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ABSTRACT: Many organizations are obtaining a VLS| design capability by acquiring
design tools from diverse sources. A design environment constructed in this way
rarely forms a coherent design system. An integrated design database is a necessary
component of an integrated design system. Unfortunately, conventional database
systems do not completely satisfy a design system's data management needs. A
design data management system bridges the gap pbetween database systems and
design tools. We describe the structure and function of such a system. Pieces of
the system are under development at the University of Wisconsin-Madison.

1. Introduction

The Mead-Conway design method [MEADBO] has made it possible for computer
scientists to experiment with custom intggrated circuits as a new implementation
medium for their algorithms. These designers not only build circuits; they also build
deslign tools. A new generation of tools has been developed for circuit fayout, syn-
thesls, and verification. These include circuit editors (e.g., CAESAR [OUST81]), data-
path generators (e.g., MACPITTS [susks2]), design rule checkers and swifch level
simulators (e.g., ESIM and NL/RNL [BAKE8O]), and timing analyzers (e.g., TV and Cry-
stal [JOUP83, ousTas).

These are tools, not systems. Tools created by different groups are extremely
ditficult to integrate (e.g., see [KATzasaj). Cumbersome translation programs map
between the idiosyncratic representations understood by individual tools. Fven stan-
dard interchange languages are not a solution, since each tool uses its own "escape
hatches' for describing certain critical design informaticm.1 How to integrate the tools

into a coherent system Is still an open tesearch issue.

-y

1 As an example, the Caltech interchange Format [MEADSO] has no standard mechanism to.assoclate
symbolic names with geometric features of the layout.
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An integrated design database Is a prerequisite for transforming a loose ensem-
ble of design tools into a design system (see Figure 1.1). The database organizes
information about a VLS| circuit design across its representations, alternative imple-
mentations, and evolutionary versions. The system controls concurrent designer
access and guarantees that the data can survive system crashes. By placing all
design information under the responsibility of a single data management‘ system, the
self-consistency of the design is more easily maintained. Dependencies among parts
of the design are made explicit. Thus, ramifications of design changes can be
discovered, and can be propagated in a controlled manner. It becomes possible to
economically verify that all representations of the design remain équivalent after a

change.

Design databases have long been of interest to the design automation commun-
ity [EAST81, LOSL75, LOSL80], but have been largely ignored within the context of
the new tools. Since the implementation of a complete design system is a major
undertaking, it is not surprising that efforts have focused on isolated aspects. Our
purpose is to describe what design data management is and how it can integrate

design tools. The paper is organized as follows. In the next section, we define basic
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Figure 1.1 -- Design Tools vs. Design Systems
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terms, such as database, database system, and design system. We assume that the
reader has some familiarity with concepts of VLS| design, at least at the level of
[MEAD8O]. In section 3, we describe the unique data management requirements of
design systems. Conventional database facilities and their shortcomings for support-
ing design data are described in section 4. The architecture of a prototype design
management system is presented in section 5. Designs are organized into a richly
interconnected data structure, based on an object data model. The structure of the
deslign storage component, and recovery, concurrency control, design validation, and

browser subsystems are described. Section 6 contains our summary and conclusions.

2. Baslc Terms

Confusion exists over the terminology used by the design automation and data-
base system communities. The terms we use throughout the paper are described in

this section.

Data structures are logical organizations of data. Database systems typically
support either (1) tabular (relational), (2) tree (hierarchical), or (3) graph (networli)
structures among records. The UNIX file system [THOM78], for example, supports a
constrained graph structure among directories (internal vertices) and flléé (leaves).
A link mechanism allows files to be iﬁcorporated in more than one directory. Storage
structures are implementations of data structures on secondary storage. While a
tree of design objects Is a data structure, its implementatioh as a balanced multi-way

tree on disk is a storage structure.

A database is the data describing the activities of an organization. For example,
the chip design database contains information about how design objects are com-
posed from primitives (geometries, transistors, gates, etc.), how a design is
described in different representations (layout, circuit, logic, etc. ), how a desugn has
evolved over time, who is responsible for designing its parts, and so forth. A particu-

lar choice of data structures to represent a specific database is a database schema.
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A database management system manages databases stored on secondary
storage. It provides a standard interface to data for application programs. The data
access operations supported by modern systems are based on data structure rather
than storage structure, so the physical structure can be changed without affecting
existing programs ("data independence"). The system controls access to protect
the data from illegal actions and to maintain its consistency. It provides mechanisms
to insure that changes can be recovered after a system crash. Access methods are
storage structure specific routines for manipulating data on disk. The distinction
between file systems and database systems is subtle. Perhaps most significaﬁt is

that a database system supports atomic actions that span multiple files.

A design data management system chooses how to structuﬁe the design data
within the database system. It provides a standard access interface for tools. While
the database system does not Interpret the data it manages, a desién management
system understands how the strbcture of the data describes a design project. It
enforces design data constraints. For example, part of the design data structure
identifies equivalent objects across representations. Such information can help
reduce the effort needed to keep the database self-consistent after a design
change. The design data and the complex consistency constraints are normally what

the design automation community mean by “database.”

The major components of design data management include (1) the storage com-
ponent, reliably storing design dafa on disk, (2) ‘the recovery subsystem, saving
incremental changes and insuring resiliency to cr{ishes either at workstations or
database servers, (3) the Design Librarian, supporting check-in/check-out of design
parts from the database, (4) the validation component, checking that design con-
straints remain in force after a char;ge, (5) the design transaction component, using
(2), (3), and (4) to control the creation of new versions of design objects, and (6)
the Browser/Chip Assembler, providing an interactive frontend for creating and view-

ing the design data structure.



A'design system is the marriage of design tools, project management aids, and
design data management facilities. The design tools create pieces of a design and
validate its correctness. The project management alds assist In ‘planning the imple-
mentation effort. Design data management is responsible for structuring the design,

and for exploiting the structure to keep the design consistent.

