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ABSTRACT

In this paper we take a critical look at the future of the field of database
machines. We hypothesize that trends in mass storage technology are making data-
base machines that attempt to exploit a high degree of parallelism to enhance perfor-

mance an idea whose time has passed.



1. Introduction

In 1979 our colleague David Hsiao wrote an introductory paper [HSIA79] for a
special issue of the IEEE Computer Journal on database machines. He titled that article
"Database Machines are Coming, Database Machines are Coming". Indeed at that time
the future of database machines looked rosy. A large riumber of research projects
were active and several commercial products were on the horizon. Although the
designs and assumptions of the projects varied dramatically, the fundamental design
objective of each project was to improve access to very large databases.

In this paper we will explore what has happened to database machines in the
past four years and will attempt to predict the future of the area. Although we were
tempted to title this paper "Database Machines are Dead, Database Machines are
Dead", a statement this strong is probably premature. However, we assert that unless
some fundamental changes occur in commercially available mass storage technology,
the use of massive parallelism or associative memory for reducing the execution time
of a single query is definitely an idea whose time has passed.

We will begin by describing in Section 2 the changes in technology that started
the database machine revolution. We will then trace the evolution of the field by briefly
describing a number of key projects. In Section 3, we will discuss the trends in mass
storage and processor technology since 1970 and their effects on the future of data-
base machines. Our assertion is that highly parallel high-performance database
machines (of the type described in Section 2) are predicated on the availability of mass
storage technologies that have not and probably will not emerge as commercially
viable products. In Section 4, we suggest three avenues of research that seem promis-
ing for resolving the lack of sufficient mass storage bandwidth. Our conclusions are

| presented in Section 5.




2. The Desert Blooms

In this section we chronicle the development of database machines during the
past twelve years. We have divided the numerous machines that have been proposed
into three general classes: processor-per-track designs, processor-per-head designs,
and off-the-disk designs. In the following sections we present an overview of each

classification and describe several machines belonging to each.

2.1. Processor-per-Track (PPT) Architectures

Database machines were pioneered by Slotnick [SLOT70] who in 1970 formulated
the idea of associating processing logic with the read/write heads of a rotating storage
device such as a fixed head disk, as shown in Figure 1, in order to process certain
search operations "on the fly”. The processors are connected to a global data bus onto
which they place selected records for transmission to the host processor. Coordination
of the operation of the cells is performed by a controlling processor. The basic motiva-
tion of Slotnick's design was to be able to search a database directly on the mass

storage unit and thus limit the amount of data to be transferred to the host for

Channel
Host
processor Cell

lCFi CR| (R CR| ( processors

Data cells

- (Disk controller )
ystem
information Database

Figure 1



4

additional processing. In addition, since an entire database could be searched in one
revolution of the mass storage device, the need for auxiliary storage structures such as
indices to enhance performance was eliminated simplifying, considerably, the DBMS
software.

Slotnick's ideas were further developed by Parker [PARK71], Minsky [MINS72],
and Parhami [PARH7R2]. Although none of these efforts resulted in a comprehensive
proposal for the implementation of a database machine, they served as a source of
ideas for subsequent efforts; in particular CASSM, RAP, and RARES which are described

briefly below.

2.1.1. CASSM

CASSM was the first complete database machine design. It was designed to sup-
port the network, hierarchical, and relational data models. A fixed head disk is used as
the storage medium and a simple processing element is associated with each
read/write head. The processing elements are controlled by a single processor which
is responsible for communication with the host computer(s), distributing instructions
to the processors, and collating and processing both intermediate and result relations.

Data items in CASSM are stored as ordered pairs: <attribute name, value>. All
data items belonging to a record are stored in a physically contiguous block preceded
by record and relation identifiers. Associated with each attribute and each record are a
set of mark bits. These bits are used to indicate the results of an operation. Strings
are stored only once in the database, separately from the records in which they are
values. In these cases the value field of the ordered pair is a pointer to the string

When executing a selection query, a processing elernent marks tuples belonging
to the relation being processed during the first disk revolution. A second revolution is
used to search the marked records for the desired attribute and check its value; quali-
fying attributes are marked. A third revolution is used to output the marked attri-

butes. Inthe event that the marked attribute is a string, the third revolution is used to




chase the pointer in the value field of the max:ked ordered pair and an additional,
fourth, revolution is required to output the marked string. Joins were implemented
using a hashing scheme and an auxiliary memory similar to algorithms proposed for
the CAFS [BABB79] and LEECH [MGCR76] database machines.

