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ABSTRACT: PIPE is a high performance computer architecture with several features that make
it well-suited for VLSI implementation. A PIPE “machine” consists of a memory controller and
two co-processors. AR access processor (A-unit) computes operand addresses for the execute pro-
cessor (E-unit) that performs the main calculations of a program running on a PIPE machine.
The A- and E-units, communicating through architectural queues, execute their own decoupled
instruction streams. In our initial implementation, the units are identical pipelined processors.
Program execution is cverlapped within the processors through pipelining and among the proces-
sors through decoupling. The processor incorporates an on-chip instruction cache for high speed
operation despite limited communication bandwidth. We describe the design of the prototype
PIPE processor. Portions of the processor have been layed out in nMOS technology and submit-
ted for fabrication.

KEY WORDS AND PHRASES: Decoupled Architectures, Pipelining, VLSI Processor Implementa-
tion.

1. Introduction

High performance machine design must exploit parallelism at all system levels, both within
processors through pipelining and among processors through multiprocessing. We have been
designing a high performance single processor with an aggressive pipelined implementation, as
part of a very tightly coupled multiprocessor system. We believe that future high performance
systems will be built from many very powerful processors, such as that described in [PATTS80|,
rather than very many very simple processors. The implementation efforts reported here are an
adjunct to our architectural studies. Our goal is to discover organizational approaches that are
well-suited for VLSI implementation, and to provide useful performance feedback to our design
efforts. While we plan on showing feasibility by implementing pieces of our machine using the
technology available to us, we do not wish to limit our investigations to what could fit on a
vniversity-designed chip today. We feel confident that the processor we have designed could be

integrated on a single chip within our five year time frame.

1Gurrent Address: Computer Science Division, E.E.C.S. Deparimeat, University of California, Berkeley, Berkeley,
CA 84720
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Advanced research on high performance computer architectures is difficult to pursue within
the university environment. Industrial designers have available more advanced processes
[MIKK81] and greater knowledge of circuit engineering [BAYL8la, BAYLS81b, BUDDS1,
KAMI81]. The most ambitious university projects exhibit levels of integration an order of magni-
tude less demse than commercially available components (e.g., the RISC processors [FITZSI,
SHER82] were implemented with approximately 45,000 transistors, MIPS [HENN81] with 25,000,
yet the HP FéCUS chip |BEYES1] contains 450,000 transistors!). High performance machine
design demands a pumber of talents. While architectural innovations can significantly contribute
to overall system performance, aggressive circuit designs, advances in integrated circuit technol-
ogy, and exotic packaging cannot be neglected. We have focused on architectural innovations

well-suited for the VL S! environment.

PIPE, Pipelined Instructions with Parallel Execution, is a decoupled access and execute
architecture [COHL 81, SMIT82, PLES83]. A -program can be viewed as two coupled components,
one that computes the addresses of bpemnds and another that performs calculations over these
operands. PIPE mirrors the dual nature of programs. A PIPE "machine” consists of a memory
contrcller and one processor that computes addresses and fetches operands for a second processor
that executes the main calculations of the program. The processors and the memory controller
are linked through hardware queues. In this first implementation, the Access Processor (A-unit)
and Execute Processor (E-unit) are identical, although they execute separate instruction streams.
This paper describes the implementation of the PIPE processor, which functions as either the A-
unit or E-unit of a PIPE machine. Its implementation features include an on-chip instruction

cache, hardware queues, 2nd 2 pipelined organization.

The rest of the paper is organized as follows. In the next section, we give more details on
the PIPE architecture, in particular those features that have important effects on the implementa-
tion. Section 3 describes the initial implementation of the PIPE processor. The PIPE datapath
has load and store queue subsystems, a shifter functional unit, and an ALU functional unit. The
latter has two pipeline stages and forwarding logic to route ALU results back as inputs to the

ALU. The instruction unit has three stages: (1) instruction fetch, with an on-chip instruction
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cache, (2) instruction decode, and (3) instruction issue, with pipeline conflict resclution and inter-
locks. We then discuss the memory-processor interface and some of the design issues of the
memory controller. Section 4 describes the lessons learned. Our status and future directions are

given in section 5.

