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Abstract

The PIPE architecture (Parallel Instructions and Pipelined Execution) is proposed
as a research vehicle for studying high performance VLSI architectures and organiza-
tions. Principal features are: 1) it is pipelined, 2) it is capable of a decoupled mode
of operation where two processors cooperate in executing the same task and com-
municate via hardware queues, 3) it has an instruction cache, and 4) it has a memory
interface that allows overlap of memory transactions. This paper describes the pro-
posed architecture and its planned implementation. Included are a discussion of
design considerations for a pipelined VLSI architecture, and a description of the par-
ticular architecture we have chosen to study.

1. Introduction

The PIPE architecture (Parallel Instructions and Pipelined Execution) is a VLSI-
oriented research project underway at the University of Wisconsin. This paper
describes the architecture, the motivation behind it, and some of the features of its
planned implementation.

Although we draw a sharp distinction between architecture and organization, a
major part of our research is the study of their interaction. The architecture is a
functional description, most notably the instruction set, and the organization is the
hardware implementation.

The two main architectural features of PIPE are: 1) it is pipelined, and 2) it can
be decoupled [Smit82, Ples82, CoSt81], where two identical processors execute
parallel instruction streams, communicating via architectural queues to execute a sin-
gle process.

We feel that pipelining and VLSI are a good match. A pipelined computer organi-
zation requires more logic than a serial one, but it does not necessarily require more
interface pins. Furthermore, the additional logic required for pipelining contributes
significantly to system performance. Our research is not to demonstrate the viability
of a pipelined organization in a VLS| environment. Rather, we will explore architec-
tures that permit pipelined VLS| system organizations that are simple, efficient, and
well-structured.

Decoupled architectures are a recent development. They support multiprocess-
ing at a low level, while not precluding multiprocessing the process level. A decou-
pled architecture processor complements traditional multiprocessing forms. Two pro-
cessors of a decoupled architecture might be used in an access/execute (AE) mode
of operation. The access processor (AP) calculates all memory addresses and makes
all memory references for both processors. Any data intended for use in the execute
processor (EP) is placed in a hardware queue held by the execute processor. It per-
forms the data processing calculations, e.g. arithmetic operations on data. When it
needs memory data, the EP simply goes to its input queue and takes the first item.
Computed results to be stored in memory are placed in a hardware output queue.
When the AP has computed a store address, it and the data in the EP's output queue
are paired and sent to memory. Conditional branches are also coordinated via
queues, and in many cases the access processor runs well ahead of the execute
processor. This results in more efficient use of memory, significantly less effective
memory delay, and higher performance [Smit82]. The two decoupled processors can
be identical. Thus, only one processor need be designed. A wider variety of opera-
tional modes besides AE mode mentioned above can be supported.

Two main implementation features are: 1) an instruction cache, and 2) a
processor/memory communication interface permitting overlap among consecutive
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memory references.

The instruction cache provides a high performance payoff for hardware cost.
Although we feel that an on-chip data cache requires too much real estate and
design complexity for our system, a pure instruction cache provides a good balance
of chip area requirements, design difficulty, and performance.

The second feature is memory reference overlap. Rather than supplying an
address and waiting for a memory transaction to complete before initiating the next,
we support a CPU/memory communication interface that allows simultaneous memory
transactions. This is widely used in pipelined mainframe computers. The interface
will still support memory interleaving.

1.1. Design Considerations

There are three considerations that guide the direction of this research. These
are the so-called von Neumann bottieneck, the lesser-known Flynn bottleneck, and
efficient compiler code generation.

The von Neumann bottleneck [Back78] is the restriction of the communication
path between the CPU and main memory to one word per clock cycle. The bottieneck
is not that restrictive, since high performance computers have provisions for
transferring several words per cycle. Nevertheless, it characterizes the VLSI
environment. The features discussed earlier are directed at the von Neumann
bottleneck. An instruction cache cuts down on the number of words passed through
the bottleneck, and overlapped memory references use the available pins as effi-
ciently as possible. The von Neumann bottleneck also provides part of the motivation
for a decoupled architecture. The queues of a decoupled architecture provide
pbuffering in the memory access path so that temporary congestion at the von Neu-
mann bottleneck can be smoothed out.

