TRANSACTION MANAGEMENT FOR DESIGN DATABASES

Randy H. Katz
Shlomo Weiss

Computer Sciences Technical Report #496

February 1983

Transaction Management for Design Databases

Randy H. Katz and Shiomo Weiss !
Computer Sciences Department
University of Wisconsin-Madison

Madison, Wl 53706

ABSTRACT: We define a design transaction as a sequence of operations that map a
consistent specification of an engineered artifact into a new consistent state or ver-
sion. Because design transactions are unconventional, we argue that standard
notions of consistency, atomicity, and durability are irrelevant for defining design
transactions. We describe a design transaction management mechanism, based on
version checkout and change files, that supports controfled sharing and is resilient to
system crashes. The mechanism is well suited for a computing environment of
engineering workstations and database service machines. It is being implemented as
part of an engineering database management system project at the University of
Wisconsin-Madison.

1. Introduction

Spphisticated database management techniques have been developed for “tran-
saction processing environments,” such as airline reservations, electronic funds
transfer, etc., which are characterized by high volume, short duration, simple units of
work. Database systems are now being employed in an increasing range of appiica-
tion environments with very different characteristics. These techniques are being

extended to the new environments.

We are particularly interested in applying database methods to support design
activities [KATZ82a]. A design management system handles the information about the
design of complicated "engineered" artifacts. Examples of these include large .
software systems, multi-author documents, and integrated circuits. Database facili-

ties are an important service provided by the system.

Complex engineered objects are designed by teams, simultaneously working on
different portions of the overall design. A design management system must support

the controlled sharing of design data, with mechanisms to insure that designers do

1 Research supported by NSF Grant MCS-8201860.

=

2. Design Environment

The environment for design activity is substantially different than conventional
transaction processing environments. These differences, and their effect on system

requirements, are discussed in this section.

The debit/credit transaction described in [GRAY78] typifies conventional tran-
saction processing. The database consists of a collection of bank account, teller
cash drawer, bank branch balance, and account history records. Tellers handle cus-
tomer deposits and withdrawals in real time. A typical transaction, many of which are
executing simultaneously, is invoked at a terminal on behalf of a teller. It accesses a
single account record, checks the balance to insure that there is sufficient funds if a
withdrawal, modifies the balance, and makes the modified record available to other
transactions. The teller cash drawer and branch balance records are also modified
by the transaction. A history record is created to provide an audit trail of the tran-
' saction. Disastrous results ensue if more than one transaction is allowed to modify
these records simultaneously, i.e., updates may bé lost and the database may be left
In an inconsistent state. A transaction processing system must guarantee high

throughput and fast response, even when the size of the database is very large.

On the other hand, a typical "design transaction’ behaves as follows (we will be
more detailed in the next section). The transaction is invoked by a designer to
extract a logical portion of the design from the shared design repository into his
private workspace. During the lifetime of the transaction, he interacts with his data
through an ensemble of application programs. These are sophisticated programs, and
Include: (1) editors to interactively manipulate the design data (e.g., an integrated
circuit editor for mask layout), (2) generator programs to synthesize unspecified
parts of the design from existing parts (e.g., a generator for programmable logic
arrays), or (3) analysis programs to check for correctness of the design data (e.g.,

geometric design rule checkers).

When his design activities are complete, i.e., the designer believes that his data
Is once again consistent, he returns it to the shared repository to "release” it to
other designers. Before he is allowed to do this, however, the data must pass a bat-
tery of tests for seif-consistency. The validation process is complex, time consum-
ing, and specific to the object being designed. The design system is responsible for

Insuring that all checks are performed in the desired sequence.

Once the design data has been shown to be self-consistent, it can be replaced
in the design repository. However, older versions of a design file are rarely discarded
once a new version has been created. Old versions may be needed (1) for legal pur-
poses, (2) because they still describe a supported object installed in the field, or (3)
to provide insights into the design process itself. The new version is added to those

that are available on-line in the repository.