3. What Design Systems Need

Design applications need to (1) structure design data hierarchically, (2) support
multiple design representations, (3) maintain design versions and alternatives, (4)
help the designers cooperate and interact as a team, (5) support remote design at
workstations, with long term storage at database servers, and (6) maintain the con-

sistency of the design. Each of these are described in this section.

Hierarchy and regularity are well-known tactics for reducing the complexity of a
| large design [NEWT81 SEQU83]. A design proceeds by a top-down decomposition of
systems Into subsystems and a bottom-up synthesis of building I;Iocks from more
primitive building blocks. The design is complete when all subsystems can be imple-
mented by existing building blocks and primitives. The hierarchical structure of the

design is mirrored in its data.

Design regularity reduces the size of the design database as well as the deshign
effort. An object is designed once and used frequently. Its representational
description appears once in the database. Additional data describes each usage of

the object, specifying how it is instantiated and placed within the design.

VLS! circuits are described in several representations. A non-exhaustive list
includes geometric layouts, transistor networks, logic schematics, and functional
descriptions. Each representation Is appropriate for a different phase of design.
Geometries are used for mask making and geometric design rule checking. Transistor,
logic, and functional descriptions are used for electrical rules checking, simulatiqn,

and timing verification at various levels of detail.
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While the Mead-Conway style encourages a horizontal partitioning of a design --
a "tall thin man" is responsible for deriving all the representations of his portion of
the design -~ industrial designs are more typically partitioned into architectural, logic,
circuit, and layout activities. Different groups may be responsible for the detailed
design within each representation. Mechanisms are needed to insure that all
representation_s'describe the same object. Equivalent portions of the design across

its representations must be explicitly identified.

Much of design activity is evolutionary or exploratory. The database must
thAeref‘ore support design versions and alternatives. A version is an improvement or
- correction to a design object. Alternatives are different implementations of the same
object, with varying performance characteristics. Versions provide insights into
design approaches and rationale. They are needed to document designs in the field
and for legal reasons. Alternatives, eépecially within design llbraries, enable

deslgners to experiment with different implementations of the same function.

VLS| complexity circuits are normally designed by teams. While the advent of
sllicon compilers and better synthesis tools may eventually eliminate the need for
team design, they will remain the primary organization for building VLS| circuits for
some time to come. To help them cooperate harmoniously, design teams need aids
such as check-out mechanisms, interface descriptions, and validation audit trails.
Check-out mechanisms insure that at most one designer is modifying an object at a
time. The design data is made self-documenting by placing interface descriptions,
dependency information, and design responsibility in the database. This helps &
designer understand how an object is used, where it is used, and who is responsible
for its design. The design validation subsystem assists designers in keeping the
design consistent. It identifies the portions of the design affected by changes and
assists In propagating these throughout the design data structure. It maintains an

audit trail so responsibility can be assigned for incomplete or faulty validation.



With the emergence of powerful engineering design workstations, design
management must be provided in a distributed system of workstations and database
servers. The database servers are shared repositories of design data. Designs are
checked out to designers at workstations. Making the data resilient to system
crashes is complicated by the lack of archival media at the workstations. Valuable
design work can be lost unless efforts are made to frequently and automatically save
changes on the servers. To keep the design database consistent, modified data can
be checked back into thé repository only when it has passed a lengthy validation

process.

An embarrassingly frequent error is the incomplete propagation of a design
change to all parts of the design that depend on it. This is a serious problem in
design environments without integrated design management. An integrated design
database must incorporate information about the dependencies across representa-

tions and design partitions.

4, Why Commercial Databases are NOT like Design Databases

Database facilities have evolved to support both high performance transaction
brocessing and interactive use by non-programmers (an excellent descriptibn of com~
mercial database system technology can be found in [DATES81, DATE82]). These
include (1) structures for efficient access to data on secondary storage, (2) the
concept of a transaction: collections of read and update operations treated as
atomic units of database consistency, (3) protection and concurrency control
mechanisms for controlled data sharing, (4) automatic integrity maintenance, (5)
crash recovery services, and (6) user-friendly interfaces (graphical, natural

language) and high-level query languages.

Not all of these services are valuable for design systems. For example, only
very simple integrity constraints can be enforced automatically by the database sys-

tem. Constraints on design data are not easy to specify or enforce. Compare the
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constraint "salary must be greater than zero” with "the circuit must behave as speci-
fied with expected performance.” While fast access to records is important, the
overhead of entering and leaving the database system to extract a record at a time
Is too great for the large quantities of data involved. A conventional database is
best used as a shared, reliable repository. Large aggregates of design data are
extracted and replaced as a unit. Data sharing is controlied by not allowing more
than one designer to update the same bortion of the design at the same time. Recov-
erable update and archival mechanisms insure that data is never lost because of a

system crash.

Access to a conventional database is through transactions [GRAY81]. Transac-
tions are sequences of read and write actions that leave the database consistent:
interleaved transaction executions are permitted as long as their result is the.same
as some serial execution of the transactions. Transactions are atomic: all changes
become visible at once -- the transaction commits -- or none become visible -- the
transaction aborts. Transactions are durable: once a transaction has committed, its
changes are permanently installed in the database even If the data should be tem-~

porarily lost because of system failures.

Conventional transactions have been developed for the short duration, simple
units of work typically found in transac’cibn processing enSrironments, such as airlines
reservations. Unfortunately, they do not adequately model design interactions. A
design transaction begins with a designer acquiring exclusive access to a partion of
the design, modifying it over a long period of time, and committing the changes only

when they are shown to be valid [LORI83, KATZ83c].

Many database implementation issues are actually simpler in the design environ-
ment. Because of design teams and their strict partitioning of tasks, designer
interference is rare. While many sophisticated techniques have been proposed for

controlling concurrent access, for design applications simple techniques are suffi-



cient to resolve most conflicts. For example, negotiation among designers who need

the same data is usually enough.

