The Crystal Nugget
Part I of the First Report on
The Crystal Project

Robert Cook
Raphael Finkel
David DeWitt
Lawrence Landweber

Thomas Virgilio

11

CONTENTS

1. Introduction to Crystal ...

I o) A A Ve B AT =) a7/ 1< AT S

1.2. Phases

of the project ...

1.3, THiS TEPOTL oo e et e e

2. Definitions

..

3. Client-Nugget Interactionoociiviiii

3.1 Initializalion ...

15 -2 00 a1 1o e LE1 a XL oT= (% Lo)+ N PP

3.3. Clock .

3.4. Disk ...

..

..

b I T o 0 k1A | = ST PSSP

BB, DEDUGEET .. oot e

4. Communication INberlace oo e e

5. Virtual Clock TNt el o oo e e e e e e e v s vt e anee e

B. Virtual Disk Il er ot e oo e e e e e e

7. Virtual Terminal It el aCe i e e et e s e e tar et

B. Node Operation and Control ..o e,

9. Definitions

10. Client-Nugget Interactioncccoo i

3 O R e VAW LR o L E e« N PP P PRI

i 0 BB 0o 5080010 b1 oY A K o) o RN USSR

10.3. Clock

...

10

10

12

12

13

18

19

2R

25

_7

29

31

33

10.4. Disk
10.5. Terminals

10.6. Debugger

..

..

..

11. Communication InLerface ...

12, VIrtual Clook It erf ot oo e e e e

13, Virtua]l DisK Il ey ale oot e et

14. Virtual Termminal Inter ot e oo

15. Node Operation and Control ...

16. Nugget's Communication Protocol ...

17. The definition file

..

i

33

34

38

41

42

45

48

50

1. Introduction to Crystal

The University of Wisconsin Crystal project was funded starting in 1981 by the
National Science Foundation Experimental Computer Science Program to construct a
multicomputer with a large number of substantial processing nodes. The original pro-
posal called for the nodes to be interconnected using broadband, frequency-agile local
network interfaces. Fach node was to be a high performance 32 bit computer with a
approximately 1 megabyte of memory and floating-point hardware. The total com-

munications bandwidth was expected to be approximately 100 Mbits/second.

During the first year of the project, these specifications have been refined. We
have decided to buy approximately 40 node machines, each a VAX-11/750. The inter-
connection hardware will be the Proteon ProNet. Currently, the ProNet is available in
a 10 Mbits/second version. We have contracted with Proteon to increase the effective

bandwidth to 80 MBits/second.

1.1. Software Overview

The purpose of this hardware is to promote research in distributed algorithms for

a wide variety of applications. In order to provide different applications simultaneous

access to the network hardware, we have designed a software package called the nug-
get that resides on each node. In brief, the nugget provides the following facilities:

1. The nugget enforces allocation of the network among different applications

by virtualizing communications within partitions of the network. These

partitions are established interactively through a host machine.

2. Backing store is shared among the nodes by nugget facilities to virtualize
disks.
3. Interaction between the user and individual machines is provided by the

nugget facility of virtual terminals.

4. Initial loading, conirol, and debugging of programs on node machines is

controlled by nugget software.

The Charlotte operating system is designed to provide standard interactive

operating system support within a Crystal partition. The Charlotte kernel provides

1. processes

2 multiprocessing

3. inter-process comrnunication that hides node boundaries

4 mechanisms for scheduling, store allocation, and migration.

All policies in Charlotte are concentrated in wufility processes. They are designed so
that each such process controls a policy on its own set of machines. The set may
range in size from one machine to the entire partition. The processes that control the
same resource on different machine sets communicate with each other to achieve glo-
bal policy decisions. The utilities that have been designed so far include a switch-
board, a program starter, and the file server. In addition, there are non-policy utili-

ties for command interpretation and program connection.

We expect that Crystal will be used for a wide range of applications. Currently
research is underway in distributed operating systems, programming languages for
distributed systems, tools for debugging distributed systems, multiprocessor database
machines, parallel algorithms for math programming, nurmerical analysis and com-
puter vision, and evaluating alternative protocols for high performance local network

comrmmunications.

All Crystal software is being writlen in a local extension to Modula. Cur compiler,
which runs on a VAX running Berkeley 4.1 Unix, employs syntactic error correction
through the FMQ algorithm and is quite fast. The code it generates compares well with

that produced by the C compiler.

1.2. Phases of the project

The first phase of the project was dedicated to defining both the hardware and the
software. This phase ended in December 1982. Decisions were reached concerning
both the node machines and the interconnection devices. The node machine decision
was difficult. We had to balance our concerns for reliability, availability, speed, and
cost. The machine we chose, the VAX~11/750, although not as fast as others we investi-
gated, had the advantage of being a known architecture for which our Modula compiler
already generates code. The Proteon network is currently available. We have been
using this network to interconnect our Unix VAX machines and have found it to be

extremely reliable.

During the first phase, the nugget was specified and a prototype implementation
was completed on a network of eight Digital Equipment PDP-11/23 computers con-
nected by the Megalink CSMA broadband network manufactured by Computrol. Char-

lotte was also specified and the kernel debugged on this network.

The second phase of the project has just gotten underway. We are finalizing the
nugget specifications, which changed in minor ways when we decided that the node
machines would be VAXen. The nuggetmaster, which controls the partitions, has also
been specified. Charlotte is undergoing debugging of the utility processes. During this
phase, which lasts until July 1984, we will transfer the nugget and Charlotte to the
node machines and modify them as necessary for the ProNet, Charlotte will be
modified to fit with the nugget. (Until now, they have been developed independently.)
The utility processes will be supplemented with login and authentication processes,
and the file system will be converted to use Crystal disks instead of a file system on
the host machine. We plan to have a production, stable operating system by the end of

this phase.

The third phase of the project will see large-scale applications actively pursued.
Some of this work will start during the second phase. We also expect to re-evaluate
the hardware decisions at some point during this phase. There is some reason to
expect that frequency-agile modems will be available that will make communication
within each partition truly independent of communication within other partitions,
Each partition will be able to use its own set of frequencies. Work with optical fiber
technology for computer interconnection is also underway at various laboratories
around the country. Within five years, impressive bandwidths should be available,
reaching into the gigabit/second range. We will continue to monitor progress in this

area.

1.3. This report

The purpose of this report is to describe the current state of the design and
implementation of the Crystal project. It is intended for readers who have no familiar-
ity with Crystal and wish to see the design decisions that have been made. It is also
intended for implementers who need a coherent and reasonably complete
specification in order to interface various parts of the project. This dual readership
requires us to repeat ideas, first presenting them in an overview fashion, and then div-
ing into tedious details. We urge the reader to skip over those parts of the document

that are not at the right level of detail. This report is divided into several documents.

This document describes the nugget. After defining the technical terms that will
be used throughout this report, we present the nugget specifications with regard to
the interface between nugget and client, concentrating on communications, timing,

and device services.

2. Definitions We will use the following terms throughout this document:

CLIENT: A program executing under the control of the nugget on a node. There is
exactly one client per node.

DISKSERVER: A specialized client on a node not a member of any partition, used
for actual disk access.

HOST: The computer connected to the user's terminal. There may be several
hosts. They will typically be VAXen running Unix. Each host is con-
nected to the Crystal communications medium.

NODE: A Crystal computer, connected to the Crystal communications medium.
There will be many (on the order of 50) identical nodes. While this
structure is being built, there will very likely be nodes of various ver-
sions (PDP-11/23's and VAX-11/750's).

NUGGET: A program that resides on each node. It virtualizes communications
within each partition and with the nuggetmaster. It provides other ser-
vices to the client.

NUGGETMASTER: A program invoked directly by a user. The nuggetmaster helps
form partitions in the Crystal hardware and allows the user to control
programs running within owned partitions. There may be several nug-
getmasters running at any time on each host.

PARTITION: A subset of the nodes owned by a user.

USER: The human researcher, controlling work through a terminal on a host
machine.

VIRTUAL DISK: A service provided by the nugget for the client. It emulates a disk
by using part of a physical disk, possibly on another node machine.

VIRTUAL TERMINAL: A service provided by the nugget and nuggetmaster that
allows both input and output to be directed from the client to the

user's physical terminal on the host. The user's physical terminal may

be multiplexed among many virtual terminals, and buffering is pro-

vided.

3. Client-Nugget Interaction

The n nodes in a partition are numbered logically 1 to n, in an order determined
by the nuggetmaster command the user employed to build the partition. In addition,

each partition has a logical node 0, which is mapped to a program running on the host.

The nuggetmaster binds the client and nugget into a single load module for each
node. The logical-to-physical node address table used by the nugget is also linked into
the nugget as part of that load module. Tables needed for virtual disks and virtual ter-

minals (discussed below) are also linked in at this time.

Definition files that document common structures used by the client and the nug-
get are stored in the directories ""/usr/crystal/nugget/*.include” on each host. There
is a directory for each language supported. This list includes Modula, and will include
C and StarMod. We will present parts of the Modula version of the definition files
throughout this document. A complete listing of the Modula version can be found in
the last chapter of this document. The definition file lists variables that are imported

and exported by the nugget:

module nugget;

define (* interface routines *)
NuggetSend, NuggetReceive, (* communication routines *)
DiskOp, Get_Disk.Info, (* virtual disk routines *)
EnableInput, OutputReady, (* virtual terminal routines *)
Pause, Save.Nugget_State; (* debug routines ¥)

use (* parameters *)
CommDevice, CommlIntVectors, (* communication *)
TimeDevice, TimelntVector, (* virtual clock *)
—client, (* client entry point after nugget initialization *)
MaxLogicalAddr, SelfLogicalAddr, (* partition data *)
No_of_Disks, DiskDevices, DiskIintVectors, (* virtual disk *)
No_of Terms, TermDevices, TermIntVectors; (* virtual terminal *)

The nugget requires memory mapping to be enabled and runs in kernel mode. It
initializes the kernel mapping table and enables memory mapping. It is allowed to use
any pages it wishes for its own purposes, so long as this use is invisible to the client.
The client's stack is kept inviolate; hence the nugget uses ils own stack. However, it

switches to the client’s stack whenever the client is active.