The severity of the von Neumann bottleneck can be reduced if a high instruction
cache ratio is achieved. In high performance systems using caches, the major obsta-
cle to performance is not the von Neumann bottleneck; it is the Flynn bottleneck.
Flynn [Flyn66] observes that the real performance constraint is that in the instruc-
tion fetch/decode path there is some bottleneck through which instructions pass at
the maximum rate of one per clock period. This observation is supported by all the
commercially available high performance computer systems.

Decoupled architectures, with their two parallel instruction streams, reduce the
constraints of the Flynn bottleneck. Because there are two program counters,
decoders, issue units, etc., the capacity of the bottleneck has effectively been dou-
bled. Our load/store instruction set is aimed at raising the relative percentage of
memory loads and stores in the instruction mix, with the goal of fully using both
bottlenecks simultaneously, yielding a balanced system. This will be made more
apparent in later sections.

Software issues are a major consideration in any architectural project, but a
pipelined system increases its importance. The overlapped operation provided by
pipelining adds another dimension to code optimization: code scheduling. Instructions
must be ordered to maximize the amount of overlap. Good scheduling provides signifi-
cant speedup, but it often takes years between the development of a pipelined
architecture and the development of a compiler that generates near optimum code. A
decoupled architecture effectively permits some code scheduling to be performed
dynamically at runtime, thereby reducing the importance of static compile~time
scheduling.



2. Description of the Architecture

2.1. Single Processor Architecture

The decoupled architecture we envision requires two identical co-processors
that communicate via hardware queues. However, a single processor could be run by
itself, and would provide reasonably high performance. Hence, we begin by defining a
single processor architecture. Section 3 describes the few extensions necessary to
support decoupled operation.

2.2. Pipelining and Architecture

The success of the Seymour Cray architectures, CcDCB600 [Thor70], CDC7600
[Bons69], and CRAY-1 [Russ78], have clearly demonstrated that a computer's archi-
tecture is a critical factor in determining efficiency of a high-speed implementation.
Although our design environment and technology are considerably different, many of
the architectural concepts are still valid. A guiding principle of the Cray architec-
tures is simplicity. Hence, we use a simple instruction set that is in some ways similar
to RISC-l [PaSe81], although the motivation and general characteristics are gen-
erally closer to those of the CDC6600.

We agree with many of the arguments put forward for simple instruction sets
[PaSe81, Radi82]. However, there is another, perhaps stronger, argument when a
pipelined implementation is used. Simple instructions have fewer dependencies with
other instructions and allow more nearly optimal code scheduling and sequencing. To
quote J. Thornton, the CDC6600 design involves the 'use of ‘micro' instructions
which can be arranged with flexibility to provide overlap" [Thor70]. Of course, the
use of simple instructions to optimize scheduling can be carried too far: if there are
too many instructions, the Flynn bottieneck problem can be made more severe.
Hence, a balance must be struck.

Another part of our design philosophy is that pipeline interlocks should be in
hardware. This is in contrast to the MIPS project [HJBG82], another pipelined VLSI
architecture, where the interlocks are in software. We feel that the MIPS architects
overestimate the difficulty of hardware interlocks and underestimate the difficulties
of code generation for a pipelined architecture. By using an architecture designed
specifically for pipelining, essentially all interlocks involve use of the registers, and
can be resolved at one point in the instruction pipeline with relatively simple logic.
This is done in the CRAY-1 where interlock resolution is primarily done at only one
pipeline stage. In contrast, an architecture not designed for pipelining, e.g. 1BM
360/370, can lead to complex hardware interlock problems when a pipelined imple-
mentation is used. If software interlocks are used, many features that are ordinarily
implementation-dependent become part of the architecture -~ for example pipeline
lengths. The code generator must be aware of pipeline lengths to provide correct
interlocking. A new implementation forces a change in the code generator, and code
for the older implementation must be recompiled or rewritten.

An architecture incorporating interlocks in software takes on the appearance of
an array processor, and generating good code for an array processor is notoriously
difficult [KaCo81]. While it is undoubtedly possible to generate code with software
interlocks, we feel that it is not necessary since hardware interlocks in a well-
designed architecture are straightforward to implement.

