INTEGRATED CONCURRENCY CONTROL
AND RECOVERY MECHANISMS:
DESIGN AND PERFORMANCE EVALUATION

by

Rakesh Agrawal
David J. DeWitt

Computer Sciences Technical Report #497

February 1983

Integrated Concurrency Control and Recovery Mechanisms:
Design and Performance Evaluation

Rakesh Agrawal
David J. DeWitt

Computer Sciences Department
University of Wisconsin - Madison

This research was partially supported by the National Science Foundation under grant
V.CSB82-01B70 and the Department of Energy under contract #DE-AC0R-81ER10920.

ABSTRACT

In spite of the wide variety of concurrency control and recovery mechanisms pro-
posed during the past decade, the behavior and the performance of various concurrency
control and recovery mechanisms remain largely not well understood. In addition,
although concurrency control and recovery mechanisms are intimately related, the
interaction between them has not been adequately explored. In this paper, we take a
unified view of the problems associated with concurrency control and recovery for
transaction-oriented multi-user centralized database management systemns, and present
several integrated mechanisms. We then develop analytical models to study the
behavior and compare the performance of these integrated mechanisms and present the
results of our performance evaluation.

1. Introduction

During the past decade, alternative concurrency control and recovery mechanisms
have been the subject of intensive research activity [4,5,26,48]. However, despite the
wide variety of mechanisms proposed, there remains a lack of experimental and/or
analytical evidence regarding the behavior of various concurrency control and recovery
mechanisms and their influence on database system performance. In addition, although
concurrency control and recovery mechanisms are intimately related, they have been
treated primarily as two independent problems and very little research has been

devoted to explore the interaction between the two mechanisms.

In this paper, we take a unified view of the problems associated with concurrency
control and recovery for cenftralized database management systems, and present
several integrated mechanisms. We then develop analytical models to study the
behavior and compare the performance of these integrated mechanisms. Our approach
for evaluating the performance of these mechanisms extends the approaches used pre-
viously. Earlier evaluation efforts have primarily used metrics such as transaction thru-
put (i.e. number of transactions completed per second) or average response time when

comparing different concurrency control mechanisms (or different versions of the same

mechanism) and have ignored the overhead! imposed on the transaction by the con-
currency control and recovery mechanism. Our approach for evaluating concurrency
control and recovery mechanisms incorporates both the effect of the mechanism on the
conflict rate between transactions (that has a direct effect on the thruput rate) and the
overhead assomated with each mechanism on the execution of the transactxon We feel
that this approach provides a more accurate evaluation of the performance of the alter-

native mechanisms than when only the transaction thruput rate is considered.

The organization of the rest of the paper is as follows. In Section 2, we present a

review of related work. Summaries of the concurrency control and recovery

1 By overhead we mesn those instructions/operations {both CPU and 1/0) that would not need to be exe-
cuted by the transaction if the Lransaction was run alone ona ¢ omputer with perfect software and hardware.

mechanisms that we evaluated are contained in Sections 3 and Section 4 respectively.
We describe the cost model that we use for performance evaluation in Section 5.
Integrated recovery and concurrency control mechanisms are presented in Section €
along with the cost equations for each. In Section B, we present the results of our per-
formance evaluation using the database, mass storage device, and processor charac-
{eristics specified in Section 7. Section 9 contains our conclusions and suggestions for
future research. A glossary of the notation used in the paper has been provided in

Appendix A,

In the past, the behavior of locking as a concurrency control mechanism has been
investigated by a number of researchers using both simulation and analytical models.
Threugh the use of simulation, in [42] the difference in performance between a systern
in which locks are released as soon after the shrink point [10] as possible and a system
in which locks are held until the transaction completes was found to be insignificant.
Alternate methods of choosing a victim for deadlock resolution were studied in [34]. The
effects of locking granularity on database performance were examined in [38] and it was
demonstrated that different settings for system and application parameters may favor
different locking granularities. In [31] the probability that a lock request by a transac-
" tion either results in a deadlock or forces the transaction to wait (along with the

expected average waiting time) are estimated.

Locking policies were analyzed in [38] using hierarchical analytical modeling and
two gqueuing network models have been proposed in [25] to study the effect of locking
granularity on database system performance. An analysis of the probability of waiting

and deadlock has been presented in [15].

Finally, analytical models have been utilized to study log-based recovery systems
in (8,12, 13]. These models, however, only address the issue of selecting an optimum

checkpoint interval.

In[11] the performance of two concurrency control algorithms [2,47] for distri-
buted database systems is compared using simulation. In [32] another two algorithms
[3,29] for distributed systems have been compared. An assessment of shadows vis-a-vis

logs for recovery has been given in [17].

Gray et al. in [18] first pointed out the effect of recovery on two-phase locking.
Reed proposed in [37] that concurrency control and recovery are really two aspects of
the same problem and implemented what he called atomic actions within a unified

mechanism.

The results that we will present in Section 8 are built upon several of these earlier
efforts, in particular, those of Lin and Nolte [31]. Lin and Nolte have determined,
through simulation, the probability of an access request by a transaction conflicting with
another request as a function of a variety of parameters including the transaction size
{the number of pages touched), the number of transactions running concurrently (i.e.
the multiprogramming level), the size of the database, and the access pattern of the
transaction. They have also determined for two-phase locking the probability of a lock
request resulting in deadlock and the average waiting time of a blocked request as a
function of these same parameters. We use these results as input to our performance
evaluation models. We also use the results in[15] to estimate the probability of waiting
and probability of deadlock for small transactions since this range of transaction sizes is

not covered by results presented in [31].

3. Summary of Concurrency Control Mechanisms Evaluated

In this paper we consider three basic approaches® that we feel form the basis of

most concurrency control algorithms:

- Locking
- Timestamp ordering
- Validation

2 The interested reader is encouraged to examine [4,5] for a complete exposition of all the approaches
possible.

3.1. Locking

Locking synchronizes read and write operations by denying access to a certain por-
tion of the database to a conflicting transaction®. Before accessing an object, a transac-
tion is required to own a non-conflicting lock on the object. Two requests for a lock on
an object conflict if (a) one is for a read lock and the other for a write lock, or (b) both

are for write locks.

Eswaran et al. [10] have shown that for serializability®, transactions should obtain
locks in a fwo-phase manner. A transaction is said to be two-phase if it does not perform
a lock action after the first unlock action. To avoid a cascade of backups if a transaction
fails, it is required that the second phase be deferred to the transaction commit

point [21].
3.1.1. Deadlock

Whenever a transaction waits for a lock request to be granted, it runs the risk of
waiting forever in a deadlock. Deadlock has been shown to be equivalent to a cycle in a
waits-for graph [9,23]. There are three approaches to deadlock resolution: prevention,

detection and avoidance.

Prevention is a cautious scheme that does not let a transaction wait if it may get

into a deadlock. Timestamp-based preemptive wound-wait and non-preemptive wail-die
schemes proposed in [40] are examples of deadlock prevention. In deadlock detection,
deadlocks are detected by explicitly building the waits-for graph and examining it for
cycles. Deadlock guoidance is a conservative technique that avoids transaction restarts

altogether using hierarchal allocation [22].

3 A transaction is a sequence of actions on a datebase that transforms a consistent database state into
aniother consistent state [10].

4 gerializability is the sufficient condition for consistency [10, 6, 35].

3.2. Timestamp Ordering

In locking, the ordering of transactions in a serialization order is dynamically deter-
mined while transactions are executing based on interleaving of their requests, With
timestamp ordering, a serialization order is selected a priori and transaction execution
is forced to obey this order. We will describe a basic implementation of timestamp ord-

ering as presented in [4].

For each object X, the largest timestamp of any read(X) and the write(X) is
recorded. Let these be R-ts(X) and W-ts{(X) respectively. First consider rw-
synchronization. A read(X) with timestamp TS is denied if TS < W-ts(X); otherwise, the
read is permitted and R-ts(X) is set to max {R-ts(X),TS}. For a write(X) with timestamp
TS, the request is rejected if TS < R-ts(X); otherwise, the write proceeds and W-ts(X) is
set to max {W-ts(X),TS]. For ww-synchronization, a write(X) with tirestamp TS is
rejected if TS < W-ts(X); otherwise, the write is allowed and W-ts(X) is set to TS. If a read
or a write request of a transaction is denied, it is aborted and restarted with a new, and

larger, timestamp.

Two variations of the basic algorithm: multiversion and conservative timestamp
ordering have been described in [4]. Both attempt to reduce the number of restarts

induced by the basic algorithm.

3.3. Validation

Unlike the locking or the timestamp ordering approach, algorithms based on valida-
tion allow a transaction to execute unhindered to its end. At the time of commit, the
transaction is validated to determine whether or not to commit the transaction. The
rationale for the validation approach is the optimistic assumption that only a few tran-

sactions conflict.

Kung and Robinson [27] have developed a timestamp-based approach to validation.

As a transaction executes, information about the set of objects read, written and

created by the transaction is collected and at the end, the transaction is validated using
one of the three validation conditions. For the remainder of t;he paper we will use the
term "optimistic" instead of more general term '"validation" to emphasize that we are
specifically considering Kung and Robinson's optimistic method in the integrated

mechanisms presented below.

3.4. Basic Timestamp Ordering versus Locking

For centralized databases and database systems, we feel that the basic timestamp
ordering algorithm is very similar to locking in its behavior but has the disadvantage of

inducing a larger number of restarts,

In basic timestamp ordering, the serialization order is decided a priori, whereas the
serialization order is dynamically decided in locking. Because of this, when compared to
locking, basic timestamp ordering is more prone to transaction restarts. Assume, for

exarmple, that ts(T2) > ts(T1) and the following sequence of operations:

TR : read(X)
TR : comrmnit
T1: write(X)

Basic timestamp mechanism will abort T1 but locking will permit both T1 and T2 to com-

mit. Gray has observed in [14] that transaction restarts are very expensive.

We will now investigate the similarity in basic timestamp ordering and locking
mechanisms. With basic timestamp ordering, a transaction's read(X) [write(X)] is
translated into 3 actions: (i) checking that the timestamp associated with the access
request is not less than W-ts(X) [R-ts(X)], (ii) updating R-ts(X) [W-ts(X)], and (iii) execut-
ing read(X) [write(X)]. It is necessary that these three actions are executed in an
atomic fashion. Consider, for example, the consistency assertion that X=Y, assume R-
ts{X) = W-ts(X) = Rts(Y) = W-ts(Y) = 0, ts(T1) = 1, ts(TR) = 2, and the following sequence

of execution:

T1 : read(X)
T1 : write(X:=X+1)
TR : read(X)
TR : write(X:=2*X)
: read(Y)
T1 : write(Y:=Y+1)
T2 : read(Y)
T2 : write(Y:=2*Y)

DN
p-a
S

Assume serial execution up to step 5. At step 6, ts(T1) is checked to be greater than R-
ts(Y), write(Y) is accepted, and W-ts(Y) is set equal to 1. However, before Y is updated,
processing of read(Y) at step 7 begins. Since ts(TR) > W-ts(Y), the read is accepted, R-
ts(Y) is updated, and read(Y) is carried out. Subsequently, the pending write(Y) of step

6 is completed. After execution of step B, we will have an inconsistent database. There-
fore, as in the case of locking®, while an object is being accessed, other conflicting (read

and write) accesses to the object must be blocked®.

