPU processing, with the amounts of CPU and 1/0 per logical
service being specified as simulation parameters. All services compete for portions of
the global 1/0 and CPU resources for their 1/0 and CPU cycles. The underlying physi-
cal system model is depicted in Figure 5. As shown, the physical model is simply a col-
lection of terminals, a CPU server, and an 1/0 server. Each of the two servers has one

queue for concurrency control service and another queue for all other service.

The scheduling policy used to allocate resources to transactions in the con-
currency control 1/0 and CPU queues of the underlying physical model is FCFS (first-
come, first-served). Concurrency control requests are thus processed one at a time, as
they would be in an actual implementation. The resource allocation policies used for
the normal 1/0 and CPU service queues of the physical model are FCI'S and round-
robin scheduling, respectively. These policies are again chosen to approximately
model the characteristics which a real database system implementation would have.
When requests for both concurrency control service and normal service are present at
either resource, such as when one or more validation requests are pending while other

transactions are processing objects, concurrency control service is given priority.
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Figure 5: Physical database queuing model.

System Parameters
startup_io 1/0 time for transaction startup
startup_cpu CPU time for transaction startup
obj.do 1/0 time for accessing an object
obj_cpu CPU time for accessing an object
cc_io basic unit of concurrency control /0 time
coccpiL basic unit of concurrency control CPU time
stagger mean | mean of exponential randomizing delay

Table 2: System parameters for simulation.

The parameters determining the service times (170 and CPU) for the various logi-
cal resources in the model are given in Table 2. The parameters starfup_do and
startup_cpu are the amounts of 170 and CPU associated with transaction startup.

Similarly, the parameters objido and objcpu are the amounts of 1/0 and CPU
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associated with reading or writing an object. Reading an object takes resources equal
to objdio followed by obj_cpu. Writing an object takes resources equal to objcpu at
the time of the write request and obj_do at deferred update time, as it is assumed that
the deferred update list is maintained in buffers in main memory. The parameters
cc.io and cc_cpu are the amounts of 1/0 and CPU associated with a concurrency con-
trol request. All these parameters represent constant service time requirements
rather than stochastic ones for simplicity. Finally, the stegger_mean parameter is the
mean of an exponential time distribution which is used to randomly stagger transac-
tion initiation times from terminals (not to model user thinking) each time a new tran-
saction is started up. All parameters are specified in internal simulation time units,
the unit of CPU time allocated to a transaction in one sweep of the round-robin alloca-

tion code for the simulator.

5.1.3. Algorithm Descriptions

Concurrency control algorithms are described for simulation purposes as a collec-
tion of four routines, it _CC_Algorithm, Request_Semantics, Commit_Semantics, and
Update_Semantics. Each routine is written in SIMPAS, a simulation language based on
extending PASCAL with simulation-oriented constructs [BryaB0a, BryaB80b]. SIMPAS is
the language in which the rest of the simulator is implemented as well
Init_CC_Algorithm. is called when the simulation starts up, and it is responsible for ini-
tializing all algorithm-dependent data structures and variables. The other three rou-
tines are responsible for implementing the sernantics of the concurrency control algo-
rithm being modeled. Kequest. Semantics handles concurrency control requests made
by transactions before they reach their commit point. Commif_Semantics is invoked
when a transaction reaches its commit point. Updafe_Semantics is called after a tran-
saction has finished writing its deferred updates. For the algorithms considered in this
paper, Cornmit_Semantics is the routine of primary importance, as it implernents the

validation test. Each of these routines returns information to the simulator about how
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much simulation time to charge for CPU and 1/0 associated with concurrency control

processing.

5.2. Algorithm Modeling Issues

The cc_cpu and cc_do parameters are the basis of the algorithm cost models. For
a transaction that makes N, granule read requests and N, granule write requests
under the SV algorithm, a CPU cost of cc_cpu and an 1/0 cost of cc_io are charged for
each granule read or written. These charges are assessed together at transaction com-
mit time. The read-related charges model the testing of readset granules to make sure
that none have timestamps which indicate that a recently committed transaction
wrote the granule, and the write-related charges model the timestamp updating pro-
cess required when a transaction commits. Thus, the total concurrency control costs
in the absence of restarts for SV are (N,+Ny)cc_cpu and (N.+Ny)ccdo. The costs for
the multiversion SV algorithm are similar. It has the same costs as single version SV
for update transactions, but read-only transactions simply pay a CPU cost of cc.cpu
and an 1/0 cost of cc_io at transaction startup time. The costs assessed for read-only
transactions model the cost of recognizing them as read-only and marking them as

such.