The nugget provides many services to the client and the partition. These services
are machine initialization, communications between node machines, a virtual clock,
access to disks shared with other partitions (virtual disks), a simple debugger, and
multiplexing of all partition terminals to the user's terminal on the host (virtual termi-
nals). Most services appear to the client as devices. Other physical devices connected
to the node may be treated by the client in whatever fashion the user wishes without

danger of interference by the nugget.

Fach service is introduced in this chapter and then detailed more fully in its own
chapter. That part of the definition file that pertains to each service is introduced in

each chapter.

The client invokes mmost services by subroutine call, implicitly passing the

appropriate device registers. These subroutine calls effect a "start 1/0" operation on

the device. On the VAX node machines these service calls must be use the CALLS
instruction. These calls return with a result in register 0. By convention, a result of 0
usually means the request was legal and -1 means it was illegal. The client may
immediately modify device registers after the call returns, because the nugget copies

all relevant information before returning.

At the completion of a legal operation, the client will be notified by an interrupt
call through the appropriate interrupt vector. Interrupt vectors should not be
modified by the client while an operation on the associated device is in progress. The
client can learn the details of the operation by inspecting the device registers or
parameters pushed on the stack. The client interrupt handler should return via the
RE] instruction (on VAX nodes) after popping any parameters from the stack. The
client’s interrupt stack is the kernel stack and CPU priority during interrupts is DEVI-
CEPRIORITY (except for the clock handler, which runs at CLOCKPRIORITY). It is up to

the client to save the state of the machine upon interrupt.

3.1. Initialization

The first service that the nugget performs is to initialize the machine to a known
state. Initialization happens before the client code is entered and is not started by
subroutine call. During initialization the nugget resets all 1/0 devices, initializes the
System Control Block, sets aside space for the nugget's stack, zeros out the nugget
and client bss (uninitialized data) segment, initializes the system page table (identify-
ing virtual and physical addresses), enables memory management, initializes its own
internal data, disables the client's virtual clock (described below), defines a process
context at the top of the nugget's stack space setting the kernel stack to the address
supplied by the client, and lastly transfers control to the client at label "_client” (in

Modula) with high priority.

The client should not return from _client. The client should initialize all device
registers and interrupt vectors before lowering priority or calling nugget service rou-
tines, A complete description of the initialization phase can be found in

/usr/crystal /nugget /VAX startup/README.

3.2. Communication

The nugget provides communication with other nodes of the partition. Communi-
cation is by messages. The nugget controls all communications between nodes of the
partition and the host machines. A client is allowed to communicate with members of
the client’s partition only. Each partition is protected from stray messages from
other partitions. The nugget provides two modes of service: datagram and reliable in-

order delivery.

To send a message, the client places a message in a buffer that it supplies,
describes the buffer and the node address of the destination in the send registers, and
calls the procedure NuggetSend. A completing send passes back the success of the
operation and the destination address. Many sends may be in progress at one time,
but only one per destination node. In addition, the client may broadcast one message

to all nodes in its partition.

To receive a message, the client describes in the receive register the buffer it
supplies and calls NuggetReceive. A completing receive request passes back the
status of message, the source’s node address, size of the message, and mode of com-

munication. Only one receive may be active at one time,

For both send and receive, the client refers to other nodes only through logical
node addresses. These must be in the interval NUGGETMASTER to MaxLogicalAddr:
NUGGETMASTER (constant 0) is the logical address of the nuggetmaster; MaxLogi-
calAddr is the number of the nodes in the partition. In addition the variable SelfLogi-

calAddr tells the client the logical node address of its machine. The nugget initializes

10

MaxlogicalAddr and Selfl.ogicalAddr during the initialization phase.

The client and nugget exchange information about messages in two device regis-
ters, SendRegister and ReceiveRegister, which are structured data areas imported by
the nugget. A message consists of a header composed by the nugget and a body com-
posed by the client. The body may be divided into several (up to MAXMESSPARTS) dis-
joint regions, each contiguous in kernel virtual space. A message body is described by
the BufferDescrip field of the SendRegister or ReceiveRegister. BufferDescrip is an
array describing all the parts of a client's message's body. Each array entry describes
one region by a start address and length. Alength of 0 indicates a missing region. The
total length of all regions must lie between MINMESSLENGTH and MAXMESSLENGTH.

3.3. Clock

The nugget provides a timing service called the virfual clock. This service is con-
tinucus and not invoked by a procedure call. The virtual clock consists of a data area
supplied by the client. It contains a field called Count, which the client may set and
inspect at will. Every tick of the virtual clock (currently, 60th of a second) causes
Count to be decremented. Count may become negative. If the count becomes 0, then

the client is interrupted at CPU priority CLOCKPRIORITY.

3.4. Disk

Virtual disks are created and destroyed by users interacting with the nuggetmas-
ter. A user who builds a partition may specify that certain virtual disks be made part
of that partition. Each virtual disk is emulated by some physical disk, attached to
some physical node. One physical disk may emulate many virtual disks. If the physi-
cal node associated with a virtual disk is part of a user's partition, then no other users
have access to virtual disks on the same physical disk. This association allows the

client to make reliable timing measurements of disk operations. Alternatively, the vir-

11

tual disk's node may be omitted from the partition. In this case, the clients in the
partition still have access to the virtual disk, but other partitions may use the same
physical disk at the same time. We call the node connected to a shared physical disk

outside of any partition a diskserver.

The client can only access a virtual disk through the nugget, so virtual disks that
are not in the partition are protected from tampering. The nugget on each node in a
partition has access to all virtual disks in the partition. The user may of course decide

to submit virtual disk access requests from only one client.

Each virtual disk is assigned a number in the range 0 to No_of Disks, a variable
imported and initialized by the nugget. Cylinders on the disk are referred to by logi-
cal cylinder numbers. Each virtual disk has a set of registers declared in the
definition file and imported by the nugget. These registers provide communication

between the client and the nugget.

The nugget uses the registers to describe the parameters of the disk, including
information on number of cylinders, surfaces per cylinder, and sectors per surface. If
the physical disk is connected to this node, then the nugget also provides information

on the current position of the disk arm.

The client uses the registers to specify the type of operation ("read" or "write"),
the logical cylinder, the surface, the sector, the number of sectors, and the kernel vir-
tual address of the buffer to be used in the operation. Operations are started by cal-
ling the procedure DiskOp, passing as a parameter the name of the virtual disk
involved in the operation. The client is informed by an interrupt when the operation
has completed. In order to complete the operation, the nugget may have to exchange
messages with the nugget on the node that is connected to the associated physical

disk.

12

3.5. Terminals

The user may request that each machine be provided with a number of virlual
terminals to be multiplexed to the user’'s terminal on the host. The user can then
interact with one physical terminal and view or control the progress of the entire par-
tition. Control of this "multi-terminal” is provided by commands to the nuggetmaster,

which are detailed in the nuggetmaster chapter.

The number of virtual terminals on each node is known to the client in the vari-
able No_of Terminals, imported and initialized by the nugget. FEach terminal is
referred to by a number in the range 0 to No_of Terminals-1. Each node has at least
one virtual terminal, the console, numbered 0. Each terminal has its own set of regis-

ters. All registers are exported by the client in the array TermDevices.

To write to a terminal, the client places the character to be wrilten in
Output_Char of the terminal’'s register and calls OutputReady, passing the name of the
virtual terminal. When the terminal can accept new output (the last character has
been sent to the nuggetmaster) the client is notified by interrupt. The nuggetmaster
may buffer the character until it can be displayed. To read from the terminal, the
client calls Enablelnput, passing the name of the virtual terminal. The client is

notified by interrupt when a character arrives from the nuggetmaster.

3.6. Debugger
Lastly, the nugget provides a simple synchronization and debugging service to the
client:

procedure Pause, external,

A client that invokes Pause does not continue until the pause is released by the nug-

getmaster. No interrupts of any kind are seen by the client during pause. The nugget

13

remains active during the pause state and continues to send and receive messages.
Notification of successful operations is given after the pause state ends. Of course, the
client is unable to submit new requests while pausing. The client's virtual clock is not
decremented in pause state. During pause, many debugging and partition-control

commands can be executed through the nuggetmaster and are outlined in a later

chapter.

The nugget also provides a simple means for debugging itself:

const
NUGSTATESIZE = 500;
type
NuggetState = array O:NUGSTATESIZE-1 of shortint,
procedure Save_Nugget_State(var SavedState : NuggetState);
external,;

The procedure Save_Nugget_State raises priority to that of the clock and copies
all data used by the nugget to SavedState. These data include the state of the com-

munication device. The saved state may be inspected to determine unexplained

actions.

4. Communication Interface

The mugget controls all communications among clients residing in the nodes of a
partition. Commmunication is by messages. The communication service appears to the
client as a device that sends and receives messages. Relevant declarations can be

found in this chapter and in the chapter detailing the Modula definition file at the end

of this document.

The client can send and receive messages by calling NuggetSend and NuggetRe-
ceive. The client implicitly passes parameters describing the operation in the device
registers SendDevice and ReceiveDevice. These devices are part of CommbDevice, a

data area exported by the client and imported by the nugget. When a communication

14

operation completes, the client is notified by interrupt at CPU priority level DEVI-
CEPRIORITY through SendIntVect and ReceivelntVect. These two vectors should be ini-

tialized by the client before lowering CPU priority in the client's initialization process.

The client can choose between two modes for message delivery. '"Datagram"
mode writes the message out on the line. The nugget does not guarantee its delivery
but will make a good faith effort to get it to the nugget of the other machine. "Ack-
receipt” mode is a reliable delivery service. The nugget will not only deliver the mes-
sage to the other nugget, but will wait for notification by the other nugget that its
client accepted the message. The client is informed if delivery to the other client is

not possible,

The client refers to other nodes through logical node addresses. These must be in
the interval NUGGETMASTER to MaxLogicalAddr: NUGGETMASTER (constant 0) is the
logical address of the nuggetmaster, and MaxLogicalAddr is the number of the nodes
in the partition. The client's own machine's logical name can be found in SelfLogi-

calAddr. These two variables are supplied by the client and initialized by the nugget.