2.1.2. RAP

The RAP [OZKA75, OZKA77] database machine project is also based on a PPT
approach in which tuples from a relation are stored bitwise along a track. Only tuples
from one relation are allowed on a track, although numerous tracks can be used to
store a relation. As in CASSM, a tuple is augmented with a fixed number of mark bits
(attributes are not) that serve the same purpose. Processing of a selection operation
is similar to CASSM, although it is faster because of the simpler data structure. Also,
the processing elements have the capability of scanning for a number of different
values in parallel. Joins are processed as a series of selection sub-queries on the larger
relation, using the values of the joining attribute in the smaller relation as the selec-

tion criteria (a parallel nested loops algorithm).

2.1.3. RARES

RARES [LIN78], like RAP and CASSM, employs a PPT design utilizing a third
storage format. Tuples are stored across tracks in byte parallel fashion. That is, byte
0 of a tuple is stored on track 0; byte 1 of the same tuple is stored in the same position
on track 1; and so on. In this orthogonal approach a tuple that is "waiting’ to be sent
will be distributed over several buffers (a byte in each processing element) whereas in
RAP the tuple will reside in a buffer in a single processing element. Thus, RAP would be

more likely to be blocked than RARES due to bus contention.

2.1.4. Discussion
Although the PPT designs initially looked attractive, researchers quickly realized

that they could not be used for the storage of very large databases (which was the ori-



ginal motivation for database machines). Their fundamental flaw is that a track of data
on a magnetic medium was limited in 1970 to about 15,000 bytes [GORS80]. Thus to
hold a 150 million byte database (which is not very big), a device with 10,000 tracks and
processors would be required. Researchers attacked this problem in three ways. The
PPT advocates turned to solid state devices such as bubble memories and charge cou-
pled devices to provide longer tracks. We will address the problems associated with
this solution in Section 3. Another group of researchers turned to an approach in
which a processor is associated with each read/write head of a moving head disk. | We
term this approach "processor-per-head". It is discussed in the following section. A
third solution investigated was to separate the processors from the storage medium
with a large disk cache. The goal of this "off-the-disk” approach was to be able to con-
tinue to exploit parallelism to enhance performance while using conventional (and
hence cheap) mass storage devices for holding the database. We discuss this approach

in more detail below.

2.2. Processor-per-Head Designs

A second class of database machines are those that associate processing logic
with each head of a moving-head disk as illustrated in Figure 2. We term this class of
machines "processor-per-head” (PPH) machines. In a PPH database machine, data is
transferred, in parallel, from the heads to a set of processors. Each processor applies
the selection criteria to its incoming data stream and places selected tuples in its out-
put buffer. In such an organization an entire cylinder of a moving head disk is exam-

ined in a single revolution (assuming no output bus contention).

2.2.1. Ohio State Data Base Computer (DBC)

The DBC [KANN78, BANE78] project chose the PPH approach as the basis for the
design of their "Mass Memory Unit" as PPT devices were not deemed to be cost-
effective for the storage of large databases (say more than 1010 bytes) [KANN78]. DBC

consists of seven functionally different components. Of particular interest are the Mass
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Memory and Structure Memory components. The mass memory uses several moving
head disks, with parallel readout capabilities, to store the database. The heads of the
disks are connected, via a switch, to a number of processors which perform search
operations.

While an entire cylinder can be searched in one revolution, executing search
queries which access data that spans many cylinders in a brute force fashion is not
effective [DEWIB1]. The DBC designers recognized this fact and incorporated indices
into their design. The indices are kept in the Structure Memory. These indices are

used to limit the number of cylinders that must be searched when executing a query.

2.2.2. SURE

SURE [LEIL78] uses a moving head disk modified to enable parallel read out from
all of the recording surfaces simultaneously. The output is collected into a single
high-speed broadcast channel from which it is read by a number of processors. Each’
processor is a very high-speed pipelined unit with a simple instruction set geared

towards searching. A selection query is broken down into as many simple components
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as possible, each of which is assigned to one of the processors for execution. The
actual number of processors used for the execution of a selection query depends on its
complexity. Like RARES, SURE is intended to function only as a search processor,
perhaps in the context of a database machine or serving a DBMS on a general-purpose

computer.