Design transactions are not atomic. To recover from a crash, databasé systems
undo ihe effects of incomplete transactions and redo the effects of completed tran-
sactions. If the duration of a transaction is from the time an object is checked out
from the repository to when it is replaced, then the system should never roll back the
uncommitted design changes. Hours (or days) of work would be lost! The database
should be restored to the most recent state possible, even past the Iést state

rsaved" by the designer.

While the effects of committed database transactions survive system crashes,
design data lives beyond subsequent t(ansactions. Design transactions create new
versions of the objects they update. Conventional database systems provide no
support for versions, even though this greatly simplifies the implementation of con-

currency control and recovery mechanisms (as we shall see below).

Database systems do not adequately handie the basic storage needs of design
data. They have been tuned for large volumes of regularly structured data. Design
data is organized into complex structures, with large numbers of interconnected files
of relatively small size. It is not easily formatted for storage in a conventional data-
base. Few systems adequately support the kinds of Variéble length heterogeneous
data typically created by design tools (see [HASK82] for ways in which database

systems have been extended to handle this kind of data).

As can be seen from the above, there is an applications mismatch between what
design tools need and what database systems provide. in the remainder of this
paper, we will describe the structure of a system that can satisfy the data manage-

ment needs of design tools.




6. A Design Data Management System Architecture

6.1, System Overview

Design systems are large, complex software packages, providing a number of
services necessary for the design of Integrated circuits. Most designers view the
design tools as the "system." However, many services are duplicated from tool to
tool. If these can be identified, and implemented as standalone subsystems, future
tools could be built much more easily. For example, menu and window packages are
now available as standalone subsystems. This is what wé are attempting to do for
design data management.

The system architecture appears in Figure 5.1. The storage component stores

design data on disk. Updates are guaranteed to be atomic. A conventional database

system can be used as a storage component [HASK82, KATZ82a], although a suitably
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Figure 5.1 -~ System Architecture




extended file system can also be used.

The object system maps the design data, viewed as .a col,le;:tion of interrelated
objects, into the files and structures supported by the storage component: A reliable
object-oriented file system, such as [REED83], can provide the faci!itlesi of both the
storage component and the object system simultaneously. To support existing

design tools, the object system can appear as a conventional file system.

The recovery subsystem collects incremental changes to objects to insure that it
can reconstruct those that are lost in a system crash. To protect workstations from
data loss, changes are continuously spooled to the server. Savepoints invoked by
the designer force in-progress changes to be saved, thus guaranteeing that the

object can be reconstructed to that point.

The Design Librarian is responsible for controlling shared access to design .
objects. Many deéigners can browse an object, but only one is allowed to create a
‘new version of it at a time. The Design Librarian maintains information about who
currently holds objects and when theée are expected to be returned to the design
repository. This enables the recovery subsystem to reconstruct the workstation‘s

disk after a hard crash.

The design validation subsystem interpretes dependencies among design data to
Identify what portions are potentially affected by a change. SOm‘e simple con-
sistency checking can be handled automatically, particularly for representations
understocod by the subsystem.‘ More complicated validation, eg., verifying
equivalence across representations, requires designer intervention. An audit trail is

kept of what validation activities have been performed by the designers.

“The deslgn transaction component encompasses the recovery, Design Librarian,
and design validation subsystems. It insures that designers create new consistent
versions of deslgn data with their tools. Designers acquire access rights to the

appropriate portions from the Design Librarian. Successfully acquired objects are
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then transferred to the workstation. The recovery subsystem guarantees that all but
perhaps the most recent changes can survive system crashes. The validation sub-
system determines what is affected by the changes, identifying what must be reveri-
fied. A design transaction cannot compléte successfully until the design is once

again consistent.

Design transactions bring design data to the workstation and return it as new
versions when done. Design tools manipulate the data through operations supported

by the object system at the workstations.

The Browser/Chip Assembler is the interactive interface to the design data
management system. Designers use the Browser to view the complex data structure
describing the design. They use the Chip Assembler to manually construct the data

structlire from fhe pieces crelated by Individual design tools.

In the next subsection, we describe the data structures for specifying a design.

Then we will examine each subsystem of design data management in greater detail.

5.2. Object Model

The Object Model defines the basic primitives from which the design data struc-
ture is formed. [KATZ82a, LORI83, MCLE83] are some of the alternative propbsals
for structuring a design for storage in a database. Similar themes are apparent:
" object~- rather than record-orientation, explicit representations of versions and alter-
natives, and support for interface descriptions. Our motivation is to make the design

as self-describing as possible, to enhance the system's ability to keep it consistent.

6.2.1. Objects

Design objects are convenient aggregations of design information. They fali into
two broad categories: representation objects and index objects. Representation
objects describe a portion of the design in one of its representations, and thus are of'

‘a particular type, e.g., a layout object, a transistor object, or a logical object. Most

=] 2=



information about the design is organized through representation objects. Index
objects introduce auxiliary structure for use by the browsing, configuration, and vali-

dation tools.

Each representation object is constructed from the composition of its type's
representational primitives (e.g., geometries, transistors, gates) and other objects of
the same type. We call the hierarchical collection of design data thus formed a
representation hierarchy. A design hierarchy s the collection of these describing a
full design, with additional structures linking together the representations and provid-
ing alternative groupings based on versions (configurations), alternative implémenta-«
tions, or common attributes. Besides composition information, representation objects
have interface descriptions,. describing their abstract _behaVior, usage information,
and assoclated performance (speed, power, area). Design transactions do not
overwrite existing representation objects, but create new versions of them. They

are identified by their name extended with a unique version number.