Furthermore, if an updated object is allowed to be accessed before the transaction
that updated it completes, the problem of triggered aborfs will occur. Assume, for

example, that ts{T2) > ts(T1) and the following sequence of execution:

Ti : write(X)
TR : read(X)
TR : commit
T1 : abort

When T1 is aborted, T2 will also have to be aborted and any updates of T2 will have to be
undone. Consequently, once a transaction begins updating an object, access to that
object must be blocked until the transaction either commits or aborts. This is
equivalent to putting a write lock on the object and keeping that lock set until the end of

the transaction (as in the case of two-phase locking).

Finally, with locking, the entries for a transaction in the lock table may be removed

as soon as the transaction completes. With basic timestamp ordering, however,

5 However, once the transaction has finished reading an object, writes to that object may be allowed to
proceed unlike the two-phase locking where the read locks must be kept until the shrink point.

8 An alternative might te to recheck after executing read(X) [write(X)] that the timestamp associated with
the request is still not less than W-ts(X) [R-ts(X)] and iI the test fails, abort the transaction. This solution will
turther increase the number of restarts induced by the basic timestamp ordering.

timestamps corresponding to a transaction may have to be maintained even after the
transaction has committed. Thus, the size of the timestamp table will be, in general,
larger than the size of the lock table. Hence, granting an access request, adding and
removing timestamps with basic timestamp ordering will not be less expensive than

acquiring and releasing locks using the locking approach.

To summarize, the only situation where timestamp ordering may offer additional
concurrency over locking is the one in which a write request on an object is allowed to
proceed once another transaction has finished reading the object. However, with times-
tamp ordering, a larger percentage of transactions will have to be aborted and rerun.
The result is likely to be less net concurrency. In view of the above arguments, we will

not consider basic timestamp ordering further.

4. Summary of Recovery Mechanisms Evaluated

In this paper we consider four basic recovery mechanisms for transaction oriented

database systems”:

Log

Shadows

- Differential Files
Versions

1

T

4.1. Recovery using Logs

The log-based approach [18] relies upon a redundant representation of the data-
base on an append-only log. In addition to updating a data object, every update opera-
tion also creates a log record that includes information such as the transaction
identifier, the object identifier, and "before” and "after” values. The log records of a
transaction are threaded together. To limit the amount of work at the time of system
restart, system checkpoints are taken periodically in an action-consistent state. At sys-

tem checkpoint, buffers are flushed and a checkpoint record containing a list of all

7 For a different classification and some of the techniques that are not directly applicable to transaction-
oriented database systems, sce [48].

active transactions and pointers to their most recent log records is written to the log.

4.1.1. Commit Processing

Modification of the database follows the following write-ahead-log protocol:

(1) Before recording uncommitted updates of a transaction on stable storage, force its
before-value log records to stable storage.

(2) Before committing updates of a transaction, force all its log records to stable
storage.

4.1.2. Recovery Algorithm

The essential idea is to undo the effects of uncommitted transactions by reading log
records for the transaction backwards and restoring the before-values. Similarly, the
actions of committed transactions are redone by scanning log records for the transac-

tion forward from the most recent checkpoint and reapplying the after-values.

4.2. Recovery using Shadows

The fundamental idea of shadows is not to do in-place updating but rather to keep
two copies of the object being updated while the transaction is still active: the modified
copy and a copy of the object as it was before the transaction began. This later copy is
_ termed the shadow copy. When the transaction commits, the shadow copy is replaced

by the updated copy. We will present a scheme based on the ideas in [33, 28]

For each relation, there is a shadow page-table, S-Map, that is maintained in stable
storage. An incremental current page-table, C-Map, for each transaction is formed in
the main memory as the transaction updates data pages. To update a page k, if k is
already in C-Map then C-Map[k].PhysicalPage is used for updating. Otherwise, a free
page j is obtained for the updated copy of k and an entry is added to C-map for k with C-

Map([k].PhysicalPage = j.

10

4.2.1. Commil processing

At commit time, all the pages updated by a transaction are forced to the stable
storage. Then, for all pages k that appear in a transaction's C-map, S-
Map[k].PhysicalPage must be changed to C-Map[k].PhysicalPage. Since the system may
fail when S-Map has been partially updated, S-Map is updated in two phases. First, C-
map is written to a commit list on stable storage as transaction's precommil record.
Once the precommit record of a transaction appears on the commit list, its effects can-
not be undone. Next, S-Map is updated. Since system failure in the middle of writing of
an S-Map block may garbage the block, the S-Map is updated carefully®. Finally, a com-

mit record for the transaction is written to the commit list.

4.2.2. Recovery Algorithm

Recovery from a transaction abort is straight-forward. First, the C-map associated
with the transaction is discarded. Next, the updated data pages are reclaimed. To
recover from a system crash, the commit list is examined to determine those transac-
tions for which a precommit record appears in the list but not the commit record. For

all such transactions, S-Map is updated using the precommit record.

4.3. Recovery using Differential Files

With the differential file scheme proposed in[41], all logical files comprise of two
physical files: a read-only base file and a read-write differential file. The base file

remains unchanged until reorganization. All updates are confined to the differential file.

4.3.1. Hypothetical Data Bases

In [45], the notion of Hypothetical Data Bases (HDB's) was introduced and in [43], it
was proposed that all databases (including the real ones) be treated as hypothetical.

Fach relation R = (B U A) - D is considered a view [44] where B is the read-only base por-

8 As explained in [28], careful updating requires either two physical writes for each write operation.

11

~ tionof R and A and D are append-only differential relations. Intuitively, additions to R go

to A and deletions go to D. Operations on R are translated into operations on B, A and D.

4.3.2. Commit Processing

Assume that each transaction has been assigned a unigue timestamp and that the
tuples in the A and D files have been widened to have an extra field TS for such a times-
tamp. While a transaction is active, its updates go to its local A and Dy relations that are
inaccessible to other transactions. When the transaction commits, Ay and D; are
appended to the global A_ and Dg relations and are forced to stable storage. Finally, the

g
timestamp of the committing transaction is written to a Commitlist relation.

4.3.3. Recovery Algorithm

If a transaction aborts, its Aj and D, are simply discarded and its timestamp is not
appended to the Commitlist relation. To recover from system crash, instead of R, start

using the following view:

Range of (b,a,d,x) is (B_.A_,d_.CommitList)

g'eg 8
Define View R-Crash ([(b.all) v
(a.all) Where s.TS = x.TS] - [(d.all) Where 4.TS = x.TS])

4.4, Recovery using Versions

In the version-oriented approach [37,46], an object is thought of as a sequence of
unchangeable versions that are linked together through an object header to form a his-

tory of the object. Updating an object is considered as creating a new version, while

reading an object is considered as selecting the proper version®.

A wersion is a pair consisting of value and time attributes; the time attribute
specifies its range of validity. The start time of a version is the time specified in the
write request that created the version. The end time is initially the same as the start

time, but it is extended by both read and write operations to the time specified in the

8 By following the chain emanating from the object header.

12

request. When a new version gets created, the end time of the preceding version is
frozen. To make versions immutable, only the start time is stored with versions. The
end time of only the current version is kept in the associated object header which is

mutable.

4.5. Shadows vs. Versions

The version approach is, in a certain sense, a "super shadow” mechanism. No
doubt, versions offer more functionality!®, and, when coupled with multiversion times-
tamp ordering, may have the potential of allowing more transactions to run con-
currently!!. Unfortunately, they have a severe performance penalty. The major prob-
lern is that simply reading the current version of an object causes the corresponding
object header to be updated. Thus every read operation will potentially require two disk
accesses. Because of their expected poor performance, we will not consider versions

further.

5. The Cost Model

To evaluate the performance of various concurrency control and recovery algo-
rithms, our cost model incorporates both the impact that the concurrency control
mechanism has on the probability that the transaction will run to completion without
conflicting with another transaction and the extra burden imposed on the transaction by
the algorithm. This burden is measured in terms of CPU and /0 resources consumed by
the transaction (or by the system on behalf of the transaction) to execute the con-

currency control and recovery algorithm.

When a transaction is started, there are three possible outcomes:

(1) the transaction runs to completion and commits (transaction succeeds),

10 1t is possible to go back in time and answer questioris such as "who did what when".

11 Recently, in [30] it was found that the multiversion timestamp ordering performed only marginally
better than the basic timestamp ordering.

13

(2) the transaction is aborted by the user or because of invalid input data (transaction
fails),

(3) the transaction is aborted by the system and is restarted, perhaps many times,
before it completes (transaction succeeds gfter rerun(s)).

In each of these three cases, the concurrency control and recovery mechanism

adds extra but varying amount of burden on the transaction.

Let us examine the third case more closely. Assume that the transaction is res-

tarted only once. The extra burden in this case consists of two parts:

[a] the burden from the time the transaction started to the time it was aborted by the
system and its effects were undone,

[b] the burden during the final successful execution of the transaction from start to
commit.

Note that the burden for case 3[b] is the same as for case 1. At first glance the bur-
den for case 3[a] appears to be equal to the burden for case 2 (assuming that the tran-
saction fails at the same point). However, the burden for case 3[a] must also include the
execution cost of the transaction before it was aborted since this cost would not have

been incurred if the transaction was run by itself. Another way of vievﬁng this scenario

12

is that transactions always succeed unless terminated by the user’™. However, certain

successful transactions get internally restarted before they succeed, creating extra bur-

den.

The burden, BX, imposed on a transaction by the recovery and concurrency-control
algorithm utilized can be modeled as:

BX = Bsetup * Prajl * Bfail * Psuce * Bsucc * Prerun Brerun

where,

B is the initialization cost incurred irrespective of the ultimate fate of the tran-

setup saction,
Ptail is the probability that the transaction fails, i.e. is aborted by the user,
Bfail ig the cost incurred when a transaction fails,

Psuce is the probability that the transaction ultimately succeeds,

12 [f g user restarts a transaction after aborting it, it is considered to be a new transaction.