In order to simulate the multiple version SV algorithm, it is assumed that old ver-
sions of objects are accessible in as little time as the most recent version of each
object. This assumption is reasonable if access paths for locating versions of active
data iterns can be kept in primary memory. Such caching of version location informa-
tion can be probably be achieved using algorithms such as those described in [Chan82].
Otherwise, the results reported here will be optimistic about the degree of perfor-
mance improvement which is obtainable using the multiversion SV algorithm. The
simulation of multiversion SV was implemented by modifying the implementation of SV

to always allow read-only transactions to comrmit.
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The system parameters used for this experiment are given in Table 3. Each tran-
saction incurs a startup cost of one 35 millisecond disk access and 10 milliseconds of
CPU time. In addition, this same cost is incurred for each read or write of an object.
Charges for reading and writing objects are assessed in the manner described in the
section which presented the details of the queuing model. The cost associated with
each concurrency control request (i.e., each read or write set granule processed at
commit time) is 1 millisecond of CPU time. A 20 millisecond random delay time is used

fo stagger transaction startups.

The workload parame‘ter settings for this experiment are given in Table 4. The
database consists of 10,000 objects. The number of terminals used is 10. Small update
transactions, which are eighty percent of the mix, each read two objects and then
update them each with fifty percent probability. Large transactions, the other twenty
percent of the mix, each read a uniformly distributed number of objects sequentially.

The mean size of these large read-only transactions is 30.

The results of this experiment are shown in Table 5, where throughput rates for
the algorithms are given for various granularities. Transaction restart counts for the
simulations which produced these throughput results are given in Table 6. The advan-
tage of multiple versions is fairly pronounced, especially at coarser granularities where

the probability of conflicts is significant. The poor performance of SV (compared to

System Parameler Setiings
System Time
Parameter (Milliseconds)
startup.io 35
stariup_cpu 10
obj io 35
obj_cpu 10
cc_io 0
ce_cpu 1
stagger_meaon 20

Table 3: Systemn parameters for experiment 1.
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Workload Parameters

db_size 10000 objects
num.terms 10

delay -mean 1 second
small_prob 0.8
small_mean 2 objects

small_zact_type random
small_size_dist fixed
small_avrite prob | 0.5

large_mean 30
large_zact_fype sequential
large_size_dist uniform

large_aurife_prob 0.0

Table 4. Workload parameters for experiment 1.

multiversion SV) for this mix occurs because transactions are not checked for conflicts
until transaction commit time in SV, a practice that strongly biases single version SV
against large read-only transactions: They perform all their reads and then test to see
if any of the granules have been updated, a likely occurrence with many small update
transactions in the mix. Allowing read-only transactions to read older versions of data
alleviates this problem. The fact that more restarts actually occur with MVSV than SV
for the coarsest granularities is not surprising, as many more small update transac-
tions can run under MVSV (and these are the transactions being restarted here). Note
that the penalty associated with restarting small update transactions is much less than
that for restarting large read-only transactions because less work must be repeated by

small update transactions.

Throughput versus Granularily
Grans SV MVSV
1l 0.407+11.80% | 2.364+2.61%
10 1.183+8.36% | 2.B63+2.93%
100 2.3907+8.28% | 2.999+4.46%
1000 2.691+5.017% | 3.012+4.31%
10000 2.755+4.55% | 3.013+4.36%

Table 5: Throughput, experiment 1.
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Restaris versus Granularily
Grans SV MVSY
1 494 3340
10 545 811
100 214 a4
1000 B2 7
10000 56 0

Table 8: Restarts, experiment 1.

5.3.2. Experiment 2: Read-Only Transaction Size

This experiment investigates the performance characteristics of the algorithms
under a workload similar to that of the previous experiment, but the size of the read-
only transactions in the mix is varied here. The purpose of this experiment is to
observe the behavior of the algorithms while varying the degree to which old versions
may actually be beneficial. The workload parameters used in this experiment were
selected in order to emphasize situations in which multiple versions are especially
beneficial (where the probability of conflicts between update transactions and read-

only transactions is fairly significant in the absence of multiple versions),

The system parameter settings for this experiment are the same as those used for
the previous experiment (see Table 3). The workload parameter settings used for this
experiment are given in Table 7. The database consists of 100 objects, with a granular-
ity of one object per granule. The number of terminals used is 10. Small update tran-
sactions, which are forty percent of the mix, again read two objects and update each
with fifty percent probability. Large read-only transactions, the other sixty percent of
the mix, sequentially read a uniformly distributed number of objects. In this experi-

ment, the mean size for large transactions is varied from 1 to 30 objects.

The motivation for selecting such a small database size was two-fold. First, it was
desired that read-only transactions read a significant fraction of the database so that
the probability of conflicts with update transactions would be significant. Second, it

was necessary to keep the size of read-only transactions small enough in terms of the
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Yorkload Parameters

db_size 100 objects
gran. size 1 object/granule
num._terms 10

deloy._mean 1 second
small_prob 0.4

small_mean 2 objects

small_zacl_type random
small size_dist fixed
smoall write.prob | 0.5

large_mean vary from 1 to 30 objects
large_zuci_fype sequential
large_size_dist uniform

lorge_awrite _prob 0.0

Table 7: Workload parameters for experiment 2.

number of objects accessed so that reasonably tight confidence intervals could be
obtained without using unreasonable amounts of simulation time. This tradeoff led to
the selection of a relatively small database size for this experirnent. One can also view
these parameter settings as an approximation to a large database with much larger

read-only transactions (but with fairly coarse granularity).