Index objects provide a way to group objects together outside of the nbrmal
decomposifions within representations (they can be used to group together objects
of the same type as well). The Browser uses them to quickly find objects with similér
attributes. For example, all ALU objects within a library may be grouped together by
an index object. Indices can be compoSed in much the same way as representation
objects. For example, the index of ALU objects can be incorporated within an index
consisting of all datapath pieces. Unlike representation objects, index objects do
not have interfaces or versions. A number of special index object types will be intro- |
duced below.

The hierarchies can be thought of as directed acyclic graphes. Vertices
represent objects. Leaves are primitive objects, while‘intemal vertices are compo-
site objects. Designers determine what entities are primitives. Although individual

geometries or transistors could be primitives, a primitive object is more likely to be
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some simple function implemented with a small collection of these. A composite
object is formed from the recursive composition of its descendants in the graph.
Edges in the graph are directed from composite (parent) objects to component (child)

objects.

Assocliated with each edge is how to create an instance of the component
object. Sometimes we must fully (or partially) instantiate design objects, creating a
tree rather than a DAG. For example, when simulating a design, each instance is dif-
ferent because each has different associated state variables. Only information that
is unique to an object's instance needs to be represented in the tree (see Figure

6.2).

While an object is defined by the composition of its components, it can be modi-
fied Independently of them, and vice versa. A new version ofﬂthe composite object
can be formed from new "components. The creation of new versions of the com-
ponents does not affect their original composite. It can continue to reference their

original versions. If the composite object's designer wishes to take advantage of
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Figure 5.2 -- Instantiated Objects
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the new versions, he must create a new version of the composite that explicitly

includes them (see Figure 5.3).

Objects can either be independent or dependent. Independent objects exist
within the database whether or not they are contained within other objects. Depen-

dent objects are deleted from the database whenever they are no longer referenced.

Representation hierarchies need not have identical decompositions (see
[MuDG81, BEET81] for alternative approaches in which all representations must be

Isomorphic). The functional decomposition of a design may be quite different from its

physical decomposition, for example, if it is implemented in a gate array technology2

(see Figure 5.4). The additional structure needed to identify equivalent objects
across representations is furnished by a special index object type, an eqqivalency
object. These tie together objects in different representation hierarchies, constrain-
ing them to be equivalent. For example, an ALU layout object and an ALU transistor
object may be linked by an equivalency object to denote they are different

representations of the same ALU. The constraints are enforced by the design valida-

g g g oy g e G g g g R Y S Y IR VR R
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Figure 5.3 -- A New Datapath Object with a New ALU

2In a gate array, a function can be Implemented with primitive bullding blocks that may be distributed
throughout the chip. One cannot look at the layout and easlly determine what portion Implements a particu~
tar functlon like the ALU.
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tion component. Equivalency objects are removed from the database when one of

their referencet! objects is removed.

Generic objects are another special type of index aobject. Along with index
objects, they are "gateways" to the design (see Figure 5.5). They represent major

subsystems undergoing frequent change and refinement. They are independent

TADEX
| OBJIELT

Figure 5.5 -- Gateways to the Design
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objects, and can exist whether or not they are referenced by other objects. Addi-
tional structures for organizing alternatives and versions are used in their definition.
A .verslon configures the subsystem, by correlating versions of representation
objects describing the subsystem in its different representations. Version objects
are a special type of equivalency object, since the objects it groups together are
cqnstralned to be equivalent. They differ in that version exist independently of the
objects they correlate. An alternative. object is an index that groups together ver-
sion objects, representing different versions of the alternative. Finally, a generic
object (see Figure 5.6) groups its alfematives together. Each alternative has the
same behavior as its generic parent, but its own performance characteristics. For
example, the generic object "the ALU" is composed of alternative objects “fast ALU,"
gmall ALU," and "low power ALU." The "fast ALU" alternative consists of various ver-

sion objects, e.g, "fast ALU/version 0.0", "fast ALU/version 1.0," etc. "Fast

g g v g ey oy g g sy sy R g TR ERTYL ERORR

ALTERNATIVES

\VERSTONS

d REPRESENTATIONS

Figure 5.8 -- Generic Object Data Structure
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ALU/version 1.0" in turn consists of the representation objects describing it, e.g.,
"fast ALU/version 1.0/layout,” "fast ALU/version 1.0/transistors,” and "fast

ALU/version 1.0/gates.”

Version objects, alterna{ive objects, and generic objects offer a mechanism by
which convenient groupings of representation objects can be formed. This is in addi-
tion to the representation hierarchies. Generic objects are nested on a representa-
tion by representation basis (see Figure 5.7). An implementation of a generic object
Is a version of one of its alternatives. To nest an ALU within a datapath proceeds as
" follows. An ALU implementation is chosen for inclusion within a datapath implementa-
tion. Each of its grouped together repfesentation objects, e.g., the layout, transistor,
and gate objects, incorporate the object of corresponding type in the ALU's imple-

mentation.

Library objects are generic objects of general utility, designed specifically for

incorporation within other objects. The input/output pads used in almbst every
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design are examples of library objects. Designs are special generic objects. Crea-
tion of the design is the objective of the design team. Designs cannot be nested.

Only library objects can be shared among desligns (see Figure 5.8).

5.2.2. interfaces

Interface descriptions are associated with each representation object. Aﬁ
interface should contain enough information about the object so it can be used
without having a detailed understanding of its implementation. [t provides documen-
tation of the object and makes connectivity information explicit. Interfaces include

the following:
(1) Name: the name of the object, including its version.

(2) Designer: the designer who Is responsible for its implementation (not neces-

sarily the designer who implements it).

(3) Description: a description of the object's behavior (e.g., an English-language
description, a truth table describing outputs in terms of input combinations,
etc.). This description is primarily for documentation purposes, but could even-

tually be used by validation tools.