14

Bsucc is the cost incurred when a transaction succeeds (e.g. for committing the tran-
’ saction),

Prerun is the probability that the transaction is rerun'®,

Brerun is the cost incurred when a transaction is aborted by the system,

and,

Psuce * Prail = 1

We will develop cost equations for B B B, and B for various

setup' “succ’ rerun
integrated concurrency control and recovery mechanisms in the following section. The

value of p;_) will be based on Gray's estimates in [R0]. Knowing p;.i1: Poyee = 1~ Prail

When locking is used as the concurrency control mechanism, we assurne that tran-
sactions that run into deadlock are rerun. We will take the value of pyq4)j. the probabil-
ity that a lock request by a transaction will result in a deadlock, from Lin-Nolte's simula-
tion study [31] and Gray et al.’s analysis of the probability of waiting and deadlock [15].
Knowing pg 4y the probability that a transaction will be restarted, p,., ..., IS computed

by assuming that all lock requests are independent and that a deadlock may be caused

only at the time of a request for a write-lock'®,

For the optimistic method of concurrency control, we will assume that if an access
to an object by a transaction conflicts with the objects accessed by another transaction,
then the probability that the transaction will be restarted is 0.5. To see this, consider
conflicting accesses to an object X by transactions T1 and T2 and two scenarios as shown
in Figure 1. In the first case, T1 is aborted, while in the second case, T1 runs to comple-
tion. Values for Peonflict 2 based again on earlier simulation and analytical ana-
lyses [31, 15]. We again assume accesses to be independent and compute p,g,..n further
assuming that only conflicting write accesses result in transaction aborts to be con-

sistent with the assumptions made for locking.

13 | a transaction is restarted more than once, it is modeled by suitably adjusting the value of p_., ...

14 The assumption that only write accesses may cause a a transaction to be aborted underestimates the
probability that a transaction will be restarted. In Lin-Nolte's simulation [31] and in Gray et al.’s analysis [15],
it has been assumed that all locks are exclusive. Thus, in order to use their results we had to assurne that for
both the locking and optimistic rnechanisms only & conflicting write access will cause a transaction abort. A
sensitivity analysis that we performed showed that this assumption tends to favor the optimistic method.

15

<
T1 | |
read(X) validation
(1) T1 aborts
4
2 | R |
write(X) validation write phase
+
T1 | | i |
read(X) validation write phase
(2) T1 completes
4
TR | | — , |
write(X) validation = write phase
Figure 1. Transaction conflict with optimistic concurrency control
The Transaction Model

Any database system is characterized by a mix of read-only and the read/write
_ transactions. We will model a transaction by the total number of database pages it
touches, NP,c of which NPu‘ pages are updated (we assume that a transaction reads a
page before updating it). Finally, for purposes of simplicity, we assume that each page

is read by a transaction exactly once regardless of the number of records that must be

accessed on the page'®.

6. Cost Equations

Before presenting integrated recovery and concurrency control mechanisms and

their associated cost equations, we first specify the system parameters used in these

15 Note that our model can be extended by including a parameter APPENDZ to specify the fraction of up-
date pages that were created by the transaction. These puges are not read before they are updated.

16

cost equations and state our assumptions about the concurrency control mechanisms.
Assumptions about the recovery mechanisms will be described along with the cost equa-
tions for the integrated mechanisms. Appendix A contains a glossary of the notation

used in the cost equations.

6.1. System Parameters

Table 1 shows the system parameters used in the development of cost equations for
various recovery and concurrency control algorithms, The actual values of these param-
eters will depend on the physical characteristics of the stable storage device (assumed
to be a disk) and the processing unit. Some parameters also depend on the characteris-
tics of the database for which average values have been assumed. Before evaluating the
performance of the alternative integrated concurrency control and recovery mechan-

isms in Section B, values will be assigned to these parameters in Section 7.

Tl-i o time to read/write a disk page with disk seek
Ts40 time to read/write a disk page without a seek
Tpage cpu time to process a page in memory

Trec cpu time to process a record in memory

DBSize Size of the database

MPL Level of multiprogramming

Table 1. System parameters

6.2. Assumptions About the Concurrency Control Mechanisms
6.2.1. Locking-Based Concurrency Control
1. The lock-acquisition discipline is "get only when needed”.

2. The time to process a lock acquisition request is Tal and the time to process a lock

17

release request is Trlm' The probability that a lock request will conflict is p, . qiat and
Pwait is the probability that a request will be queued. Twait is the wait time for a

blocked request.

3. The granularity of locking is a page'”.

4, Transaction abort (either system initiated or user initiated) occurs when the tran-

saction has read NPt/Z pages and has updated NPu/Z pages.

5. Deadlocks are resolved by checking for cycles in the waits-for-graph at each lock
request that conflicts'®. Taqik is the cpu time required for this test and pgqy, is the
probability that a cycle would be found. Thus, the probability that a lock request waits,

Pwait = Peonflict ~ Pddik’

6.3. Optimistic Concurrency Control

1. The granularity of the elements in the various control sets (readset, writeset etc.) is

a page.

2. The cost of creating various control sets is a function of NPt“’. When NPt = 1, the
cpu time to create the control sets is assumed to be Tas We assume that a background

" process is responsible for deleting various control sets and we will not model this cost.

18 Gray [19] asserts that the lock table can always be maintained in the main memeory, and that this is the
case in IMS and System R. Lin and Nolte [31] in their simulation of two-phase locking assumed the lock pro-
cessing to be instantaneous. If, however, the lock table must be maintained on secondary storage, it can be
modeled by choosing appropriate higher values of T, and Tp.

17 A page may not necessarily be the best level of granularity [88], but we will assume it to be so uniformly
for all the algorithms.

18 Deadlock prevention using one of the timestamp-based schemes proposed by Rosenkrantz et al. [40]
can be modeled by assuming that half of the conflicting requests wait and the other half result in transaction
aborts, thatis, p, ;. =P =p . /2.

An altern’g?f&e is 15 avoid t%oenglr%tblem of deadlock altogether by assuming that all the locks needed for
executing a transaction are requested at the initiation of the iransaction as in [38,36]. I any lock cannot be
granted, the transaction releases all the locks and tries again. This can be modeled by choosing a larger value
for T ..

al

18 A much finer analysis is possible where the size of various sets is estimated and accordingly the cost of
creating verious sets is determined. However, because of the coarse granularity chosen for the elements of
these scts, they can be maintained in the main memory and the creation of sets would not contribute
significantly to the total cost.

18

3. Reads and writes on a page with optimistic concurrency control first check the write
set to determine whether the local copy exists of the corresponding page. Since the

write set can be maintained in the main memory, we will assume the cost of this indirec-

tion to be negligible®.

4. 1f a transaction is aborted by the user, it happens when the transaction has completed

half of its read phase.

5. 1f a transaction fails to be validated, it is detected half way through the validation

test.

8. The cost of validating a transaction is a function of the size of the transaction and
the number of concurrently executing transactions, MPL. We will assume the cost of vali-
dation to be (MPL-1) * T jiq. Where Ty,jigq is‘the time to validate a transaction if only

one other transaction executing concurrently with it.

6.4. Integrated Mechanisms

We will now sketch integrated recovery and concurrency control mechanisms and

present cost equations for them.

6.4.1. Log+Locking

This is the well known scheme described in [18]. A transaction before accessing a
data page acquires a lock on it and the database is updated using the "write-ahead log"

protocol.
6.4.1.1. Assumptions

1. The number of log pages generated by a transaction is determined by the parameter
Log% (Number of log pages = Log% * NP ,. NP, is the number of pages updated by the

transaction).

20 [} desired, the extra cost can be modeled by choosing a larger value of T; /o for reads and writes.

19

2. We postulate a function DFlush(X) that, given the total number of data pages X
updated by a transaction at some time t, returns the number of pages that have
migrated to disk at time t and are not present in the main memeory. Similarly, the func-
tion LFlush(Y), where Y is the number of log pages generated by a transaction at time t,
returns the number of log pages that have been written to the disk and are noe longer

available in the main memory at time t2!,

For the write-ahead protocol, it must be the case that for all time t

LFlush(Y) = Log% * DFlush(X).

3, Writing a log page does not require a disk seek except when a complete cylinder has
been filled with log pages. As specified in Section 7, we account for the cost of this seek

by amortizing it across all write operations to the cylinder.

4. Since we assume that on average a transaction gets into deadlock after reading and
processing NPt/E pages and updating NP /% pages, the execution cost of an aborted
transaction = cost of reading NP, /2 pages + cost of processing NPt/.?, pages + cost of
updating NP /2 pages = (T1-10+Tpage)*NPt/2 + DFlush(NP ,/2)*T) ;-

6.4.1.2. Cost Equations

| B = cost of writing the tran-begin log record § Tesio }

setup
+ cost of writing the commit/abort log record { T, }
- < ey e 22
Bsuc c = cost of dcquiring locks®® { NPt’*'[‘al + NPt*p o onﬂict*Td aie Npt*pwait*Twait !

+ cpu cost of creating log pages { ceil(Log% * NP,) * Tpage !
+1/0 cost of writing log pages § ceil(Log% * NP) * T, }

21 Sometimes, the fushing of data and log bufiers is delayed as much as possible until the transaction
commits or aborts in order to reduce the cost of undo processing. On the other hand, data and log buffers may
be flushed as soon as they are created to increase parallelism and minimize commit time duration.

For the updated date pages, the first situation can be modeled by defining DFlush to be DFlush(X) =
mex {0,X-DBuff} where, DBuff is the number of data buffers allocated to the transaction. The second situation
can be modeled by defining DFlush as DFlush(X) = X. The function LFlush may be defined analogously.

B2 Cost of acquiring locks = Cost of (requesting locks + deadlock detection + waiting for locks)

+ cost of releasing locks { NP, * T, }
Bf q= burden before the transaction abort
+ cost of undo processing

= cost of acquiring and releasing locks E(Tal+pconﬁict#Tddlk+pwait*Twajt

+T) *NP, /2]
+ cpu cost of creating log pages { ceil(Log% * NPu/B) * Tpage 3

+i/0 cost of writing log pages | ceil(Log% * NP ,/2) * T, }

+i/0 cost of reading flushed log pages for undo § LF'lush(ceﬂ(Log%*NPu/Z)) *Tio !
+1i/0 cost of reading flushed data pages for undo § DFlush(NPu/B) * Tl—io]

+ cpu cost of undoing corrupted data pages { DFlush(NP, / R) * Tpag o)

+i/0 cost of writing undone pages { DFlush(NP_/2) * Ty}

Brerun = Bfail

= Bpait * (Tjo T

+ transaction execution cost before abort

page) NPL/2 + DFlush(NP,/2)*Ty;,

6.4.1.3. Comments

Instead of incurring separate 1/0's for writing the tran-begin and the commit/abort
records, they can be written along with other log records for the transaction on the

same page. In this case, we can assume that Bsetup = 0.

