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Abstract

Stochastic linear programming with simple recourse arises naturally
in economic problems and other applications. One way to solve it is to
discretize the distribution functions of the random demands. This will
considerably increase the number of variables and will involve discret-
jzation errors. Instead of doing this, we describe a method which
alternates between solving some n-dimensional linear subprograms and
some m-dimensional convex subprograms, where n 1is the dimension of
the decision vector and m is the dimension of the random demand vector.
In many cases, m is relatively small. This method converges in

finitely many steps.

*Sponsored by the National Science Foundation under Grant No. MCS-8200632.






T. Introduction

The standard form of stochastic linear programs with simple recourse

is as follows

min c¢x + E(Q(x,g))

s.t. AXx = b (SLP)
X 3_0
with
. + + - -
Q(x,€) =min qy +qvy
sit. Y -y =g - Tx (RP)
+ -

where x, c<R™, y*, v, qt, @ eR™, beRK, AcL(R", RY), TeL(R", M)

and & is an m-dimensional random vector with known distribution F,

~

2y

<®,q=gq *+qg >0.

One of the economic interpretations of this model is as follows:
x is the decision vector, which is nonnegative. Ax = b 1is the resource
constraint on x. T 1is the technology matrix which yields the Tinear
transformation of the activities in finished products w = Tx. £
represents demand. The goal is to minimize the total expected cost which
consists of two parts: the production cost cx and the penalty cost.
For the ith product, i=1,...,m, the output W, is to be compared with

the observed value Ei of the stochastic demand Ei. Any discrepancies

between £,

; and W i=1,...,m, are penalized as follows:

if £ <w, then the penalty is q;(w;-£;),

).

. s +
if £, >w, then the penalty is q_i(?;i—w1



The first eventuality corresponds to excess product, the second to shortage.

The equivalent deterministic problem can be written as

min cx + ¢(w)

X W
s.t. Ax = b
(EDP)
Tx = w
x>0
mn m
where weR" vrepresents the output as mentioned above, ¢(w) = ) ¢1(W1)
i=1

is separable convex and continuous,

¢; (ws) = a;

(w,-€,)dF. (£) + o jg (a2,

i

Jgfwi

Foois the marginal distribution of Eis i=1,...,m, [6]1 [12] [13].
Suppose that m + k 1is small comparing with n. This assumption is
practical. For example, in the stochastic transportation problem
[1] [8] [14] [15] [16] [17], n = m x k.
There are simplex-type methods to solve (EDP) by discretizing ¢
(3] [11] (for more references, see [10]1). Usually, this will considerably
increase the number of variables and will involve discretization errors.
To avoid these two drawbacks, we describe here a method which alternates
between solving some n-dimensional linear subprograms by fixing w and
some m-dimensional convex subprograms by restricting n-m-k activities to
zero levels. In Section 2, we define such subprograms and discuss their
solvability. In Section 3, we give the algorithm. In Section 4, we prove

the convergence of our method.



2. Subprograms

Definition 2.1 For any fixed weR", the following linear program is

called a Tinear subprogram of (EDP) and denote by L{w):

min cx + ¢(w)

X
s.t. Ax = b
L(w)
Tx = w
x> 0.
Without confusion, we also denote its optimal value by L(w). |

The constant term ¢(w) in the objective function does not affect

the solution. However, we keep it there for comparison with (EDP).

Theorem 2.2 Suppose (EDP) is solvable. Then L(w) is solvable if and

only if it is feasible.

Proof "Only if" is obvious. For the "if" part, it suffices to know that
L(w) 1is bounded, then we know that L(w) 1is solvable according to the
duality theorem of linear programming. However, L(w) cannot be unbounded,

since otherwise (EDP) would be unbounded. This proves the theorem. |

If (EDP) is solvable, then for certain w*, L{w*) will yield optimal

solutions of (EDP). Such w* 1is called a certainty equivalent of (EDP)

[12]. 1If we can find a certainty equivalent, then we have almost solved
(EDP). Our method will provide a way to seek such a certainty equivalent.
Denote the support vector of x by supp (x).
2. =1 if x, #0

(2=supp (x)’:=
L. =0 if x. =0.