Conversational transactions, discussed in [GRAY78], superficially resemble our
design transactions since both are non-atomic. However, there are a number of
differences. Conversational transactions have conventional transactions as units of
recovery ("nested transactions”), while design transactions support continuous sav-
ing of design changes and have the ability to recover past savepoints. With conver-
sational transactions, the effects of a nested transaction can be undone only by a
compensating transaction. Because design transactions support versions, it is possi-
ble to simply restore the modified files to their previous versions. The need for appli-
cations level consistency checking further distinguishes design transactions from

conversational transactions.
Several observations are possible given these two transaction models:

{1) Design Transactions Are Long Duration

Desligners Iinteract with their data for long periods of time, Le., days or weeks,
while conventional transactions are of short duration, i.e., minutes at most.

Thus, mechanisms that arbitrate exclusive access to shared data by forcing

el

(2

(3)

transactions to wait when it is not available are unsuitable in the design
environment. Suspended transactions would be forced to wait for intolerably
long periods of time. Real time access is critical in most transaction processing
environments, yet designers are content to try again later to get the needed
data. Further, conventional transactions spend most of their time in the data-
base access routines, because the application logic is relatively simple. Design
transactions spend most of their time in the associated “number crunching"
applications programs. Thus they are not as closely coupled to the database

system as conventional transactions.

Long duration transaction in the design environment do not have the problems of
long-lived transactions described in [GRAY81]. For example, visible intermediate
transaction states can be tolerated (i.e., "lower levels of consistency” are
acceptable). While long running conventional transactions are usually aborted on
system restart [GRAY81], long duration design transactions need not, and

should not, be aborted (see Section 4).

Design Transactions Touch Large Volumes of Data

The units of access in design transactions are large collections of related
records, usually spanning several files. Conventional transactions are simple,
and touch very few records. While design transactions spend a relatively small
amount of time in the database system, the large volumes of data invoived
prohibit invoking the database system for access to individual records.
[GUTT82] describes some of the performance problems. Therefore, design data-
bases are shared repositories from which data must be extracted when needed

for intensive access.

Design Transactions Need More Than Serial Consistency

Correct execution of concurrent transactions has been defined in terms of seri~

(4)

(5)

alizability, i.e., the execution of concurrent transactions is consistent if their
Interleaved effect is the same as if they are run in some serial order. Serial
consistency is unsuitable for determining whether design data is still "con-
sistent” after update. Special validation programs must be invoked to verify the
consistency of design data. Serializability theory describes when interleaved
read/write accesses to shared data still obtain a "correct” (i.e., serial con-
sistent) result. Interleaved updates are undesirable in the design environment,
since it is meaningiess for two designers to change the same portion of a

design.

Design Transactions Are Not All Or Nothing

Conventional transactions are atomic: either all updates made by a transaction
become visible (it commits) or none are visibie (it aborts). Intermediate states
are invisible to concurrent transactions, even if the system should crash during
a transaction. Recovery mechanisms insure that the database is restored to a
transaction consistent state. In the design environment, as much work as possi-
ble shouid be recovered in a crash, even past checkpointed states if possible.

intermediate states, as long as they are file system consistent, are acceptable.

Design Transactions Are Not Ad Hoe

Since designers know in advance what portions of the design they will be work-
ing on, all needed resources can be acquired at the beginning of the transaction.
Because of the interactive nature of design transactions, deadlock is intolerable
and must be avoided through preallocation. Deadlock detection mechanisms that
abort in-progress transactions are undesirable, since valuable design work

would then have to be undone.

Design transactions do not fit the conventional notions of consistency, atomi-

clty, and durability upon which database transaction management has been built.

Serial consistency is insufficient for determining the self-consistency of design data.
The data itself, rather than the order in which it is accessed, determines the correct-
ness of a transaction. Further, simultaneous access to the same design data is

uniikely as well as undesirable.

Design transactions are not atomic in the sense of conventional transactions.
Visibility of intermediate states of design data may even be desirable. While only one
designer is allowed to update the data, many can be reading ("browsing”) it simul-
taneously. Others may want to check on an in-progress portion of a design. Since
they are browsing the design, a lower level of consistency can be tolerated, i.e,

records changing underneath them.