_ 6.4.2. Log+Optimistic

Transactions execute unhindered but instead of making separate local copies of
updated objects during the read phase as required for concurrency control, the log
records are used. However, although it is possible to derive the writeset and the
createset of a transaction by examining its log records, it is more efficient to create
them separately in main memory. During the write phase of the transaction, log pages

are used to make the updates global while observing the write-ahead-log protocol.

21

6.4.2.1. Assumptions

Assumptions 1-3 of the log+locking mechanism are again assumed to hold. How-
ever, reading the log in order to make the local copies global will necessitate disk seeks

as log pages from one transaction may not be physically adjacent on the disk.

Observe that the decision to abort a non-serializable transaction is taken after the
completion of its read phase, ie. after reading and processing NP,L pages, but no
updated pages are written during the read phase (log records double up as local copies
during the read phase). Hence, the execution cost of an aborted transaction =

(TH, O+T)*NPt,

page

6.4.2.2. Cest Zguations

B = cost of writing the tran-begin log record { Tg, J

setup

+ cost of writing the commit/abort log record { Te-io }

Bgyee = cost of creating control sets ¢ NP, ™ Tyq }
+ cpu cost of creating log pages { ceil(Log%*NPu) * Tpage }
+1/0 cost of writing log pages { ceil{LogZ%*NP) * T, !
+ cost of validation test { (MPL-1) * Ty 1iq }

+ cost of making local copies global®® §LF1ush(ceil(Log%*NPu)) *Tl_iO-i-DFlush(NPu) *Tiio)

Bfail = burden before the transaction abort + cost of undo processing (= 0)34
= cost of creating the control sets { NP./2* T.s J
+ cpu cost of creating log pages ¢ ceil(Log%*NPu/Z) * Tpage l
+i/0 cost of writing log pages { LFhlsh(ceil(Log%*NPu/B)) *Tyoio 3

- cost of writing DFlush(NP,_ /2) data pages® { DFlush(NP../2) * T,_;
u u l-io

23 The cost of making local copies global invoives readir the log pages that have migrated to disk and the
- > . . . > . »
data pages to be updated thal are no longer available in main memory. However, it would not include the cost
of updating the dwia pages n the main memory and writing back the updated pages. These costs are not in-
cu-rad during the read phase of the Ceansiesion and Mence can Be erortived dusing this phese.

24 No undo processing is requiced as al this point all changes have been performed on the local copics.

22

Brerun = cost of creating the control sets § NP, * T }
+ cpu cost of creating log pages ¢ ceil(Log%*NPu) * Tpage ;
+i/0 cost of writing log pages LFlush(ceil(Log%*NP))) * T, }
+ cost of the validation test § (MPL-1) *T_ 1,9 /2 3

+ transaction execution cost before abort { (THO-’erage)"‘N}?’t }

6.4.2.3. Commenls

As in the case of the log+lock algorithm, the tran-begin and the commit/abort
records for a transaction can be written together with the other log records for the tran-

saction.

6.4.3. Shadows-+Locking

Before accessing a data page, the transaction locks that page. However, no explicit
locking is needed to access page-table (both S-Map and C-map) entries. The protocol
required is that a transaction accesses a page-table entry to get the physical address of
a data page only if it has been granted a lock for that page. Thus, it is not possible for a
transaction to access a page-table entry while it is being updated. Once a transaction
completes, its write-lock on a page is released only after the corresponding entry in the

page-table has been updated.
6.4.3.1. Assumptions

1. The size of thfz page-table is PtSize pages. For relations of reasonable size, PtSize
will be large. Thus, the S-Map cannot reside in the main memory and must be paged
from the secondary storage [17]. Consequently a data page 1/0 may also cause a page-
table 1/0. However, in general, accessing X data pages will not result in accessing X dis-

tinct pages of the S-Map since a number of page-table entries can be blocked into one

25 Qince we are developing formulas that express the overhead (burden) incurred, we must model savings
provided by a mechanism as well es costs. Thus, since no pages are actually updated in the log+optirmistic ap-
proach until the transaction is validated, DIlush(NP, /2) write operations are avoided when compared with a
system that provides no recovery mechanism and does in-place updating.)

23

S-Map page. The number of S-Map pages that may have to be accessed will be deter-
mined by the function PtPages(X). For the random access of data pages, the number of
S-Map pages required to be accessed is analogous to the number of pages accessed when
randomly selecting records from a blocked file. We will use the Cardenas’ expression [7]
for this purpose®, and define

PtPages(X) = PtSize(1 - (1 - 1/PtSize)Y).
For sequential access of data pages,

PtPages(X) = 1 + X / blocking-factor?”,

2. The tran-begin and the incremental C-Map can be written on the same page as the

pre-cornmit record on the commit list.

3. The function SFlush(X), where X is the number of S-Map pages read by the transac-
tion at time t, returns the number of pages that are no longer available in the memory.
SFlush(X) = max {0,X-SBuff] where SBuff is the number of buffers available to the tran-
saction for reading the S-Map pages. The function DFlush(Y) which returns the number

of updated pages that have migrated to the disk is defined analogously.

4. A shadow-based algorithm generates extra NP, allocate-page and free-page requests
for data pages when compared to an in-place updating algorithm. The cost of processing

an allocate-page or a free-page request will be assumed to be Trec
5. Writing to the commit list does not require a disk seek.
8. The cost of creating an entry in the C-Map is Tr ec’

7. As in the case of log+locking mechanism, the execution cost of an aborted transac-

26 [t has been shown that the Cardenas' expression gives the lower bound for the expected number of
pages accessed and more accurate expressions are available in literature (see [48]). However, for large block-
ing factors { > 10) such as would be present in the S-Map, the error in Cardenas’ epproximation is practically
negligible.

B7 One has been added to account for the fact that the desired page-table entries may not start at the be-
ginning of a page-table page.

tion = (T +T,,,6) NP /2 + DFlush(NP /2)*T);,.

6.4.3.2. Cost iquations

B = cost of writing commit/abort record = Ty

setup

Bsuoc = cost of acquiring locks { NPy * (Ta1+pconﬂict*Tddlk"rpwait*Twai‘t) ;
+i/0 cost of reading S-Map pages for data reads { PtPage’s(NPt) *Tlio !
+ cost of extra allocate-page requests { NP, * Trec }
+ cpu cost of creating incremental C-Map ¢ NP, * Trec J
+i/0 cost of writing the pre-commit record ¢ Ts-io !
+1i/0 cost of rereading flushed out S-Map pages { SFlush(PtPages(NP) * Ty, }
+ cpu cost of updating S-Map entries ¢ NPu * Trec !
+i/0 cost of writing the updated S-Map pages { PtPages(NPu) *Tio }
+ cost of releasing locks { NP, * Ty)
+ cost of extra free-page requests } NPu * Trec I

Bfail = burden before the transaction abort + cost of undo processing

= cost of acquiring and releasing locks 2(Ta1+pc onﬁict*Td dlk+pwait*T

waitt 1) NP /24

+1i/0 cost of reading S-Map pages for data reads { PtPages(NP,/2) * T}, 3
+ cost of extra allocate-page requests § NPu/Z * Trec }
+ cpu cost of creating incremental C-Map f NP,/ * Trec !

+ cost of extra free-page requests { NPu/Z *Trec J

Brerun = Bfail + _transaction execution cost before abort

= Bf ail T (Tl—io+Tp ag e) *NPt/ 2+ DFlush(NPu/ R) *Tl-i o
6.4.3.3. Comments

1. The writing of commit/abort can be piggybacked with the pre-commit record of the
next transaction at the expense of increasing somewhat the response time of the tran-

saction.

25

2. It is possible to avoid writing the abort record when a transaction is aborted by the
user. However, the disadvantage is that at the time of the recovery from system crash,
it would not be possible to distinguish the user-aborted transactions from those that

were active at the time of crash, and they may get restarted.

6.4.4. Shadows+Optimistic Algorithm

When shadows are used as a recovery mechanism, there are always two copies of
each data page being updated by a transaction: the updated copy and the unmodified
(shadow) copy on disk. When shadows are combined with an optimistic concurrency algo-
rithm, the updated copy of each data page being modified can also be used as the local

copy for concurrency control purposes.

For purposes of concurrency control, as a transaction executes, it creates various
control sets (readset, writeset etc.). There is, however, no need to create a C-Map as
required by recovery mechanism since the writeset (which normally contains only the
page numbers of the updated pages) can be augmented to include the disk addresses of
the modified pages along with the page numbers. With this approach, the write phase in
which local copies are made global requires simply updating the S-map entries using the

writeset to point to new disk addresses.

Note that it is not required to keep S-Map or C-Map page numbers accessed by a
transaction in its control sets. If the updates to S-Map by a transaction have been par-
tially applied and meanwhile another transaction reads the not yet updated S-Map

entries, that transaction will not be validated.

6.4.4.1. Assumptions

We assume that assumptions 1-5 of the shadows+locking mechanism are valid for
this mechanism also. However, since the decision to abort a non-serializable transaction
is taken after the completion of its read phase, the execution cost of an aborted tran-

saction = (T} ;,+T

pag e) "N}?’t + DI*"lush(I\H-’u)"‘Tl_i o

26
6.4.4.2. Cost Equations

B = cost of writing commit/abort record = Ts—io

setup

Bouce © cost of creating the control sets { NP, * T o }
+1i/0 cost of reading S-Map pages for data reads { PtPages(NPy) * Ty, !
+ cost of extra allocate-page requests ¢ NPLl * Trec }
+ cost of validation test § (MPL-1) * T ;.4 !
+i/0 cost of writing the pre-commit record ¢ Tq-io]
+i/0 cost of reading flushed out S-Map pages ¢ SFlush(PtPages(NP) * T,]
+ cpu cost of updating S-Map entries { NP * Trec 3
+i/0 cost of writing the updated S-Map pages { PtPages(NP) * T,]
)

+ cost of extra free-page requests ¢ NP, * Trec 3

Brait = burden before the transaction abort + cost of undo processing
= cost of creating the control sets H NPt/Z * Tas]
+i/0 cost of reading S-Map pages for data reads ¢ PtPages(NPt/z} *Tlaio 3
+ cost of extra allocate-page requests § NPu/Z * Trec !
+ cost of extra free-page requests ¢ NPu/Z * Trec }
: Brerun = burden befPr‘e the trapsaction abort + cost of undo processing
+ transaction execution cost before abort
= cost of creating the control sets { NP, * T ¢ ;
+i/0 cost of rfzading S-Map pages for data reads $ PtPages(NPt) *T-io }
+ cost of extra allocate-page requests { NP, * Trec }
+ cost of validation test § (MPL-1) * Ty 1,4/ ® }
+ cost of extra free-page requests § NP, * Tpqq !