DESTGAL DeSTON

&‘ LIRRARY OBIELTS

Figure 5.8 -~ Designs and Libraries
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(4) Graphical Representation: Objects are contained within bounding polygons.
This is a useful way to specify the "outline” of the object for viewing on a
graphics terminal. Bounding polygons can be associated with any representation
type.

(6) Connectivity information: Ports are the input and output connection points of
an object. Ports are named, have types and directions, and are p!aced on the
periphery of the bounding polygon. The same name can be assigned to more
than one port. Ports with the same name must be connected by some signal
path within the object. The directionality of ports are input, output, and bidirec-
tional. The type information depends on the representation. For example, for
the layout representation, type information includes interconnection layer and

the form of the logic level expected or supplied by the port.

(8) Performance iInformation: Depending on the representation, the interface
specifies constraints on power, area, and delay exhibited by the object in per-

forming its function.

The interface contains information that is used to verify that a design self-
consistent. Type systems simplify checking that object compositions are well-
formed. One particular type system has been used in the Stanford Cell Library
[NEWK81]. The input types are: (1) 4:1 ratio (expects regenerated logic levels), (2)
8:1 ratio (does not expect regenerated levels), (3) switch control (expects regen-
erated levels), and (4) switched (does not expect regenerated levels). Output
types are: (1) gate (produces regenerated tevels), (2) superbuffer (produces regen-
erated levels), (3) switch logic (produces unregenerated levels), and (4) precharged
(special). The compatibilities among the types is determined from a table, such as

Table 5.1. Other type systems are also valid.

Port names can be local or global. The ports of two objects with the same local

port names are different, while every port with the same g_lobal name is implicitly con-



Outputs :
Inputs Gate _ Superbuffer Switch Logic Precharged
4:1 oK. O.K. NO O.K.
8:1 OK. oK. oK. O.K.
Switch Control | OK. oK. NO O.K.
Switched 0.K. 0.K. . (1 4 NO

Note (1): O.K.? but charge sharing problems are possible.

Table 5.1 -- Compatibility of 1/O Types
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nected. Vdd and GND are typical global port names.

The interface constrains the object's implementation. Checking that power and
area are within constraints is straightforward. The area constraint is assOciatea with
the layout representation, and can be determined from the bounding box of its
geometries. The power constraint is also associated with the layout representation,
where the DC power consumption of a module can be determined by examining the
width-to-length ratios of transistors. Delay (timing) is much more difficult to spécify,

and in general can only be checked through detailed timing simulations.

When an interface is specified before its implementation, the performance infor-
mation is approximate, and is specified within ranges. Once an object has been

implemented, its performance information can be readily determined.

Describing the behavior of an object for documentation purposes is difficult,
since there are so many ways to describe behavior. for a given object, one form may
be more appropriate than another. Truth tables or logical expressions are well-suited
for describing combinational logic. Transition tables or state diagrams are aporopriate
for sequential logic. Alternatively, an object can be associated with a program that
"simulates’ Iits behavior. Many language-based functional simulators use this
approach. An approach suitable for functional /timing simulations (or circuit testing)

describes the behavior of a module by the input waveforms and expected output
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waveforms. Maintaining detailed waveforms may be expensive in storage sbace, but
is the easiest way to specify the expected timing behavior of a module. The
description portion of the interface must be general enough to support any of these.
At the very least, it can be an uninterpreted character string. We plan on identifying
particular description types, and making these understood by the validation com-

ponent of the system.

An object's implementation must be shown to agree with its interface. Implied
connectlvity between ports must be verified, as must be their types and directional-
ity. An "interface extractor’ program could aid in the verification. Note that imple-
mentations do not need to be checked if these have been derived from their inter-
faces (''correctness by construction”). Once could envision a PLA generator that
takes the interface's 5ehavioral description, perhaps specified as a set of Boolean
equations, along with theilocations of input, output, power; ground, and clock ports,

and generates the PLA layout within the object's bounding polygon.

§.2.8. Composition and Interface

Composing objects to form cdmposite objects can be viewed in graphical terms.
Placed within the composite's bounding polygon are the polygons of its components.
Component ports are wired together to ''compose’ them (wiring can be by intercon- :
nection or by -abutment). The ports of a composite object are derived from component
ports. This Is specified by wiring the ports of the composite to the ports of its com-

ponents (see Figure 5.9).

Information describing composition Is associatez'i with both composite and com-
ponent objects. Each component object stores the names of all objects that contain
it. A composite object stores the names of its components. It gives unique names to
component instances, describes how each is oriented and placed within its bounding

polygon, and describes how the ports are wired.
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Figure 6.9 -~ Graphical Compositions

6.2.4. Objects as Structured Files

Objects can be Implemented as files extended with information describing the
design data structure. The information relevant to the design management system is
the object type, the interface specification, and the cqmppsition information (see
Figure 5.1 0). A sample specification is "given in the Appendix. Representational
det;ils are determined by the design tools, not the design data management system.
We expect that new tools will be created that combine the creation of the interface,
composition, ;lﬂd representation specifications. Existing design files can be refer-
enced from within design object files to include their data in the design data struc-

ture.

5.3. Design Data Management System
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Figure 5.10 -- Design Objects as Files
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5.3.1. The Computing Environment for Design

Designs are created at workstations, connected by a high speed network to a
shared database server. The design Is created and manipulated at the workstations,
with the server providing a centralized locatlon for long term data storage. The
workstatloné have simple 1/0 configurations, typically a single Winchester disk, while
the server has a large number of disk devices on multiple channels. Desi_gners at the
workstations transfer the relevant portions of the design to their local disks, through
the design transaction mechanism. Work proceeds independently at the stations,
with incremental changes spooled to the server, providing back-up in case of a
workst"ation crash. The changes are incorporated Into the public database only after

they have been shown to be valid.

The distributed database is actually more complicated than what we have out-
lined above. Some validation can be performed at the workstation, but much Is done
on speclal purpose hardware or high performance machines. The database server
must keep track of the location of design data at all times. In the following, we con-

centrate on the database server/workstation interaction, but the ideas apply in the
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more general environment.