A message consists of a header composed by the nugget and a body composed by
the client. The body may be divided into several (up to MAXNOMESSPARTS) disjoint
regions, each contiguous in kernel virtual space. A message body is described by the
BufferDescrip field of the SendRegister or ReceiveRegister. BufferDescrip is of type
MessBodyDescrip, which is an array describing all the parts of a client's message's
body. Each array entry describes one region by the address of the start of the region
(BodyAddr) and the length in bytes of the region (Length). A length of 0 means that
the BodyAddr field is not valid, and that this region is missing. Length must be an
even number of bytes. The sum of all lengths must lie between MINMESSLENGTH and
MAXMESSLENGTH.

15

The SendRegister fields are interpreted as follows:

type
InterruptVector =
record
InterruptHandler ; KernelAddr;
NewPSW : midint;
end, (* InterruptVector *)
PartDescrip =
record (* describes one part of a message body *)
BodyAddr : KernelAddr,
Length : longint;
end, (* PartDescrip *)
MessBodyDescrip = array 0: MAXMESSPARTS-1 of PartDescrip;

CommIntVectors :
record (* the communication interrupt vectors *)
SendIntVect ; InterruptVector;
(* client initializes to interrupt handler's
address and desired lower half of PSW upon
interrupt *)
ReceivelntVect : InterruptVector;
(* not used in sending *)
end, (* CommIntVectors *)
SendRegister :
record (* client sets all fields *)
BufferDescrip : BodyDescerip;
(* points to each part of message *)
Mode : {DataGram,AckReceipt);
(* desired communication circuit ¥)
DestAddr : LogicalNodeAddr;
(* destination’s logical node address *)
end; (* SendRegister *)

procedure NuggetSend : Standardint,; (* sends SendRegister's message *)

To send a message, the client first sets the fields of SendRegister. BuflerDescrip
should point to the message buffer, with each array entry's kernel virtual address
(BodyAddr) and length in bytes (Length) corresponding to the parts of the message
buffer. Mode and destination address (DestAddr) must also be set. The client then

calls NuggetSend.

NuggetSend returns the standard legal/illegal flag. A call to NuggetSend is illegal

if a pending send to the same destination node has not yet been dispatched and

16

acknowledged. The client may have MaxLogicalAddr sends pending. The client may

send te the nuggetmaster, logical machine 0, but not to itself.

When the send completes the client will be interrupted at
CommintVectors.SendIntVect. InterruptHandler with the lower 16 bits of the PSW as set
in CommIntVectors.SendIntVect. NewPSW. These interrupt flelds are typically set by
the client at initialization time. Changes to these fields during a send operation will

produce unpredictable results.

If client the Mode is AckReceipt, the send cannot complete successfully unless the
message is acknowledged. Completion may mean that the nugget timed out trying to
gsend and that the message was not received. At completion of the send the nugget
pushes onto the stack either 0 or 1 to indicate that the send operation succeeded (0)
or timed out (1) and then pushes the destination's logical node address. These two
parameters should be popped from the stack before the client returns from the inter-
rupt. There is no ready bit or interrupt-enable bit in SendRegister; client-notification

interrupts are always enabled.

In addition te sending a message to a single remote machine, the client may send
a single broadcast message to all nodes in the partition. The nugget does not deliver
broadcast messages to the sending client. A broadcast message must be a datagram.
In addition to one send directed to every other node in the partition, the client may
have one broadcast request active. To send a broadcast message the client specifies
BROADCAST (value -1) as the node address when requesting a send. Broadcast mes-

sages are received as if they were a node-to-node datagram.

The fields in ReceiveRegister are interpreted as follows:

17

CommlIntVectors :
record (* communication interrupt vectors *)
SendIntVect : InterruptVector; (* not used in receive *)
ReceivelntVect : InterruptVector,
(* client sets to virtual address of interrupt
handler, and desired lower 16 bits of PSW upon
interrupt *¥)
end; (* CommintVectors *)
ReceiveRegister :
record
(* the following are set by the client *)
BufferDescrip : BodyDescrip;
(* client sets to point to all parts of buffer *)
(* the following are set by the nugget *)
Status : (MessArrived, NoMessTimeOut);
(* type of interrupt *)
SeourceAddr : LogicalNodeAddr;
(* source's logical node address *)
Mode : (DataGram,AckReceipt);
(* communication circuit of message *)
Length : longint;
(* total length of arrived message *)
end; (* ReceiveRegister *)

procedure NuggetReceive . StandardInt;
(* enables receipt of message *)

To receive a message, the client sets the BufferDescrip field of ReceiveRegister to
point to the message buffer by setting each array entry's virtual address (BodyAddr)
and length in bytes (Length) to those values corresponding to the parts of the message
buffer. The buffer should be large enough to hold any expected message. Each part
will be filled to capacity by the incoming message before the next part is used. Mes-
sages that do not fit into the buffer will not be accepted or acknowledged. The sum of
all Lengths must be at least MINMESSLENGTH. The receiving client does not specify

which client it wishes to receive from.

NuggetReceive returns the standard legal/illegal flag. A call to NuggetReceive is
illegal if a pending receive has not yet been fulfilled. Several sends and one receive

may be outstanding at the sarne time.,

18

When a message is accepted by the nugget from another client, the client will be
interrupted at CommbDevice ReceivelntVect.InterruptHandler with the lower 16 bits of
PSW as set in CommDevice ReceivelntVect.NewP3SW. These interrupt fields are typi-
cally set by the client at initialization time. Changes to these fields during a receive

operation will produce unpredictable results.

The client's receive request may be interrupted by a timeout that indicates that
no messages from any other node has arrived. The nugget sets ReceiveRegister.Status
to distinguish between the receipt of a message (MessArrived) and the timeout
(NoMessTimeOut). If Status is MessArrived, SourceAddr will be set to the source’s logi-
cal node address, Mode will be set to the mode of the newly arrived message, and
Length will be set to the total length of the message. The priority level of the proces-
sor upon interrupting the client will be the priority of the device (DEVICEPRIORITY),
There is no ready bit or interrupt-enable bit in ReceiveRegister. Client notification

interrupts are always enabled.

The entire communications definition file is reproduced at the end of this docu-
ment.
5. Virtual Clock Interface

The declarations for the virtual clock are as follows:

const
MIN..COUNT = -32767; (* Count will not fall below this value *)
CLOCKPRIORITY = 24; (* clock priority level *)
var
TimelntVector : InterruptVector;
TimeDevice =
record

Count : longint,;
end, (* TimeDevice *)

19

The client may set or inspect the Count field at will. Every tick (currently, 60th of
a second), the nugget decrements Count. The count may become negative. The nug-
get will not decrement Count if so doing would change it from negative to positive.
Count will therefore not fall below MIN_COUNT. If the count becomes 0, then the client
is interrupted at location TimelIntVector.InterruptHandler with the lower 16 bits of the
PSW set to TimelntVector. NewPSW. These fields should be set by the client at initiali-
zation time. Changes to these fields when the client clock is positive will produce

unpredictable results. The priority level will be that of the clock (CLOCKPRIORITY).

The client may change Count at any time. To change the interrupt vector, the
client should first set Count to any negative integer, disabling the clock interrupt.

Count is initialized by the nugget to MIN_.COUNT.

6. Virtual Disk Interface

The virtual disk program presents a disk device to the client. The program con-
trols access to the disk, thereby protecting the client's data from access by other par-
titions over time and preventing the client from accessing disk data belonging to other
partitions. Virtual disks are created by users interacting with the nuggetmaster. A
user may include access to one or more virtual disks in a partition. Each node in the
partition may access those virtual disks. Virtual disk names are uniform across the
partition. The definition file contains a section defining the virtual disk interface. This

part of the include file can be found at the end of this chapter.

The client refers to each virtual disk by its logical disk number. The maximum
such reference is in No_of Digks, which is imported and initialized by the nugget. All
cylinder references are logical numbers as well. Surface and sector numbers are phy-

sical.

Bach virtual disk has its own set of device registers. These are accessed through

the array DiskDevice. Each register has three sets of fields. First, the static fields,

<0

initialized by the nugget, describe the device (Max Logical Cylinder, Num.Surfaces,

Num_Sectors_Per_Track, and SectorLength) and should not be written by the client.

Second, the dynamic fields describe the position of the disk arm
{Current_Cylinder) and the status of the I/0 operation (Status_of 1.0). These fields
are updated by the nugget during 1/0 operations and should not be written by the
client. If the associated physical disk is not attached to this node, Current. Cylinder
contains the constant NOTDEFINED. Status_of 1 O contains the status of the last com-
pleted 1/0 operation. It is reset with each call to the procedure DiskOp. The status
can indicate two failure modes: An actual disk operation failed (DiskFailure), and
there was a possible failure of the 1/0 operation (MessFailure). In the second case,

communication with a remote disk failed; the 1/0 operation may have succeeded.

Finally, command fields describe the 1/0 operations. This information is written
by the client before calling DiskOp. "Operation" indicates which operation is
requested. "Cylinder”, "Surface" and "Sector” specify the starting position of the 1/0.
A seek operation to that track is implied. "Sector_Count” specifies the nurnber of con-
tiguous sectors to be transferred. Sector_Count must not exceed
Num._Sectors Per_Track. "BufferAddr"” holds the starting address of the buffer used

for the transfer. The buffer must be virtually contiguous in kernel space.

To schedule a disk operation, the client sets all the fields of RequestInfo and then
calls DiskOp, passing the logical disk number of the virtual disk. DiskOp returns the
usual legality indication. DiskOp can fail if the disk name is out of range, Request_Info
is illegal, or the previous disk operation has not yet completed. A legal call will

schedule the disk operation.

Upon comipletion of the disk operation, the client is interrupted at the address
stored in DiskIntVector. The virtual disk number is pushed onto the stack as a longint

prior to the interrupt. This parameter should be removed before the return from

2l

interrupt. The interrupt routine will run at the priority level of the virtual disk (DEVI-
CEPRIORITY). This priority level is the same as the communication device. The lower
16 bits of the processor status word is set to NewPSW of the interrupt vector prior to
the interrupt. It is the client's responsibility to save the machine state upon inter-

rupt.