+ transaction execution cost } (Tl_w-l»Tpage)*NPt/Z + DFlush(NPu/B)*Tl_io]

6.4.4.3. Comnments

As in the case of the shadow+lock algorithm, the commit/abort record may be pig-
gybacked with the pre-commit record of the next transaction. Also, the writing of the

abort record in the case of a user-initiated transaction abort may be avoided.

6.4.5. Differential File+Lock Algorithm

As the transaction executes, it locks the pages of the global base relation, Bg' the

and differential relations, Ag and Dgza' and creates the local differential relations Al and

Dl’ Once the transaction commits, A1 and D1 are appended to Ag and D o
6.4.5.1. Assumptions

1. The sizes of the differential relations, Ag and Dg, are Size% of the size of the base

relation, B_. We will assume Ag and D

A to be of equal size.

g

2. Accessing NP pages of R needs Xtra% extra page accesses. Xtra% is a function of the
size of A g and D e We assume that the transaction is executed when half of Ag and half of

Dg have been created. Thus, Size%/2 extra pages from Ag and Dg will be read.

3. Processing of pages in the memory also incurs extra cpu overhead?®®. We will assume
- the extra cpu overhead to be CpuOHY% of the total cpu time consumed if the transaction

was run alone without any provision for recovery.

4. The number of A and D; pages generated by a completed transaction is Comprs?% of
NP, Thus, a transaction writes ceil(Comprs%*NPu) pages to both A, and D;. However,
in-place updating would incur the cost of writing NPu pages. Therefore, the net cost is

the cost of writing (2*ceil(Comprs%*NP) - NP,,) pages.

28 Recall that R=(B U A) - D

28 For example, since R = (B U A) - D, a retrieve on R will be translated into a retrieve on B, A, and D fol-
lowed first. by a union of tuples retrieved from B and A and then by a set-difference of the result and tuples re-
trieved from D.

28

5. DFlush(X) is the function that returns the number of Al and D1 pages that migrate to
disk®C.

8. Writing to the commit list does not require a disk seek.

7. The execution cost of an aborted transaction = (T1-10+Tpage)*NPt/2' Note that
unlike an in-place updating mechanism like log+locking, with the differential file
approach the transaction does not incur the cost of writing updated pages. The cost of
writing A and D pages is considered to be recovery burden associated with the

differential file approach.

6.4.5.2. Cost Equations

= 31
Bsetup =0

Byyee = cost of acquiring locks § (1+S5ize%)*NP, * (Tal+pconﬁict*Tddlk+pwait*Twait) 3
+ cost of extra data page reads Size%“'NPt *Tlho)
+ extra cpu cost of processing data pages { CpuDHY% * (NPt*Tpage) }
+ cost of writing flushed A} and D; pages §R* DFlush(ceiI(Comprs%*NPu)) * Tlio }
+ cost of rereading flushed A} and D; pages § 2 * DFlush(ceil(Comprs%*NP) * Ty, }

+ net cost of writing Ag and Dg pages® § (2*ceil(Comprs%*NPu) - NPu) *Tiio)
+ cost of extra allocate-page requests §2* ceil(Compr‘s%*NPu) *Trec }
+ cost of releasing locks § (1+SizeZ)NP, * T,

+ cost of writing the tran-id to commit list § Te-io ;

Bfail = burden before the transaction abort + cost of undo processing

= cost of ‘acquiring and releasing locks
¢ (1+SIZQA)*NPt/ G (Ta1+pc:onﬂict*Tddlk+pwait*Twait+Trl) ;

+ cost of extra data page reads |} Size%*NPt/Z * Tl~io }

30 DFlush(X) = max {0,DBuff-X] where DBuff is the number of buffers evailable.
31 Only the tran-id of committed transactions is written to comunit list and this cost is included in Bsu ce'
32 See assumption 3 above.

+ extra cpu cost of processing data pages { CpuOHZ * (NPt/Z*Tpage) J
+ net cost of writing flushed A; and D, pages
f(R* DFlush(ceil(Comprs%]*NPu/é)) - DFlush(NPu/Z)) *Thio }

er,unas = By,;) + cost of writing DFlush(NP,, /) pages ¢ DFlush(NP,/R) * T} 4 }

+ transaction execution cost before abort § (Tl—io+Tpage)*NPt/2 }

6.4.6. Differential File+Optimistic Algorithm

First observe that the A and D; can also be used for the local copies of modified
records for concurrency control purposes. As the transaction executes, it creates con-

trol sets and if it is validated, it appends Al and Dl to global Ag and Dg'

6.4.6.1. Assumptions

The same assumptions stated for differential file+locking are assumed to hold. As
in the case of differential file+locking mechanism, the execution cost of an aborted
transaction = (Tl~io+Tpag e)*NPt' The difference is that the decision to abort the tran-
saction is taken after reading and writing NPt pages, instead of NPt/Z pages as in the

case of differential file+locking mechanism.
6.4.6.2. Cost Equations

Bsetup =0

Byyee = cost of creating the control sets § (1+Size%)"‘NPt *Tas !
+ cost of extra data page reads § SizeZ*NP, * T }
+ extra cpu cost of processing data pages { CpuOHZ * (NPt"‘Tpage) {
+ cost of writing flushed A} and D) pages § 2 * DFlush(ceil(Comprs%*NP)) * T}, }
+ cost of validation test § (MPL-1) * T__ 1.4 !

+ cost of re-reading flushed A and D, pages § 2 * DFlush(ceil(Comprs%*NP)) * T _;, J

33 The execution cost before abort does not incur the cost of writing DFlush(NPu/ 2) pages as is the case in
en in-place updating algorithm. However, since the cost of writing DFlush(NP,/2) pages wus subtracted from
Bfuil' this cost will be added here in order to make the formula correct.

+net cost of writing Ag and D_ pages § (2*ceil(Comprs%*NPu) - NPu‘) *Thio

g
+ cost of extra allocate-page requests { 2*ceil(Comprs%*NPu) *Tree }

+ cost of writing the tran-id to commit list § T, }

Bfail = burden before the transaction abort + cost of undo processing (=0)
= cost of creating the control sets { (1+SizeZ)*NP, /2 * T ¢ }
+ cost of extra data page reads { SizeZ*NP, /2 * T, }
+ extra cpu cost of processing data pages { CpuOHZ * (NPt/Z*Tpage) 3
+ net cost of writing flushed A, and D, pages
fR* DFIush(oeil(Comprs%"]‘NPu/‘a}) - DF’lush(NPu/Z)) *Tio)
Brerun = burden.befor'e the; transaction abort + cost of undo processing (=0)
+ transaction execution cost before abort
= cost of creating the control sets § (1+SizeZ)*NP, * T}
+ cost of extra data page reads { SizeZ*NP, *Tj 3
+ extra cpu cost of processing data pages { CpuOHZ * (NPt*Tpage) !
+ cost of writing flushed A and D) pages { 2 * DFlush(ceil(ComprsZ*NP)) * Tj }
+ cost of validation test § (MPL-1) * Tyatig 7 @ }

+ transaction execution cost § (Tl-io+Tpage)*NPt/2 !

7. Database, Mass Storage Device and Processor Specifications

In this section, we specify the characteristics of the database, the mass storage

device, and the processor employed in our evaluation.

The mass storage device is modeled after the IBM 3350 disk drive [R4] whose
characteristics are shown in Table 2. We assume that to access a random block on the
disk on the average the heads must be rnoved half way across the disk. Thus,

Tl-io = Average seek time + Latency + Transfer time = 37.525 ms.

When an 1/0 operation is performed on an append-on file such as a log, seek operations
are only occasionally necessary. For algorithms that utilize shadows or differential files

for recovery, a seek operation is only needed when the current cylinder has been

31

Parameter Value
No. of recording surfaces 30
No. of cylinders 565
No. of blocks per track 4
Block size 4096 bytes
Revolution time 16.7 ms.
Time to move head N cylinders 10 + 0.072*N ms.
Average seek time 25 ms.

Table 2. Disk drive Specifications
completely filled. To simplify our costs expressions, we have arnortized the cost of

these occasional seek operations across every write operation. Thus,

Tg.jo = Latency + Transfer time + 1/120*(time to move heads to the adjacent cylinder)34
= 12.61 ms.
When the append-only file is used to hold a recovery log, the disk heads must be moved
from the end of the log file to perform transaction undo. In this case,
Tesio = Latency + Transfer time + 1/120*(time to move heads to the adjacent cylinder)
+ (pfaﬂ + pr‘eru'n) * Average Seek Time

= 12.81 + (Pyy) + prerun) * 25.0 ms.

We have assumed that a 1 MIP processor is used to execute transactions, that 500

instructions are required to process a record (Trec = 0.5 ms), and that 5000 instructions

‘are required to process a page of approximately 10 records® (Tpage = 5.0 ms.).

The size of the database, DBSize, has been assumed to be 100 million bytes. We
have evaluated the performance of the integrated concurrency and recovery algorithms
under three different workloads: small (TS), medium (TM), and large (TL). Their sizes

and some associated characteristies are shown in Table 3.

Twait has been calculated using the formula:

Tyait = T

wai etr * (T + T

waitF page)

in which TwaitFctr=0.83 for the TS workload, 1.96 for TM, and 2.94 for TL. These

34 There are 4 blocks per track and 30 tracks per cylinder
35 A record can be, for example, either a database record or alog record.

32

Parameter s ™ TL
NPt - number of pages touched 2 50 250
NPu - number of pages updated 1 15 50
MPL - multiprogramming level 15 10 7
Pfail - probability of transaction failure 0.05 0.05 0.05
Pconflict - probability of transaction conflict | 0.0012 0.0065 0.01
Pddik - probability of deadlock 1.98e-7 5.6e-6 3.0e-5
Prerun&locking) - probability of rerun 1.92e-7 B.4e-5 0.0015
Prerun(optimistic) - probability of rerun 0.0006 0.04766 0.221869
Twait - wait time for a blocked request ' 0.83 ms. 1.96 ms. 2.94 ms.
Tvalid - time to validate a transaction 0.1 ms. 0.5 ms. 2.0 ms.

Table 3. Transaction sizes and database characteristics

numbers and the probability figures in Table 3 are based on the results presented

in [15,20, 31].

TVali

qis based on the assumption that a transaction ¢

an be validated against a con-

current transaction in O(NPt+NPu) tirme plus the time for a procedure call. Tal (the

time to process a lock request), Tyy (time to release a lock request), and T, {time to

construct the control sets for the optimistic concurrency control

algorithm) have been

assumed to be 0.5 ms. A value of 0.5ms. has also been used to represent determine

whether granting a lock request will result in deadlock (

described in [1].