2.3. General Information

The PIPE architecture is still evolving. What follows is an overview of the
current architecture with a discussion of the major instructions. This should give a
good idea of the approach we are using, though the details of the architecture will no
doubt change as our research progresses.
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The PIPE word length is currently 32 bits. While the long word length is desir-
able, particularly for numerical applications, the fabrication technology available to us
severely limits the complexity of the chip we can build. We therefore are seriously
considering reducing the word length to 16 bits, which would result in minor changes
in the instruction set.

There are only two instruction formats, one that is 32 bits; the other is 16 bits.
The two formats are shown in Fig. 1.
5§ 6 7 9 10 12 13 15
l Opcode [ E l Rj ] Rj [ Ry
(a) 16-bit format
o 5§ 6 7 9 10 31
[ Opcode l E } Rj l displacement |

(b) 32-bit format

Fig. 1. Instruction formats.

In the. 16-bit format, there is a 7-bit opcode, including a branch exit or "E" bit,
to be explained in Section 2.6. There are three 3-bit operand fields. These desig-
nate either one of 7 general purpose registers or a hardware queue head or tail (see
Section 2.4). The three operands are typically two sources and one destination.
Occasionally, one of the fields is not used.

In the 32-bit format, there is a 7-bit opcode as before, a single 3-bit operand
field, and a 22-bit signed displacement field to hold immediate data and address
offsets.

2.4, Load/Store Instructions

All memory load and store data pass through hardware queues. The queues are
the LOAD DATA QUEUE (LDQ), the STORE DATA QUEUE (SDQ), and the STORE ADDRESS
QUEUE (SAQ). The LDQ holds data after it has been fetched from memory. The SAQ
and SDQ hold store addresses and data that are directed toward memory. If the SAQ
and SDQ are both nonempty, the elements at their respective heads are paired and
sent to memory as a store operation. At the machine level, queue heads and tails
often appear to be like registers. For mnemonic purposes, we use the queue names in
instructions, but in the machine code, register fields containing a 7 value designate
the queue, only one of which may be specified in a given field; the context unambigu-
ously determines which.

Queues are essential to a decoupled mode of operation, to be explained later,
where two processors cooperate on executing the same process. They do have
some advantages in a single pipelined processor, however. First, they allow use of a_
relatively small number of general purpose registers even when optimal code schedul-
ing is used. Any data loaded and used only once is never allocated a register of its
own; it is loaded into the LDQ and used directly from there. This may reduce the
number of registers necessary to give well-scheduled code; we are undertaking a
study to see if this is true.

The second advantage is subtle, but important: at issue time loads need not
reserve an input path into the register file. Ordinarily at instruction issue time this
path is reserved for use during the clock period when the instruction completes.
Load instructions pose a problem, however. They may have unpredictable completion
times due to variations in memory access delays. Hence, they either need their own
path into the register file, which requires the capability to do two writes simultane-
ously, or the result path must be reserved later in the execution of the load instruc-
tion, when the exact time of the data's arrival from memory can be determined. By
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using the LDQ, we naturally have a dedicated path for load data; it never goes into
the register file. This means that we can resolve all interlocks during the one-clock-
period instruction-~issue time.

The instruction LDQ « (Ri,disp) takes the content of Ri added to disp to gen-
erate an effective memory address. For all the load and store instructions, a O in the
Ri field is not interpreted as RO, but as a literal 0. The memory data is loaded and
placed in the tail of the LDQ. When the data works its way up to the head of the
LDQ, a subsequent instruction can refer to it as a source operand, using LDQ (a 7
value in the source field) as a source designator. The implementation must enforce a
discipline on memory fetch requests so that they are returned from memory and
placed in the LDQ in program order.

A 32-bit store instruction is written as: SAQ « (Ri,disp). Here, the effective
address is formed as in a load, and is placed in the SAQ. Strictly speaking, this
instruction only generates a store address; the store does not actually take place
until the data is placed in the SDQ by some other instruction, and both the address
and data work their way up to the heads of their respective queues.

There is a set of autoincrementing loads and stores with the 32-bit format.
Autoincrementing loads and stores might appear to be in conflict with the philosophy
of simple instructions. Because the issue conditions are the same regardiess of
whether or not autoincrementing is used, no instruction scheduling flexibility is lost.
In addition, autoincrementing instructions reduce the number of instructions to pass
through the Flynn bottleneck. LDQ « (Ri,disp)+ is a post-incrementing load. It uses
the content of Ri as the effective address of the load, and then increments Ri by the
amount given in the displacement field. Similarly, LDQ « +(Ri,disp) does a pre-
incrementing load where the effective address is the content of Ri added to disp, and
Ri is loaded with this sum.