The disk interface section of the definition file follows:

2R

const
MAXDISKS = ? (* max number of virtual disks per machine *)
NOTDEFINED = -1; (* position information not available *)

type
OpInfo = (* command fields of a device register *)
record
(* these fields are client read/write *)
Operation : (Read _Disk, Write_Disk);
Cylinder : longint; (* logical cylinder (track) *)
Surface : longint; (* physical surface *)
Sector : longint; (* physical sector *)
Sector_Count : longint; (* number of sectors to
transfer *)
BufferAddr : KernelAddr; (* kernel virtual address
of start of data *)
end; (* Oplnfo *)
DiskRegisters =
record
(* static fields, initialized by nugget, read by client *)
Max Logical Cylinder : longint;
Num_Surfaces : longint;
Num.Sectors_Per_Track : longint;
SectorLength : longint; (* number of bytes per disk
sector *) :
(* dynamic fields, set by nugget, read by client *)
Current_Cylinder : longint; (* current position of
disk arm or NOTDEFINED *)
Status_of 1 0O : (Success, DiskFailure, MessFailure);
(* command fields, set by client, read by nugget *)
RequestInfo : Oplnfo;
end; (*DiskRegisters*)

No_of Disks : longint; (* actual number of virtual disks,
bounded by MAXDISKS, initialized by nugget *)

DiskIntVectors : array 0:MAXDISKS-1 of InterruptVector;

DiskDevice : array 0:MAXDISKS-1 of DiskRegisters;

procedure DiskOp(DiskNo : longint) : StandardInt; external,
(* schedules a virtual disk operation *)

7. Virtual Terminal Interface

Virtual terminal service allows each client in a partition to access a terminal (for
both input and output) that is multiplexed to the user’s terminal on the host. The

definition file contains a description of the virtual terminal interface. This interface

23

can be found at the end of this chapter.

The virtual terminal "device" is conirolled by nugget routines. Many of these rou-
tines communicate with the muggetmaster's virtual terminal handler. The nuggetmas-
ter specification details the commands that the user may employ to control the multi-

plexed physical terminal.

When a partition is specified by the user, each node is given one or more virtual
terminals logically numbered 0 to No_of Terminals-1. The variable No.of Terminals is
imported and initialized by the nugget. Terminal 0 is always present and acts as the

node's console.

The virtual terminal appears to the client as a device. The client must initialize
the device by setting the interrupt vectors. When a character has appeared on the
input device, the client is notified by interrupt at InputIntVect.InterruptHandler at the
priority of the terminal (DEVICEPRIORITY) providing that the client has called Ena-
blelnput on this device. The terminal priority is the same as that of the communica-
tion virtual device. Before calling the client's interrupt handler, the nugget pushes
the virtual terminal number on the stack as a longint. This parameter should be

removed by the client before returning from the interrupt.

When a character has been written by the output device, the client is notified at
OutputIntVect.InterruptHandler. Again, the virtual terminal number is pushed on the
stack prior to the call. For both interrupts, the lower 16 bits of the processor status

word are set to NewPSW of the interrupt vector.

Te read a character, the client calls EnableInput, passing the terminal number as
a longint parameter. Enablelnput returns a legality indicator. The Input_Status of the
terminal is Device.Busy until the character arrives. After the interrupt notification,
the client can read Input_Char. The client can examine Input Status to see if the

input character has been lost due to device errors.

24

To write a character, the client should set write the character to Output.Char of
the appropriate entry in TermRegs, and call OutputReady, passing it, as a longint
parameter, the virtual terminal number. OutputReady returns the usual legality indi-
cator. After the character is written to the device (that is, sent to the nuggetmaster),
the Output_Status of this device is set, the virtual terminal number is pushed on the
stack, and the client is notified through its interrupt handler. This parameter should
be removed before returning from interrupt. If the line to the nuggetmaster goes

down, a value of DeviceError appears in the status field.

Flow control between the nugget and the physical terminal on the host is
managed by a permission scheme whereby each end sends permissions to the other
for characters. If the client tries to write to the virtual terminal, but the nugget does
not have permission to send the character to the nuggetmaster, the output-
cornpletion interrupt is delayed until the character can be sent. If the user enters
characters on the physical terminal that the nuggetmaster does not have permission
to send, some characters are buffered. If the buffer is exceeded, no more characters
are accepted, It is useful for the client to echo input so the user can tell how much

has been accepted. See the nuggetmaster specifications for details.

The client /virtual terminal interface follows:

25

const
MAXTERMINALS = ? (* maximum number of terminals per machine *)

type
Status Values = (DeviceBusy, CharOkay, DeviceError)
TerminalRegisters =
record
(* the following are client read only *)
Input_Char : char; (* terminal input character *)
Input_Status : Status_Values; (* stat input stream *)
Output_Status : Status_Values; (* stat output stream *)
(* the following are client write only *)
Output Char : char; (* terminal output character *)
end; (* TerminalRegisters *)

TermIntVectors :
record
InputlntVect : InterruptVector;
OutputintVect : InterruptVector,
end; (* TermIntVectors *)
No_of_Terminals : longint; (* actual number of terminals on node *)
TermDevices : array :MAXTERMINALS of TerminalRegisters;

procedure Enablelnput(TerminalNumber : longint) : Standardint;
(* client call to enable next input from TerminalNumber *)
external,

procedure OutputReady(TerminalNumber : longint) : Standardint;
(* client call to write Output_Char of
TermRegs|[TerminalNumber] *)
external,

8. Node Operation and Control

The node may be in one of several states. The nuggetmaster can cause the node
to change states by sending commands to the nugget. The client can also cause the
node to change states. The nugget sends a status message to the nuggetmaster upon
state change. The set of states is as follows:

1. BOOT: A bootstrap program (very likely implemented on the boot tape)
waits for a load image from any nuggetmaster. That image contains a nug-

get bound to a client. The nugget's tables already indicate the nature of

26

the partition. The bootstrap program transfers control to a fixed location
in the nugget. The nugget, after initializing itself, transfers control to the
client (at a fixed symbolic location: __client) and enters RUNNING state.
HALT: An actual 'halt’ instruction has been executed. The node must be
rebooted to do anything. In this state, interrupts are ignored. The purpose
of this state is for failure insertion (and completeness, since the client may
execute a halt instruction).

PAUSE: The user or client has requested a pause. The nugget masks all
interrupts to the client and busy-waits on the communication device for a
CONTINUE order from the nuggetmaster. The client's clock is frozen (that
is, not decremented). The nugget remains active and continues to process
outstanding client send and receive requests as well as outstanding virtual
disk requests, but delays notifying the client about any completing opera-
tion until the CONTINUE order arrives. The nugget does not accept input
characters from virtual terminals during the PAUSE state. When the CON-
TINUE order arrives, the nugget and client resume RUNNING state,
RUNNING: After a successful boot, the nugget and client are running nor-
mally.

The nuggetmaster provides the user several commands that modify the node's

state as well as commands for simple debugging. The user's commands are imple-

mented through messages from the nuggetmaster to the nugget. The commands that

the nuggetmaster may give the nugget follow:

1.
2.

REBOOT: Returns node to the boot state. This order is legal in any state.

RESTART: Returns the client to the running state at symbolic location
—client. This order is legal in RUNNING or PAUSE states. The order is
obeyed following completion of all outstanding client requests. During this

delay, the node runs in the PAUSE state. Users who intend to restart their

27

clients should take pains to make them re-entrant. In particular, initial-
ized data must be re-initialized on every entry to ._client,

3. HALT: Puts the node in the halt state. This order is legal in RUNNING or
PAUSE states. Outstanding client requests are not honored by the nugget.

4, HELLO: This order is ignored by the nugget, but since every message from
the host is acknowledged, it can be used to check if the nugget is still alive.
This order is legal in RUNNING or PAUSE states.

5. PEEK: The order includes a 32-bit physical address. The nugget returns
the 16 bits contained in the word at that address to the nuggetmaster.
This order is legal in RUNNING or PAUSE states.

6. POKE: The order includes a 382-bit physical address and a 16-bit value to
store. The nugget stores that value in the word at that location. This order
is legal in RUNNING or PAUSE states.

7. CONTINUE: Moves the nugget from the pause state to the running state.
This order is legal in the PAUSE state only. It is ignored in the RUNNING
state. The client is notified of any requests that completed in the PAUSE
state.

B. PAUSE: Puts the nugget and client in the pause state. This order is legal in
the RUNNING state only. This command has the same effect as the client

calling the procedure Pause.

9. Definitions We will use the following terms throughout this document:
CLIENT: A program executing under the control of the nugget on a node. There is
exactly one client per node.
DISKSERVER: A specialized client on a node not a member of any partition, used

for actual disk access.

28

HOST: The computer connected to the user's terminal. There may be several
hosts. They will typically be VAXen running Unix. Each host is con-
nected to the Crystal communications medium.

NODE: A Crystal computer, connected to the Crystal communications medium.
There will be many (on the order of 50) identical nodes. While this
structure is being built, there will very likely be nodes of various ver-
sions (PDP-11/23's and VAX-11/750's).

NUGGET: A program that resides on each node. It virtualizes communications
within each partition and with the nuggetmaster. It provides other ser-
vices to the client.

NUGGETMASTER: A program invoked directly by a user. The nuggetmaster helps
form partitions in the Crystal hardware and allows the user to control
programs running within owned partitions. There may be several nug-
getmasters running at any time on each host.

PARTITION: A subset of the nodes owned by a user.

USER: The human researcher, controlling work through a terminal on a host
machine,

VIRTUAL DISK: A service provided by the nugget for the client. It emulates a disk
by using part of a physical disk, possibly on another node machine.

VIRTUAL TERMINAL: A service provided by the nugget and nuggetmaster that
allows both input and output to be directed from the client to the
user's physical terminal on the host. The user's physical terminal may
be multiplexed among many virtual terminals, and buffering is pro-

vided.

29

10. Client-Nugget Interaction

The n nodes in a partition are numbered logically 1 to n, in an order determined
by the nuggetmaster command the user employed to build the partition. In addition,

each partition has a logical node 0, which is mapped to a program running on the host.