6.3.2. Storage Component

The storage component manages design data on secondary storage. Although a
conventional database system can serve as a storage component [HASK82,
KATZ82a, LORIB3], a transaction-based file system, such as [REED83], provides the
required facilities at a potentially lower cost. For example, we are implementing our
system on top of the UNIX file system, which must be extended to provide atomic

update.

The storage component is a reliable archive for design files, residing at the -
database server. The notion of a design object is implemented at a higher level.
When a desigger wishes to create a new version of an object, he first acquires
exclusive access to it from the De§ign Librarian, which is a client of the storage com-
ponent. The storage component does not need concurrency control mechanisms,
since its actions are serialized by the Design Librariaﬁ. A copy of the original file is
then created on behalf of the Design Librarian at the server, and Is simultaneously
transmitted to the designer's workstation. Complex storage structu;'es are unneces-
sary since whole files are read and written by the storage component. Once at the
workstation, the files are processed by design tools. These typically read the files
into virtual memory, manipulate the data in virtual memory data structures, and write
them back when done. Convenient mechanisms for mapping complex data structures -

on disk into virtual memory is still an open research topic (see [HASK82, LORI&B3 ).

Save actions are supported by the recovery subsystem. Changes made to the
files at the workstations are kept in special change logs. When the changes are
saved, the logs are transmitted back to the storage component to be merged into the’
server's copy of the file. The merge operation is atomic, insuring that files are never

jeft with partially merged changes.

25w




The merge is implemented as a conventional database transaction, if these are
supported by the storage component. Otherwise, the merge is made atomic by creat-
ing a temporary COPY, merging in the changes, and when complete, renaming the tem-
porary file and removing the original. The merge can be restarted if a crash occurs.
While the merge may appear time consuming, it can be overlapped with continued
activity at the workstation. Note that individual design files are relative small, so the

time to do a merge need not be excessive.

5.3.3. Object System

Design objects are files containing design management specific information in
addition to representational primitives (see Appendix). The following information is
included: (1) the object's type, (2) the objects that contain this object, (3) the

object's components and how they are composed, and (4) the object's interface.

The object system maps the abstract notion of an "object” into the data
describing the object, stdred in storage component files. Design objects can be
stored either as a single file, with combined representation and design management
information, or as separate files. For representation types that are not known to the
system, the data is stored in a separate file referenced within the design object file.
The object system can pass this "raw" representation data to existing design tools,
thus appearing to them as a conventional file system. The design management infor-
mation is made available to components of the design system that traverse the com-

plex structure of the design, such as validation aids and browsing tools.

5.3.4. Recovery Subsystem

The recovery manager insures that as much data as possible survives a system
crash. This is accomplished by maintaining multiple copies with alternative failure
modes. Each checked out design object has five files associated with it in the

workstation and database server storage components: (1) the local working file,
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storing the object at the workstation, (2) the local change file stored at the works-
tation and holding a log of changes since the last savepoint, (8) the mirrored file,
storing the object in the database server, (4) the global change file, which holds
changes spooled to the server but not ygt saved, and (5) the redo log which con-
tains all saved changes since the last archive (see Figure 5.1 1). The local and global
change files contain the differences between the local file and its mirrored copy.
They protect against data lost because of workstation crashes. The redo log con-
tains the difference between the mirrored file and the original file. It protects

against loses due to database server failure.

The recovery manager supports savepoints. At a designer or design tool initiated
savepoint, data and change file buffers are forced to disk by the workstation's
buffer manager. The local change file is copied to the database server and is atomi-
cally appended to the global change file. Only the changes are written back, not the
complete file. A background process copies the local change file entries to the global
change file, providing a continuous recovery capabllity. This guards against data lose

from a local hard crash, ’an‘d reduces the latency of a save. Space on the local disk
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Figure 5.11 -- Files Associated with a Checked Out Object
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is reclaimed as local change file entries are copied back. To commit the changes, the
storage component atomically merges the global change file into the mirrored file and

appends the global change file to the redo log.

Recovery from a soft workstation crash proceeds as follows. The last savepoint
is reconstructed by copying the database server copy back to the workstation. A
more up-to-date version is optionally reconstructed by merging the local and global
change files into the local file. Some updates will be lost, since they were only in the
local buffers, but others that were written to disk since the last save can be

restored.

A hard workstation crash loses data on the workstation's disk. We assume that
all local files are lost. The file is restored to its last saved state by copying the mir-
rored file back to the workstation. Alternatively, the file is restored to the last state
known to the server by copying back the merged mirrored and global change files.
The recovery subsystem determines what objects should be restored by accessing

the information about who has what objects maintained by the Design Librarian.

The database server employs more conventional techniques to insure that its
files are durable. The system is resilient to soft crashes because of the atomic
operations supported by the storage component. Resiliency to hard crashes is pro-
vide;i as follows. Archival dumps are taken frequently. The mirrored files can be
restored to their last savepoint from the archive copy plus thg redo log. Note that
the recovery subsystem only guarantees tha’{: objects can be restored to their last
savepoint, although every effort is made to restore them past that point. Spooled
changes that were not yet saved are lost since these are not normally logged. If the
server loses the accumulated changes, it can always acquire the most up to date
version of the file from the workstation. The global redo file should be duplexed to

provide additional resiliency to hard crashes.
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5.3.5. Design Librarian

The Librarian coordinates all access to shared design data. It creates and mani-

pulates design objects and makes them available to workstations.

Designers (or design tools) acquire an object at a time. The designer uses
browsing tools to navigate the hierarchies to find the interesting objects.‘ Checking
out an object for update gives him an exclusive right to create a new version of the
object. The mirrored copies of design files, supported by the recovery subsystem on
top of the storage component, become the new object versions when the f:hanges

are committed.