Definition 2.3 Let M be the set of all n-dimensional vectors with m+k

components being "1" and others being "0". Suppose that 2eM. The
following convex program is called a convex subprogram of (EDP) and is

denoted by C(%):

min cx + ¢(w)

X W
s.t. Ax = b
c(2)
TX = w
supp (x) < &
x>0
Without confusion, we also denote its optimal value by C(%). B

The following theorem is proved in [12]. Since it is important to

our discussion, we still make a proof here.

Theorem 2.4 Suppose (EDP) is solvable. Then there exists an 2% eM

such that C(2*) yields an optimal solution of (EDP).

Proof Suppose (x*,w*) 1is an optimal solution of (EDP). Consider L(w*).
L{w*) is solvable by Theorem 2.2. Suppose xO is a basic optimal
solution of L(w*). Then there exists 2*eM such that supp (xO) < A%,

Then C(&*) yields an optimal solution (xo,w*) of (EDP). E

We call such &* an optimal support of (EDP). If we find an optimal

support of (EDP), we have also almost solved (EDP). The solvability of
C(2), however, is not so simple even if it is feasible and (EDP) is
solvable. In fact, the solvability of (EDP) only implies the boundedness
of C(2).



Suppose % M. Then there are m+k positive integers 1S,s=1,...,m~+k

<...< <n and

such that 1 <1, <i Tk S

2
T if h=is for some s,

0 otherwise.

Let Xo and Ca be the m+k dimensional vectors consisting of the i-th
components, s=1,...,m+k, of x and c¢. Let Ae and Te be the sub-
matrices of A and T, consisting of the 1S—th columns, s=1,...,m+k,

of A and T. Then C(%) 1is equivalent to

min ¢ x, + o{w)

Xg oW

e

i
o

s.t. A X
ee (2.1)

Tx =
efe TV

x > 0.
e_

A
Write B = (Te>' This is an (m+k) x (m+k) square matrix. Suppose
e

G = B_] exists. Then (2.1) is equivalent to

min ceG(a) + ¢(w)
W

b
s.t. G(w) >0

Let ceG = (g,h), where g«st, heR™. Then (2.2) is equivalent to

(2.2)

m
min ) [¢;(w;)+h,w.] + gb
w o i iy

b
s.t. G(w)-z 0.



Another equivalent form of (2.1) is simply

min ¢ x_ + ¢(Texe)

X e e
e
s.t. A, = b (2.4)
x >0,
e.._

Remark 2.5 (2.3) is an m-variable convex program with linear constraints
and a separable convex objective function. There are many methods to

solve it [2] [4] [5] [7] [9]. We shall not discuss this here. ]

The solvability of C(&) can be assured by some conditions on the

random vector §&.

~

Theorem 2.6 Suppose q > 0 and Q, the support of the random vector
§’ is compact. Then C(%) is solvable for any 2eM if it is feasible

and (EDP) is solvable.

Proof If Q is compact, then Qi’ the support of gi’ i=1,...,m, are
also compact. This also implies that g exists and thus ¢ is finite.
Since (EDP) is solvable, (2.1), i.e., C(&) is bounded. Then there exists
feasible point sequence {(xg,wr)ir=0,1,2,...} such that

Tim [cexg-+¢(w")] = Inf {C(2)}.

oo

If {(xg,wr)ir=0,1,2,...} has a Timiting point, then this limiting point
will be an optimal solution of C(2) since the feasible set of C(&) is
closed and the objective function of C(%) 1is continuous. Suppose it has

no lTimiting point. Then it has a limiting direction (xg,wc). Since the



feasible set of C(2) 1is closed convex and the objective function of C(2)

is continuous,

Tim e, (x 04 aw€)] = Inf {C(2)}.

-bkxc) + ¢(w
Ao &

e

Now the only case for (2.1) failing to be solvable is that

2+Axg) + o+ ) > Inf {C()} > -, ¥A > 0.

ce(x

0

But this is impossible since ¢(w -FAWC) is linear for A sufficiently

large (see 10.2 and 12.4 of [12]). |



3. The Alternating Algorithm

Algorithm 3.1 Starting from any zoe:M or starting from any wOe]Rm, do

the following two procedures alternatively until the method stops in step 2.