2. PIPE Arckitecture

The PIPE architecture is more fully described in [SMIT83a). In this section we concentrate

on its aspects that most influence its high performance implementation.

PIPE is a decoupled architecture that has a streamlined instruction set suitable for a pipe-
lined implementation. Pipelining is a good match for VLSL. VLSI circuits are characterized by a
very largz number of transistors to interface pins. While a pipelined processor requires more logic
than a serial processor, it does not need additional pins. Performance is increased with a modest
additional cost in chip real estate and complexity. This is_ one way to use the additional transis-
tors available through advances in integrated circuit technology. Another is to place more storage
on-chip, in the form of registers and/or caches. PIPE does the latter by incorporating an instruc-

tion cache on-chip.

A decoupled architecture [COHL81, SMIT82, PLES83] is one in which two (or more) proces-
sors execute a single process divided into parallel instruction streams. The division is functional:
operand address computation is separated from the main program calculations. The processors
coordinate their parallel execution by communicating through architectural queues. Decoupling
supports parallelism within conventional programs, without precluding multiprocessing 2t the
level of the process. The access processor (A-unit) calculates memory addresses and makes
memory references for both processors. Architecturally, each processor has two store and one load

queue between it and the memory controller (see figure 1).

Data is fetched by the access processor for the execute processor (E-unit) as follows. The
A-unit calculates 3 memory address and issues an alternate load request, i.e., load the operand
into the "other” processor (the E-unit). The memory controller fetches the operand and places it

into the load queue of the E-unit. When the E-unit needs to access data, it reads from its load

-3



saq

SDQ

I

| I
——E MCU !
Load Datao
L ' ¥ b . ........... ¥
1 wof L
Bal 00 | | e saalsoa
i

Execution Unit
(oddress generation)

—Unit Bronah [=Unit -Execution Unit

Queue

Access -Processor

Execute Processor

" Figure 1 — Decoupled Access/Execute Architecture

queue.

Data is written to memory by placing the address on the store address queue and the data

on the store data queue. As above, an alternate store address can be provided to the memory

controller. The top store address element and store data element are paired and written to

memory. To insure that both processors branch the same way on a conditional test, Boolean

results are exchanged through additional branch queues. The intent of a decoupled architecture is

that the access processor should run ahead of the execute processor and reduce or eliminate

observed memory delays; we have observed that this is the case [SMIT82].
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The key for achieving a high performance implementation is an elemental instruction set, as
has been clearly demcrstrated in the CDC 6600, CDC 7600, and CRAY-1 machines. An elemen-
tal instruction is one whose resource requirements can be readily determined before instruction
execution. An instruction can use any resource available to it during a single flow through the
execution pipeline, even if the action it performs is quite complex. Pipeline conflict detection and
interlocks can be implemented in a single instruction issue stage that precedes the execution pipe-
line. The "one cycle” constraint makes the issue conditions relatively easy to determine. While
simple instructions are usually elemental, the opposite need not be true. Consider a postincre-
mentisg load instruction that simultaneously forms a load address from the contents of a register,
while replacing the register with its contents plus an immediate field.? Although th~e instruction
might be considered complex, it is elemental in that (1) its resource requirements are easy to
determine, (2) they are few in number, and (3) the instruction can be executed in one cycle. Dur-
ing the first stage of the execution pipeline, the register is routed along the result bus from the
register file to the load address register, as well as to the ALU along the source bus. During the
second execution stage, the summation with the immediate value is completed and routed along
the result bus back into the register file. The resources are the register, the result bus into the
register file, and the pipeline to memory. lThe use of the result bus during stage 1 and stage 2 can
be scheduled at imstruction issue time. The only additional resource requirement beyond a con-

ventional load instruction is the additional need for the result bus.

For this reason, register-to-register architectures are better suited for pipelining than
memory-oriented architectures. The resource and time requirements of register-to-register opera-
tions are known in advance. la addition, register-to-register architectures allow data to be loaded
from memory in advance of when it is needed by an instruction. In a storage-to-storage architec-
ture, data is not loaded from memory until the time it is needed, thus adding to the observed

instruction latency.

