THE CRYSTAL NUGGETMASTER
Part II of the First Report on
THE CRYSTAL PROJECT

by

Robert Cook
Raphael Finkel
Bob Gerber
David DeWitt
Lawrence Landweber

Computer Sciences Technical Report # 500

April 1983

The Crystal Nuggetmaster
Part II of the First Report on
The Crystal Project

Robert Cook
Raphael Finkel
Bob Gerber
David DeWitt

Lawrence Landweber

1. Introduction to Crystal

1.1. Software Overview

CONTENTS

..

...

1.2. Phases of the Project ...

1.3. This report

..

2. The command INELErPreter ..ot

2 1. Resource alloCALION .oviiiirirrieirieri v e s s

292 Resource Control COMIMANAS ..ovvvirrrririiiniier e

2.3. Node Control

..

2 4. Virtual Terrminal Control v

2.5. Maintenance

2.6.0theroovvvnenn.

3. The resource monitor

..

..

..

12

16

19

25

28

27

1. Introduction to Crystal

The University of Wisconsin Crystal project was funded starting in 1981 by the
National Science Foundation Experimental Computer Science Program to construct a
multicomputer with a large number of substantial processing nodes. The original pro-
posal called for the nodes to be interconnected using broadband, frequency-agile local
network interfaces. Each node was to be a high performance 32 bit computer with a
approximately 1 megabyte of memory and floating-point hardware. The total com-

munications bandwidth was expected to be approximately 100 Mbits/second.

During the first year of the project, these specifications have been refined. We
have decided to buy approximately 40 node machines, each a VAX-11/750. The inter-
connection hardware will be the Proteon ProNet. Currently, the ProNet is available in
a 10 Mbits/second version. We have contracted with Proteon to increase the effective

bandwidth to 80 MBits/ second.

1.1. Software Overview

The purpose of this hardware is to promote research in distributed algorithms for

a wide variety of applications. In order to provide different applications simultaneous

access to the network hardware, we have designed a software package called the nug-
get that resides on each node. In brief, the nugget provides the following facilities:

1. The nugget enforces allocation of the network among different applications

by virtualizing communications within partitions of the network. These

partitions are established interactively through a host machine.

2. Backing store is shared among the nodes by nugget facilities to virtualize
disks.
3. Interaction between the user and individual machines is provided by the

nugget facility of virtual terrninals.

4. Initial loading, control, and debugging of programs on node machines is

controlled by nugget software.

The Charlotte operating system is designed to provide standard interactive

operating system support within a Crystal partition. The Charlotte kernel provides

1, processes

2 multiprocessing

3. inter-process communication that hides node boundaries

4 mechanisms for scheduling, store allocation, and migration.

All policies in Charlotte are concentrated in wtility processes. They are designed so
that each such process controls a policy on its own set of machines. The set may
range in size from one machine to the entire partition. The processes that control the
same resource on different machine sets communicate with each other to achieve glo-
bal policy decisions. The utilities that have been designed so far include a switch-
board, a program starter, and the file server. In addition, there are non-policy utili-

ties for command interpretation and program connection.

We expect that Crystal will be used for a wide range of applications. Currently
research is underway in distributed operating systems, programming languages for
distributed systerns, tools for debugging distributed systems, multiprocessor database
machines, parallel algorithms for math programming, numerical analysis and com-
puter vision, and evaluating alternative protocols for high performance local network

communications.

All Crystal software is being written in a local extension to Modula. Our compiler,
which runs on a VAX running Berkeley 4.1 Unix, employs syntactic error correction
through the FMQ algorithm and is quite fast. The code it generates compares well with

that produced by the C compiler.

1.2. Phases of the project

The first phase of the project was dedicated to defining both the hardware and the
software. This phase ended in December 1982. Decisions were reached concerning
both the node machines and the interconnection devices. The node machine decision
was difficult. We had to balance our concerns for reliability, availability, speed, and
cost. The machine we chose, the VAX-11/750, although not as fast as others we investi-
gated, had the advantage of being a known architecture for which our Modula compiler
already generates code. The Proteon network is currently available. We have been
using this network to interconnect our Unix VAX machines and have found it to be

extremely reliable.

During the first phase, the nugget was specified and a prototype implementation
was completed on a network of eight Digital Equipment PDP-11/23 computers con-
nected by the Megalink CSMA broadband network manufactured by Computrol. Char-

lotte was also specified and the kernel debugged on this network.