Representation objects are never affected by updates. Several designers
could simultaneously create their own new versions, but such a proliferation of ver-
slons is undesirable from the standpoint of project management. The Design Librarian
employs check out locks to guarantee that at mos{ one in-progress version exists for

an cbject.

In the rare instance of one designer holding an object that anothér deéigner
needs, the designer who has It is permitted to complete its revision. He creates a
new consistent version of the object. The requesting designer can then acquire it,
creating his new version based on any of its previous versions. He is not restricted
to creating a new version of the most up-to-date existing version, although this will

be the most common situation.

Versions provide a flexible method for managing concurrent access to design
objects. Previous versions can be browsed without regard to in-progress update
activity. Simpie locking protocols protect against the proliferation of versions. This
Is an example of how the design environment requires much simpler mechanism than

are needed in the general transaction processing environment.
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5.3.6. Validation Subsystem

The validation subsystem helps designers keep track of what has to be revali~
dated after a design change. Validatiﬁg the fully instantiated design is prohibitively
expensive. The design's structure must be exploited to keep the validation effort

within reason.

A design is self-consistent if the following kinds of constraints are in force: (1)
an object's implementation satisfies its interface (conformance constraints), (2) the
composition of component objects is well-formed (composition constraints), and (3)
objects specified as equivalent across representations are shown to be equivalent
(equivalence constraints). Design transactions cannot complete until all constraints

are satisfied.

We do not advocate a completely automatic approach for design validation.
Designers will frequently need to intervene to apply the appropriate validation tools
and to interpret their results. To facilitate this, the validation subsystem provides an
audit capability, similar to that described in [NOON82]. Designers report who they
are, what constraints they have validated, and what tools have been used for the
validation. New validation tools can be written to directly record such information in
the log. If a design failure is traced to a particular design object, the designer-

responsible for its nyalidation” can at least be identified.

An obvious area for further tools development is in interface extraction. Some
parts of the interface are easy to extract, e.g., the location, fype, and drive capabil-
ity of ports. On the other hand, performance aspeéts like detailed delay information
can only be determined through simulations. The design team performs the simulation:

and reports their results to the subsystem.

A composite object is well-formed if the interconnected ports of its components
are type and direction compatible, e.g., restored output ports driving restored in‘put

ports. Component ports connected to the composite object's ports must be type
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compatible and must have the same direction, e.g., an input port of the composite is

connected to an input port of one of its components.

Some objects are generated from other representations. For example, PLAY lay-
outs are generated from Boolean equations in the functional description. Equivalence
in this case can be checked by analyzing the validation audit trail. As long as (1) the
last update time of the PLA layout object is the same as when the generator was run,
and not later, and (2) the last update time of the PLA functional object is before that
time, then the objects are known to be equivalent. Such equivalent constraints can

be actively enforced by regenerating dependent objects on request.

Equivalence constraints can reduce the effort to vaiidate equivalence across
representations. Suppose we must show equivalence between the layout and
transistor representations of a design. Normally, equivalence is checked by first
extracting the full layout into a transistor description, and then providing the same
stimulus to simulations of both the extracted transistor description and the original
transistor description. Ideally, only the changed portions of the layout description
and parts of the design that depend on them should be extracted and simulated.
Equivalence constréints help to réduce both the time to extract and the time to simu-
late. If two objects in the different representations are already equivalent because
they are connected by an equivalency object, then the transistor object can be sub-
stituted for its counterpart in the extracted transistor description without further
analysis. A multilevel simulator can simulate the object at this level without needing
to fully Instantiate it. New validation tools could be written to take advantage of the
equivalence constraints. In the meantime, designers validate the constraints piece

by piece, and enter their results in the validation log.

A design transaction cannot complete unless all newly created objects (1)
implement their interfaces, (2) are equivalent 1o the composition of their components,

and (3) are equivalent to identified objects in other representations. Objects unaf-
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fected by changes do not have to be revalidated.

6.3.7. Design Transaction Management

Design transactions are the mechanism by which designer create new con-
sistent versions of design objects. Design transactions consist of work, validation,
and completion phases. While work and validation can be intermixed, validation must

be complete before a design transaction is allowed to enter completion.

During the work phase, a designer requests design objects from the Design
Librarian. If the object has not been granted to another designer, the request is
honoréd and the appropriate files are transferre& to the workstation's disk. Addi-
tional mirrored copies are made in the database server, providing redundant copies

used for recovery purposes.

If the object has already been ‘acqui"red by another designer, its holder and its
expected time of return are Identified. "Deadlock” Is rare, but nonetheless possible.
Since designers can always determine who has what objects, deadlock is resolved
through negotiation. Once the needed objects are at the workstation, the designer

manipulates these with his design tools.

We have described the savepoint mechanism in our discussion of the recovery
subsystem. These protect transactions from loss of data due to local crashes. Since
the changes are continuously being spooled to the server by a background process,
most can be restored. Note that activity at the workstation can continue even
though the connection to the server is broken (fortunately rare!), but this isﬂnot

advisable. It exposes the designer to serious loss of data in a local crash.

The mirrored copies at the shared database server simplify browsing of in-
progress data. A relatively recent, savepoint consistent version of the design can be

viewed without accessing the data stored at the remote workstation.
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When design work is completed, the transaction enters a validation phase.
Verification programs are Invoked by designers to check that the modified design
data is self-consistent. If validation fails, the inconsistencies must be located and
corrected. The transaction reenters the work phase and validation is retried. Check-
ing is usually distributed throughout the lifetime of the transaction, and need not only
occur at the termination of design activity. The validation subsystem insures that all
relevant constraints have been enforced before a transaction is permitted to enter

completion.

During the completion phase, the mirrored copies of design objects are made
‘available as new objects. If part of an independent object, the new version Is added
to those pointed to by its appropriate altemative object. If a designer decides to
abort his transaction, the global and local copies are destroyed and the original

objects are made available again for checkout.