2.2.3. Discussion

In [DEWIB1] the performance of a number of alternative database machine archi-
tectures were evaluated for a range of different query types. The result of this evalua-
tion indicates that the PPH design provides very good performance when searching a
file for those records that satisfy a search condition. When a suitable index was avail-
able, a PPH organization with 19 processors (and read/write heads) was never more
than a factor of 1.6 slower than a PPT organization with 7676 processors and tracks.
Without a suitable index, the PPH organization was approximately’a factor of 4 slower.

When, however, this same design was used to process complex queries, such as
the relational algebra join operation by repeatedly proc essing one relation using values
from the second relation (the RAP join algorithm), both it and a “generic" PPT design
performed significantly slower than a conventional processor. This indicates that the
PPH design alone does not provide a suitable level of performance for all relational
algebra operations. To solve this problem, the designers of the DBC augmented their
original design to include a postprocessing unit for processing complex database

operations such as the relational join operator.

2.3. Off-the-Disk Machines

Another solution to the database size problem is to separate the processors
from the storage medium with a large disk cache. We term this approach the "off-the-
disk” approach. The goal of this approach is to be able to continue to exploit parallel-
ism to enhance performance while using conventional mass storage devices. While all

data to be processed must first be moved from mass storage to the disk cache, once
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the data is there it can be accessed by the processors in parallel (assuming the
existence of suitable hardware). Furthermore, intermediate results in processing a
query will be placed by the processors in the disk cache and hence be quickly accessi-
ble for the subsequent operations in the query.

There is a large number of database machines in this class including RAP.2
[SCHU79], DIRECT [DEWI79], INFOPLEX [MADN79], RDBM [HELLB1], and DBMAC [MISSB1].
In addition, some database machine designers have designed machines that combine
the characteristics of the PPH and "off-the-disk" designs (REPT [SHUL81], HYPERTREE
[GOODB1]). As discussed in [DEWI79], such designs look promising if parallel readout
disks can be constructed (a point we will return to in Section 3). We will briefly
describe DIRECT and RAP.2 in the following sections.

2.3.1. RAP.2

In [SCHU79], Schuster et al describe a virtual RAP machine. In this organization
the database resides on some number of conventional mass storage devices. The RAP
system consists of a number of cells, each with a pair of tracks. The controller
assumes the additional responsibilities of loading the tracks with data to be examined.

Each processor can examine only one track at a time. However, while one track is

being examined, the second can be loaded.

2.3.2. DIRECT

In this section we describe the architecture of DIRECT. The DIRECT project
began after a critical evaluation of several database machine research projects (in par-
ticular RAP which in the mid 70's was the most advanced and best known database
machine design) revealed two major shortcomings with each of the proposed 'designs:
the inability to process complex databasé operations (e.g. joins) efficiently
[0ZKA77,DEWIB1], and the SIMD mode of operation in which only a single instruction
from a single query can be executed simultaneously. As shown in [BORAB1] a database

machine that processes queries in a SIMD mode has a lower transaction throughput
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than one which processes multiple operations from multiple queries simultaneéusly.
DIRECT was designed to overcome these two shortcomings.

In DIRECT there are some number of processors whose function is to execute
selection, projection, join, update, and aggregate operations on the database. These
processors are controlled by a processor (termed the back-end controller) which is
responsible for distributing instructions and overseeing data transfers to the proces-
sors. The database resides on some number of mass storage devices (moving head
disks). Each relation is organized as a set of fixed size pages. The disk cache is divided
into page frames of the same size. The query processors and disk cache page frames
are connected by a cross point switch that has two important capabilities: any number
of processors can read the same page simultaneously; and, any two processors can
read /write from any two different devices concurrently. This organization permits pro-

cessors to work in parallel on the same operation or on different operations.

2.3.3. Discussion

Although both the RAP.2 and DIRECT designs appeared promising initially, the
research presented in [DEWIB1] indicates that when the performance of a DIRECT-like
design is compared to that of a conventional computer, increases in parallelism do not

result in corresponding decreases in query execution time.

3. The Flowers Wilt

In the previous section we described three classes of database machine archi-
tectures: processor-per-track designs, processor-per-head designs, and "off-the-track”
designs. In this section we will discuss how recent changes in mass storage technology
have either made each of these designs infeasible or of reduced value with present day
or near future technology.

Although we realize that all database machines may not fit directly into our
classification, we contend that most database designs that ulilize parallelism can be

represented as a combination of these architectures. Thus, since we have serious
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doubts about the near term viability of each approach, just patching different
approaches together does not resolve the fundamental problem we are facing: current
mass storage devices do not provide sufficient I/0 bandwidth to justify highly parallel
database machines.