°PIPE has such an instruction.



PIPE's repertoire includes three-address register-to-register and queue-to-register
arithmetic/logical /shift instructions, qucuc-to-register load /store instructions, and branch instruc-
tions. Instructions are blocked from issue because of (1) read-after-write hazards, (2) load queue
empty, (3) store queue full, and (4) result bus conflicts. The instruction set has been selected to

simplify the detection of these conditions.

Load and store data pass through PIPE's architectural queues. These are the LOAD DATA
QUEUE (LDQ), the STORE DATA QUEUE (SDQ), and the STORE ADDRESS QUEUE (SAQ).
The STORE queue tails and LOAD queue head are encoded as one of the processor’s registers in
the register file (foreground register 7). This eliminates the need for separate queue manipulation
instructions. Queues are essential for the decoupled operation described above. A further advan-
tage is that a general purpose register need not be allocated for an operand that is only used once.
Queues also provide subtle advantages for pipelining. At instruction issue time, a load instruction
does not need to reserve a path to the register file for the load data. Otherwise, interlocks would
need to deal with the unpredictable memory system response time. The hazard condition of

loaded data not yet available is encoded in the empty /not empty status of the load queue.

Condition codes cause notorious problems for pipelined machines. Their setting or testing
causes hazard conditions analogous to those of the registers. If every instruction could potentially
change the condition codes, then there is 2 write-after-write hazard among all non-branch instruc-
tions. PIPE does not have condition codes. The computation of the effective target address, the
evaluation of the branch condition, and the transfer of control are specified separately. The PIPE
architecture has eight branch registers (BRs) that are loaded under program control with branch
target addresses. That a branch will be taken is determined by a prepare-to-branch instruction
(PBR), which specifies the branch condition, the branch register containing the target address, and
a branch distance (u;; to 7) of instruction parcels (16 bit words) to execute before the transfer of
control occurs. The separation of transfer of control from determination of transfer gives the
instruction fetch logic advance notice of a branch, thus providing a smoother flow of instructions.

The prepare-to-branch concept was first proposed in [SCHO71]:
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The register file is divided into a foreground and background bank of eight registers each.
The dual register banks support fast procedure calls. Background registers are dumped to
memory or loaded with parameters as needed before 2 call. The foreground /background status of

the banks are swapped on call and return.

3. PIPE Implementation

A block diagram for the PIPE processor is given in figure 2. The pipelined instruction unit
contains three stages: instruction fetch and cache, instruction decode, and instruction issue. The
pipelined execution unit contains two functioral units, a one stage barrel shifter and a pipelined

two stage arithmetic logic unit. The datapath width is 16-bits, with two register banks of eight
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Figure 2 — Block Diagram of PIPE Processor




registers each, the shifter, and the ALU. The LOAD and STORE queues are part of the
memory-to-processor interface. Pins to and from memory are unidirectional, rather than multi-
plexed, to avoid delays induced by switching input/output direction. Traflic between the proces-
sor and the memory controller is tagged. On output, the tags distinguish between instruction
addresses, load and store addresses (both for the issuing processor and its "alternate”), and store

data On input, they distinguish between instructions and load data.

3.1. Implementation Goals

Our hypothesis is that a well-designed, elemental instruction set can lead to a well-
structured pipelined implementation. Our purpose is to demonstrate that the PIPE architecture
is suited for VLSI implementation and to identify timing bottlenecks that limit performance.
Understanding the effectiveness of the architecture’s features is more important than comparing
its implementation with commercially available processors. What distinguishes PIPE frém othér
university designed processors is our focus on the implementation of a pipelined instruction unit
with hardware interlocks and an integrated instruction cache, and the pipelined execution unit
(separate functional units for shift and arithmetic/logical operation, the latter with a two stage
pipeline).