The nuggetmaster binds the client and nugget into a single load module for each
node. The logical-to-physical node address table used by the nugget is also linked into
the nugget as part of that load module. Tables needed for virtual disks and virtual ter-

minals (discussed below) are also linked in at this time.

Definition files that document common structures used by the client and the nug-
get are stored in the directories "/usr/crystal/nugget/*_ include” on each host. There
is a directory for each language supported. This list includes Modula, and will include
C and StarMod. We will present parts of the Modula version of the definition files
throughout this document. A complete listing of the Modula version can be found in
the last chapter of this document. The definition file lists variables that are imported

and exported by the nugget:

module nugget;

define (* interface routines *)
NuggetSend, NuggetReceive, (* cormmunication routines *)
DiskOp, Get_Disk Info, (* virtual disk routines *)
Enablelnput, OutputReady, (* virtual terminal routines *)
Pause, Save_Nugget_State; (* debug routines *)

use (* parameters *)
CommbDevice, CommIntVectors, (* communication *)
TimeDevice, TimelntVector, (* virtual clock *)
~client, (* client entry point after nugget initialization *)
MaxLogicalAddr, SelfLogicalAddr, (* partition data *)
No_of Disks, DiskDevices, DiskIntVectors, (* virtual disk *)
No_of Terms, TermDevices, TermIntVectors; (* virtual terminal *)

The nugget requires memory mapping to be enabled and runs in kernel mode. It

initializes the kernel mapping table and enables memory mapping. It is allowed to use

30

any pages it wishes for its own purposes, so long as this use is invisible to the client.
The client’s stack is kept inviolate; hence the nugget uses its own stack. However, it

switches o the client's stack whenever the client is active.

The nugget provides many services to the client and the partition. These services
are machine initialization, communications between node rachines, a virtual clock,
access to disks shared with other partitions (virtual disks), a simple debugger, and
multiplexing of all partition terminals to the user's terminal on the host (virtual termi-
nals). Most services appear to the client as devices. Other physical devices connected
to the node may be treated by the client in whatever fashion the user wishes without

danger of interference by the nugget.

Bach service is introduced in this chapter and then detailed more fully in its own
chapter. That part of the definition file that pertains to each service is introduced in

each chapter.

The client invokes most services by subroutine call, implicitly passing the
appropriate device registers. These subroutine calls effect a ''start 1/0" operation on
the device. On the VAX node machines these service calls must be use the CALLS
instruction. These calls return with a result in register 0. By convention, a result of 0
usually means the request was legal and -1 means it was illegal. The client may
immediately modify device registers after the call returns, because the nugget copies

all relevant information before returning.

At the completion of a legal operation, the client will be notified by an interrupt
call through the appropriate interrupt vector. Interrupt vectors should not be
modified by the client while an operation on the associated device is in progress. The
client can learn the details of the operation by inspecting the device registers or
parameters pushed on the stack. The client interrupt handler should return via the

REI instruction (on VAX nodes) after popping any parameters from the stack, The

31

client's interrupt stack is the kernel stack and CPU priority during interrupts is DEVI-
CEPRIORITY (except for the clock handler, which runs at CLOCKPRIORITY). It is up to

the client to save the state of the machine upon interrupt.

10.1. Initialization

The first service that the nugget performs is to initialize the machine to a known
state. Initialization happens before the client code is entered and is not started by
subroutine call. During initialization the nugget resets all 1/0 devices, initializes the
System Control Block, sets aside space for the nugget's stack, zeros out the nugget
and client bss (uninitialized data) segment, initializes the system page table (identify-
ing virtual and physical addresses), enables memory management, initializes its own
internal data, disables the client’s virtual clock (described below), defines a process
context at the top of the nugget's stack space setting the kernel stack to the address
supplied by the client, and lastly transfers control to the client at label "_client" (in

Modula) with high priority.

The client should not return from .client. The client should initialize all device
registers and interrupt vectors before lowering priority or calling nugget service rou-
tines. A complete description of the initialization phase can be found in

/usr/crystal/nugget /VAX startup/README.

10.2. Communication

The nugget provides communication with other nodes of the partition. Communi-
cation is by messages. The nugget controls all communications between nodes of the
partition and the host machines. A client is allowed to communicate with members of
the client's partition only. Each partition is protected from stray messages from
other partitions. The nugget provides two modes of service: datagram and reliable in-

order delivery.

32

To send a message, the client places a message in a buffer that it supplies,
describes the buffer and the node address of the destination in the send registers, and
calls the procedure NuggetSend. A completing send passes back the success of the
operation and the destination address. Many sends may be in progress at one time,
but only one per destination node. In addition, the client may broadcast one message

to all nodes in its partition.

To receive a message, the client describes in the receive register the buffer it
supplies and calls NuggetReceive. A completing receive request passes back the
status of message, the source’s node address, size of the message, and mode of com-

munication. Only one receive may be active at one time.

For both send and receive, the client refers to other nodes only through logical
node addresses. These must be in the interval NUGGETMASTER to MaxLogicalAddr:
NUGGETMASTER (constant 0) is the logical address of the nuggetmaster; MaxLogi-
calAddr is the number of the nodes in the partition. In addition the variable SelfLogi-
calAddr tells the client the logical node address of its machine. The nugget initializes

MaxLogicalAddr and SelfLogicalAddr during the initialization phase.

The client and nugget exchange information about messages in two device regis-
ters, SendRegister and ReceiveRegister, which are structured data areas imported by
the nugget. A message consists of a header composed by the nugget and a body com-
posed by the client. The body may be divided into several (up to MAXMESSPARTS) dis-
Joint regions, each contiguous in kernel virtual space. A message body is described by
the BufferDescrip field of the SendRegister or ReceiveRegister. BufferDescrip is an
array describing all the parts of a client's message's body. Each array entry describes
one region by a start address and length. Alength of 0 indicates a rnissing region. The

total length of all regions must lie between MINMESSLENGTH and MAXMESSLENGTH.

33

10.3. Clock

The nugget provides a timing service called the wirfual clock. This service is con-
tinuous and not invoked by a procedure call. The virtual clock consists of a data area
supplied by the client. It contains a field called Count, which the client may set and
inspect at will. Every tick of the virtual clock (currently, 80th of a second) causes
Count to be decremented. Count may become negative. If the count becomes 0, then

the client is interrupted at CPU priority CLOCKPRIORITY.

10.4. Disk

Virtual disks are created and destroyed by users interacting with the nuggetmas-
ter. A user who builds a partition may specify thal certain virtual disks be made part
of that partition. Fach virtual disk is emulated by some physical disk, attached to
some physical node. One physical disk may emulate many virtual disks. If the physi-
cal node associated with a virtual disk is part of a user's partition, then no other users
have access to virtual disks on the same physical disk. This association allows the
client to make reliable timing measurements of disk operations. Alternatively, the vir-
tual disk's node may be omitted from the partition. In this case, the clients in the
partition still have access to the virtual disk, but other partitions may use the same
physical disk at the same time. We call the node connected to a shared physical disk

outgide of any partition a diskserver.

The client can only access a virtual disk through the nugget, so virtual disks that
are not in the partition are protected from tampering. The nugget on each node in a
partition has access to all virtual disks in the partition. The user may of course decide

to submit virtual disk access requests from only one client.

Each virtual disk is assigned a number in the range 0 to No_of Disks, a variable
imported and initialized by the nugget. Cylinders on the disk are referred to by logi-

cal cylinder numbers. Each virtual disk has a set of registers declared in the

34

definition file and imported by the nugget. These registers provide communication

between the client and the nugget.

The nugget uses the registers to describe the parameters of the disk, including
information on number of cylinders, surfaces per cylinder, and sectors per surface. If
the physical disk is connected to this node, then the nugget also provides information

on the current position of the disk arm.

The client uses the registers to specify the type of operation ("read” or "write"),
the logical cylinder, the surface, the sector, the number of sectors, and the kernel vir-
tual address of the buffer to be used in the operation. Operations are started by cal-
ling the procedure DiskOp, passing as a parameter the name of the virtual disk
involved in the operation. The client is informed by an interrupt when the operation
has completed. In order to complete the operation, the nugget may have to exchange
messages with the nugget on the node that is connected to the associated physical

disk.

10.5. Terminals

The user may request that each machine be provided with a number of virtual
terminals to be multiplexed to the user's terminal on the host. The user can then
interact with one physical terminal and view or control the progress of the entire par-
tition. Control of this "multi-terminal” is provided by commands to the nuggetmaster,

which are detailed in the nuggetmaster chapter.

The number of virtual terminals on each node is known to the client in the vari-
able No_of Terminals, imported and initialized by the nugget. Each terminal is
referred to by a number in the range 0 to No_of Terminals-1. Each node has at least
one virtual terminal, the console, numbered 0. Each terminal has its own set of regis-

ters. All registers are exported by the client in the array TermDevices.

35

To write to a terminal, the client places the character to be written in
Qutput.Char of the terminal's register and calls OutputReady, passing the name of the
virtual terminal. When the terminal can accept new output (the last character has
been sent to the nuggetmaster) the client is notified by interrupt. The nuggetmaster
may buffer the character until it can be displayed. To read from the terminal, the
client calls Enablelnput, passing the name of the virtual terminal. The client is

notified by interrupt when a character arrives from the nuggetmaster.

10.6. Debugger

Lastly, the nugget provides a simple synchronization and debugging service to the

client.:

procedure Pause; external;

A client that invokes Pause does not continue until the pause is released by the nug-
getmaster. No interrupts of any kind are seen by the client during pause. The nugget
remains active during the pause state and continues to send and receive messages.
Notification of successful operations is given after the pause state ends. Of course, the
client is unable to submit new requests while pausing. The client’'s virtual clock is not
decremented in pause state. During pause, many debugging and partition-control
commands can be executed through the nuggetmaster and are outlined in a later

chapter.

The nugget also provides a simple means for debugging itself:

const
NUGSTATESIZE = 500;
type
NuggetState = array O:NUGSTATESIZE-1 of shortint;
procedure Save_Nugget_State(var SavedState : NuggetState);
external;

The procedure Save Nugget_State raises priority to that of the clock and copies
all data used by the nugget to SavedState. These data include the state of the com-
munication device. The saved state may be inspected to determine unexplained

actions.