The reader should not, however, interpret this statement to mean that we feel
that database machines that use limited parallelism (such as the IDM 500 [IDM500] with
its database accelerator co-processor) are not viable. On the contrary such database
machine designs with 1-3 processors per disk drive look very attractive (see the con-
clusions of [DEWIB1]) and a reasonable design might a collection of such clusters inter-
connected by a high-speed local network [STON79].

In this section we first discuss the impact of trends in mass storage technology
on the processor-per-track, processor-per-head, and off-the-disk database machine
designs. Then we briefly discuss trends in processor technology. Finally, we present
our interpretation of the compounded effect of these two trends on the future of data-

base machines.
3.1. Trends in Mass Storage Technology

3.1.1. Impact on Processor-per-Track Database Machines

PPT designs were predicated on: 1) associating a processor with every storage
cell, and 2) the availability of a sufficient number of storage cells to hold the entire
database. Thus, conventional database techniques such as indexing would be never by
needed by these designs. Unfortunately, the technologies on which these designs were
predicated have either become obsolete or not commercially viable.

Fixed head disks on which the original designs were based are no longer
manufactured!. Furthermore, storage of entire databases on fixed heéd disks never

has been and never will be cost effective.

! We are aware that certain models of winchester type disk drives such as the [BM 3380 have a limnited
number of tracks with fixed read/write heads. These tracks do not, however, store enough data to consider
using them as the basis for a database machine.
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The other technologies considered as the basis for the storage cells of the
processor-per-track designs were bubble memory and charge-couple-device (CCD)
components. Although constructing mass storége devices from either CCD or bubble
devices may be academically interesting, at this point in time it does not appear that
either technology is likely to become a suitable replacement for moving head disk
technology. Since their introduction, the cost/bit of CCD and bubble memory devices
has not dropped as rapidly as that of moving head disks or random-access memory
components. Although bubble memories are being used in a small niche of the market
(mainly non-volatile memory for portable terminals), the state of the art is that Intel
sells a board with bubbles that is slower than hard disk and more expensive than RAM.

CCDs have failed to generate a big enough market for parts where the access
time did not matter. After their introduction, CCDs never were more than a half gen-
eration ahead of RAMs. This meant that if a customer was willing to wait an additional
year, he would be able to purchase a RAM chip with the same density for the same
price but with an access time of about two orders of magnitude faster. Consequently,
most semi-conductor manufacturers have stopped manufacturing both types of com-
ponents. It is likely that neither of these technologies will ever become cost effective
for storing even moderate-sized databases.

In conclusion, it appears that processor-per-track database machines have only

historical value,

3.1.2. Impact on Processor-per-Head Database Machines

When a parallel-readout disk drive is combined with a simple processor for each
read/write head and an indexing mechanism to limit the number of cylinders that
must be searched, the result is a database machine that can process selection queries
at a very high rate [DEWI81]. In addition, when such a design is combined with an off-
the-disk design, the performance for processing compleXx queries is also excellent. Why

then is such an architecture not the wave of the future? The problem is that the same
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changés in magnetic disk technology that have produced constantly increasing disk
capacities have made constructing parallel-readout disk drives increasingly more
difficult.

To understand why it is difficult to construct a parallel-readout disk, one must
reflect on the mechanism used to read/write conventional moving head disks. To
minimize costs, all read/write heads are mounted on the same disk arm assembly
which is then activated by some form of a linear motor. When the head assembly is
moved to a cylinder (i.e. a seek operation), the read/write heads are not properly
aligned on their respective tracks and fine adjustment is generally necessary to align
the head selected for reading/writing. Due to the effects of thermal expansion of the
arm, alignment must take place continuously (even while the track is being
read /written). In parallel-readout disks all {or most) read/write heads must be
aligned after each seek. If more than one head is to be aligned then the arm’s position
at any given time instance will most likely not be the optimal position for any one head
and the signal received by each head will not be maximal; possibly leading to errors.
As disk densities increase, the magnetic spots get smaller, further aggravating the
effects discussed above.

Another problem with parallel readout disks is that the error detection and
correction logic must be replicated for each head. Although we were not able to obtain
precise figures on what part of the cost of a disk the error correction logic represents,
we have been lead to understand that it is substantial. Associating error correction
logic with each read/write head would contribute significantly to the cost of a disk. As
an example, consider the winchester drive in which four of the 16 heads can be
read /written at once made by CDC. The storage capacity of the drive is 675 megabytes,
transfer rate of 4.84 megabytes/second, cost of $80,000. A drive of comparable
storage capacity (4B4 megabytes) and a transfer rate of about 1.8 megabytes/second
costs around $15,000 (Fujistu Eagle).