Some aspects of the implementation have been simplified to keep it manageable. PIPE is a
16-bit processor with a 16-bit address space (separate instruction and data space). While there is
nothing inherently difficult about implementing a 32-bit datapath, this would have limited the
available area for the more interesting control unit. PIPE single parcel (16-bit)
arithmetic /logical/shift instructions and double parcel (32-bit) load /store/immediate instructions.
The on-chip instruction cache was kept small (64 16-bit words), as were the number of registers in

the register file (16 x 16-bit words).

In a further simplification, we have ignored the problems of trap 2nd interrupt handling by
postulating the existence of an external interrupt handler. Handling interrupts is complicated
because of the large amount of state information, kept in the queues, which must be saved on an

interrupt. PIPE can only be interrupted when it is convenient to do so, i.e., when the memory
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and branch queues are empty. This is analogous to the situation in microcoded machines, where

the machine cannot be interrupted after an arbitrary microinstruction.

3.2. Datapath Description

The datapath is organized around a conventional three bus architecture: two source buses
(A, B) and one result bus (C). The source buses are precharged during clock phase PHI2 and are
used during PHI1. The result bus behaves conversely. The datapath contains a source to result
bus by-pass, a register file, shifter, ALU, load data queue, load ad\dress register, and a single regis-
ter that implements both the store address and store data queues (see figure 3). The load queue
behaves like a read-only register, written by the memory-processor interface. Similarly, the store
queue is like a write-only register, read by the memory-processor interface. To facilitate bus rout-
ing, these are located at opposite ends of the datapath. Only the source buses pass through the

load queue, while the result bus passes through the store queue. The buses are run in metal, with
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control in polysilicon running perpendicular to it.

3.2.1. Conventional Data Path Cbjects

The register file is a tri-ported (two read ports and one write port) array of 16 x 16 bit regis-
ters. It is organized into two banks of eight registers each. Arithmetic /shift /logical instructions
implicitly refer to the foreground bank. Data is transferred within and hetween these by a collec-
tion of move instructions. The foreground/background status is swapped on procedure call or

return.

The barrel shifter is an adaptation of the RISC-II shifter, described in [SHER82]. Since the
shift amount i8 specified in a general purpose register, rather than a literal as in RISC, we use a
different layout for the control registers (see figure 4). A 31 bit L bus, a 16 bit R bus, and a 16
bit S bus pﬁs through the barrel shifter. Surrounding the shifter in the datapath are a Shftln
register for the shifter input, a ShftDecode latch to map the low order 4 bits of the B-Bus into the

16 S control lines, and a ShftOut register for the shift result. An additional bus routes the Shftin
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Figure 4 — Barrel Shifter Subsystem
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data to the other side of the shifter for rotating shifts. This does not alter the pitch of the data-

path, since the source buses do not pass through the shifter subsystem.

Data is placed onto the L and R buses in complemented form. A rotate shift is accom-
plished by gating the ShftIn register onto both L[30:16] and L[15:0], and gating to ShftOut from
R. A logical right shift is performed by placing Skftln onto L[15:0] and reading R into ShftOut.
L[30:16] are precharged high. When these bits are shifted onto R and read into ShitOut, they are
complemented and appear as logical 0. A logical left shift is similar, except that Shftln is gated
to R and the L[15:0] is gated to ShftOut. An arithmetic right shift is the same as the logical

right shift except that L[30:16] is selectively discharged if Shftin holds a negative number.

3.2.2. Bus By-Pass

The PIPE instruction set supports general data movements between registers, either within
banks or between them. Data could be passed through the ALU on its way to a new register.
However, to support post-incrementing loads and stores, we chose to incorporate a by-pass
between the A-bus and result bus. During a post-incrementing operation, an operand address is
formed from the contents of a register. The register is afterwards incremented by an immediate
operand within the instruction. The register contents are latched into the by-pass and the first
stage of the ALU during PHI1. During PHI2, the register contents are latched into the load
address register and the ALU stage 1 computation completes. The summation is completed by
the ALU stage 2 during the next clock cycle. The result is written back to the register file during

PHI2.