There are also 16-bit load and store instructions. These are of the form
LDQ « (Ri,Rj) and SAQ « (Ri,Rj), respectively. With these instructions, the Rk field is
not used. The effective address is formed by adding Ri and Rj. Note that either the
Ri or Rj fields could be a 7, denoting the head of the LDQ; such might be the case if
indirect addressing through memory is being used. There are also autoincrementing
forms of the 16-bit loads and stores. LDQ « +(Ri,Rj) does a pre-increment, and
LDQ « (Ri,Rj)+ does a post-increment. There are similar autoincrementing stores,
SAQ « +(Ri,Rj), and SAQ « (Ri,Rj)+.

Closely related to loads is the ''enter” instruction that places an immediate
value in a register. This differs from a load immediate instruction in that the data is
not provided by a queue, as with other load instructions. It is in the 32-bit format,
and is of the form: Ri « disp.

2.5. Arithmetic and Logical Instructions

The arithmetic and logical instructions are all ''register-to-register” in the three
operand, 16-bit format. The LDQ head can be used as either source operand, and the
SDQ tail can be used as the destination. As before, a 7 value designates the
appropriate queue. For example, SDQ « R3+LDQ causes R3 to be added to the head
of the LDQ, with the sum being placed in the SDQ. The PIPE architecture contains a
simple set of arithmetic and logical operations. As suggested above, the add instruc-
tion is of the form Ri « Rj+Rk, and "subtract" (probably two kinds), "or", "and',
"exclusive or", "not’" are all similar; "not" does not use the Rk field. There are also
32-bit immediate forms of the arithmetic and logical instructions. For example,
Ri « Ri+disp is an add immediate. In PIPE, a typical shift instruction is Ri << RjjRk
which performs a left shift of Rj by count in Rk into Ri.



2.6. Branch Instructions

In PIPE, no condition codes are used. In a pipelined architecture with condition
codes, one must be careful to use the most recent condition code values when exe-
cuting a conditional branch. Since many instructions may be in process at the same
time, careful bookkeeping is required so that the condition codes are set and
inspected at the correct times. (See [AnST67], for example.) In addition, condition
codes typically force the instruction that sets the condition codes to immediately
precede the branch instruction. This results in unhidden delay between the issue of
the two instructions.

We also separate evaluation of a branch condition and computation of effective
target address from the actual transfer of control. In particular, we use a conditional
"prepare to branch" (PBR) instruction followed by some later instruction with its
opcode '"branch exit"" or Eabit set. If the branch condition is satisfied the jump to
the branch target address takes place after the execution of the instruction with its
EAbit set. This separation of the actual exit from the rest of the instruction gives
the instruction fetch logic advance notice of a branch. This allows the instruction
fetch logic to provide a smoother flow of instructions.

This prepare—to-—branch/exit method was proposed in [Scho71], and is a more
general solution to the problem than is used in [PaSe81, Radi82, HJBG82], where the
branch exit takes place following the instruction after the conditional branch instruc-
tion. The general method allows more flexibility in the implementation and in code
scheduling. Note that the PBR opcodes also have Eabits. If set, a PBR behaves like
a conventional conditional branch instruction.

The PBR instructions are in the 32-bit format. The opcode specifies the condi-
tion to be tested, Ri specifies the register to be tested, and the displacement is a
program-counter-relative branch target address. The conditional prepare-to-branch
instructions are: IPBR(Ri>0) - disp, IPBR(Ri<0) - disp, IPBR(Ri=0) - disp, etc... The
"I" prefix character stands for "internal”, its meaning will be described in Section 3.2.

There is also an unconditional PBR instruction that branches to the location
specified by adding the content of Ri to the displacement: IPBR - (Ri,disp).

2.7. Call/Return Instructions

The speed of call/return is in important factor in determining overall system per-
formance, particularly with modern high level languages and programming techniques.
We have taken some special steps to reduce the time consumed by calls and returns.