The second phase of the project has just gotten underway. We are finalizing the
nugget specifications, which changed in minor ways when we decided that the node
machines would be VAXen. The nuggetmaster, which controls the partitions, has also
been specified. Charlotte is undergoing debugging of the utility processes. During this .
phase, which lasts until July 1984, we will transfer the nugget and Charlotte to the
node machines and modify them as necessary for the ProNet. Charlotte will be
modified to fit with the nugget. (Until now, they have been developed independently.)
The utility processes will be supplemented with login and authentication processes,
and the file system will be converted to use Crystal disks instead of a file system on
the host machine. We plan to have a production, stable operating system by the end of

this phase.

The third phase of the project will see large-scale applications actively pursued.
Some of this work will start during the second phase. We also expect to re-evaluate
the hardware decisions at some point during this phase. There is some reason to
expect that frequency-agile modems will be available that will make communication
within each partition truly independent of communication within other partitions.
Bach partition will be able to use its own set of frequencies. Work with optical fiber
technology for computer interconnection is also underway at various laboratories
around the country. Within five years, impressive bandwidths should be available,
reaching into the gigabit/second range. We will continue to monitor progress in this

area.

1.3. This report

The purpose of this report is to describe the current state of the design and
implementation of the Crystal project. It is intended for readers who have no familiar-
ity with Crystal and wish to see the design decisions that have been made. It is also
intended for implementers who need a coherent and reasonably complete
specification in order to interface various parts of the project. This dual readership
requires us to repeat ideas, first presenting them in an overview fashion, and then div-
ing into tedious details. We urge the reader to skip over those parts of the document

that are not at the right level of detail. This report is divided into several documents,

This document discusses the design of the nuggetmaster. The nuggetmaster is a
program employed by users for building and deétroying virtual disks, allocating and
deallocating partitions, and controlling the computation within a partition. It is com-
posed of two logical parts, a command interpreter program and a resource monitor,
The command interpreter defines the user interface to the Crystal multicomputer.
The command interpreter can be invoked from any host machine as /usr/local/nci.

Current host machines include two VAX—11/780 computers called "crystal” and

mywvax'. Node machines are partitioned under the control of a resource monitor pro-
cess running on a single host. The command interpreter acts identically whether or
not the resource monitor is available locally on the host. The resource monitor pro-
cess also controls the allocation of disk resources. These two processes communicate

through the communications protocol process that is replicated on each host.

2. The command interpreter

The command interpreter parses commands in much the same way as the Unix
shell. The command set available to the user of the command interpreter is divided
into five groups. Each command can be invoked with the "help option” to display
online documentation for syntax and usage. The help option for all commands is

specified by a lower case letter h, asin "command.-name -h".

2.1. Resource allocation

Resource control commands are used to create and destroy virtual disks and par-

titions.

Virtual Disk Allocation

The user invokes the "newdisk" cornmand (syntactic details later) to create a vir-
tual disk. The "freedisk" command releases a virtual disk. Two kinds of virtual disk
may be created. The first type, a hardware-backed disk, is allocated in units of
cylinders on a physical disk attached to a node. The second type, a software-backed
disk, is associated with a file on the host computer. During allocation, the nuggetmas-
ter gives each virtual disk a virtual disk identifier in the range 0 .. MaxVirtualDisk by
which the user may refer to this virtual disk in the future. This identifier is unique
across partitions. We only describe the facilities for allocating virtual disks in general

terms here; details are postponed to the end of this section.

The following allocation process is followed for hardware-backed disks: A user
specifies the size in megabytes that will be required by the new virtual disk. This size
request is converted by the nuggetmaster into a request for an appropriate number of
cylinders. The nuggetmaster then allocates the required number of cylinders on a
physical disk having enough available contiguous cylinders. The user may directly
select the physical disk to support the requested virtual disk by specifying the
identifier of a desired physical disk. The user may constrain the choice of physical
disk by forcing it to be the same as that used for some other virtual disk or by forcing
it to be different. In this manner a user may either ensure that distinct virtual disks
are clustered on the same physical disk or prevent clustered allocation of virtual disks

on physical disks.

Software-backed disks are intended for transferring data between files on a host
computer and hardware-backed disks. Transfers can be performed by a client rou-
tine: it alternately reads from one virtual disk (say the software-backed one) and
writes to the other one (the hardware-backed one). Alternately, the nuggetmaster
"copy'' command can be used to transfer data. This command provides a means both

to initialize and dumnp the data on hardware-backed disks.

Allocating a partition that contains software-backed disks creates a background
process owned by the user. This process runs on the user's current host machine as
an extension of the nuggetmaster. This process provides the nuggetmaster interface
to software-backed virtual disks. This host virtual disk server process is terrninated
when a partition is deallocated. A client specifies access to software-backed disks in
an identical manner to that used for hardware-backed disks. For software-backed vir-
tual disk accesses, the nuggetmaster will map the specified access into a comparable
operation on a sequential file on the host machine associated with the virtual disk.