8. Fvaluation

Tddlk) based on the results

In this section we compare the performance of the different integrated concurrency

control and recovery mechanisms by computing the burden ratio for eac
The burden ratio is defined to be the ratio of BX (

saction by the concurrency control and recover mec

the transaction if run without any concurrency control or recovery mechanism

BX

Burden Rallo = w o Time of the Transaction

_ Bsetup + Pfail*BIail + Psucc*Bsucc + Pmr'un*Brerun

-—

NP *Ti-ie + NP *Tpage NPy*T1-i0

h mechanism.
the extra burden imposed on the tran-

hanism) to the execution time of

We first compare the relative performance of locking and optimistic concurrency control

33

for each of the recovery mechanisms. Then the performance of the three finalists are

compared.

B.1. Logging

The relative performance of the log+locking and log+optimistic mechanisms is
shown in Figure 2 and Table (i) in Appendix B. We assumed that DBuff, the number of
data buffers allocated to the transaction equals 10, LBuff, the number of buffers avail-
able to collect log records for the transaction, equals 1, and LogZ, the fraction of each

updated page that must be recorded in a log record, equals 0.1,

Based on Figure 2 and the data in Table (i), we can make the following observations

about the performance of these two mechanisms:

1. The operation of "making local copies global" in the optimistic concurrency control
algorithm is very expensive since NPu—DBuff data pat'ges’36 that need to be updated will
have migrated to disk before the write phase begins and will have to be reread during

the write phase.

2. Backing up a user aborted transaction is more expensive with locking due to the cost

of undo processing (reading back those updated pages that have migrated to the disk,

. undoing the changes and then rewriting them, and the cost of acquiring and releasing

locks). In the case of the optimistic method, By, ;) can actually have a negative value for

large transactions as only l.Flush(Log%"‘NPu/Z) data pages are written to the disk

instead of DFl.ush('NPu/Z) pages® and no undo processing or validation cost is incurred.

3. As the average transaction size increases, the number of transaction restarts
increases faster for the optimistic mechanism than for a lock-based mechanism that
uses deadlock prevention. Hence, the value of B, increases faster for the optimistic

method.

36 Recall that for TL, NPu=50, DBufi=10, LFlush(Log%*NPu/2)=2 and DFlush(NPu/2)=15.

. onsrpdo+ord [PRTeogq e BUROOT+O[Id [PRULISTI(JO eoURULIOa] ‘g oInlif

- 1°0

[l (]
ovY Uspang

=
<

- 60

- 90

onsrrdo+6[ld eRUeIepiq ——— JuUPOT+e[ld [eRuaIsgIq —

opystuuydo+4-8o7 puv FUp{oo+80T JO 9oUBUIIONID] ‘Y SINTTY

' 00

onsrurydo+907 ———

- 10

o
=

c'-:
<
OofiuYy Tepangd

0.

- G0

SU{o0T+507T —

34

4. TFor a successful transaction, with an increase in the transaction size the cpu burden
becomes a larger fraction of the total burden in the log+locking combination as the cost
of transaction waits becomes very significant. For the optimistic method, the validation
cost does not increase significantly with the transaction size but the 170 burden

increases significantly due to the high cost of making the local copies global.

5. The dip in the burden ratio for TM in Figure 2 is due to the blocking effect while writ-

ing the log. TS, although it updates only 1 data page, writes 1 log page. On the other

hand, TM, although it updates 15 pages, writes only 2 pages®”. The increased cost of

undo processing and waiting increases the burden ratio for TL in the case of locking. In
the case of the optimistic method, the increased cost of making local copies global cou-

pled with the high cost of transaction restarts result in a higher burden ratio.

6. Although the total cost of validation is less than the cost of lock management, the
log+locking combination outperforms the log+optimistic combination because of the
high cost of making local copies global and the the higher restart rate associated with
the log+optimistic mechanism. Only in the case of small transactions does the
log +optimistic combination perform marginally better. In this case the buffer space
available to the transaction, DBuff, is large enough to hold all the pages updated by the
 transaction until the transaction is validated and hence the cost of making local copies
global is not significant. In addition, for small transactions the value of B, 18 quite

low,

B8.2. Differential Files

The performance of the differential file+locking and differential file+optimistic
mechanisms is shown in Figure 3 and Table (ii) in Appendix B. We assumed that SizeZ,
the relative size of the A and D files compared to the B file, equals 10%, that, CpuOHZ,

the extra cpu overhead equals 100%, (implying that, for example, Trec is 1.0 ms. instead

3 ceil(0.1*1)=1 and ceil{0.1*15)=2,

35

of 0.5ms), and that Comprs% equals 0.1 (i.e. a transaction writes ceil(Comprs%*NPu)
pages to both A and Dl>' One page-sized buffer was allocated for the base file and five
each for the A and D files. We make following observations based on Figure 3 and

Table (ii):

1. There is a considerable burden in accessing Size% extra data pages and extra
CpuOH% processing. However, for the values assumed for SizeZ% and CpuOHZ, this bur-
den is more than compensated by the savings that result from not writing the updated

data pages as in an in-place updating algorithm.

2. Writing to the A and D files is akin to writing to the log and hence the performance
characteristics of the differential file approach appears similar to that of the log
approach. In particular, because of blocking effect while writing to the A and D files, ™
performs better than TS. The burden ratio for TL becomes higher than for TM because
of comparatively less savings in not writing the updated data pages®. In addition, the
cost of waiting for the lock +differential file mechanism and the cost of transaction res-
tarts in the case of optimistic+differential file mechanism increases considerably from

the TM workload to the TL workload.

3. Overall, the differential+locking mechanism performs better than
differential+optimistic mechanism for medium and large transactions due to the larger
number of transaction restarts with optimistic method. Only for small transactions,
where there are not many transaction restarts, does the differential+optimistic method

performs marginal'ly better. '

8.3. Concurrency Control with Shadows for Recovery

The comparative performance of shadow+locking and shadow+optimistic mechan-
isms is shown in Figure 4 and Table (iii) in Appendix B. We assumed that DBuff=1 and

SBufi=10. Each cntry in the page table is assumed to take 4 bytes and thus the size of

88 For the values assumed, T™ updates 30% of the pages read while TL updates only 20% of the pages read.

(reRuenbeg) opsurido+e40peys PUv BUPOCTHEKOPRYE JO SOUNILIOLR] °g o.MBL4 (wopuey) opsudo+esopeys pue FUPOOT+EAOPRLE O OUNULIOLD *§ onEf

§in WL SL 1L . WL Sl
L : : L 0'0 t L . ! 00
L 10 - 1°0
L o . - 20
L £'0 - €0
w o
o & 10 E
47 o)
o o
LR - G0 B
3 ;
L 90 - 90 £
o]
L a0 - 80
L @.G i @.Q
L 0] - 01

o1peTr}dQ+5MOPBYS ——— FUINDOT+SMOPEYS — orpsTwr}dQ+sM0pRYS ——— FUB{OOT+EMOPBYS —

36

S5-Map is 25 pages®®. We make following observations based on Figure 4 and Table (iii):

1. The cost of reading and updating S-Map (the shadow page table map) constitutes the

major portion of total burden.

2. The proportion of the cost of reading S-Map pages reduces with an increase in tran-
saction size since more page-table entries can be found on the same S-Map page (see
Table 4). The cost of updating S-Map increases for larger transactions because at the
time of updating S-Map, PtPages(NP)-SBufl of 3-Map pages are reread. However, the
reduction in the cost of reading S-Map pages is much higher than the increase in the
cost of updating the S-Map. This is reason why in Figure 4, the burden ratio reduces with

an increase in transaction size,

3, Overall, the performance of shadow+locking and shadow+optimistic mechanisms are
very similar since the cost of reading and updating S-Map (which is the dominant factor
in the total burden) is independent of the concurrency control mechanism. For large
transactions, the optimistic approach performs somewhat poorer because of the high

cost of transaction restarts.

4. We also considered the case of sequential accesses to the database pages for TM and
- TL workloads. The performance results for this case are shown in Figure5 and
Table (iv). The performance improves considerably because of large reduction in the

cost of reading and updating the S-Map. The relative behavior of the locking and

No. of Data Pages No. of Page Table
Accessed (N Pages Accessed: PtPages(N)
1 1.0
2 1.96
15 14.48
50 21.75
250 25.00

Table 4. No. of accesses to the 5-Map

38 [)BSize = 100 million bytes =~ 25000 pages and No. of S-Map entries per page = 1000.

37

optimistic methods is similar to that of the random access case.

However, as pointed out in[17], a consequence of using shadows is that logically
adjacent pages may not be physically adjacent. Thus, although accesses may be logi-
cally sequential, getting the next page may involve disk seek. [33] suggests a page allo-
cation strategy that maintains physical clustering of logically adjacent pages within a
cylinder. We have assumed that the shadow mechanism employs such a scheme and we

have not assigned any extra cost for potential disk seeks during sequential accesses.
B.4. Some General observations

1. Relatively speaking, deadlock detection is so inexpensive (see the tables in
Appendix B) that, in any locking scheme, it should be preferred over deadlock preven-

tion that induces a relatively larger number of transaction aborts.

2. There are many more transaction restarts with the optimistic approach than with
the locking approach using deadlock detection. This fact is reflected in the higher
values of B, In the total burden for the optimistic combination in all three recovery

mechanisms. This factor is mainly responsible for the poorer performance of the

optimistic combinations for medium and large transactions?®®.

3. In the case of the optimistic method, the decision to abort a nonserializable transac-
tion is made only after the transaction has run to completion. In the case of locking,
since deadlock detection is performed whenever a lock request conflicts, if a transaction
is to be aborted, it will be discovered relatively earlier. Thus, transaction restarts are
more expensive with the optimistic approach since the transaction will have run to com-
pletion before a conflict is detected. This observation is verified by the tables in

Appendix B.

40 Recently using simulation, Robinson [39] has also found that unless the number of transaction restarts
is low, locking uniformly outperforms the optimistie method of concurrency control.

TERR oot BAXOT+eld [SRUSIOPI JO SOURULIONE] O} WO KOX[S JO J000F 4 eanBig

%01
%G1
%02
%Ge

%08

1L WL Sl
i 1 1 1 o-o
w \\H ﬁc
_ I\
= o\umeW \\.\\\ //N/ I N.Q
= %9ZLS 7 RN
W
W re
~ W €0
\\\ VW
- Voo | 5
= 49215+~ vVoowwm 70
v
(SRAAXY .
AR AN - 60
AN
VoW .
v - 9°0
v
\
\ B
\
\
\ - 8°0
- 80
-0’1

FUDOOT+II] [BIUSISPIq ———

omey uepang

SU00T+50T ——

SUISRULoef{ [o4juo) Lfouvlinouo) pue LI942000y pejusieju] J6 LOTNULIOLR] g oMl

”
-
4

\ s

L

Bup{ooT+esopeYs ~-— BUPROTHONA PRUSISPIT ——~

«
<

ot
=
OTIwy uepang

40

60
01

fupoo+8or —

38

B.5. Comparing the Iinalists

The relative performance of the log+locking, differential+locking, and
shadow-+locking mechanisms is shown in Figure 6. We conclude with the following obser-

vations:

1. For small transactions, log+locking is the clear winner but for medium and large
transactions, differential file+locking also appears promising. As recovery mechanisms,
the log and the differential file approach have many simmilarities. Both do not suffer from
the one level of indirection found in the shadow mechanism. The A and D files in the
differential file approach are in certain sense after-value and before-value logs. How-
ever, in the log approach a transaction, besides writing its log records, also writes to the
stable storage the updated data pages at the same time*'. On the other hand, while the
differential file approach must also write pages of the A and D files (that are like log
pages) to the stable storage, the actual updating of the data pages in the base relation
(that is, merging of pages of the A and D files with the pages of B) can be deferred until a

slack time.