First, we use the same method outlined in the previous section for transferring
control: there are prepare-to-call and prepare-to-return instructions that operate in
conjunction with the Eabits. Again, this permits the instruction fetch logic to get a
head start on fetching instructions from the new stream.

Second, to facilitate quick saving and restoring of registers, we have two regis-
ter files, a foreground file, and a background file. Normal execution is always out of
the foreground file. A call or return causes the two files to be switched, and causes
the Program Counter to be saved in or restored from background register R7. R7 is
ordinarily used to designate a queue, and is, therefore, not used in the backup file for
register data. The LDQ should be empty just prior to a call or return.

There are two instructions that allow foreground and background registers to be
copied: Ri « BRj and BRi « Rj. These use the 16-bit format with field Rk unused; Ri
and Rj can be replaced with SDQ and LDQ, respectively, as before.

A procedure stack is maintained by software, with the registers and Program
Counter for the top stack frame being held in the background register file. If a pro-
cedure is about to make a call, it first copies the current background registers onto
the stack in memory. This frees up the background registers so they can be used as

-



foreground registers after the call. Saving the background registers consists of a
number of SDQ « BR]j instructions, putting the background registers in the SDQ, and
an equal number of store address instructions causing them to be stored away.
These instructions can be scheduled in with other instructions when such a call is
anticipated. Similarly, after a return, if another return to a higher level is anticipated,
then the background registers must be read from memory and copied into the back-
ground registers.

The principal advantage of using this scheme is that the registers and program
counter only need be copied to memory by a called procedure that plans to call a
second procedure before it returns, or by a calling procedure that plans a return to a
higher level before doing any more calls. Even then, only those registers which will
be required by the called procedure need be stored. This means that "leaf'’ pro-
cedures, (those that call no others) do not require any saving or restoring of regis-
ters. This method is similar to, but not as complete as, the method used in RISC-i
[PaSe81]. We choose this method because 1) We plan to use an instruction cache,
instead of the large number of registers in the RISC scheme, 2) It probably catches a
sizable percentage of all calls and returns. We are planning a study to empirically
determine percentages that can be expected. 3) When background registers do
need to be saved or restored, we can schedule the code that performs the transfer
among the other instructions, using issue time slots that might not otherwise be used.
Hence, in conjunction with "prepare to call" and ""prepare to return’” we can smoothly
phase in the call and return functions.

3. Decoupled Architecture

We plan to connect two of the processors just described so that they can
cooperate in executing the same process. The two processors communicate data via
the load and store queues and control information via branch queues, to be described
later. Fig. 2 is a block diagram of such a two-processor system. In order to facilitate
communication through the queues, the load/store and conditional branch instruction
sets need to be expanded.

3.1. Load/Store Instructions

Both processors have LDQ's and SDQ's as described in Section 2.4. We plan to
let one processor initiate a load or store in behalf of the other. That is, the instruc-
tion ALDQ « (Ri,disp) (ALDQ stands for Alternate LDQ) causes data to be loaded from
memory and to be placed in the other processor's load queue. A similar thing happens
for ALDQ « (Ri,Rj) and the autoincrement cases.

A processor can also generate a store address for the other processor via the
instruction ASAQ « Ri,disp. The store address, when it reaches the head of the store
address queue, must be matched with data at the head of the other processor's SDQ
before they both go to memory. One or the other must wait until both are at the
heads of their respective queues.

3.2. Branch Instructions

The branch instructions described in Section 2.6 are referred to as 'internal
branches" because they only affect instruction fetching in the processor in which
they are executed.

We add a set of "external branches” that behave just like internal branches,
but in addition they send a branch outcome to the other processor via a branch
queue. Both processors also have a 'prepare to branch from queue’ instruction:
PBR (Q) - disp. This instruction simply checks the head of the branch queue from the
other processor to see if the branch should be taken. By using these paired
branches, an external branch in one processor and a branch from queue in the other,
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Fig. 2. Block diagram of a two processor organization.
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the two processors can be made to "track' each other through sequences of code
containing conditional branches.

3.3. Examples

To clarify the operation of the decoupled machine and the way in which the
branch instruction and data queues are used, consider the following small section of
code:

biga := O;

smalla := O;

fori:= 1 to n do begin
if a[i] > biga then biga := a[il;
if a[i] < smalla then smalla := alil;
end;

This program accesses the elements of a vector with n elements, finding the largest
and smallest elements of the vector.