Such accesses must be within the range of operations permitted by the protection

rights for the user associated with a host file.

Partition Allocation

Partitions are allocated as sets of nodes and are associated with virtual disks.
The user invokes the 'new" command (syntactic details later) to create a partition.
This command includes the name of the partition request file that specifies the parti-
tion. If all the specifications in the partition request file can be satisfied, an appropri-
ate partition is allocated. The allocated partition is designated by a unique integer
identifier. Otherwise the request is denied and the user informed why the request

could not be met.

A partition request file is a sequence of descriptor records surrounded by

parentheses:
request file ::= ['(* descriptor record)"] ...

The partition must satisfy each descriptor record in the file. The first descriptor
record tells the version number of the request file, that is, it identifies the version of
format specifications that were used to create the request file. Another descriptor
record declares the virtual disks for the partition. The remaining descriptor records
identify the attributes of the nodes. Each of these functions will be described shortly.
The help documentation for the "new” command displays the range of values appropri-

ate to each of the option selectors.

All descriptor records are lists of option names and selections for those options,

separated by semicolons:

descriptor record ::= option_name = selector
[; option_name = selector] ...

Blanks and tabs are optional in descriptor records between tokens.

Version Number Descriptors

The first descriptor record indicates which version of the command interpreter
specifications is assumed for the rest of the file. Out-of-date request files cause warn-
ing messages or are refused entirely. As request-file formats change, test versions of
the specifications will use version numbers that have not yet been released; while
these specifications are under development, production versions still work. An exam-

ple of a version descriptor is:
(version = 1)

Currently active versions are described by the manual documentation for the "new"

command.

Virtual Disk Descriptors

A request file may have a descriptor record to specify the virtual disks shared by
the nodes of the partition. This record binds virtual disk identifiers, which are
assigned during virtual disk allocation, to logical disk numbers, which are assigned
during partition creation. Logical disk numbers are unique only within partitions and
serve as local names that have a common meaning within a partition. All references to
the same logical disk by different nodes within the same partition are translated into

references to the same virtual disk.

The selector values for the "vdisk'’ option specify virtual disk identifiers. Logical
disk numbers are assigned on the basis of position within aﬂdescriptor record, count-
ing from 0. Here is how a descriptor record might specify the virtual disks for a parti-
tion:

(vdisk=23; vdisk="7; vdisk=31)
This descriptor has the eflect of associating virtual disk 23 with logical disk 0, virtual

disk 7 with logical disk 1, and virtual disk 31 with logical disk 2.

Node Descriptors

After the version and the virtual disks have been described, the remaining
descriptor records specify the individual nodes of a partition. Some options select
nodes on the basis of certain attributes. For example, the "mem" option specifies
memeory requirements. Other options associate attributes with a node once it has
been selected. For example, the "vterm'' option specifies the number of virtual termi-
nals to be associated with a node. Other options both select nodes and associate attri-
butes with thern. For example, the "pterm" option specifies a number of physical ter-

minals.

Generally, one descriptor record is used for each node. However, a number of
nodes having identical attributes may be covered by one descriptor record. Here is

such a "joint" descriptor record:
(count = 3; mem = 500; pterm = 2; bind = test.o)

This descriptor record requests any three nodes. Each must have at least 500KB of
memory and two physical terminals. The file test.o is associated with each of the
three nodes, that is, test.o forms the basis for a load module to be downloaded onto all

three machines.

Partition Request File Options

Here is a complete list of the options recognized in descriptor records of a parti-
tion request file, Named constants are used to characterize the appropriate range of
values for the option selector values. The defined values for these constants can be
displayed by using the "show -n" comnmand.
bind: The selector specifies an object module name. This option associates that

object module with the node(s) described by this descriptor record. This

module will eventually be downloaded into that node, after it is linked with

count:

dev:

menmn.

node:

pterm:

vdisk:

10

thé nugget program and a logical-to-physical resource map.

This option specifies a repetition count. It indicaes that this descriptor
record specifies characteristics of a number of ndes that have identical
attributes. Selector values should be in range 1.Max.node. It is possible
to specify a range of values for the count option. For example, count = 3 ..
10 indicates a request for at least 3 and no morelthan 10 node machines.
This is the only option where an explicit range of selector values is allowed.
This option selects an appropriate node by specifying devices that must be
attached to it. Selector values must be legal device names. A current list
of such names can be found by invoking "new" withihe help option.

This option selects an appropriate node by specifying a minimum main
store requirement in kilobytes. Selector values should be in the range
1. Maxmem.

This option selects a particular node by narming it. The selector value
should specify a physical node identifier in the range 1..Max.node. This
option is meaningless with the count option.