The throughput results of this experiment are shown in Table B, and Table 9 gives
the associated restart counts. The advantages of multiple versions are again very pro-
nounced due to the bias of SV against large read-only transactions. This experiment
illustrates how the relative performance of SV and MVSV varies with the size of the
read-only transactions. As one would expect, the performance advantage of MV3V

increases as read-only transaction size is increased. Two factors explain this trend:

(1) With larger read-only transactions, more work is lost each time one of them is res-

tarted.

(2) The longer it takes for a read-only transaction to reach its validation point, the
more time there is for an update transaction to update an object in its readset;
hence, the probability of a successful cornmit using SV is smaller for larger read-

only transactions.
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Several conclusions can be drawn from these results. First, the performance of SV
is quite poor for workloads where update transactions are likely to conflict with read-
only transactions. This performance problem probably makes SV an unreasonable
choice for use in many database application environments, as fairly large read-only
transactions would be expected to arise from report writers. Second, multiple versions
appear to solve this problem quite successfully. In this experiment, when read-only
transactions in the mix read an average of 30 objects, MVSV outperformed SV by nearly
a factor of three. Were the size of read-only transactions much larger, as one might
expect in an actual database system, the performance benefits associated with multi-

ple versions would be even more pronounced.

_ Throughput versus Read-Only Transaction Size |
Size SV MVSV
1 7.386+0.60% 7.669+0.42%
2 B.110+1.417% 6.610+0.60%
5 3.7RR+1.85% 4.680+1.20%
10 1.957+4.30% 3.177+R2.57%
15 1.271+6.06% 2.464+2.35%
30 0.483+10.71% 1.336+4.06%

Table 8: Throughput, experiment 2.

' Restarts versus Read-Only Transacltion Size |
Size SV MVSY
1 536 133
2 618 103
5 706 58
10 654 27
15 568 17
30 373 2

Table 9: Restarts, experiment 2.

5.3.3. Experiment 3: Read-Only Transaction Fraction

This experiment investigates the performance of the algorithms under a workload

similar to that of the previous experiment, but the balance between small update tran-
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sactions and large read-only transactions in the mix is varied here. The purpose of this
experiment is to observe the effects of this balance on the relative performance of the

algorithms.

The system parameter settings for this experiment are the same as those used for
the two previous experiments (see Table 3). The workload parameter settings for this
experiment are the same as those of the previous experiment when large_mean = 30
was used (see Table 7). The balance between small update transactions and large
read-only transactions in the mix is varied by choosing settings for the small_prob
parameter, which controls the fraction of update transactions in the mix, ranging from

0.0to 1.0.

The throughput results of this experiment are shown in Table 10. The restart
counts are shown in Table 11. The main interesting result of this experiment is that
MVSV outperforms SV most significantly when the workload contains mostly small
update transactions. With eighty percent small update transactions in the mix, MVSV
outperformed SV by more than a factor of five. An explanation is that, with more
update transactions executing during the lifetime of each large read-only transaction,
it is more likely that some update transaction will write something that the read-only
transaction reads. Hence, the probability that a large read-only transaction will be
able to commit upon reaching its validation point is minimized by a workload contain-

ing many small update transactions.

Throughput versus Update Transaction Fraclion |

Pr(Sm) SY MVSV
0.0 0.87B+4.87% 0.878+4.67%
0.2 0.540+9.88% 1.043+:4.33%
0.4 0.483+10.717% 1.336+4.06%
0.6 0.526+11.16% 1.8687+4.81%
0.8 0.546+13.05% 2.943+4.90%
1.0 6.691+0.567% 6.790+0.59%

Table 10: Throughput, experiment 3.
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Reslarts ve Uodate T tion Fracki
Pr(Sm) SV MVSV.
0.0 0 0
0.2 286 2
0.4 373 2
0.6 418 23
0.8 453 83
1.0 508 702

Table 11: Restarts, experiment 3.

6. CONCLUSIONS

This paper described an optimistic concurrency control algorithm which uses mul-
tiple versions of data to increase concurrency for read-only transactions. The algo-
rithm was developed from the original single version proposal of Kung and Robinscn
based on ideas derived from the CCA version pool algorithm. The performance of this
multiversion serial validation algorithm was compared to that of its single version
counterpart using a simulation model. It was found that serial validation performs
poorly for mixes of small update transactions and large read-only transactions, but
that multiple versions solve this problem. In several cases, multiversion serial valida-
tion outperformed single version serial validation by factors of three to five when the
mean readset size for read-only transactions was 30 objects. It was also found that the
performance advantage of multiple versions was most pronounced for workloads con-

sisting of mostly small update transactions and just a few read-only transactions.
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