Thus, while parallel-readout drives were perhaps feasible 5-10 years ago, they
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are only marginally feasible today (from both technological and cost points of view)v). As
we mentioned above, CDC does have a parallel readout drive with four heads operating
in parallel. However, it is not clear whether their new generation of IBM 3380 compati-
ble disks will include a parallel readout version.

Actuating each head with a different mechanical assembly would provide a solu-
tion to this problem. But since the linear métor and disk arm assernbly with its associ-
ated positional sensing circuitry constitutes the major portion of the cost of a conven-
tional disk drive, such a drive would be prohibitively expensive (and extremely bulky!).
In addition to the problems of construction, such drives will have higher cost per bit of
storage than conventional drives. For some applications (such as feeding data to a
Cray-1) thé performance benefits probably outweigh the cost disadvantages. For
storage of large databases, their cost disadvantage will, in our opinion, make the use of
such drives impractical.

In conclusion, although parallel-readout disk drives could form the basis of high
performance, highly parallel database machine, changes in disk technology have ren-
dered this approach questionable and other approaches must be developed to provide

high bandwidth mass storage devices.

3.1.3. Impact on Off-the-Disk Database Machines

In addition to their effect on PPH designs, increasing disk densities also have
had an adverse impact on the performance of ofi-the-disk database machine designs
that utilize parallelism. Consider, for example, the three trends that moving head disk
technology has displayed during the last ten years illustrated below in Figures 3, 4, and
5. Figures 3 and 4 illustrate encouraging trends for all computer applications:
_increased disk capacities (therefore cheaper cost per bit) and increased bandwidth per
drive. When we combine the figures to obtain Figure 5 which shows the trend in
bandwidth per gigabyte we find that the total bandwidth for a gigabyte of storage has

actually decreased with improvements in disk technology from 1970 to 1975. The reéa-
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son for this phenomenon is that almost every increase in disk capaciy was the result
of decreasing the distance between adjacent tracks on a surface andnot the result of
shrinking the distance between bits along a track, Thus, increases instorage capacity

per drive were largely due to improvements in the mechanical head positioning tech-

nology.
Capacity
630 Mbytes x~-3380
317 Mbytes x-3350
100 Mbytes x-3330
1970 1975 1980
Disk Capacity

Figure 3
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The IBM 3380 caused this trend to change. In the IBM 3380, the capacity of a sin-

gle track was increased from a typical capacity of about 15,000 bytes to about 45,000

bytes. This increase is due to improvements in head technology that resulted in the

shrinking of the area occupied by each bit. Unfortunately, the gains in bandwidth illus-

trated by the IBM 3380 in Figure 4 (and the corresponding change in direction of the
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curve iﬁ Figure 5) due to increased track capacities are not likely to continue. The 3
megabyte /second bandwidth of the IBM 3380, is difficult for most machines to handle
(even on large IBM machines, a special channel is needed to handle these drives).
Thus, it is not likely that track capacities will increase further (or at least the max-
imum bandwidth per spindle is likely to remain at the level of the 3380).

What we are saying then is that although the trends illustrated by all three
figures seems encour:aging, in fact they are not. The improvement in disk storage
capacity is due to improvements in mechanical head positioning technolegy and in
head technology itself. Improvements in head technology cause, in addition to
increases in disk capacity, a corresponding increase in disk bandwidth. Improvements
in mechanical head positioning technology do not affect disk bandwidth. Existing 170
processors cannot handle transfer rates higher than 3 megabytes/second.? Undoubt-
edly this will change over time. However, we believe that several years will pass until
this change takes place. In the meantime additional increases in disk capacity will be
made through further improvements in head positioning technology. Thus, for a data-
base with a given size, the bandwidth available for access to that database is likely to

decrease.