To accent the use of the branch and data queues the program will be translated
into two different assembly language programs. The first version of the program is
designed to be run on a single processor while the second version is meant to run
with two processors, one the execute processor and the other the access processor.
Using the mnemonics and operations described in the previous sections, the single
processor assembly language version is as shown in Fig. 3. Notice that the incre-
menting and comparison of the index is not performed immediately before the branch
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/*

/* Single Processor Assembly Language Program
X

1) R1«0 /* biga

2) R2 <0 /* smalla

3) R3 « a /*index i

4) RO « n+a /* end value

5) L1: LDQ « (R3,1)+ /* fetch a[i] and incr i
6) R4 « LDQ /* store a[i] in a reg
7) RS « R4 - R1 /* cmp a[i] and biga
8) IPBR(R5<0) » L2 /* test condition

Q) R6 « R2 - R4;exit /* cmp a[i] and smalla

/* branch on test
/* of a[i] > biga

10) R1 « R4 /* reset biga
11) L2: IPBR(R6<0) -» L3 /* test condition
12) R5 « R3 - RO; exit /* cmp i with end value;

/* branch on test
/> of a[i] < smalla
13) R2 « R4 /* reset smalla

14) L3: [IPBR(R5<0) - L1;exit /*test condition and
/* branch if i < end value

15) SDQ « R1 /* save biga

16) SDQ « R2 /* save smalla

17) SAQ « O,biga /* gen addr for biga
18) SAQ « O,smalla /™ gen addr for smalla

Fig. 3. Single Processor Assembly Language Program.



X

/* Execute processor program

/x
E1) R1 <0 /* biga
E2) R2 « 0 /* smalla
E3) L1: R4 « LDQ /* store a[i]in areg
E4) R5 « R4 - R1 /* cmp a[i] and biga
ES) IPBR(R6<0) » L2 /* test condition
E6) R6 « R2 - R4; exit /* cmp a[i] and smalla

/> branch on test
/* of a[i] > biga
E7) R1 < R4 /* reset biga

E8) L2: IPBR(R6 <0) - L3; exit /* test condition
/* branch on test
/* of a[i] < smalla

E9) R2 « R4 /* reset smalla
E10) PBRQ L1; exit

E11) SDQ « R1 /* save biga
E12) SDQ « R2 /* save smalla

Fig. 4. Execute Processor Program.

(line 14). Instead these operation are scheduled throughout the rest of the program
to improve pipelined performance by reducing dependencies among successive
instructions. In line 14 the IPBR instruction is used as a conventional branch instruc-
tion. The two other times IPBR is used (lines 8 and 11), the usage is less conven-
tional. That is, although the condition is set with the IPBR instruction, the branch is
not taken until the following instruction (lines 9 and 12). Also, notice the use of the
data queue for input and output in lines 5, 6, and 15 through 16.

To run this same program on two processors, the addressing portions of the pro-
gram are separated from the computation portions. That is, the index-~related opera-
tions are moved to the access processor. In these programs (Figs. 4 and 5), address
calculation operations have been removed from the code for the execute processor
and placed in the access processor code. In the execute processor, branches are
now taken when the branch conditions are evaluated. Also, since the loop control
variable (index i) is now located in the access processor, the execute processor

x

/* Access processor program

/*
A1) R1 «a /* index i
A2) R2 « n+a /* end value
A3) Li1: ALDQ « (R1,1)+ /* fetch a[i] and incr i
Ad) R3 « R1-R2 /> cmp i with end value

A5) L3: PBR(R3<O0)-L1;exit /*testcondition and
/*branch if i < end value

AB) ASAQ < 0Q,biga /* gen addr for biga
A7) ASAQ « 0O,smalla /* gen addr for smalla

Fig. 5. Access Processor Program.
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checks for the end of the loop by accessing the branch queue (line E10).
4, System Organization

4.1, CPU/memory interface

High performance systems usually depend on sophisticated pipelined memory
subsystems to provide a stream of data to meet the processor's demands. Each of
the processors will have its own instruction cache, so the backing storage system
normally will not supply any instructions. However, it will be required to supply
operands at a substantial rate -- approaching one per clock period. In the worst
case, when both processors fetch or store data independently, it could be worse
than that. The partitioning of the work between the processors, however, leads us to
believe that initiating service on memory requests at a maximum rate of one per cycle
should not result in any degradation under normal circumstances.