To see how a designer creates a new design, consider the following example
(see Figure 5.12). He wishes to create a new version of a microprocessor with a
revised register file design. He Invokes a design transaction, acquires the register

file object from the Design Librarian, and revises it, creating a new version. To
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Figure 5.12 -- Creating a New Design
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create the new microprocessor, he must first create a new datapath object incor-
porating the new register file. He acquires the datapath object, and recomposes It
from its original components and the new register file. He then acquires the micropro-
cessor object, and repeats the process. The new microprocessor design, with
revised datapath and register file, is validated. The design transaction can now com-
plete successfully with the new objects becoming a permanent part of the design

database.

Design transactions make a heavy demand on disk resources. However, redun-
dancy is unavoidable if resiliency to crashes is to be obtained. Since the server is
dedicated to providing database services to the network of workstations, it should

be equipped with a large number of disk devices.

5.3.8. Browser/Chip Assembler

The Browser and Chip Assembler are the interactive interfaces to the design
management system [KATZ83b, MUDGSO, MUDG81]. The Browser allows a designer
to navigate through the complex structures describing a design, making extensive

use of graphics to present the data structure, and menus to direct the navigation.

part of the motivation for interface descriptions Is to provide on-line design
documentation. Browsing through object versions provide insight into how it has
evolved over time. Alternatives within design libraries can be scanned to find a par-
ticular implementation of a function suitable for incorporation into a new design. A
design can be browsed within a representation, or across representations, at any
level of composite object or at the fully instantiated level of primitive objects.
Several ways of browsing the design can be underway simultaneously. Each browse

is presented within its own window.

The Browser assists the designer find objects with particular attributes. Index
objects group together objects with similar attributes. For example, the ALV index

object is composed of all generic ALU objects stored in the design database. The
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ALU index object can be further included in a datapath index object, etc., creating a

hierarchy of indices. Index abjects are entry points into the design database.

The Chip Assembler takes data created by synthésis tools, such as graphfc edi-
tors and datapath generators, and packages them as objects for inclusion within the
design database. In conjunction with the Browser, it provides an interactive frontend
for constructing the design data structure. It supports the interactive (1) composi-
tion of objects from more primitive objects, (2) specification of object interfaces, (3)
identification of equivalences across representations, (4) construction of design
configurations through version and alternative objects, and (4) creation and manipu~ '

lation of index objects.

6. Summary and Conclusions

Design data management is a crucial feature of an integrated design system.
The design data must be reliably stored on disk, concurreht access to it must bé con-
trolled, its versions and alternatives must be organized, and efforts must be made to
keep It well-formed and consistent within and across representation hierarchies.
Existing design tools tackle design synthesis and validation problems, but frequently
ignore the important design data management issues. A design data management
system provides these services to the ensemble of design tools, creating an environ-

ment In which tools become integrated intQ a coherent design system.

We are in the process of implementing a system with many of the design
management features described here. Since we could find no suitable database sys-
tem for our storage component, we initially created our own data management systém
tailored for design applications (the Wisconsin Storage System). We ha\)e decided to
redesign the storage and object components for direct use with the UNIX file system,
enhancing the transportability of our design management system. Efforts are under-
way to implement the object model, Design Librarian, Browser, and Chip Assembler

described here.
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8. Appendix -~ Sample Object Specification

The graphical presentation of the object is as in Figure 5.9.

(NAME ShiftRegisterCell)
(VERSION 1.0)
(DESIGNER Randy H. Katz)
(TYPE Independent Representation Layout)
(TIME Mon May 2 21:43:15 CDT 1983)
(WITHIN (Register 1.0) (Register 2.0))
(INTERFACE
(POLYGON (0 0) {0 20) (20 20) (20 0))
(PORTS
(LOCAL PORTNAME In DIRECTION Input TYPE 4:1 LOCATION (O 10))
(LOCAL PORTNAME Out DIRECTION Output TYPE Gate LOCATION (10 10))
(GLOBAL PORTNAME Phi1 DIRECTION Input TYPE 4:1 LOCATION (5 20))
(GLOBAL PORTNAME Phi2 DIRECTION input TYPE 4:1 LOCATION (156 20))

)
(DESCRIPTION 2 phase dynamic shift register cell)
(PERFORMANCE (DELAY 5 ns) (AREA 42 um BY 42 um) (POWER 10 uw))

)
(COMPOSITION
(INSTANCE x NAME HaIfReglster TRANSLATED (0 0))
(INSTANCE y NAME HalfRegister TRANSLATED (10 0))
(INTERCONNECT
((y In) (x Out))
({x In) (ShiftRegisterCell in))
((y Out) (ShiftRegisterCell Out))
((x CIK) (ShiftRegisterCell Phi1))
, ((y CIk) (ShiftRegisterCell Phi2))

)
(REPRESENTATION)

{(NAME HalfRegister)
(VERSION 1.0)
(DESIGNER Randy H. Katz)
(TYPE Dependent Representation Layout)
(TIME Sun May 1 09:31:15 CDT 1983)
(WITHIN (ShiftRegisterCell 1.0))
(INTERFACE
(POLYGON (0 0) (0 20) (10 20) (10 0))
(PORTS
(LOCAL PORTNAME In DIRECTION Input TYPE 4:1 LOCATION (0 10))
{LOCAL PORTNAME Out DIRECTION Output TYPE Gate LOCATION (10 10))
(LOCAL PORTNAME Cik DIRECTION Input TYPE 4:1 LOCATION (5 20))

)
(DESCRIPTION Half of dynamic shift register)
(PERFORMANCE (DELAY 2 ns) (AREA 42 um BY 21 um) (Power § uw))

)
(COMPOSITION)
(REPRESENTATION Boxes
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(Metal (0 0) (10 4))
(Poly (4 20) (6 0))
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