11. Communication Interface

The nugget contrels all communications among clients residing in the nodes of a
partition. Communication is by messages. The communication service appears to the
client as a device that sends and receives messages. Relevant declarations can be
found in this chapter and in the chapter detailing the Modula definition file at the end

of this document.

The client can send and receive messages by calling NuggetSend and NuggetRe-
ceive, The client implicitly passes parameters describing the operation in the device
registers SendDevice and ReceiveDevice, These devices are part of CommDevice, a
data area exported by the client and imported by the nugget. When a communication
operation completes, the client is notified by interrupt at CPU priority level DEVI-
CEPRIORITY through SendIntVect and ReceivelntVect. These two vectors should be ini-

tialized by the client before lowering CPU priority in the client’s initialization process.

The client can choose between two modes for message delivery. "Datagram"
mode writes the message out on the line. The nugget does not guarantee its delivery
but will make a good faith effort to get it to the nugget of the other machine. "Ack-

receipt” mode is a reliable delivery service. The nugget will not only deliver the

37

message to the other nugget, but will wait for notification by the other nugget that its
client accepted the message. The client is informed if delivery to the other client is

not possible.

The client refers to other nodes through logical node addresses. These must be in
the interval NUGGETMASTER to MaxLogicalAddr: NUGGETMASTER (constant 0) is the
logical address of the nuggetmaster, and MaxLogicalAddr is the number of the nodes
in the partition. The client's own machine's logical name can be found in SelfLogi-

calAddr. These two variables are supplied by the client and initialized by the nugget.

A message consists of a header composed by the nugget and a body composed by
the client. The body may be divided into several (up to MAXNOMESSPARTS) disjoint
regions, each contiguous in kernel virtual space. A message body is described by the
BufferDescrip field of the SendRegister or ReceiveRegister. BufferDescrip is of type
MessBodyDescrip, which is an array describing all the parts of a client’s message's
body. Each array entry describes one region by the address of the start of the region
(BodyAddr) and the length in bytes of the region (Length). A length of 0 means that
the BodyAddr field is not valid, and that this region is missing. Length must be an
even number of bytes. The sum of all lengths must lie between MINMESSLENGTH and
MAXMESSLENGTH.

The SendRegister fields are interpreted as follows:

38

type
InterruptVector =
record
InterruptHandler : KernelAddr;
NewP3W . midint,
end; (* InterruptVector *)
PartDescrip =
record (* describes one part of a message body *)
BodyAddr : KernelAddr;
Length : longint;
end; (* PartDescrip *)
MessBodyDescrip = array 0:MAXMESSPARTS-1 of PartDescrip;

var
CommIntVectors :
record (* the communication interrupt vectors *)
SendIntVect : InterruptVector;
(* client initializes to interrupt handler's
address and desired lower half of PSW upon
interrupt *)
ReceiveIntVect : InterruptVector;
(* not used in sending *)
end; (* CommlIntVectors *)
SendRegister :
record (* client sets all fields *)
BufferDescrip : BodyDescrip;
(* points to each part of message *)
Mode : (DataGram,AckReceipt);
(* desired communication circuit *)
DestAddr : LogicalNodeAddr;
(* destination's logical node address *)
end; (* SendRegister *)

procedure NuggetSend : Standardint; (* sends SendRegister's message *)

To send a message, the client first sets the fields of SendRegister. BufferDescrip
should peoint to the message buffer, with each array entry's kernel virtual address
(BodyAddr) and length in bytes (Length) corresponding to the parts of the message
buffer. Mode and destination address (DestAddr) must also be set. The client then

calls NuggetSend.

NuggetSend returns the standard legal/illegal flag. A call to NuggetSend is illegal
if a pending send to the same destination node has not yet been dispatched and ack-

nowledged. The client may have MaxLogicalAddr sends pending. The client may send

to the nuggetmaster, logical rnachine 0, but not to itself.

When the send completes the client will be interrupted at
CommIntVectors.SendIntVect.InterruptHandler with the lower 18 bits of the PSW as set
in CommiIntVectors.SendIntVect. NewPSW. These interrupt fields are typically set by
the client at initialization time. Changes to these fields during a send operation will

produce unpredictable resuits.

If client the Mode is AckReceipt, the send cannot complete successfully unless the
message is acknowledged. Completion may mean that the nugget timed out trying to
send and that the message was not received. At completion of the send the nugget
pushes onto the stack either 0 or 1 to indicate that the send operation succeeded (0)
or timed out (1) and then pushes the destination's logical node address. These two
parameters should be popped from the stack before the client returns from the inter-
rupt. There is no ready bit or interrupt-enable bit in SendRegister; client-notification

interrupts are always enabled.

In addition to sending a message to a single remote machine, the client may send
a single broadcast message to all nodes in the partition. The nugget does not deliver
broadcast messages to the sending client. A broadcast message must be a datagram.
In addition to one send directed to every other node in the partition, the client may
have one broadcast request active. To send a broadcast message the client specifies
BROADCAST (value -1) as the node address when requesting a send. Broadcast mes-

sages are received as if they were a node-to-node datagram.

The fields in ReceiveRegister are interpreted as follows:

40

var
CommintVectors :
record (* communication interrupt vectors *)
SendIntVect : InterruptVector; (* not used in receive *)
ReceivelntVect | InterruptVector;
(* client sets to virtual address of interrupt
handler, and desired lower 18 bits of PSW upon
interrupt *)
end; (* CommintVectors *)
ReceiveRegister :
record
(* the following are set by the client *)
BufferDescrip : BodyDescrip;
(* client sets to point to all parts of buffer *)
(* the following are set by the nugget *)
Status : (MessArrived, NoMessTimeOut),
(* type of interrupt *)
SourceAddr : LogicalNodeAddr;
(* source's logical node address *)
Mode : (DataGram,AckReceipt);
(* communication circuit of message *)
Length : longint,;
(* total length of arrived message *)
end; (* ReceiveRegistern"g‘)

procedure NuggetReceive : Standardint;
(* enables receipt of message *)

To receive a message, the client sets the BufferDescrip field of ReceiveRegister to
point to the message buffer by setting each array entry's virtual address (BodyAddr)
and length in bytes (Length) to those values corresponding to the parts of the message
buffer. The buffer should be large enough to hold any expected message. Fach part
will be filled to capacity by the incoming message before the next part is used. Mes-
sages that do not fit into the buffer will not be accepted or acknowledged. The sum of
all Lengths must be at least MINMESSLENGTH. The receiving client does not specify

which client it wishes to receive from.

NuggetReceive returns the standard legal/illegal flag. A call to NuggetReceive is
illegal if a pending receive has not yet been fulfilled. Beveral sends and one receive

may be outstanding at the sarme time.

41

When a message is accepted by the nugget from another client, the client will be
interrupted at CommbDevice ReceivelntVect.InterruptHandler with the lower 18 bits of
PSW as set in CommbDevice ReceivelntVect. NewPSW. These interrupt fields are typi-
cally set by the client at initialization time. Changes to these fields during a receive

operation will produce unpredictable results.

The client's receive request may be interrupted by a timeout that indicates that
no messages from any other node has arrived. The nugget sets ReceiveRegister.Status
to distinguish between the receipt of a message (MessArrived) and the timeout
(NoMessTimeOut). If Status is MessArrived, SourceAddr will be set to the source's logi-
cal node address, Mode will be set to the mode of the newly arrived message, and
Length will be set to the total length of the message. The priority level of the proces-
sor upon interrupting the client will be the priority of the device (DEVICEPRIORITY).
There is no ready bit or interrupt-enable bit in ReceiveRegister. Client notification

interrupts are always enabled.

The entire communications definition file is reproduced at the end of this docu-

ment.

12. Virtual Clock Interface

The declarations for the virtual clock are as follows:

const
MIN.COUNT = -32767; (* Count will not fall below this value *¥)
CLOCKPRIORITY = 24; (* clock priority level ¥)

var
TimelntVector : InterruptVector;
TimeDevice =
record
Count : longint;
end; (* TimeDevice *)

42

The client may set or inspect the Count field at will. Every tick (currently, 60th of
a second), the nugget decrements Count. The count may become negative. The nug-
get will not decrement Count if so doing would change it from negative to positive.
Count will therefore not fall below MIN_COUNT. If the count becomes 0, then the client
is interrupted at location TimelntVector.InterruptHandler with the lower 16 bits of the
PSW set to TimelntVector NewPSW. These fields should be set by the client at initiali-
zation time. Changes to these fields when the client clock is positive will produce

unpredictable results. The priority level will be that of the clock (CLOCKPRIORITY).

The client may change Count at any time. To change the interrupt vector, the
client should first set Count to any negative integer, disabling the clock interrupt.

Count is initialized by the nugget to MIN_COUNT,

13. Virtual Disk Interface

The virtual disk program presents a disk device to the client. The program con-
trols access to the disk, thereby protecting the client's data from access by other par-
titions over time and preventing the client from accessing disk data belonging to other
partitions. Virtual disks are created by users interacting with the nuggetmaster. A
user may include access to one or more virtual disks in a partition. Fach node in the
partition may access those virtual disks. Virtual disk names are uniform across the
partition. The definition file contains a section defining the virtual disk interface. This

part of the include file can be found at the end of this chapter,

The client refers to each virtual disk by its logical disk number. The maximum
such reference is in No_of Disks, which is imported and initialized by the nugget. All

cylinder references are logical numbers as well. Surface and sector numbers are phy-

sical.

Each virtual disk has its own set of device registers. These are accessed through

the array DiskDevice. Each register has three sets of fields. First, the static fields,

43

initialized by the nugget, describe the device (Max Logical Cylinder, Num_Surfaces,

Num. _Sectors_Per_Track, and SectorLength) and should not be written by the client.

Second, the dynamic fields describe the position of the disk arm
(Current.Cylinder) and the status of the 1/0 operation (Status_of 1 0). These fields
are updated by the nugget during 1/0 operations and should not be written by the
client., If the associated physical disk is not attached to this node, Current_Cylinder
contains the constant NOTDEFINED. Status.of 1 O contains the status of the last com-
pleted 1/0 operation. It is reset with each call to the procedure DiskOp. The status
can indicate two failure modes: An actual disk operation failed (DiskFailure), and
there was a possible failure of the 1/0 operation (MessFailure). In the second case,

communication with a remote disk failed; the 1/0 operation may have succeeded.