We plan to use one bus for address and memory write data, and a second for
memory read data. Sending the write data out over the same lines as the addresses
further enhances performance by allowing all lines to be unidirectional. This should
not cause any conflict in AE mode, since the address and the data originate in
separate processors. In the case where both originate from the same processor, it
takes two clocks to initiate a write instruction.

4.2, The Instruction Cache

We intend to implement an instruction cache for each processor. While higher
performance could possibly be achieved either by including data in the cache or by
maintaining a separate data cache, we decided against it for the following reasons:

(1) A data cache provides lower performance improvements. Instruction fetches
constitute a large portion of all memory reads. Instructions also exhibit temporal
and spatial locality in a far more consistent manner than data.

(2) An instruction cache is substantially easier to implement than a data cache
because writing into the instruction stream (and instruction cache) does not
occur. This assumes, of course, that self-modifying code is disallowed, a res-
triction consistent with modern programming practice.

(8) In the PIPE architecture, operands for a load queue must arrive in order. While
supplying some operands from an on-chip cache can be taken into account in
maintaining that order, the bookkeeping for this procedure is complicated con-
siderably.

(4) It is not compatible with VLS|, where communication is particularly expensive.
The problem of maintaining consistency between two cache memories is well-
understood, and widely implemented [IBM74, IBM78, CeFe78] However, the
penalty that is paid is heavy communication between the cache controllers.
Under these conditions, the cache is much less effective.

We have not entirely ruled out the possibility of a data cache and intend to
study it, but our current belief is that it is not cost effective.

4.3. VLS| Implementation

The PIPE architecture is well suited for VLSI implementation. While control logic
for a pipelined machine is more complicated than that for a serial machine, we feel
that a modest increase in control unit complexity will result in a significant improve-
ment in system performance. Thus, it becomes worthwhile to dedicate some of the
increasing number of transistors available per chip to the control unit. However, a
careful cost/benefit analysis of the complexity of the control unit is necessary if it
is to be implemented in VLSI.
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In addition, pipelined architectures exhibit regular data path structures that can
be laid out in VLSI in a natural way. This is perhaps one reason why systolic array
architectures, a more radical approach to pipelining, have received much attention
[Kung79]. Again, the designer must be careful in choosing the number of pipe stages
to implement in the architecture, to keep the control and data path delays to reason-
able, and nearly equal, levels.

Finally, the PIPE architecture contains several interesting subsystems suitable
for custom VLS| implementation, whether or not the processor is built as a monolithic
single-chip system. High performance can only be achieved by efficient implementa-~
tion of certain critical system components. The system's performance is limited by
the maximum execution clock rate. Three major performance-limiting system delays
are (1) instruction issue logic: it should be possible to issue an instruction in one
clock period, (2) memory-processor interface: it should be possible to initiate
memory requests at a rate of one per clock period, and (3) instruction cache access:
it should be possible to read the instruction cache memory in one clock period. The
maximum execution rate will be limited by the slowest of the critical delays. A less
significant delay is the ALU processing time: it is desirable to execute one arithmetic
operation during each clock period although additional pipeline stages could be
inserted if necessary.

By implementing these critical subsystems in VLSI, we hope to gain insights into
the overall organization of high performance microprocessor architectures. Many
questions remain unanswered. For example, which pipeline delays limit system per-
formance the most? What is the area required by the subsystems? Is it possible to
put the entire processor on a single chip, given the available technology and our lim-
ited design experience? If not, then how should the system be partitioned? What is
the minimum chip to chip communication time, and how can this be achieved? The
VLSI implementation aspects of our research are directed towards answering these
questions.

5. Software Issues

A decoupled architecture affects system software such as compilers and the
operating system. Due to the partitioning of activities, the processors must closely
coordinate their work. The architectural description in . Section 3 has presented the
system features, i.e. data and branch queues, that permit the synchronization of the
processors and has indicated how these might be used. In this section, we discuss
the issues which arise when writing code for such a system.