This option selects a particular node by specifying 1 minimum number of of
physical terminals. This option also associates an attribute with a success-
fully selected node: the number of accessible physical terminals. Once a
node is selected for a partition, one of its attributes indicates the number
of physical terminals accessible. This nurnber majy be less than the actual
number of physical terminals attached to a node. Selector values should
be in the range 1..Max_plerm.

This option specifies the virtual disks that will be sccessible to a partition.
Only one descriptor record should have vdisk optioss, and it should contain
no other options. Selector values should be virtwal disk identifiers in the

range 1..Max.vdisk. The virtual disks are given logical names in the order

11

that they appear in the descriptor record.

version: This option specifies the version of command interpreter specifications that

vierm:

xdisk:

the request file is following. This option should be the sole element in the
first descriptor record. Selector values are in the range
Oldest Valid Version_Id .. Newest Valid Version_ld.

This option specifies the number of virtual terminals that will be associated
with a node. By default, every node has a virtual terminal that serves as a
console. This option can be used to associate additional virtual terminals
with a node. No physical terminals need be attached to a processor for vir-
tual terminals to exist. Virtual terminals are described further in the sec-
tion on virtual terminal commands. Selector values should be in the range
1. Max.vterm.

This option specifies a node by naming a hardware-backed virtual disk
implemented on a physical disk attached to that node. The selector value
for this option must be the identifier of a hardware-backed virtual disk
owned by the user. Not only is the specified node added to the partition,
but the partition will have exclusive access to that physical disk. Exclusive
control does not imply unlimited access to a physical disk; client programs
in the partition are only allowed to access those virtual disks named in the
"xdisk' option. Protection for the virtual disks of other users is ensured by
the nugget. During the period that a user has exclusive access to a physi-
cal disk, other users cannot include any virtual disks on that physical disk

in new partitions.

The effect of the "xdisk" option is only to assert control over a particular node to

which a physical disk is attached. The vdisk comimand must also be used to make a

particular virtual disk accessible to the partition. The "xdisk'" option prevents olher

parlilions from seeing virtual disks residing on the exclusively controlled physical

12

disk. For this reason, a time limit is imposed on the life of partitions exerting such
| exclusive control. Any partition that does not voluntarily release exclusive control
within the specified period of time will be automatically deallocated, thereby releasing
the physical disk for public use. This time limit is currently defined to be that time of

day when files systems on the host machines are archived.

Several "xdisk" requests may be made for a partition. If more than one of the
specified virtual disks resides on the same physical disk, only the first use has an
effect. Exclusive disk acquisition is provided so that performance studies can be made
in partitions without interference from other partitions. A request specifying the
"xdisk" option will fail if any other partition is allocated with a virtual disk on the indi-
cated physical disk. The failure notice will name the user holding exclusive access to

prevent abuse of exclusive allocation.

2 2 TResource Control Commands

The following commands are presented interactively by the user to the comrmand

interpreter:

free partition_id [-h]
The specified partition is released. The nugget master will only release
partitions that are owned by the user. All nodes of a released partition
become eligible for reallocation to other partitions and are reset to the
boot state. Virtual disks are disassociated from the partition, but they are
not deallocated.

freedisk [virtual.disk_id] [-h]
The specified virtual disk is deallocated. 1f the virtual disk is backed by
hardware, then the cylinders it is occupying are released. This command
fails if the virtual disk is accessible in any currently allocated partition. In

this case, the partition must be released before the virtual disk can be

13

destroyed. If the released disk is a software-backed virtual disk, then the

nugget master will remove the virtual disk from its tables, but the file asso-

ciated with the virtual disk will be left intact.

new [filename] [option]

A new partition is allocated. The partition is described in the partition

request file "filename’. The specifications in that file are compared against

the characteristics of available nodes. The number of allocated machines

and a partition_id are returned to the user if the request is successful. If a

partition request cannot be satisfied, the reasons for failure will be

returned to the user. The recognized options are:

-

P

A request file is built interactively. The nugget master prompts
the user for the information necessary to build a partition
request. The resulting partition request can be written out to a
file for later use. This request file will be automatically format-
ted according to the specifications for a partition request file
and can be used for subsequent non-interactive partition
requests.

The request is kept pending if it cannot be satisfied immedi-
ately, but might be satisfled eventually. The nuggetmaster will
inform the user when the pending request has been granted,
either directly if the user is still talking to the command inter-
preter or via the mail facility otherwise.

Documentation associated with the ‘“new" command is

displayed.

Specifics about a newly allocated partition can be obtained be using the

"show'" command, described below.

