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1. Introduction

We discuss the active set algorithm for solving linearly inequality
constrained programs, via pivotings in special kind of active sets,
namely, base sets, which will be defined later.

There is a large literature about the active set algorithm for sol-
ving linearly inequality constrained programs. see [1], [2], [3], [5]
and their references. The active set is defined as the set of indices
of constraints for which equality holds at the current iteration. The
method consists of

« Test whether xk is optimal or not. If it is, stop.

. Decide whether to add constraints to the active set or to delete

constraints from the active set.

- Optimize in a subspace corresponding to the active set.

- Add constraints to the active set.

. Delete constraints from the active set.

If we only solve unconstrained problems in the subspace, it is very
possible that we may return to the same active set again. In an extreme
situation, the well-known phenomenon of zigzagging occurs when a con-
straint is repeatedly dropped from the active set at one iteration, only
to be added again at a subsequent iteration. Zigzagging can cause slow
progress, or even convergence to a non-optimal point [3].

In section 2, we diétinguish a class of base sets among the sets of
indices. It is proved that the correct active set [3] is a base set.

By means of this concept, we give an algorithm in section 3 such that it

converges in a finite number of steps. In section 4, we discuss the




technique to find a base set with lower optimal value from a feasible
point.

Convex programs with linear constraints arise naturally in appli-
cations, e.qg. stochastic programs [4] [6]. The deterministic problems
equivalent to stochastic programs with fixed recourse have separable
convex objective functions. For such problems, unconstrained optimiza-
tion in a subspace is not difficult. Therefore, the base set strategy
may have use in these cases.

In the theorems, we assume that the objective function is uniformily
quasi-convex and differentiable. A function f: R" - R" s uniformily

guasi-convex if ¥x, yean, te (0,1), we have
Flex+(1-t)y) < max (F(x), F(¥)} - ct(1-t)|[x-y]l5 s

where ¢ 1is a positive constant.




2. Base Sets

Consider

(2.1)
s.t. a;x < b,, i=1,....m ‘
where x eR", a; ¢R", b, ¢R, i=l,...,m, f:R" > R is uniformily
quasi-convex and differentiable. Suppose (2.1) is solvable i.e., it has
an optimal solution x*. Since f is uniformily quasi-convex, this

optimal solution is unique. Let M= {1,...,m}.

Definition 2.1. The active set of a point «x ¢ R" (x 1is not necessarily

feasible for (2.1)) is
S(x):= {ieM]a1x=bi} . (2.2)

Write S* = S(x*). In [3], S* 4s called the correct active set.
If we can find S*, then the problem becomes an equality constrained

problem:

(2.3)
s.t. a;x = b., 1eS*.
In general, S* is unknown. However, we can show that S* belongs to
a subclass of subsets of M, the base set class. The key idea is to
perform descent pivoting in this base set class.

Suppose S < M. Consider




inf  f(x)

Denote its optimal value by F(S) .

Definition 2.2. If (2.4) 1is solvable for some S < M and the optimal

solution x(S) 1is a feasible solution of (2.1), then S 1is called a base

set of (2.1).
Theorem 2.1. S* 1is a base set of (2.1). |

Proof. It suffices to prove that x* is the optimal solution of (2.3).

Suppose not. Then there exists a point X, which is feasible for (2.3)

and satisfies
f(x) < f(x*) .
By the definition of x*, X is infeasible to (2.1) i.e.,
D:= {ieM]ai§>b1} £ o
Let

b.-aix*
A= MiN L e——

jeD |a.x-a,x*
77
Then 0 <A< 1. Let y=2ax + (1-A)x*. Then y is feasible to
(2.1) and f(y) < f(x*). That is impossible. Therefore x* optimizes

(2.3). i

Corollary 2.1. If S is a base set of (2.1) and S # S*, then

F(S*) < F(S) .




3. Algorithms

Al. Start from a feasible point X

of (2.1).

k

A2. Having a point x~ feasible for (2.1) determine a base set Sk of

(2.1) such that

F(sK) < £(xK) . (3.1)

A3. Having Sk, find x(Sk).