5.1. A Compiler for a Decoupled Architecture

Any viable system must have a high-level language compiler. A decoupled archi-
tecture presents unique problems in the design of a compiler code generator.

56.1.1. Generating Address Calculation Code

The proposed system is composed of two processors that operate in three dif-
ferent modes. In independent execution (IE) mode, the processors operate as dual
processors, each working on a task with interaction between the two processors

taking place through memory. Code generation is performed as in conventional sys-
tems.

In access/execute (AE) mode, the compiler's task becomes more difficult. One
processor becomes the access processor (AP) and performs all address calculations.
The other is called the execute processor (EP) and performs algorithmic calculations.
This partitioning is reflected in the generated code. The compiler generates one pro-
gram with two interacting modules, one for each processor.
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The compiler must be capable of isolating those portions of the program associ-
ated with the calculation or specification of an operand address from those related
to the algorithm being implemented. Easy to isolate is the loop control variable of a
DO statement which specifies the array element to be accessed. If two array ele-
ments are to be multiplied, the multiplication is assigned to the EP. Array address
computation, e.g. multiplying the index by a constant and adding it to a base address,
would be compiled into code for the AP.

5.1.2. Address Calculation Code for both Processors

The basic premise of the AE mode of operation is that the tasks performed by
the EP take so long that the AP will always have data waiting to be accepted by the
EP. This occurs when the EP is performs complex operations. The AP need not
always stay ahead of the EP. For some algorithms, address generation may represent
- a significant portion of a program. To balance the system's performance for address
calculation intensive programs, it may be desirable to share the AP's address calcula-
tion activity with the EP. One of the processors is nominally the AP; occasionally
both processors become APs. This final mode of operation is called shared access
(SA) mode.

This more complex mode of operation requires a better compiler. In addition to
generating code for the AE mode, the compiler must determine when the processors
should enter SA mode. The compiler must analyze the time needed to execute EP
code and AP code. If the EP execute time is much smaller than AP execute time, and
if address calculations can be partitioned between the processors, the compiler may
move some of the address calculation code from the AP to the EP.

Code scheduling is an important issue. The execution order of instructions
determines the efficiency of CPU pipeline utilization. Dynamically scheduling code to
efficiently use a pipeline requires complex gircuitry. Leaving code scheduling to the
compiler complicates it, and makes it overly dependent on the target machine's imple-
mentation. In PIPE, code within a single processor is executed in order. This is
effective since the architecture minimizes dependencies between instructions. The
instruction execution order when the two processors are considered as a pair is
determined dynamically, i.e. when two processors are working on a single program, the
instruction execution order will change dynamically, depending on memory activity.

One aspect of code scheduling we have not mentioned is the separation of the
prepare to branch (PBR) from the exit. This can be handled by the compiler, providing
a simple, effective implementation of dynamic code scheduling.

5.2. Operating System View

The operating system must also perform more work in a decoupled access archi-
tecture. In particular, it must be given mode of operation information for a particular
program. Scheduling the processors depends on the current operation mode. If in IE
mode, a program which runs in AE or SA mode cannot be started until both processors
have finished their tasks. The operating system thus monitors the performances of
both processors.

Just as any user program may run in AE or SA mode, the operating system may
also run in such a mode, or alternate between these modes and IE mode.

6. Summary

We have presented the preliminary PIPE architecture and have proposed an
implementation which takes advantage of a simple architecture to achieve a high per-
formance system through pipelining, both in the processors and memory system. We
use two processors working in tandem on a single thread of control. Using decoupled
processors with instruction caches, we hope to overcome the von Neumann and Flynn
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bottlenecks and achieve a combined instruction issue rate greater than one per
clock.

The IBM System 360 Model 91 demonstrated that issuing instructions out of
sequence can result in a substantial gain in performance. This is a complex, costly
solution. PIPE offers the potential for achieving the same effect without the com-
plexity by using two processors communicating through hardware queues.

We have specified a preliminary instruction set which is simple yet compatible
with high performance. This instruction set incorporates efficient specification of
operands from the queue since the head of the queue is treated as a register. This
reduces the number of registers without loss of performance.

Several important aspects of a system design have been recognized but not
dealt with here. For example, the handling of interrupts and traps is complicated
since the two processors are running asynchronously. While we do not have com-
plete solutions yet, we are investigating the problems.
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