The disadvantage of the differential file approach is the cost of accessing Size%*N
extra pages in order to access N data pages and the cpu processing overhead of
CpuOHZ%. A sensitivity analysis we have performed indicates the its performance is very
critically dependent upon the values of these two factors. Figure 7 and Figure 8 show
the performance of the differential+locking mechanism for larger values of SizeZ% and
CpuOHZ respectively and the performance degrades considerably for larger values of
these parameters. We propose to investigate whether it is possible to achieve Size%=10%
and CpuOHZ=100%. In addition, the assumption that that the differential A and D files
can be merged with the main file in slack time is crucial to the performance of this

approach.

41 Writing of updated data pages may not be deferred to some slack time as the associaled data buffers
may have Lo be reallocated to another transaction.

(mnuenbeg)Pup{oo+ssopuys pus Bupoo+80T Jo eouswutoplod ‘¢ oIndg wmsuegoeT BUpP{ooT4+e[id [FRUSIPIQ jo eounmoped oy "o xqond) jo j0eyy ‘g emEyyg

e W st L WL SL
1 1 1 5 O.O 1 9q 5 2 O.O
10 2001 = #uond) ==~y 170
- ~\\
. %061 = suondy ~_ -~ "Wy
20 %002 = syondd =~ _ =T\ - 270
%062 = gyondy -~ Wy
. /aa .
€0 Wy - €0
. O o
- 770 m PR aauza - 70 m
. e Vay &
e Y \
¢ B %005 =.%yondy~ \ ,N,,H, [og &
4 LW 4
] @.O faa Y
m.. / ,H o0 m”
. \
40 \ - 40
\
\ |
- 870 \ - 00
\
\
- 60 - 80
- 01 L 0’1

supooT+807 —

(rerjusnbag) Bup{ooT+sMopRYS ——— BupPOT+F0T — FURo0T+ald [BIjULISYIq ———

39

2. Figure 9 compares the performance of log+locking with shadow+locking when a
sequential access pattern has been assumed for medium and large transactions. Only in

case of large transactions, does their performance become comparable.

9. Conclusions

The choice of the 'best" integrated concurrency control and recovery mechanism
seems to depend on the database environment. If there are only small transactions or
there is mix of transactions of varying sizes, log+locking emerges as the most appropri-
ate mechanism. If there are only large transactions ’»;rith only sequential access pbatﬁt‘er‘.'rn,
the shadow+locking mechanism is a possible alternative. In an environment of medium
and large sized transactions, the differential+locking is a viable alternative to the

log+locking mechanism.

The optimistic method of concurrency control should only be considered in an
environment where transactions are small with very a low probability of conflict. Even in
a low conflict situation, if transactions are large and in-place updating is required, the
cost of making local copies global will make the optimistic algorithm an expensive
mechanism. Thus, the optimistic method can be attractive only in combination with a
recovery mechanism that requires that all updates be collected in some scratch area
and applied to the main copy only after a transaction has completed. Thus, recovery
and concurrency control mechanisms may share the data structures and the cost of

making local copies global.

The major disadvantage of shadows as a recovery mechanism is the cost of indirec-
tion through the page table. This mechanism can become attractive only if the page
table can always be maintained in the main memeory or with an architecture that avoids

this indirection.

To summarize, we have presented six integrated mechanisms that perform the
tasks of both concurrency control and recovery for centralized database systems. In

particular, we have shown what data structures may be shared between the recovery

10

and the concurrency control algorithms in a unified mechanism. We have also extended
the shadow and differential file mechanisms for use in a multi-transaction environment.
Finally, we have presented a new approach for evaluating the performance of recovery
and concurrency control mechanisms. Although the analytical models that we have
developed are simple, unlike other approaches that generate one final number for com-
parison, our approach helps in isolating the costs of various components of a mechan-
ism. Thus in addition to saying that a particular mechanism is expensive, one may
answer why the mechanism is expensive and where efforts should be concentrated to
improve the mechanism. We would like to encourage other researchers to use this
approach to evaluate other concurrency control and recovery algorithms or our algo-

rithms under a different set of assumptions.

)

ail

vV

reyun

]

setup

kn)
il —~

SucC

DBSize
DReE

DFlush

Comprs7

CpuOHZ

LBuff

LogZ

LFlush

MPL
NP,
NP,

Peonfiict

Padik

Appendix A

Notation

Total extra cost in running a transaction because of recovery &
concurrency control

Extra cost incurred when a transaction is aborted by the user
Extra cost incurred when a transaction is aborted by the system
Fixed extra cost irrespective of the ultimate fate of the transaction
Extra cost incurred when a transaction succeeds

Size of the database

Number of Data buffers allocated to a transaction

The function that returns the number of updated data pages that
have been flushed to the disc at some time, given the total number

of updated pages

The number of differential file pages generated by a transaction is
ComprsZ% of the data pages updated by it.

With differential files, extra cpu time required to process a tran-
saction is CpuOH% of the cpu time consumed if the transaction was
run alone without any provision for recovery

Number of buffers available to a transaction to collect log records

The number of log pages generated by a transaction is log% of the
data pages updated by it.

The function that returns the number of log pages that have been
flushed to the disc at some time, given the total number of log

pages

Level of multiprogramming

Total number of pages accessed by a transaction
Number of pages updated by a transaction

Probability that an access request of a transaction would conflict
with that of another transaction

Probability that a lock request of a transaction would result in a
deadlock

Ptail Probability that a transaction would be aborted by the user

Prerun Probability that a transaction would be aborted by the system

Psuce Probability that a transaction would complete

Pyait Probability that a lock request of a transaction would be blocked

PtPages The function that determines the number of page-table pages that
would be accessed to access certain number of data pages

SBuft Number of buffers available to a transaction to get pagetable pages

SFlush ‘The function that returns the number of page-table pages that are
no longer available in the memory, given the total number of
page-table pages read by the transaction

Size%‘ The size of the differential files is Size% of the number of pages in
the base file

Ty Time to process a grant-lock request

Tys Time to create control sets (read, write, active etc.) in optimistic
method, if NP, =1

-0 Time to read/write a disk page with disk seek

Tpage Cpu time to process a page in memory

Trec Cpu time to process a record in memory

Tr Time to process a release-lock request

Tqsio Time to read/write a disk page without a seek

* Tyalid Time to validate a transaction in optimistic method, if there is only

one concurrent transaction

Tait Wait time for a blocked lock request

Appendix B

PERFORMANCE DATA (Unit: milli seconds)

Totel | BSucc | BFail | BRerun | Total | Total Locking Set |Valid| Make
Bur |compo|compo| compo crea | .. local
den nent | nent nent /0 CPY | sotal wait_1ddik! tion ation plobal
Tilock, 22.1 1991 22 . 00 15.05 7.05 2.0 01100
S| Opt 21.2 2021 095 0.05 13.9 7.3 .01 1.3 0.0
TlLock| 11341 109.2| 4.1 0.1 28.3 85,1 753 264102 |
 Mlopt | 3a55 | 28001 1.7 | 1038 1| 5334 | 521 2561 44 3438 |
TiLock| 715.7| 8245) 80.0 11.2 137.2 15785 |549.21304.111.2
L| Opt [4200.9 |1814.6 |-22.3 |2408.6 [3731.4 [469.5 149.6 112.7 11568.6
Table (i). log+locking & log+optimistic
Total | BSuce | BFail | BRerun| Total | Total Locking Set |Valid| extra | extra | [/0
Bur |compo |compo| compo crea | . size% i sav
den mnent | nent nent, o CPY | yotal | wait 1ddik! ticn ation 110 Cpadh ines
TiLock| 67.9 67.4 0.5 0.0 55.0 12.9 2.2 01100 7.5 9.8 35.7
SiQpt| 8461 6401 05 0.1 515 L _13.1 1t 1.3 7.4 28! 387
Tilock] 1314] 11821 13.1 0.1 1-197.11 3285 | 828 20.0 0.2 190.5 | 243.8 | 534.7
M| Opt | 1098 B441 116 12368 1-102.4 [_302.0 280! 45 | 1944 | 2557 5347
Tllocki1311.7 112577 | 43.9 10,1 |-517.8 11828.5 16804.1 13445 1.3 970.3 11219.7 11808.7
Liopt|3713.6] 808,01 31.9 128737 |1758.6 11855.0 163.2 114.1 [1137.6 |1495.9 [1808.7
Table (ii). differential+locking & differential+optimistic
Total | BSucc | BFail |BRerun| Total | Total Locking Set |Valid | Smap | Smap
Bur |compo|compo| compo crea | .. up
den | nent | nent | neni /0 | epu total | wait {ddik] tion ation| read date
TlLock| 119.8 |-117.8 2.0 0.0} 1158 4.0 2.0 0.1,0.0 71.8 36.1
| SlQpt | 1187 1177 18 01! 11591 38 10 131 7181 3671
T|Lock |1397.8 11365.1 | 32.5 0.2 11293411044 | 753 26.410.2 BO5.5 | 488.5
M Opt 11511.0 113127 [_31.0 167.3.114467 | 64,3 oR6.1 A4 | Bar A 4BB 5
TiLock |2808.4 |2732.8 | 62.6 11.2 12159.3 |647.1 |549.2 1304.1 | 1.2 £39.2 11227.0
L!Opt |5367.812304.3 | 51.0 |3012.5 (48448 {523.0 140.68] 12.7 111458 | 1227.0

Table (iii). shadow+locking & shadow+optimistic (random)

Total | BSuce | BFail |BRerun| Total | Total Locking Set |Valid|Smap | Smap

| Bur Jeompolcompel 0P| 110 | o8y |yt [e [aan viam |50 24 gt
T|lock| 1198} 117.8 2.0 0.0] 1158 4.0 2.0 0.1100 71.8 136.1
S| Qpt ! 119711127 1.9 0.1 115.9 3.8 1.0 131718 1361
TiLock] 258.3 | 252.9 6.3 0.1 154.91104.4| 753 264] 0.2 75.1 {784
M| Opt | 837112004 4.7 182,01 272,81 €43 2561 44 | 787 | 784
T!Lock| B10.4| 780.8 | 187 0.9 | 163.31647.1 |549.21304.1 1.2 5.2 1851
L| Opt 13181.8] 3525 8.1 {2821.2 {26588 (523.0 | 149.6 1127 | 91,7 | 5.1

Table (iv). shadow+locking & shadow+optimistic (sequential)

REFERENCES

[1]

(]

[12]
[13]

[14]

R. Agrawal, M. Carey, and D.J. DeWitt, "Deadlock Detection Is Cheap,” Electronics
Research Lab. Mem. No. UCB/ERL M83/5, Univ. California, Berkeley (Jan. 1983).