If it is optimal for (2.1), stop, else

k+1

determine a feasible point «x for (2.1), such that

k

F) < F(shy (3.2)

and go to A2.

Theorem 3.1. This algorithm produces a finite sequence {Sk, k=0,1,...,k

of base sets of (2.1), such that

F(s€) < Feskly k=T,.00skg (3.3)

k
and 5 0 = s* .
Proof. (3.3) is according to (3.1) and (3.2). Therefore, we get a base
set sequence {Sk}, sk # SZ, Yk # 2. Since the number of base sets of
(2.1) s finite, {Sk} must have only finitely many elements. By A3,
the Tast element of {SX} must be S*. [

There are many methods for finding a starting feasible solution.
There are also many methods for finding a better feasible solution from

a feasible solution x(Sk), such as using negative Lagrange multiplier




or gradient projection methods [3]. Therefore, we will not discuss the
techniques of. Al and A3. In the following, we discuss the technique of

A2.




4, Technique of A2

We omit the subscript k, use z instead of xk, T instead of Sk

3

and rewrite A2:

A2. Having a feasible point z of (2.1), determine a base set T of (2.1)
such that

F(T) < f(z) . (4.1)

If S(z) 1is a base set, then we are finished. In general, we have
Theorem 4.1. For any feasible point z of (2.1), there is a base set of

(2.1) such that
T > S(z) (4.2)
and (4.1) holds. ]
We first prove the following lemma:

Lemma 4.1. Suppose z is a feasible point of (2.1) and S(z) is not a

base set of (2.1). Then there exists another feasible point z such

that

f(z) < f(z) , 5(2),$ S(z) . B (4.3)
Proof. Consider

inf  f(x)

s.t. ax =b.,, 1eS(z). (4.4)

First, the constraints of (4.4) are consistent (z satisfies them).




Since S(z) 1is not a base set of (2.1), there exists a point z* which

is feasible for (4.4), but infeasible for (2.1), and which satisfies

f(z*) < f(z) (4.5)
Therefore
D:= {1eM]aiz*>bi} £ o (4.6)
and
DnsS(z)=¢. (4.7)
Let
) = min b.-aiz (4.8)

. a.z*-a.z| -
ieD i i

Then 0 < A< 1. Let Z= (1-A)z + Az*. Then 2z 1is a feasible point
of (2.1) and

$(z) = (S(z)nS(z*)) = s(z). (4.9)
From (4.5), we know
f(z) < f(z). | (4.10)
By (4.8), we know
S(z) nD # ¢. (4.11)

From (4.7), (4.9) and (4.11), we know

S(2) i S(z).

This proves the lemma. |




Proof of Theorem 4.1. If S(z) 1is a base set, we are done. Suppose it

is not. Write zO = z. By Lemma 4, we have a feasible point 2] of.

(2.1) such that

f(z') < #(29), s(z") 2502

If S(z]) is not a base set, we can find 22, and so on. We thus have a

descending sequence {z"} of feasible solutions such that for r=0,1,...

£(2") < £#(2") (4.12)

and
sz 252" (4.13)

Since S(zr) has at most m members {z'} has at most m + 1 members

O) 0

(S(z may be ¢). Thus we have z ,...,zt, where 0 <t <m, and

S(zt) is a base set of (2.1). Let T:= S(z*). From (4.13), T o S(z).

From (4.12),
F(T) < £(z%) < £(2).

This proves the theorem. O

Lemma 4.1 and (4.8) give us a constructive way to find T. - If we
combine this method with the algorithm in Section 3, some active sets may
be repeatedly met in distinct steps (for different k). However, the
base sets will never be repeated.

One might argue that the concept of base set is not necessary. One

might say that if one insisted on minimizing the function for the given

active set before considering removal of any constraints, then there would
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be no points with lower function value for which the active set was the
same. However, if an active set is not a base set, this implies minimiz-
ing the function under the equality constraints corresponding to the

active set and the inequality constraints corresponding to remain indices. .

This is no simpler than the original problem except insofar as it reduces

the number of constraints.
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