3.2. Trends in Processor Technology

While the capacity of mass storage devices has been growing, "slower” and
"slower” conventional microprocessors have been getting faster and faster. In this sec-
tion we will explore the tasks performed by the processing elements of a database
machine and will demonstrate that advances in microprocessor technology have elim-
inated the need for customized database machine processors implemented either

through microcode or VLSL

2 The Cray-1 and several of the higher-end CDC machines use the parallel readout CDC drive. To handle
the high data transfer rate they have had to resort to the use of two I/Q processors to control the disk and to
ping pong control over the disk between them!
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3.2.1. Description of l{[ajor Tasks Performed by the Processing Flements

All the database machine organizations described in the previous section are
organized in a two tiered manner: at the top level a single processor that is responsible
for communications with the outside world and management of the machine resources;
at the bottom level several processing elements are responsible for executing tasks.
Practically all of the overhead functions, such as disk arm scheduling and buffer
memory management (if there is one in the machine), associated with executing
queries, are handled by the controller. The processing elements spend almost none of
their time executing any of these overhead tasks. The database machines discussed
previously attempt to decrease the execution time of queries through the use of paral-
lelism in the query execution itself not by speeding up the cont}'ouer's function (an
exception is the DBC which uses a form of pipelining to distribute the controller's func-
tions among four or five specialized processors). Since the emphasis in most designs is
on the use of parallelism in the lower level we now carefully examine the processing
requirements of that level and ignore those of the top level.

The operations supported by most relational database systems, can be divided
into two classes according to the time complexity of the algorithms used on a uni-
processor system. The first class includes those operations that reference a single
relation and require linear time (i.e. they can be processed in a single pass over the
relation). The most familiar example is the selection operation that selects those
tuples from a relation that satisfy a predicate (e.g. suppliers in "New York").

The second class contains operations that have either one or two input relations
and require non-linear time for their execution. An example of an operation in this
class that references one relation is the projection operation. Projecting a relation
involves first eliminating one or more attributes (columns) of the relation and then
eliminating any duplicate tuples that may have been introduced by the first step. Sort-
ing (which requires O(nlogn) time) is the generally accepted way of eliminating the

duplicate tuples. The join operation is the most frequently used operation from this
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class that references two relations. This operation can be viewed as a restricted cross-
product of two relations.

For both classes of operations, once a block (page) of data has been retrieved
from mass storage to the memory of a database machine, there are three basic opera-
tions that must be performed efficiently while executing a query: search operations,
moving data from one memory location to another, and indexing operations (pointing
at the next tuple/record to be processed).

The operation of searching for a record (tuple) which satisfies certain conditions

is used in a variety of relational operations including:

(1) selection - in which the search condition may be arbitrarily complex: name =

"Jones" and salary > $10,000 or name = "Smith"” and salary = §95,000

(2) join - in which an attribute of one tuple is compared against the attribute of

another tuple

(3) projection - duplicate tuples are detected by comparing all attributes of one tuple

with all attributes of another.

Moving records from one memory location to another also occurs in a number of
database operations including sorting and placing tuples in the result relation of a
query. Finally, while searching a block of tuples the task of locating the proper field in
the next tuple to be examined is performed frequently and thus should be executed as

quickly as possible.

3.2.2. Processing Requirements of these Operations

In a separate paper [BITTB3], we report the results of running benchmarks on
several database systems. We had hoped to utilize the results of these benchmarks to
gather statistics on cpu time per disk access for the different operations. In particu-
lar, we were planning to use the Cornrhercial Ingres numbers. However, the numbers
we obtained from these benchmarks do not permit separation of cpu time into over-

head and processing components. Instead we ran a small subset of the benchmark on
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the Wisconsin Storage System (WiSS) [CHOUB3] running on a VAX 11/750.

A description of WiSS is beyond the scope of this paper. However, a few words
are due. WiSS is an extent based file system implemented on top of Unix although
bypassing the Unix file system. WiSS consists of several layers that do buffer manage-
ment, index maintenance, recovery, concurrency control ete. From its inception, in
1981, it was intended to provide faculty and students at Wisconsin with a tool for data-
base research. It has been used as a basis for student projects in database manage-
ment systems and database machines.

All the majorl relational operators have been implemented on top of WiSS. Algo-
rithms that rely on sorting, indexing, and other data structures have been imple-
mented. For this paper we ran a small number of experiments trying té measure the
amount of cpu time spent per access to disk. We looked at selection and join opera-
tions without indexes. The join was implemented using a sort merge algorithm. Selec-
tion was implemented using a sequential scan of the relation.

The main result of this effort is that a considerable amount of additional work is
required if one is to obtain the kind of numbers we desire. There are numerous factors
that contribute to the cpu time measured. Some examples are doing the measure-
ments while other users were using the system, factoring out various overhead costs
such as buffer management (not done by the processing elements of a database
machine), and disk scheduling.

All tests were run on a 10,000 tuple relation with 182 bytes/tuple. The relation
was organized as 4096 byte pages. Tuples were not stored across page boundaries.
Pages were full.