14

newdisk [options] ...
A virtual disk is allocated. If the request can be granted, the user’s disk
allocation is updated. The following information is reported for hardware-
backed virtual disks: the virtual disk identifier, the number of cylinders
granted, and the name of the physical machine on which the disk is
attached. If a request cannot be satisfied, the reason for failure will be
reported. The "show" command, described below, can be used to examine
virtual disk allocations. The "newdisk" command recognizes two distinct
groups of options. The first group of options deal with hardware-backed
disks:
-a virtual disk id ...
The "a" (for "apart") option forces the new virtual disk alloca-
tion to a physical disk distinct from any physcial disk support-
ing a virtual disks in the distinction list. This option can be used
to force a "nonclustered’ allocation of hardware-backed virtual
disks.
-¢ virtual disk_id
The "¢ (for "'cluster’) option forces the new virtual disk alloca-
tion to the same physical disk occupied by the virtual disk in
the distinction list.
-p physical disk id ,
The "p" (for "physical") option directly selects the physical disk
to support the requested virtual disk. |
size
This option specifies the size in megabytes required by the vir-
tual disk. Virtual disks are allocated in units of physical disk

cylinders. The megabyte size request is converted to a request

15

for cylinders. This option must be specified for hardware-
backed virtual disks.

The following option specifies a software-backed virtual disk.

-f filename
The given filename names a file on the host computer. This file
will be associated with a virtual disk identifier.

show [option]

This command displays data maintained by the nuggetmaster. Lower case

letter options séecify data specific to the current user, that is, the invoker

of the command. Upper case letter options specify global data.

-d The user's virtual disks are described, both hardware- and

software-backed.

-D All allocated virtual disks are described.
~h A help page is displayed describing the "show" command.
! The partition request specifications in the most recent "new"

command are displayed.

-m The hardware characteristics of nodes currently owned by the
user are displayed.

-M The hardware characteristics of all nodes are displayed.

-n The names and defined constants used by the nuggetmaster are
displayed. These names include defined constants used to
characterize selector values for partition-request files. The
names also include character strings used to identify available
devices.

-p ; The user's partition, if any, is described. The information
displayed is mostly concerned with the resources visible to a

partition. The "m" option can be used to display information

16

describing the physical specifications for the node machines
owned by a partition.

-P All partitions are described.

2.3. Node Coptrol

Nodes in a partition have both a logical and a physical identifier. Logical node
identifiers range from zero to the size of the partition. Logical machine 0 is always the
user's host machine. The following commands refer only to logical node identifiers.
Physical node identifiers are not explicitly referenced by either a user or a client. The
nuggetmaster creates a logical-to-physical resource mapping table that is used in
referencing nodes and virtual disks. This table and a nugget program are linked with a
user program to create a crystal load module. The following commands can be used to
monitor and control the execution states of specific nodes. In all these cornmands,
the "a" ("all") option makes the command apply to all nodes, and the "h" options
causes documentation to be displayed. With the exception of the "bind” command, the
following commands involve nuggetmaster-to-nugget communication. If for some rea-
son such communication fails, then‘ the following commands will time out and report
their failure to communicate.
bind [option]

A load module is formed for each node in the user's partition. User object
modules are linked with a nugget program and a mapping table. The map-
ping table is used to map logical resources to their physical counterparts,
The modules to be bound into the load module are usually specified at
partition-allocation time. The load modules created by this command are
not directly accessible to a user. Only one of the following options should

be specified.

17

logical. node
This option specifies that the load module be created for a par-
ticular node instead of the entire partition. The name of the
object file bound with the indicated logical node at partition
building time is used. The intent AOf specifying only one node is
to allow the user to modify the program on cne node without
rebinding the entire partition.

-a
Load modules are created for the entire partition using the

bindings specified in the user request file.

This option prints documentation for the "bind"” command, i.e.
the help option.
boot [logical.node ...] [-a] [-h]
The specified nodes are returned to the BOCT state, readying them to
accept load modules. This command is implicitly executed by the "load"
command before it downloads load modules.
copy source.virtual disk dest virtual disk [option] [-h] This command will copy data
from one virtual disk to another. At least one of the virtual disks must be a
hardware-backed virtual disk. Virtual disk copies are made in units of
blocks. Use the "show -n'' command to display the size of a virtual disk
block. There is a single defined size for software-backed disk blocks. The
sizes of hardware-backed virtual disks are determined by the characteris-
tics of the underlying physical disk. The recognized options are:
[-s This option specifies a block address where the copy should ori-
ginate. If this option is not specified, the default starting block

is the initial block of the virtual disk.