Finally, command fields describe the 1/0 operations. This information is written
by the client before calling DiskOp. 'Operation” indicates which operation is
requested. "Cylinder", "Surface" and "Sector” specify the starting position of the 1/0.
A seek operation to that track is implied. "Sector_Count"” specifies the number of con-
tiguous sectors to be transferred. Sector_Count must not exceed
Num_Sectors Per_Track. '"BufferAddr" holds the starting address of the buffer used

for the transfer. The buffer must be virtually contiguous in kernel space.

To schedule a disk operation, the client sets all the fields of RequestInfo and then
calls DiskOp, passing the logical disk number of the virtual disk. DiskOp returns the
usual legality indication. DiskOp can fail if the disk name is out of range, Request_Info
is illegal, or the previous disk operation has not yet completed. A legal call will

schedule the disk operation.

Upon completion of the disk operation, the client is interrupted at the address
stored in DiskIntVector. The virtual disk number is pushed onto the stack as a longint

prior to the interrupt. This parameter should be removed before the return from

44

interrupt. The interrupt routine will run at the priority level of the virtual disk (DEVI-
CEPRIORITY). This priority level is the same as the communication device. The lower
16 bits of the processor status word is set to NewPSW of the interrupt vector prior to
the interrupt. It is the client's responsibility to save the machine state upon inter-

rupt.

The disk interface section of the definition file follows:

45

const
MAXDISKS = ? (* max number of virtual disks per machine *)
NOTDEFINED = -1; (* position information not available *)

type
Oplnfo = (* command fields of a device register *)
record
(* these fields are client read/write *)
Operation : (Read_Disk, Write.Disk);
Cylinder : longint; g* logical cylinder (track) *)
Surface : longint; (* physical surface *)
Sector : longint; (* physical sector *)
Sector_Count ; longint; (* number of sectors to
transfer *)
BufferAddr : KernelAddr, (* kernel virtual address
of start of data *)
end; (* OpInfo *)
DiskRegisters =
record
(* static fields, initialized by nugget, read by client *)
Max_logical Cylinder : longint;
Num_Surfaces : longint;
Num_Sectors_Per. Track : longint;
SectorLength : longint; (* number of bytes per disk
sector *)
(* dynamic fields, set by nugget, read by client *)
Current Cylinder : longint; (* current position of
disk arm or NOTDEFINED *)
Status_of 1 0 : (Success, DiskFailure, MessFailure);
(* command fields, set by client, read by nugget *)
RequestInfo : Opinfo;
end; (*DiskRegisters*)

No_of Disks : longint, (* actual number of virtual disks,
bounded by MAXDISKS, initialized by nugget *)

DiskintVectors : array 0:MAXDISKS-1 of InterruptVector,

DiskDevice : array 0: MAXDISKS-1 of DiskRegisters;

procedure DiskOp(DiskNo : longint) : Standardint; external;
(* schedules a virtual disk operation *)

14. Virtual Terminal Interface

Virtual terminal service allows each client in a partition to access a terminal (for
both input and output) that is multiplexed to the user's terminal on the host. The

definition file contains a description of the virtual terminal interface. This interface

46

can be found at the end of this chapter.

The virtual terminal "device" is controlled by nugget routines, Many of these rou-
tines communicate with the nuggetmaster's virtual terminal handler. The nuggetmas-
ter specification details the commands that the user may employ to control the multi-

plexed physical terminal.

When a partition is specified by the user, each node is given one or more virtual
terrinals logically numbered 0 to No_of Terminals-1. The variable No_of Terminals is
imported and initialized by the nugget. Terminal 0 is always present and acts as the

node's console,

The virtual terminal appears to the client as a device. The client must initialize
the device by setting the interrupt vectors. When a character has appeared on the
input device, the client is notified by interrupt at InputintVect.InterruptHandler at the
priority of the terminal (DEVICEPRIORITY) providing that the client has called Ena-
blelnput on this device. The terminal priority is the same as that of the communica-
tion virtual device. Before calling the client’s interrupt handler, the nugget pushes
the virtual terminal number on the stack as a longint. This parameter should be

removed by the client before returning from the interrupt.

When a character has been written by the output device, the client is notified at
OutputintVect.InterruptHandler. Again, the virtual terminal number is pushed on the
stack prior to the call. For both interrupts, the lower 18 bits of the processor status

word are set to NewPSW of the interrupt vector.

To read a character, the client calls Enablelnput, passing the terminal number as
a longint parameter. Enablelnput returns a legality indicator. The Input_Status of the
terminal is Device Busy until the character arrives. After the interrupt notification,
the client can read Input Char. The client can examine Input_Status to see if the

input character has been lost due to device errors.

47

To write a character, the client should set write the character to Output_Char of
the appropriate entry in TermRegs, and call OutputReady, passing it, as a longint
parameter, the virtual terminal number. OutputReady returns the usual legality indi-
cator. After the character is written to the device (that is, sent to the nuggetmaster),
the Output.Status of this device is set, the virtual terminal number is pushed on the
stack, and the client is notified through its interrupt handler. This parameter should
be removed before returning from interrupt. If the line to the nuggetmaster goes

down, a value of DeviceError appears in the status field.

Flow control between the nugget and the physical terminal on the host is
managed by a permission scheme whereby each end sends permissions to the other
for characters. If the client tries to write to the virtual terminal, but the nugget does
not have permission to send the character to the nuggetmaster, the output-
completion interrupt is delayed until the character can be sent. If the user enters
characters on the physical terminal that the nuggetmaster does not have permission
to send, some characters are buffered. If the buffer is exceeded, no more characters
are accepted. It is useful for the client to echo input so the user can tell how much

has been accepted. See the nuggetmaster specifications for details.

The client /virtual terminal interface follows:

48

const
MAXTERMINALS = ? (* maximum number of terminals per machine *)

type
Status_Values = (DeviceBusy, CharOkay, DeviceError)
TerminalRegisters =
record
(* the following are client read only *)
Input_Char : char; (* terminal input character *)
Input_Status : Status_Values; (* stat input stream *)
Output_Status : Status_Values; (* stat output stream *)
(* the following are client write only *)
Output_Char : char; (* terminal output character *)
end; (* TerminalRegisters *)

TermlIntVectors :
record
InputintVect : InterruptVector;
QutputintVect : InterruptVector;
end; (* TermIntVectors *)
No_of Terminals : longint; (* actual number of terminals on node *)
TermbDevices : array O: MAXTERMINALS of TerminalRegisters;

procedure Enablelnput(TerminalNumber : longint) : Standardint;
(* client call to enable next input from TerminalNumber *)
external,

procedure OutputReady(TerminalNumber : longint) : StandardInt;
(* client call to write Output_Char of
TermRegs|TerminalNumber] *)
external,

15. Node Operation and Control

The node may be in one of several states. The nuggetmaster can cause the node
to change states by sending commeands to the nugget. The client can also cause the
node to change states, The nugget sends a status message to the nuggetmaster upon
state change. The set of states is as follows:

1. BOOT: A bootstrap program (very likely implemented on the boot tape)

waits for a load image from any nuggetmaster. That image contains a nug-

get bound to a client. The nugget's tables already indicate the nature of

49

the partition. The bootstrap program transfers control to a fixed location
in the nugget. The nugget, after initializing itself, transfers control to the
client (at a fixed symbolic location: __client) and enters RUNNING state.
HALT: An actual 'halt’ instruction has been executed. The node must be
rebooted to do anything. In this state, interrupts are ignored. The purpose
of this state is for failure insertion (and completeness, since the client may
execute a halt instruction),

PAUSE: The user or client has requested a pause. The nugget masks all
intérrupts to the client and busy-waits on the communication device for a
CONTINUE order from the nuggetmaster, The client's clock is frozen (that
is, not decremented). The nugget remains active and continues to process
outstanding client send and receive requests as well as outstanding virtual
disk requests, but delays notifying the client about any completing opera-
tion until the CONTINUE order arrives. The nugget does not accept input
characters from virtual terminals during the PAUSE state. When the CON-
TINUE order arrives, the nugget and client resume RUNNING state.

RUNNING: After a successful boot, the nugget and client are running nor-
mally.

The nuggetmaster provides the user several commands that modify the node's

state as well as commands for simple debugging. The user's commands are imple-

mented through messages from the nuggetmaster to the nugget. The commands that

the nuggetmaster may give the nugget follow:

1.
2.

REBOOT: Returns node to the boot state. This order is legal in any state.

RESTART: Returns the client to the running state at symbolic location
—client, This order is legal in RUNNING or PAUSE states. The order is
obeyed following completion of all outstanding client requests. During this

delay, the node runs in the PAUSE state. Users who intend to restart their

80

clients should take pains to make them re-entrant. In particular, initial-
ized data must be re-initialized on every entry to ...client.

3. HALT: Puts the node in the halt state. This order is legal in RUNNING or
PAUSE states. Outstanding client requests are not honored by the nugget.

4. HELLO: This order is ignored by the nugget, but since every message from
the host is acknowledged, it can be used to check if the nugget is still alive.
This order is legal in RUNNING or PAUSE states,

5, PEEK: The order includes a 32-bit physical address. The nugget returns
the 16 bits contained in the word at that address to the nuggetmaster.
This order is legal in RUNNING or PAUSE states.

6. POKE: The order includes a 32-bit physical address and a 18-bit value to
store. The nugget stores that value in the word at that location. This order
is legal in RUNNING or PAUSE states.

7. CONTINUE: Moves the nugget from the pause state to the running state.
This order is legal in the PAUSE state only. It is ignored in the RUNNING
state. The client is notified of any requests that completed in the PAUSE
state,

B. PAUSE: Puts the nugget and client in the pause state. This order is legal in
the RUNNING state only. This command has the same effect as the client

calling the procedure Pause.