3.2.3. Two Stage ALU Pipeline

The ALU consists of five functional parts: (1) the function generator, (2) condition flag gen-
eration, (3) the carry lookahead, (4) the sum stage, and (5) the overflow signal generation. An
ALU result can be routed back to the inputs through an internal forwarding path when it is used

as an operand in a subsequent operation.
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The function generator forms all bitwise logical functions and creates the generate and pro-
pagate signals for addition and subtraction. The condition flag generator is a zero test circuit for
the A-Bus plus the sign bit, and is used for conditional branches. The carry lookahead eircuitry
generates 4-bit, 8-bit, and 12-bit carry signals for use by the four bit sum stages. The sum stages
operate on a 4-bit wide slice and generate four sum outputs. The overflow bit is generated from

the high order three bits to indicate a two’s complement overflow.

The ALU timing is spread across four clock phases: stagel/phil, stagel/phi2, stage2/phil,
stage2/phi2. During stagel/phil, the inputs to the first stage become available from either the
register file or the queue through the A- and B-Buses, or the second stage of the ALU through the
internal forwarding path. Logical operations are performed here. If the operation is arithmetic,

the propagate/generate signals are also produced. The zero condition is evaluated.

During stagel/phi2, results from a single stage ALU operation are gated to the C-Bus. The
zero flag and sign bit are made available to the control logic. The two level carry-lookahead logic
calculates the 4-bit group carry-in signals. The propagate and generate signals are latched for the

next stage.

During stage2/phil, the group carry 2nd the propagate and generate signals are examined.
The sum is generated, and is immediately gated to either or both of the A- and B-buses if the for-

warding path has been enabled by the control logic. The feedback result is latched by stagel.

During stage2/phi2, the sum result is gated to the C-bus. Overflow is determined from the

carry in and carry out of the result’s sign bit.

The ALU forwarding path takes advantage of the observation that the first stage of 1the
ALU, stagel/phil, must include enough time to read data from the register file. The phil phase
during stage 2 is actually much longer than necessary to compute the summations. Thus results
can be forwarded back to stage 1 for immediate use during the same clock phase in which they

are formed.
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3.2.4. Queue Subsystems

PIPE’s load and store queues provide a buffered interface to memory. A request for an
operand load is separated from its use. Several load addresses can be sent to memory before the
first operand is actually used in some instruction. The compiler must schedule its generated code
appropriately to take advantage of this feature. Similarly, several store addresses can be placed

in the store queue before the first store data is placed there.

Major design decisions related to the queue subsystem include queue lengths, how they are
to be partitioned across the processor and the memory controller, and what queues can be com-
bined. We are currently investigating how long these queues should be. On-chip queue lengths
are kept small, while the extensions of the queues within the memory controller are significantly
longer. Furthermore, there is no advantage in separating the on-chip store address and store data
queues, since these must be multiplexed over the single output pins to memory. In the initial
PIPE implementation, the store address and store data queues are implemented on-chip by a sin-
gle element STORE QUEUE (SQ). However, the SAQ and SDQ are implemented as separate
queues in the memory controller. Tags distinguish between addresses and data. The memory-
processor interface is responsible for forwarding these to the memory controller. A status bit indi-
cates when the on-chip queue is full, thus blocking store address or store data instructions from
issue.

The top three elements of the load queue are implemented on-chip. The queue consists of a
three element register file and two bit arrays for head and tail pointers. The load queue behaves
as a read-only register. The queue stages are implemented with cells identical to those of the
register file. Because of the three address instruction format, either one or two elements can be
removed from the queue at a time. To simplify the implementation, we restrict generated code to
make only one reference to the load queue per instruction. The queue subsystem has two output
ports that are connected to the datapath’s two source buses. A removed element can be directed
to either bus. The queue subsystem input port is connected to the memory input bus. Data can

be placed in the queue by the memory-processor interface during PHI1. An element can also be
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removed during PHI1. The full/empty status bits change on the PHI2 phase of the operation
cycle that makes the queve full or empty. A reset input resets the head and tail pointers and sets

the queue status to be empty.

Forwarding logic allows data to be passed from the memory input bus to either of the
source buses directly. Thus data can be gated onto the buses in a single cycle without first latch-

ing it into the queue.