18

[-1 This option specifies the length in blocks for the copy. This size
is interpreted to be a multiple of the block length for the
source_virtual disk. If this option is not specified, the length of
the copy is the total length of the source virtual disk. This com-
mand will fail if the length of the copy exceeds the allocated
length for the destination virtual disk. In such a case, no data
will be copied and the user will be informed of the error.

[-d This option specifies the initial block address on the destination
virtual disk. The default is O.

halt [logical.node ...] [-a] [-h]

The specified nodes are brought to the HALT state. The affected nodes

must be either in RUNNING or PAUSE state.

load [logical node ...] [-a] [-h]

The appropriate load modules are downloaded into the specified nodes.

These modules are prepared by the "bind" command. Load modules are

maintained by the nuggetmaster and are not directly accessible by the

user. This command implicitly places the affected nodes in BOOT state
before downloading begins.
pause [logical node ...] [-a] [-h]

The specified nodes are placed in the PAUSE state. The characteristics of

the PAUSE state are documented in the nugget specifications. This com-

mand is recognized if the node is in the RUNNING state. When the nugget

enters PAUSE state a status message is sent to the nuggetmaster. Fither a

client process running on a node or the nuggetmaster may request a

PAUSE state.

19

peek address [logical node ...] [-a] [-h]
A word of memory is fetched from the 32-bit physical address of the indi-
cated node(s). This command is recognized by a node in a RUNNING or
PAUSE state. The contents of the fetched word are displayed.

poke address [logical node ...] [-a] [-h]
The specified value is stored into the 32-bit physical address of the indi-
cated node. This cormmand is recognized by a node in a RUNNING or PAUSE

 state.

restart [logicalnode ...] [-a] [-h]
The client on the specified node(s) is restored to the RUNNING state at
symbolic location _client. This command is re cognized when a node is in
RUNNING or PAUSE state.

run [logical node ...] [-a] [-h]
The client on the specified node(s) is returned to a RUNNING state. If the
client was already running, this command has no effect.

state [logical node ...] [-a] [-h]
The current state of the client on the specified node(s) is reported. The
report indicates the state of the node: PAUSE, RUNNING, BOOT, or HALT. If
an option is not given for this command, then the current state of the nug-
getmaster is displayed. This data will include the current partition and

current virtual terminal environments.

2 4. Virtual Terminal Control

The following virtual terminal commands can be used to inspect and control the
various virtual terminals. Virtual terminals are characterized by a pair of numbers:
(logicalnode, virtual_term_id). Every node has by default at least one virtual terminal

with a virtual_terniid of 0. This terminal is the virtual console for the node. The nug-

20

getmaster provides each partition one virtual terminal on the user’'s host machine.
Since logical node O designates the host computer, this host terminal is designated as
virtual terminal {0,0). Command interpreter commands are recognized and processed
by this host terminal (0,0), which is therefore sometimes referred to as the user's

command console.

The user is at any time within some environment. The environment determines
which virtual terminal in the partition is connected to the physical terminal on the
host computer. Upon entering the command interpreter program, a user is placed in
the environment of the command console (0,0), which recognizes all nuggetmaster
commands. A user may create additional virtual terminals at the time a partition is
built by associating virtual terminals with nodes, as described above under the "new"

command.

Only active virtual terminals have accessible environments. Virtual terminals
other than {0,0) become active when load modules have been downloaded into their
nodes. If a once active node has entered a nonactive state (PAUSE, BOOT, or HALT),
then the nuggetmaster will not attempt to forward any input from any of the associ-
ated virtual terminals. Such input will be discarded by the nugget master and the
user will be informed of the inactive state of the node. The user may, however, view
any previously buffered output from the particular node. When a user is in the environ-
ment of a virtual terminal other than the command console, entering the escape char-
acter allows the user to enter command interpreter commands. Within the virtual ter-
minal environment of (0,0) characters are not read until a newline is entered, i.e. a
non-cbreak mode. All other virtual terminal environments are by default set to a
mode where input characters are immediately read as they are input, i.e. a cbreak
mode. This input mode setting for a virtual terminal can be modified with the

"termset” command. Output directed by a client at a virtual terminal that is nol in

21

the current environment is buffered by the command interpreter until the environ-
ment is changed to that virtual terminal. The following command interpreter com-
mands deal with virtual terminal control.

view logical node virtual term_id [option] ...

Output that has been buffered for a virtual terminal is displayed. The

logical node and virtual_terminal id arguments specify a particular virtual

terminal. The environment is not changed by this command. Instead, it is
suspended while the user views the output for the specified virtual termi-
nal. This command terminates when all buffered output for a virtual termi-

nal has been displayed. The suspended environment is then reinstated. A

user may prematurely terminate the "view" command by hitting a break

key, which will immediately reinstate the suspended environment. These
options are recognized:

-f This option causes a copy of the specified buffered output to be
written to a file. This option, in effect, takes a snapshot of the
current buffer for a virtual terminal. The "termset” command
can be used to redirect all buffered output for a virtual terminal
to a file named by the user. Such named buffers are controlled

and accessed in the same manner as the default system buffers.