Designers demand that as much of their work as possible be saved in the event
of a system failure. Savepoints guarantee to save changes, but it is desirable to be
able to bring the database back to its /atest possible state. While returning to a
checkpointed state should be supported, we believe that system generated undo will
be rare. This is a major departure from the work described in [LORI82], where the
design database is automatically returned to its last checkpointed state in the event

of a crash.

The durability of design transactions is also different from conventional transac-
tions. Old versions of design data persist even after newer consistent versions have
been created. Support for versions is already needed in the design environment, and
can be integrated with transaction management to simplify many aspects of con-
current access and recovery. Transaction management components of existing data-
base systems do not support versions, making these somewhat unsuitable as a start-

ing point for design transaction support.

3. Design Transactions

—7—

3.1. Introduction

A transaction is a unit of work that maintains the consistency of a database. A
set of constraints are in force at transaction begin and end, but can be violated dur-
ing the transaction. In the design environment, the definition of data self-
consistency is much more complex than that found in transaction processing environ-
ments. For example, an airplane design is consistent only if the airplane can still fly
with its redesigned wing. In general, these constraints can only be guaranteed by

invoking complicated checking programs.

Therefore, we define a design transaction as a sequence of database opera-
tions that map a consistent version of a design into a new consistent version. Design
transactions are non-atomic units of design consistency. [f the system crashes, then
the designer can continue from the last safe state determined by transaction
management (which may be beyond the last saved state). Old design versions are
durable across transactions, i.e., an old version is not removed unless it is explicitly

moved off-line.

8.2. Concurrency Control issues

Design data is arranged so that logically related parts of the design can be
accessed as a single object. Objects can be nested within other objects, forming a
hierarchy of design data. For example, a microprocessor consists of a data path and
a control unit; the data path consists of a register file, shifter, and arithmetic
fogic unit; etc. The nested structu‘re of design data has been called a design hierar-
chy in [KATZ82a] and complex objects in [HASK82a]2; We adopt the former terminal-
ogy. A designer can request access to the microprocessor (the whole design), the
data path (a subpart of the whole), or the register file, etc. Designers can work in

parallel as long as they are in non-overlapping subtrees of the hierarchy.

2Note that in [HASK82a], complex objects are single level. A complex cbject cannot be contalned
within another complex object.

Multiple designers do not work on the same related pieces of the design at the
same time. Changes made by one designer might conflict with those of another.
Even if these changes do not overlap, merging the sets of changes together might
not result as intended, since the changes may not fit together. Therefore, the
appropriate unit of exclusive access is a design subhierarchy, representing a logical

portion of the design, and identified by its root.

Conventional locking is not appropriate for design data. If a design subtree is
unavailable because it has been acquired by another designer, then the requesting
designer should not be forced to wait. Also, locks need to survive system crashes.
The solution proposed in [HASK82a] is to introduce persistent locks that are stored in
non-volatile storage, i.e., the database, to survive crashes. These can be requested

without blocking if not available.

Note that the lock table is normally placed in memory for reasons of efficiency.
Design transactions are less time critical and set less locks than conventional tran-
sactions. Placing the lock table on disk to insure its durability is worthwhile in the

design environment, even though it is more expensive to set/reset locks.

A more appropriate paradigm for acquiring design data is to view the design
database as a library [KATZS?_d].3 Design subparts are checked out to designers,
who return them when done. “Concurrency control” is therefore handled by a
Librarian process that traverses and manipulates the hierarchical structure of design
data. It knows: (1) what parts of the design have already been checked out, (2)
who has checked them out, and (3) when they are expected to be returned to the
repository. This information is stored in the design database, and is thus durable
across system crashes. A designer who must have access to data can determine

who currently holds it, enabling him to request its early return.

3One difference with a conventional library Is that books cannot be changed, but design data can.

When a designer is through with the data, it is checked back into the repository
as a new version. The modified design data cannot become the current version
("released"), until it has passed the necessary self-consistency checks. It can be
accessed by other designers who are willing to browse the possibly inconsistent data
(it may change underneath them). A transaction cannot complete, and cannot make
its new versions available, until the data is shown to be consistent. At commit the
in—progress versions of all data checked out to the transactions become current and

the previously current versions become the next previous versions.