P.A. Alsberg, G.G. Belford, J.D. Day, and E. Grapa, "Multi-Copy Resiliency Tech-
niques,” R Center for Advanced Computation Doc. 202, Univ. Illinois, Urbana-
Charmnpaign, Tllinois (May 1976).

P.A. Bernstein, "The Concurrency Control Mechanism of SDD-1: A System for Dis-
tributed Databases (The General Case),” Tech. Rep. CCA-77-09, Computer Corp.
America, Cambridge, Massachusetts (Dec. 1977).

P.A. Bernstein and N. Goodman, "Concurrency Control in Distributed Database
Systems,” ACM Computing Surveys 13, 2, pp. 185-221 (June 1981).

P.A. Bernstein and N. Goodman, "A Sophisticate's Introduction to Distributed
Database Concurrency Control,” Proc. 8th Intl Conf on Very large Dota Bases,
(Sept. 1982).

P.A. Bernstein, D.W. Shipman, and W.S. Wong, "Formal Aspects of Serializability in
Database Concurrency Control,” IEEE Trans. Software Eng. SE-5, 3, (May 1979).

AF. Cardenas, "'Analysis and Performance of Inverted Database Structures,” Com-
mun. ACH 18, 5, pp. 253-263 (May 1975).

K.M. Chandy, "A Survey of Analytic Models of Rollback and Recovery Strategies,”
IEEE Computer 8, 5, pp. 40-47 (May 1975).

F.G. Coffman, M.J. Elphic, and A. Shoshani, "System deadlocks," ACM Computing
Surveys 3, 2, pp. 67-78 (June 1971).

K.P. Eswaran, J.N. Gray, RA Lorie, and LL. Traiger, "The Notions of Consistency
and Predicate Locks in a Database System," Commun. ACHM 19, 11, pp. 824-633
(Nov. 19786).

H. Garcia-Molina, "Performance of Update Algorithms for Replicated Data in a Dis-
tributed Database,” Stan-CS-79-744, Computer Sciences Dept., Stanford Univ.
(June 1979) Ph.D. Dissertation.

E. Celenbe and D. Derochette, "Performance of Rollback Recovery Systems Under
Intermittent Failures," Commun. ACHM 21, 6, pp. 493-499 (June 1978).

E. Gelenbe, "On the Optimum Checkpoint Interval,"” J. ACM 26, 2, pp. R59-270
(April 1979).

J.N. Gray, "A Discussion of Distributed Systems,” Invited Lecture at the Congresso
Annuale of Associazione ltaliana per il Calcolo Automatico, Bari, Italy (Aug. 1979).

[15]

[18]

(2]
[23]
[R4]

[25]

[26]

(7]

(28]

[29]

J.N. Gray, P. Homan, H. Korth, and R. Obermarck, "A Straw Man Analysis of the
Probability of Wailing and Deadlock in a Database System,” Rep. RJ3066, IBM
Research Lab., San Jose, California (Feb. 1981).

J.N. Gray, R.A. Lorie, G.F. Putzolu, and 1L. Traiger, "Granularily of Locks and
Degrees of Consistency in a Shared Database,” pp. 365-394 in Modelling in Data
Base Management Systems, ed. G.M. Nijssen,North-Holland, Amsterdam (1978).

J.N. Gray, P.R. McJones, B.G. Lindsay, M.W. Blasgen, R A, Lorie, T.G. Price, ¥ Put-
zoly, and 1.L. Traiger, "The Recovery Manager of the System R Database Manager,"
ACM Computing Surveys 13, 2, pp. 223-242 (June 198B1).

J.N. Gray, "Notes on Database Operating Systems,” in Lecture Notes in Computer
Science 60, Advanced Course on Operating Systems, ed. G. Seegmuller,Springer
Verlag, New York (1978).

I.N. Gray, Personal communication to D.J. DeWitt. (April 1982).

J.N. Gray, "The Transaction Concept: Virtues and Limitations,”" Froc. 7th Intl
Conf. on Very Large Data Bases, pp. 144-154 (Sept. 1981).

J.N. Gray, "A Transaction Model,"” pp. 282-298 in Lecture Notes in Computer Sci-
ence 85, Automata, Languages and Programming, ed. J. van Leeuwen,Springer
Verlag, New York (1980).

P.B })iansen, Operating System Principles, Prentice-Hall, Englewood Cliffs, N.J.
(1973).

R.C. Holt, “Some Deadlock Properties of Computer Systems," ACM Computing Sur-
veys 4, 3, pp. 179-196 (Sept. 1972).

IBM, "Reference Manual for IBM 3350 Direct Access Storage,"” GAZ6-1638-2, File No.
S370-07, 1IBM General Products Division, San Jose, California {(April 1977).

K.B. Irani and H.L. Lin, "Queueing Network Models for Concurrent Transaction Pro-
cessing in a Database System,” Proc. ACM-SIGMOD 1979 Intl Conf. on Manage-
ment of Data, pp. 134-142 (May 1979).

W.H. Kohler, "A Survey of Techniques for Synchronization and Recovery in Decen-
tralized Computer Systems,” ACM Computing Surveys 13, 2, pp. 149-183 (June
1981).

H.T. Kung -and J.T. Robinson, "On Optimistic Methods for Concurrency Control,”
ACHM Trans. Database Syst. 6, 2, pp. 213-226 (June 1981).

B. Lampson and H. Sturgis, "Crash Recovery in a Distributed Data Storage Sys-
tem,” Computer Science Lab., Xerox PARC (1979) to appear in Cornmun. ACM.

W.T.K. Lin, "Concurrency Control in a Multiple Copy Distributed Data Base Sys-
tem,” Proc. 4th Berkeley Workshop on Distributed Data. Management and Com-
puter Networks, (Aug. 1979).

(30]

[31]

[32]

[33]

[34]

[35]
[38]

[37]

[38]

[39]

[41]

[4R]
[43]

(44]

W.T.K. Lin and J. Nolte, "Basic Timestamp, Multiple Version Timestamp, and Two
Phase Locking," Computer Corp. America, Cambridge, Massachusetts (Jan. 1983).

W.T.K. Lin and J. Nolte, "Performance of Two Phase Locking," Proc. 6th Berkeley
Workshop on Distributed Data Management and Computer Networks, pp. 131-160
(Feb. 1982).

W.T.K. Lin, "Performance Evaluation of Two Concurrency Control Mechanisms in a
Distributed DBMS," Proc. ACM-SIGMOD 1981 Int'l Conf. on Management of Dota,
pp. B4-92 (April 1981).

R.A. Lorie, "Physical Integrity in a Large Segmented Database," ACM Trans. Data-
base Syst. 2, 1, pp. 91-104 (March 1977).

R. Munz and G. Krengz, "Concurrency in Database Systems - A Simulation Study,”
Proc. ACHM-SIGMOD 1977 Intl Conf. on Management of Duta, pp. 111-120 (Aug.
1977).

C.H. Papadimitriou, "Serializability of Concurrent Updates,” J. ACM 26, 4. pp.
631-653 (Oct. 1979).

D. Potier and Ph. Leblanc, "Analysis of Locking Policies in Data Base Management
Systems," Commun. ACM 23, 10, pp. 584-593 (Oct. 1980).

D.P. Reed, "Naming and Synchronization in a Decentralized Computer Systemn,”
Lab. for Computer Science MIT/LCS/TR-205, Massachusetts Institute of Technol-
ogy, Cambridge, Massachusetts (Sept. 1978) Ph.D. Dissertation.

D.R. Ries, The Effecits of Concurrency Control on Dufabase Manogement System
Performance, Computer Sciences Dept., Univ. California, Berkeley (April 1979)
Ph.D. Dissertation.

J.T. Robinson, '"Design of Concurrency Controls for Transaction Processing Sys-
temms,” CMU-CS-82-114, Computer Science Dept., Carnegie-Mellon Univ., Pitts-
burgh, Pennsylvania (April 1982) Ph.D. Dissertation.

D.J. Rosenkrantz, R.E. Stearns, and P.M. Lewis, "System Level Concurrency Con-
trol for Distributed Database Systemns,'"" ACM Trans. Database Syst. 3, 2, pp. 17B-
198 (June 1978).

D.G. Severance and G.M. Lohman, "Differential Files: Their Application to the
Maintenance of Large Databases,” ACM Trans. Datobase Syst. 1, 3, pp. R56-267
(Sept. 1976). ,

J.F. Spitzer, "Performance Prototyping of Data Management Applications,” Proc.
ACHM 76 Annual Conf., pp. 287-297 (Oct. 1976).

M.R. Stonebraker, "Hypothetical Data Bases as Views,” Proc. ACM-SIGMOD 1981
Int'l Conf. on Management of Data, pp. 224-229 (May 1981).

M.R. Stonebraker, "Implementation of Integrity Constraints and Views by Query
Modification,” Proc. ACM-SIGMOD 1975 Int'l Conf on Manogement of Data, pp.
85-78 (June 1975).

[45)

[48]

[47]

(48]

[49]

M.R. Stonebraker and K. Keller, "Embedding Expert Knowledge and Hypothetical
Data Bases into a Data Base System,' Proc. ACM-SIGMOD 1980 Int'l Conf. on
Management of Data, pp. 58-66 (May 1980).

L. Svobodova, "A Reliable Object-Oriented Data Repository for a Distributed Com-
puter System," Proc, ACH-SIGOPS 8th Symp. on Operating Systems Principles,
pp. 47-58 (Dec. 1981).

R.H. Thomas, "A Solution to the Update Problem for Multiple Copy Databases
Which Uses Distributed Control,” BBN Rep. 3340, Bolt, Beranek and Newman Inc.
(July 1978).

J.S.M. Verhofstad, "Recovery Techniques for Database Systems,” ACM Computing
Surveys 10, 2, pp. 167-195 (June 1978).

S.B. Yao, "Approximating Block Accesses in Database Organizations,” Commun.
ACHM 20, 4, pp. 260-261 (April 1977).