This (x7,w’) is an optimal solution.

1. From ZJ, solve C(RJ) to get an optimal solution w.

2. From w’, solve L(w') to get a basic optimal solution xJ+]. Pick

2j+1e M such that

supp (xj+1) < £j+1. (3.1)

If there is more than one basic optimal solution of L{(w9), we should

choose xJH such that there exists QJ+]e M satisfying (3.1) and
c(3th < c(edy. (3.2)

If no such 23+1 can be found, or 23+] S stop. |

Remark 3.2 To start this algorithm, we can pick any xoe {x|Ax - b, x>0} and

0 0

let w° = Tx". However, a good starting point should be a good estimate of the

certainty equivalent w*. According to our model, we can take w0= é. B

.

Remark 3.3 If L(wJ) is nondegenerate, we can simply take

£J+] = supp (x3+1). ]

Remark 3.4 This algorithm yields a sequence zo, z],...,zJ = an optimal

support. We will prove in Section 5 that 5" #2%5 for r #s. In this
sense, it looks Tike a pivoting method in M. However, 2r+1 is not
necessarily a "neighbor" vector of A They may be different in more

than two components. N



4. The Convergence Theorem

Theorem 4.1 (Convergence Theorem) Suppose that q > 0, that

K = {xle= b, x>0} # ¢, that (EDP) is solvable and that the support of
the random variable & 1is compact. Then Algorithm 3.1 is well-defined
and stops in finitely many steps if it starts from a feasible point wO.

Furthermore, (3.2) holds for every Jj in this case.

Proof In Algorithm 3.1, C(%j) and L(wj) are always feasible if the

algorithm begins from a feasible point. Therefore, by Theorems 2.2, 2.6

and the hypotheses of this theorem, we know that c(zj) and L(wj) are

always solvable. In fact, it now suffices to prove that (3.2) holds for

each %j which is not an optimal support. Then we get the conclusion

since M 1is finite. Suppose C(Rj) has an optimal solution (ie,wj).
X

Let X be the n-dimensional vector whose components consist of and

e
0 correspondingly. If X is not an optimal solution of L(wd), then

there exists an %j+] eM with
c(d1y < L) < c(2).

Thus, suppose X is an optimal solution of L{w'). We shall prove that

. i+
there is an optimal solution of L(w’) such that the associated 2J !
satisfies (3.2). Suppose that w* s a certainty equivalent. Let x*
be an optimal solution of L(w*). Since 99 is not an optimal support,

cx* + plw*) < cx + o(w)
lLet

GA) = A(wd) + (1= 0wt 0 <<



-10-

According to the convexity of ¢, we have

ox’ ¢(WX) < cX + ¢(wj), VO < A < 1.

A

Suppose X" is a basic optimal solution of L(wx).

Then

A

cx” + ¢(WA) f_cxk

+ ¢(wx) < cx + ¢(wj).

Now pick QA’eM corresponding to the optimal basis of RX.

C(2h) < & + o(wh) < cx + olwl) = c(2d).
Therefore

ghagd, wo < a1,

W

e have

Therefore, since M 1is finite, there exists a sequence le=1,2,...}

r T j+1 j+1

such that A -1, 2 = g9 for some 297' € M. Let B be the basic
i ~ - .1.b

matrix of (Q), corresponding to %3+]. Then x =B 1(§j) = lim B 1(WAY‘)

o0
r .
Tim xx > 0 exists. Therefore, QJ+] also corresponds to an optimal
>0

basic solution of L(wJ), and

c(e3th = ey < ety

This proves the theorem. [ ]



-,--l-l"

Corollary 4.2 lLet x be defined in the above proof. Then a necessary

condition for wJ to be a certainty equivalent is that x be an optimal

solution of L(wJ). A sufficient condition for wJ to be a certainty
equivalent is that X be the unique optimal solution of L(w’). [ |
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