3.3. Instruction Unlt

Our philosophy is that the instruction unit should never fetch an instruction from memory
that will not be executed. The relatively small number of pins available on an integrated circuit
package imposes a significant bottleneck on traffic to and from memory. Thus, the instruction
fetch unit will not prefetch instructions from off-chip unless it is known, through the prepare-to-

branch mechanism, that they will be executed.

The instruction unit consists of a cache/fetch stage, a decode stage, and an issue stage. The
cache responds to requests from the fetch unit, initiating a memory transaction when a desired
instruction IS not found in the cache. The unit fetches instructions for the decode stage, inter-
preting branch instructions to continue the orderly flow of instructions through the pipeline. The
decode stage interprets the instruction, and sets up the signals to control its execution in the two
stage execution pipeline. The issue logic compares the instruction to be issued with those already
in the execution pipeline, and determines whether any conflicts could arise. If so, the instruction
is blocked awaiting completion of the conflicting instruction in the pipeline. These will be

described in more detail in the followicz subsections.

3.3.1. Instruction Cache/Fetch Unit

An on-chip instruction cache is integrated with the fetch logic of the control umit of the
PIPE processor. An on-chip instruction cache is attractive because (1) its control logic is simple
to implement and (2) it reduces the traffic from memory. We have chosen a small cache size of

sixteen lines of four by sixteen bit words because of our limited chip area and design expertise.
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Clearly a much larger cache could be built by experienced designers in state-of-the-art technolo-
gies. While the choice of cache size is critical for effective performance, the actual size does not
affect the implementation details of controlling it and interfacing it with the fetch logic. Further,
we have done cache studies that indicate that the performance of a large cache can be extrapo-

lated from a smaller one’s periormance [GOODS83].

The cache subsystem is organized as shown in figure 5. For simplicity, the cache is direct
mapped. Our studies indicate that more complicated organizations are not significantly more

effective [SMIT83b]. A ten bit tag word is associated with each 64 bit line of the cache. To make
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Figure 5 - Cache Subsystem Block Diagram
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cache lookup fast, separate decoders are used for the line and the tag. The line decoder is placed

in the middle of the array.

An instruction is accessed as follows. When the instruction decode stage of the control pipe-
line is ready for another instruction, the fetch program counter is presented to the cache decode.
The 64 bit line and 10 bit tag are read from the cache. The tag is compared with the high order
bits of the PC, and if a match occurs, the appropriate word of the line is gated to the instruction
register. I there is no match, the entire 64 bit line is replaced from memory. An instruction
fetch request is made tov the memory-processor interface control logic. Eventually instruction
words are returned in word order (i.e., line word 0, line word 1, ...) and are assembled in the cache
registers. The entire line is rewritten into the cache, and is simultaneously passed through for

selection and latching into the instruction register.

The PIPE instruction set has been designed to enable the processor to gracefully change
control flow. Branch target addresses are separately loaded into Branch Registers {(BRs). A
transfer of control is mdié;ted by a Prepare-to-Branch instruction, which specifies (1) a condition
to test, (2) a branch register, and (3) a number of instruction parcels to execute before the branch
is taken. The parcel count field tells the fetch unit how many parcels can be fetched before the

transfer of control.

The fetch unit workg 28 follows. It detects when the decode stage is ready and provides it
. with another instruction parcel for decode. A fetch is normally initiated by incrementing the
Fetch Program Counter"w(-f“étchPC), and starting a cache access. When an instruction parcel is
received from the cache, possibly after being loaded into it from memory because of a miss, the
fetch unit checks to see if it is a PBR instruction. The fetch unit decodes the PBR instruction to
determine the maximum ﬁumber of parcels that can be fetched and allowed to enter instruction
decode and issue before .t‘,h-e PBR instruction actually executes. Only instructions that will reach
execution are fetched into the instrﬂctiox; pipeline. The PBR decode logic in the fetch stage sets

a Branch Pending (BP) flag, loads the parcel count field into the Parcel Counter (PCnt), and

loads the specified Branch Register into the Pending Program Counter (PendingPC). Before a
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cache access is actually initiated, the fetch unit checks whether a branch is pending, and if so,
whether PCnt is greater than zero. Under these conditions, fetching proceeds as normal. After
each fetch, PCnt is decremented by the same signal that increments the FetchPC. Fetching is

inhibited whenever BP is asserted and PCnt is zero.