Selection operations were evaluated on both 2-byte integer attributes and 52-
byte string attributes. Selectivity factors of 1% and 10% were used for each attribute.
We found that the average cpu time spent per disk access ranged between a little less
than a millisecond to about 2.5 milliseconds.

A 10,000 tuplé relation was joined with a 1,000 tuple relation to obtain a 1,000
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tuple result relation. We ran the tests with different main memory buffer sizes. The
buffer sizes evaluated were 3, 5, 10, 20, 50, and 100 (each buffer could hold a single
4096-byte page). We found that the cpu time time per disk access ranged between 13
and 22 milliseconds. In general, the execution time per disk access increased as the
number of buffers available to the sort-merge routine increased (of course, the total
execution time decreased).

What is the period of time required to access a page on disk? In the best of
cases no seek will be required. Thus total time consists of latency and transfer (about
10 milliseconds on a Fujitsu Eagle disk). On the average the seek time of the Eagle is
about 20 milliseconds thus we obtain a ﬁgﬁre of 30 milliseconds for the random access
case.

The conclusions that can be drawn from these figures are:

(1) A single processor with performance characteristics similar to the VAX 11/750 can

process selection queries at the rate the disk delivers data.
(2) Two or three processors would be required to process joins.

3.2.3. Implications

Based on the above arguments, we claim that "off-the-shelf" processing com-
ponents provide sufficient processing power and that there is no need to implement
customized database processors either through microcode or VLSI as has been argued
in [KUNGBO] and [YAOB1] for example.

Although microprogramming is frequently touted as providing orders of magni-
tude of performance improvement for time critical database operations such as
searching and moving strings, we claim that the performance improvements are
minirnal at best [ATKI?3, DEWI76]. For machines without string handling instructions
the best improvement one is likely to see is a factor of 2-3. For processors with
machine language instructions for processing strings, there is, in general, little or no

improvement in performance as such operations are inherently limited by memory
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bandwidth.

Furthermore, development of customized microcode is a very time consuming
process and has the tendency to lock a project into obsolete technology. As an exam-
ple consider the Braunschweig database machine project RDBM. This project began in
1980. By the end of 1981, the design and initial implementation of the AMD 2901 proces-
sor modules was completed and microprogramming of the customized functions was
initiated. A year later (December 1982), the microcoding still had not been completed.
In fact, for a number of operations, microcoding was abandoned because it was just too
time consuming. Although the RDBM may indeed turn out to be relatively fast, we claim
that by using "off the shelf” microprocessors and a high level language implementation
a machine with equivalent performance could have been constructed. In addition, by
utilizing ~ a component such as the Motorola 68000, the performance a database
machine can relatively closely track improvements in processor technology. This can-
not be accomplished in such a straight-forward fashion if microprogramming is used as
an implementation technique.

We also feel that utilizing custom VLSI components as the basis of a database
machine will not produce a superior database machine. We have two arguments to sup-
port this almost heretical claim. First, since many database operations involve manipu-
lating and moving strings (which are memory intensive operations requiring a high per-
centage of off-chip accesses), customized VLSI components are not likely to outper-
form state of the art microprocessors. Second, microprocessors have not only been
getting faster but they have also become more sophisticated — having richer instruc-
tion sets and handling a variety of data types, such as floating point numbers and
strings, in addition to integers. Examples of such édvanced VLSI microprocessors
include the HP 9000 product with a 18 megahertz cpu chip containing 450,000 gates,
the 16 megahertz Motorola 68020, and the Intel 287.
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3.3. Combining the Trends

When one considers the trend of decreasing 1/0 bandwidth per gigabyte of
storage and the increasing performance of off-the-shelf microprocessors, one is forced
to conclude that the limiting factor is 1/0 bandwidth. We are convinced that one needs
at most 2 or 3 conventional processors and not tens or hundreds of processors or cus-
tomized VLSI components to process data at the rate that can be produced by current
mass storage technology. Thus, an architecture that blindly uses custom VLSI com-
ponents or a lot of processors (no matter how they are interconnected) to process data
that resides on few standard disk drives will inevitably be 1/0 bound. Even with IBM
3380 disk drives only several of today's microprocessors are needed (and perhaps only
one with the power of a Motorola 88020). Researchers should concentrate their efforts
at increasing the 1/0 bandwidth. In the next section we briefly outline three possible

approaches.