16. Nugget's Communication Protocol

The nugget is in charge of all messages sent between its node and other nodes or
the host. The nugget places a header on each message it sends. This header is
described by the type Header defined below. The first group of fields in Header are
used in the inter-machine protocol. The rest of the fields are used for internal multi-

plexing of messages on the node machine or by the nuggetmaster on the user's host.

The following declarations are not part of the definition file:

const
HEADSIZE = 10; (*in bytes¥)

type

NodeAddr = shortint;
const

BROADCAST = NodeAddr(-1); S* as a destination *)

NUGGETMASTER = NodeAddr(0); (* logical node address *)
type

Header =

record

(* inter-machine protocol fields *)
(* hardware-dependent fields *)
Dest : NodeAddr;
Source » NodeAddr;
(* software dependent fields *)
Version : shortint; (* For backward
cornpatibility *)
BitAccess : shortint; (* AckNo,SeqNo,Datagram,
BareAck,Rsrvds *)
Reserved : midint; (* For later use *)
Length :integer; (* The length of the
message body in bytes *)
(* local addressing fields *)
Dest_Socket_No, Source_Socket_No : shortint;
end; (* Header ¥)

51

The inter-machine protocol flelds are divided into hardware-dependent and

software protocol fields. Following the hardware-dependent fields is a version number

(Version). Different versions of the protocol may exist on the network concurrently

without interfering with each other.

Local addressing fields represent socket numbers. There is a separate socket

number for each of four purposes: client messages, virtual terminal messages, virtual

disk messages, and command messages. The socket numbers on nodes are bound at

design time. The socket numbers on the host are determined when the partition is

built, and refer to Unix ports.

52

The nugget uses a one-bit stop-and-wait protocol to send messages. This protocol
uses the destination address {Dest), source address (Source), the sequence number of
the message (bit 7 of BitAccess), and the sequence number of the next message
expected (otherwise known as the acknowledgement bit, bit 8 of BitAccess). The other

bits describe additional variations.

Bit 8 of BitAccess, if set, indicates that an acknowledgement is not expected,; the
message is a datagram. Datagram messages have higher priority than ack-receipt
messages and advance to the head of the queue. Datagram messages do not carry
acknowledgements for previously received messages. The sequence number of the
datagram message is ignored by the receiver and does not reset any Delta-T timers

described below.

Bit 5 of BitAccess, if set, indicates that this message is a bare acknowledgement.
Bare acknowledgements only use fields through BitAccess, hence are only four bytes

long. A bare acknowledgement is not a datagram and must have bit 6 clear.

The other 4 bits of BitAccess are reserved for future use. '"Reserved' is also

reserved for future use.

Length is the length in bytes of the rest of the message, including fields of the
header that follow Length.

The two fields, Dest_Socket No and Source_Socket_No, are used to multiplex mes-

sages among the client, nugget or nuggetmaster, virtual terminal, and virtual disk.

The nugget uses the delta-T protocol to recover from lost messages, dead
machines, or dead lines. This protocol uses three timing constants: MPL (Maximum
Packet Lifetime), A (maximum Acknowledgement delay), and R (meximum
Retransmission time). The nugget stops retransmitting an unacknowledged message
after R ticks of the clock and announces failure to the client. The minimum wait

between retransmissions is RMPL+A.

53

State information for a communication channel consists of the SeqNo and the
AckNo bits sent with messages on that channel. If a message is acknowledged, the
sender's state is changed by flipping the SeqNo bit and the receiver's state is changed
by flipping the AckNo bit. The nugget maintains state information for 2MPL+A+R ticks
upon receipt of any message. If no message arrives during this interval, the receiver
resets the protocol: The next message that arrives defines the state of the sender and
is accepted. A sender will try to retransmit unacknowledged messages for R ticks. If
the message is still unacknowledged, all sending to that destination is blocked for
3MPL+A+R ticks. The receiver will then reset its state and accept the next message.
When the nugget initializes, it waits at least 3MPL+A+R ticks before sending or receiv-
ing messages. Any previous conversations are thereby flushed from the network.
Datagram messages are ignored for the purpose of this protocol, that is, such mes-

sages do not cause any timers to be reset.

17. The definition file

The Modula "include' file in /usr/crystal/nugget /MC_include documents the com-
mon structures used by the client and the nugget. The following is the entire

definition file.

module nugget;

define (* interface routines *)

use (*

NuggetSend, NuggetReceive, (* communication routines *)
DiskOp, Get Disk_Info, é* virtual disk routines *)
EnableInput, OutputReady, (* virtual terminal routines *)
Pause, Save_Nugget. State; (* debug routines *)

parameters *)

CommDevice, CommIntVectors, (* communication *)

TimeDevice, TimelntVector, (* virtual clock *)

-client, (* client entry point after nugget initialization *)
MaxLogicalAddr, SelfLogicalAddr, (* partition data *¥)

No_of Disks, DiskDevices, DiskIntVectors, (* virtual disk *)

No_of Terms, TermDevices, TermIntVectors; (* virtual terminal *)

(* initialization declarations *)

procedure _client; external; (* the client's entry point *)

(* communication declarations *)

const

type

var

MINMESSLENGTH = 0; (* max size (in bytes) of client messages *)
MAXMESSLENGTH = 2000;

MAXMESSPARTS = 3; (* max number of parts of message body *)
DEVICEPRIORITY = 20; (* device priority level *)

BROADCAST = -1; (* when used as a destination address *)
NUGGETMASTER = 0; (* logical address of nugget master *)

LogicalNodeAddr = shortint;
KernelAddr = integer; (* virtual address in kernel space *)
PhysicalAddr = longint; (* physical machine address *)
InterruptVector =
record
InterruptHandler : KernelAddr; (* in kernel space ¥)
NewPSW : midint; S* desired lower 16 bits of PSW *)
end; (* InterruptVector *
PartDescrip = (* describes one part of client's message *)
record
BodyAddr : KernelAddr; (* start of part *)
Length : longint; (* size of part in bytes *)
end; (* BodyDescrip *)
MessBodyDescrip = array 0:MAXMESSPARTS-1 of PartDescrip;

CommDevice :
record (* communication send and receive registers *)
SendRegister :
record
(* the following fields are read/write *)

BufferDescrip : MessBodyDescrip;
Mode : (DataGram,AckReceipt);
DestAddr : LogicalNodeAddr;
end; (* SendRegister *)
ReceiveRegister :
record
(* the following are client read/write *)
BufferDescrip : MessBodyDescrip;
(* the following are client read only *)
Status : (MessArrived, NoMessTimeOut),
SourceAddr : LogicalNodeAddr;
Mode : (DataGram,AckReceipt);
Length : longint;
end; (* ReceiveRegister *)
end; (* CommDevice *)
CommIntVectors :
record (* communication device interrupt vectors *)
(* the following are client read/write *)
SendIntVect : InterruptVector;
ReceivelntVect : InterruptVector;
end; (* CommlIntVectors *)
MaxLogicalAddr, SelfLogicalAddr : NodeAddr; (* partition data *)

procedure NuggetSend : integer; external,

(* enables sending of the message described in SendRegister *)
procedure NuggetReceive : integer; external;

(* enables receipt of messages described in ReceiveRegister *)
(* debugging features *)

procedure Pause; external;

const
NUGSTATESIZE = 500;

type
NuggetState = array O:NUGSTATESIZE-1 of shortint;
procedure Save_Nugget State(var SavedState : NuggetState); external,

(* clock declarations *)

const
MIN_COUNT = -32767; (* Count will not fall below this value *)
CLOCKPRIORITY = R24; (* clock priority level *)
var
TimelntVector : InterruptVector;
TimeDevice =
record

Count : longint;
end; (* TimeDevice *)

(* virtual disk declarations *)

55

const
MAXDISKS = ? (* max number of virtual disks per machine *)
NOTDEFINED = -1; (* position information not available *)

type
Oplnfo = (* command fields of a device register *)
record
(* these fields are client read/write *)
Operation : (Read_Disk, Write_Disk);
Cylinder : longint; {* logical cylinder (track) *)
Surface : longint; (* physical surface *)
Sector :longint; (* physical sector *)
Sector.Count : longint; (* number of sectors to
transfer *)
BufferAddr : KernelAddr; (* kernel virtual address
of start of data *)
end; (* OplInfo *)
DiskRegisters =
record
(* static fields, initialized by nugget, read by client *)
Max logical Cylinder : longint;
Nurm_Surfaces : longint;
Nurmn_Sectors. Per. Track : longint;
SectorLength : longint; (* number of bytes per disk
sector *)
(* dynamic fields, set by nugget, read by client *)
Current_Cylinder : longint; (* current position of
disk arm or NOTDEFINED *)
Status_of 1.0 : (Success, DiskFailure, MessFailure);
(* command fields, set by client, read by nugget *)
Requestinfo : Oplnfo;
end; (*DiskRegisters*)

var
No_of Disks : longint; (* actual number of virtual disks,
bounded by MAXDISKS, initialized by nugget *)
DiskIntVectors : array 0:MAXDISKS-1 of InterruptVector;
DiskDevice : array 0:MAXDISKS-1 of DiskRegisters;

procedure DiskOp(DiskNo : longint) : StandardInt; external;
(* schedules a virtual disk operation *)

(* virtual terminal declarations *)

const
MAXTERMINALS = ? (* maximum number of terminals per machine *)

type
Status_Values = (DeviceBusy, CharOkay, DeviceError)
TerminalRegisters =
record
(* the following are client read only *)
Input_Char : char; (* terminal input character *)

56

var

Input_Status : Status Values; (* stat input stream *)

Output_Status : Status_Values; (* stat output stream *)

(* the following are client write only *)

Output_Char : char; (* terminal output character *)
end; (* TerminalRegisters *)

TermIntVectors :
record
InputintVect : InterruptVector;
OutputintVect : InterruptVector;
end; (* TermIntVectors *)
No..of Terminals : longint; (* actual number of terminals on node *)
TermDevices : array O:MAXTERMINALS of TerminalRegisters;

procedure Enablelnput(TerminalNumber : longint) : Standardint;

(* client call to enable next input from TerminalNumber *)
external;

procedure OutputReady(TerminalNumber : longint) : Standardint;

(* client call to write Output_Char of
TermRegs|TerminalNumber] *)
external,

end nugget;

57