The branch condition is evaluated when the PBR instruction reaches execution. If true, the
execution control sets the Branch-to-Happen (BH) status flag. Otherwise the BP flag is reset, per-
mitting sequential fetching to continue. If PCnt is zero and BH is asserted, the fetch unit gates
PendingPC to FetchPC. Future instructions will be fetched from the target address, thus control

has been effectively transferred. Both BH and BP are reset by the fetch unit.

The fetch unit does not yet incorporate a prefetching strategy, other than that an entire
cache line is fetched from memory at a time. The accessed line could be partially decoded to
determine whether it would be executed sequentially because (1) it contains no PBR instructions,
and (2) no delayed branch could be taken within the line. Bringing the next line into the cache
could be overlapped with the execution of the current line. Since this significantly complicates

the fetch unit logic, it was omitted in this initial implementation.

3.3.2. Instruction Decode

The decode logic is relatively straightforward. The instruction opcodes have been carefully
chosen to make it easy to distinguish zamong classes of instructions, in particular, one versus two
parcel instructions. The decode stage is responsible for generating the comtrol signals for both

stages of the execution pipeline.

Unfortunately, the decede logic has been complicated by two design decisions in the choice
of instruction formats: (1) in certain contexts, RO and R7 have special meanings, and (2) some
instruction fields are overloaded. R7 indicates that the operand is to be found in either the load
queue or the store queue, depending on whether it appears as a source or as 2 destination. R7,
however, is not a phantom register. Return addresses on procedure czlls are placed in back-
ground register 7. Thus some additional logic is needed to inhibit the register file when R7 is

used in arithmetic/logical/shift operations, but not when implicitly used in a procedure call
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operation. Similarly, RO means the constant zero in load and store operations, but is a conven-

tional general purpose register in arithmetic logical/shift operations.

The second problem is due to the overloading of certain instruction fields. A one parcel
instruction (RRR format) consists of a seven bit opcode, and three three-bit register fields denot-
ing the destination and two sources of the instruction’s operands. A two parcel
load/store /immediate instruction (LS format) consists of an opcode, one register field, six bits
reserved for memory expansion, and a sixteen bit address/immediate field. Note that the first
field in an RRR instruction is a destination, while it is a source in the LS format. A multiplexor

selects the appropriate bits to forward to the register file.

While PIPE has only two formats, the assignment of functions to fields is not so straightfor-
ward. The move instruction takes two operands, and the third register field is actually used as an
extension of the opcode to distinguish between foreground and background register movement.
Another example of a non-uniform instruction format is found in the branch instructions. Two of
the register fields refer to the parcel count and the target address branch register, rather than gen-
eral purpose registers. Additional logic is needed to enable/disable the various units that inter-

pret the instruction fields.

3.3.3. Instruction Issue

PIPE and the CRAY-1 have similar philosophies about instruction issue: resources needed
by an instruction are reserved at issue time [CRAY76]. If an instruction to be issued would
conflict with an already issued instruction in the execution pipeline, the instruction is blocked
until the conflict is removed. The advantage of the approach is its simplicity: all pipeline control
is resolved at a single point within the control unit. The disadvantage is the communications
considerations: all sta_tua information about instructions in the pipeline must be made available to

the issue logic to permit it to make the issue decision.

For PIPE, with its simple datapath and execution unit, the design of the issue logic is much
simpler than in the CRAY. Since the execution unit is only two stages long, instructions are

guaranteed to complete in issue order (this need not be the case for longer pipelines). Further,
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the possible conflicts are small. These center around the result bus into the register file and the
status of the queues. If instructions could complete out of sequence, because of a longer execution

pipeline, the registers would also have to be reserved at issue time.

A one stage arithmetic operation cannot be issued if the previous instruction issued was a
two stage operation. This is because both would need the result bus during the same clock

period.