Print the associated help page.

-Z
Flush the buffer associated with the virtual terminal. This
option can only be used to flush the buffer for the particular vir-
tual specified by the view command. The "termset'' command

allows more than one buffer to be flushed.

| Alter

termset [option] ...

22

The output from the view command is directed through the

specified unix filter.

Set or report the characteristics of virtual terminals. Options choose

which terminals are affected and whether to set or report the status. The

characteristics of the command console are modified by only some of the

following options. The recognized options are:

-t logical node [virtual term id ...]

-a

-C

This option specifies the virtual terminals that will be the object
of the termset command. This option allows the termset com-
mand to be applied to some subset of the virtual terminals asso-
ciated with a logical node. The virtual terminal list specifies the
identifiers of the virtual terminals whose settings should be
modified by this command. If no virtual terminals are listed,
then the termset command is applied to all the virtual termi-

nals associated with a logical node.

This option is used to specify that the termset command will be
applied to all the virtual terminals associated with a partition.
Set the input mode for the virtual terminal such that charac-
ters are immediately read as they are input, i.e. cbreak mode.
Set the input mode for the virtual terminal such that charac-
ters are read only when a newline is received, i.e. non-cbreak

mode.

-e escape-character

The default escape character is <control-A>. This command

redefines the escape character for all virtual terminals. This

-f filenarne

-} size

-5

23

escape characier can be used to temporarily switch to the
environment of virtual terminal (0,0). All input following the
escape character up to a carriage return is passed to the vir-
tual terminal (0,0) for evaluation. The original virtual terminal
environment is reinstated when the virtual terminal (0,0) has

completed its evaluation and execution of the input line.

Output from the chosen terminal is buffered in the file specified
rather than in one of the nugget master defined buffers. Note
that this option is only valid for a termset command specifying
a single virtual terminal. The termset command will report
failure if this option is used to map the buffers of multiple vir-

tual terminals into a single file.

Documentation is displayed describing the "termset” command.
This command can be used to set the length of the buffer asso-
ciated with a particular virtual terminal. The buffer may be
either one of the system defined buffers or a user defined buffer
(via -f option). Initially, all virtual terminal buffers are assigned
the default length MaxVtermBuff. The definition of this constant
can be displayed with the "show -n" command. Note that a user
can effectively turn buffering off for a virtual terminal by setting

the length of the associated buffer to zero.

The output mode is set to "scroll mode”. 1f an output bufTer for
a virtual terminal in scroll mode is filled, the oldest data will be

lost.

24

-3
This option sets the output mode to "non-scroll mode". If a
buffer in non-scroll mode is filled, the nuggetmaster will not
accept any further output for the particular virtual terminal. In
that case, flow contrel mechanisms will inform the client on that
node that the virtual terminal is full.

-Z
Any buffered output for the chosen virtual terminal(s) is
fiushed.

switch [option]

This command is distinguished by the substantial power that is implicit in
its function of changing and defining the environment of the user. This
command can effect changes in the virtual terminal environment that is
local to a partition. Alternately, this command can effect a global environ-
ment change by causing the user to be switched to the context of an
entirely different partition owned by the user. This latter case is only pos-
sible when a user simultaneously owns multiple partitions. Few of the nug-
get master commands take an argument specifying a target partition.
Instead, the nugget master commands are interpreted within the context
of whichéver partition is current. This command can change the nugget
masters notion of which of a user's partition is current. Thus, the notion of
a current partition is used to disambiguate the meaning of nugget master
commands in those cases when multiple partitions are owned. Upon enter-
ing the nugget master, a user will by default be placed in the context of
that owned partition which has the lowest valued partition_identifier of all
partitions owned by the user. The "state” command can be used to deler-

mine which of a user's partitions is defined to be current.

25

-t [logical node virtual terminal id] The virtual terminal environment is
changed. If a virtual terminal is not specified, this command
returns the user to the environment of the command console,
virtual terminal (0,0). This option has an effect only in respect
to the virtual terminals of the current partition. If a
logical_node virtual terminal id is not specified, then the user is
switched back to the environment of the most recently visited
virtual terminal.

-p partition_id This option can be used to change to the environment of a
different partition that is owned by the user. Any buffers associ-
ated with virtual terminals of the previous partition are saved.
Upon entering the environment of a different partition, a user is
placed within the local environment of the virtual terminal (0,0),
the command console.