4. Making it Rain

We contend that before continuing to explore highly parallel architectures, data-
base machine designers must turn their attention to exploring mechanisms for
increasing 1/0 bandwidth. In addition, it appears that the use of indexing is necessary
with ever increasing disk capacities. However, while improving 1/0 bandwidth is criti-
cal, researchers must face reality and figure out how to do it with conventional disk
technology. The purpose of a database machine is to improve access to very large
databases and users are almost certainly not going to be willing to accept database
machines if their performance depends on the utilization of expensive mass storage
devices.

One possible approach for improving raw 1/0 bandwidth is to use unmodified
disk drives with a customized disk controller, The basic idea is that instead of trying to
read or write all the heads of a single drive in parallel, a number (e.g. 1) of standard

drives are attached to a customized controller that has been designed to permit the
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simultaneous data transfer between the controller and a single head of all drives. This
will permit all tracks of a logical cylinder (a logical cylinder is formed by the set of
tracks at the same physical location on all the attached drive s) to be accessed in paral-
lel. Such a design should provide the same 1/ O bandwidth as the parallel readout disk
while using standard disk drives. Furthermore, by using off-the-shelf drives, one will be
able to take advantage of improvements in disk storage technology by simply replacing
the set of old drives with new ones.

There are several technical issues to be addressed. Chief is the design of the
controller. The controller must coordinate several disks, some of which may be rotat-
ing at slightly different speeds. Error handling by the controller also becomes quite
tricky. Consider, for example, what happens when one of the drives has a read error.
Should all the drives retry the read or just one that had the error? While it might be
simplest to have all drives repeat the read, during the retry a different drive may have
a read error. Another question warranting attention is if such an organization is util-
ized in a processor-per-head database machine where should the filtering processors
be placed? As part of the controller or between the controller ‘a.nd the other com- |
ponents of the database machine? Finally, how should indexing be incorporated into
this mass storage organization? We understand that this approach is being explored by
Cray Research as an alternative to using customized parallel-readout disks.

A second approach that appears to be worth exploring is to front end a number
of conventional disks with a very large (100-200 megabyte), very fast solid state (RAM)
memory.? The memory could be used as a disk cache (much in the same way that the
CCD memory was used in DIRECT). Data pages could be prefetched from disks in antici-
pation of their usage, and/or kept in the cache in anticipation of their future usage (as
in the case of a sort-merge join). There are a number of open research problems with

this approach. The foremost is whether "real" database applications runing.in a multi-

8 Certain large IBM machines have main memory bandwidths in the 100 megabytes/second range
(achieved through a combination of fast memory components, a high degree of interleaving (B - 18), and a
wide path into memory (e.g. 8 bytes at time).




25

user environment demonstrate any form of temporal locality. That is, do application
programs access different portions of the database in a random fashion or does the
working set change gradually over time? The addition of virtual memory to RAP was
justified on the notion of temporal locality [SCHU79]. To our knowledge almost no

effort has been made to instrument a running database system to determine the

extent to which real systems demonstrate locality in their references to the database.*
If there is a fair degree of locality, then this approach might solve the 1/ O bottleneck.
An experiment to determine locality certainly seems to be worthwhile. Other unsolved
research problems associated with this approach include: development of replacement
strategies that satisfy the needs of a variety of different applications, volatility and the
notion of stable storage, and evaluation to see whether this approach will really work
for a variety of applications.

Note that IBM has recently announced a disk controller that includes a disk
cache that serves as a backup to main memory. The memory managernent algorithms
used for managing the disk cache are different from those used for main memeory. For
example, data is prefetched from disk., IBM claims that the average access time for a
disk with the disk cache is reduced to about 8 or 9 milliseconds from the usual 30-50.
Our proposal in the previous paragraph is essentially similar, although specialized for
database applications.

Finally, since increased disk densities seem to necessitate the use of indices to
reduce the number of cylinders that need to be searched, more research is needed on
effective index strategies in a database machine environment. For example, do we
need a mechanism as complicated as the Structure Memory of the DBC or will a single

fast microprocessor with its own dedicated disk for storage of indices be sufficient?

40ne exception is [RODR]. However, the results of this effort are inconclusive.
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5. Conclusions

In this paper we have examined the impact in changes of mass storage technol-
ogy on three different classes of database machines organizations: processor-per-
track designs, processor-per-head designs, and off-the-disk designs. We have shown
that processor-per-track designs no longer look technically feasible and that increas-
ing magnetic disk capacities have had very a negative impact on the potential of highly
parallel database machine designs. We conclude that unless mechanisms for increas-
ing the bandwidth of mass storage devices are found, highly parallel database machine

architectures are doomed to extinction.
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