Instructions which refer to queue operands cannot be issued if an inappropriate queue status
is detected. For example, an arithmetic operation referring to R7 as a source cannot be issued if
the LDQ is empty. Similarly, an instruction with R7 as the destination cannot be issued as long

as the SDQ is full.

A subtle interlock involves the SWAP instruction, which changes the status of the fore-
ground and background banks. The three-bit register fields are bound into a four-bit register
descriptor at issue time. A register reference instruction is blocked from issue if the currently exe-

cuting instruction is a SWAP.

The final interlock involves register read after write. Normally, the issue logic cannot issue
an instruction if one of its source operand registers is the destination of an instruction already in
execution. We have circumvented this problem by incorporating a result forwarding path within

the ALU described in that section.

3.4. Memory/Processor Interface and Memory Controller

A unique feature of the PIPE implementation is dedicated input and output pins. Most pro-
cessors time multiplex their pins, but then they must pay a time penalty when the tri-state pads
switch from input to output and vice versa. PIPE's interaction with memory is more like inter-
processor commu‘nication than a conventional microprocessor bus protocol. Several different kinds
of information can be supplied on the input or output pins during each clock period. These are
distinguished by associated tags. The To-memory and From-memory controllers operate indepen-

dently, although one of the input tags is used to inhibit further output requests when the memory
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controller gets overloaded.

Output Tags:
0 0 0 - No Memory Request
00 1 — Instruction Address
01 0 - Internal Load Address
01 1 - Alternative Load Address
100 — Store Data
10 1 — Block fetch
110 — Internal Store Address
11 1 — Alternative Store Address
Input Tags:
0 0 — Memory Busy (Inhibit To-Memory Requests)
0 1 = No Input Data

1 0 — Instruction Data
11~ Data

4. Lessons Learned

Overloading the méa.ning of R7 was a significant design mistake. What looked like an
elegant and natural solution of making the queues appear as general purpose registers significantly
complicated the decode logic. The simplicity of the RISC implementations is in part due to the
ease with which the instructions could be decoded. Had we a larger instruction size (32 bits), with
more room for additional opcodes, we would have included separate queue manipulation opera-

tions.

On one occasion we discovered that our "streamlined” instruction set was not as elemental
as we had thought. An instruction needed a combination of resources that could not be provided
in a single instruction execution time. The problem arose as a side-effect of a proposed Prepare-
to-Call instruction. PCall operates analogously to PBR, except that when the transfer of control
occurs, the return PC is gated to BR7 and the foreground and background banks are swapped.
These actions are done simultaneously with the execution of the last instruction before the branch
is taken. A conflict could arise over the use of the result bus to the register file. The solution is
to inject the branch actions into the instruction stream following the last instruction. Rather

than make this a side-eflect, we have replaced PCall by a collection of primitive instructions for
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(1) indicating control transfer (the already existing PBR), (2) saving the return address (a MOV
instruction is used), and (3) swapping the foreground and background register banks (through a
SWAP instruction). Our machine has no special instruction for procedure call or return. A pro-
cedure call is performed by following software conventions using combinations of the three
instructions above. Since PCall was not an elemental operation, we have replaced it by its ele-

mental components.

5. Status and Directions

Thus far, we have implemented major pieces of the processor and have submitted these for
fabrication. These include (1) the datapath, including the pipelined ALU, (2) the instruction
cache and fetch unit, and (3) the queue subsystem. The instruction cache test chip is shown in
figure 6. Work continues on completing the instruction pipelire. Our main goal has been to
obtain performance estimates for the design, particularly timing and area data. We do not expect
to be able to produce a working PIPE processor on a single chip in the near future. To do so

would require us to be too conservative for our research goals.

The PIPE implementation project is only one of several related to high performance
machine design at the University of Wisconsin-Madison. Research groups are focusing on the
issues of (1) generating high performance, well scheduled machine code for decoupled architectures
from high level languages, (2) designing a specialized access unit based on [PLES83], and (3)
designing the Memory Controller. Work continues on extending the PIPE ideas to queue-based

supercomputers of the future.
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