-h This is the help option.

2.5. Maintenance

The following privileged cornmands are intended for use only by the crystal sup-
port staff for maintenance and development.
fix [physicalnode ...] [-g] [-h]
Update the resource monitor's data base to include new status for the
listed nodes. By default, the nodes specified by this command are marked
as broken machines and placed in a "broken machine partition” whose
members are never allocated to users. The "g" option indicates that the
specified nodes have been fixed; they are removed from the broken
machine partition. If this command is inveked without arguments, then

this command lists the members of the broken machine partition.

26

log [| filter] [-h]

gen [-h]

2.6. Other

bye [-h]

help

Display the resource monitor's log of interesting events. If a filter is
specified, then the output of this command will be piped through the
specified Unix filter, e.g. "log | more" or "log | tail -f". This [-h] option is the

help option.

This command is used when the physical configuration of the multicom-
puter has been modified by the addition or movement of processors or dev-
ices. All partitions of node machines except the broken partition are deal-
located by this option. The status of all physical disks is updated to reflect
the data contained in the master disk specification file, disks.d. The status
of all node machines is initialized to the state specified by the master node
specification file, nodes.d. The format of the disks.d and nodes.d files are
discussed in a later section that examines the nugget master library. The
movement of physical disks to different node machines should be tran-
sparent to most users of virtual disks. Only in the case of an exclusive
access to a virtual disk, will the corresponding physical address be impor-
tant. User's will be informed via mail if they have been affected by the
actions of this command, i.e. if a physical disk supporting any of their vir-

tual disks has been moved, or if a owned partition has been deallocated.

Exit the nuggetmaster.

Print some introductory documentation.

27

3. The resource monitor

The resource monitor process maintains a database consisting of files that
describe each partition, each virtual disk, each physical node, and each physical disk.
Although a resource monitor process can reside on any host, only one resource moni-
tor process should be running at any given time. The nugget master command inter-
preter communicates with the resource monitor through a communications process
that is active on each host computer. The format of the messages exchanged by the
command interpreter and the resource monitor vary depending on the type of

resource that is controlled.

Most permanent nuggetmaster files are maintained in the directory
/usr/lib/command interpreter and are replicated on every host. The following files
are kept in this directory:
resource monitor

The executable file for the resocurce monitor process.

cns.mid
A text file thét contains the name of the host computer that is currently
the home of the resource monitor process. Currently, all cns.mid files
must be manually updated if the resource monitor process is moved to a
different machine,

disks.d

Physical disk specifications. This file has a format identical to a partition
request file. Bach descriptor record in this file describes the attributes of a
particular physical disk. There are five option selectors that can be used
to describe a disk:

disk The selector values for this option should specify an unique

integer that will be used to identify the physical disk.

nodes.d

node

type

cylsize

28

The selector values for this option should specify the physical
address of the node to which the disk is attached.

This option can be used to specify the type of a disk. Selector
values should be character strings that name a particular disk
type.

This option is used to specify the megabyte size of a cylinder on

the disk.

disksize This option specifes the total megabyte size of a disk.

Disks.d

node:

virtual.id:

start:
length:
owner:

time:

Current allocations of virtual disks. The following information is
maintained for each virtual disk:

the physical node attached to the physical disk

The virtual disk is described. The virtual and physical disk
identifiers are given.

the beginning cylinder address for this allocation

the number of cylinders allocated

Which user and which host the user is running on.

the time and date of creation of a virtual disk

Physical node specifications. The format of this text file is identical to that

of partition request files. Each descriptor record in this file describes the

attributes of a particular physical node machine. There are five options

that can be used to describe a particular node machine.

node

This option specifies the physical address of the node machine

being described in the current descriptor record.

proc

mem

pterm

dev

Nodes.d

owner.

29

This option specifies which type of processor is begin described.
The selector values for this option should selected from the
available processor names given in the names.d file. The
names.d file can be displayed from within the nuggetmaster by
using the "show' command.

This option specifies the amount of memory available on a par-
ticular node machine. The selector values should specify a size
in Kbytes.

This option specifies the number of physical terminals that are
attached to a node machine.

This option specifies the name of a device that is attached to a
particular node machine. The selector values for this option
should selected from the available device names given in the
names.d file. The names.d file can be displayed from within the

nuggetmaster by using the "show’ command.

Current allocations of partitions. The following information is
maintained for each node:

by whom and on which host

partition: partition identifier

time;

time and date of allocation

binding: object module associated with the node

disks:

identifiers of physically attached disks

memory: size of main store

peripherals: other attached devices

processor: type of processor
vterms; number of virtual terminals

pterms: number of physically attached terminals

30