The facilities provided by the Librarian more closely resemble the time-domain
addressing scheme of [REED79] than a conventional lock manager. A version-based
approach is well suited to the design environment, since versions of design data must
already be supported (see [KATZ82b] for a discussion of version support for design
databases). Our versions are different than Reed's in that design versions are
created at design consistent points, rather than for individual update operations.
The version-based approach simplifies many of the difficulties of concurrent access
in the design environment. Designers can browse the last consistent version of the
design even while the a new version is in-progress. If desired, the in-progress ver-
slon can be browsed, although reads may not be repeatable. Even if they are, the
data read may yield inconsistencies, since it is not yet guaranteed to be self-
consistent. Browsers can continue to read the same version even when the in-

progress version becomes current in the middle of browsing.

3.3. Recovery Issues

Because of the value of. design data, resiliency to system crashes is an impor-
tant requirement of the database component. Conventional transactions restore the
database to a transaction consistent state in the event of a crash. Design transac-
tions are not atomic in this sense. If the system crashes in the midst of a design

transaction, it may be undesirable to undo any work done by the transaction. Obvi-

ously, file system actions, such as page writes, must be atomic, and it must be possi-
ble to reconstruct the file system to a consistent state (from its viewpaoint) after a

crash.

Savepoints within a design transaction guarantee that the database can be
restored to that point. However, it will be desirable to recover past a savepoint.

Note that this is not possible in [LORI82].

in addition to the demands for a continuous recovery capability, the computing
environment for design introduces additional problems. With the development of
Inexpensive engineering workstations, i.e., a graphics display, processor, hard disk,
and network interface within a single package, the design environment will consist of
individual workstations networked to a file server. The workstations are inherently
less resilient to crashes than the file servers, because they are located in a more
hostile environment (an office instead of a machine room), and because it is more dif-
ficult to use redundancy to obtain resiliency (workstations rarely have more than one
disk, and almost never have tape drives). The result is that the redundancy for data

on the workstation must be provided by the file server.

The recovery system is complicated by the four different kinds of failures: (1)
workstation soft crash (memory buffers lost), (2) workstation hard crash (local disk
data lost), (8) server soft crash, and (4) server hard crash (see [BROW81, KARS82]

for descriptions of conventional transaction processing in this environment).

However, the nature of the design environment simplifies many recovery
aspects. While design versions are checked out to workstations, the last consistent
version resides safely on the file server. Versions are used to avoid updating in
place, with its associated undo complexities. Only very limited undo capabilities are
needed, for example, undo the /ast update. Transaction logs, or change files have a
simple structure and are associated with files rather than transactions, since only

one transaction can update a design file at a time.

==

4, Design Transaction Management

4.1. Computing Environment

The computing environment for the design transaction manager is the following.
Design applications are run at workstations, which are connected via a high speed
network to a shared file server. While the workstations have simple 1/0 configura-

tions (i.e., a single hard disk), the file server has many devices and controllers.

Design transactions consist of four phases: file acquisition, work, validation,
and completion. Work and validation must follow file acquisition, but can be inter-
mixed with each other. Validation must be complete before a design transaction is

allowed to enter completion.

A design transaction begins with a file acquisition phase. Design transactions
are closely associated with the files they touch. When the transaction completes, it
creates new current versions of its acquired files. This cannot be done until the col-

fection is shown to be self-consistent.

A designer requests a design file (or subhierarchy of files) from the file server

Librarian. If the files are still available, i.e., have not yet been checked out, then the

request is granted, and the files are transfered to the workstation's disk.? Additional
"mirrored”’ copies are also made in the file server, to protect the designer from local
crashes. These will be used to track committed or saved changes made to the data

in the workstation.

if the files have already been acquired by others, they are identified, as is the
expected time of return. The designer continues with other work, and must try to
acquire the files again later. All needed files must be acquired at transaction begin to

avold deadlock problems.

4Actual|y, the files are copled as needed, rather than all at once.

]2~

Once the needed files have been checked out to the workstation, the transac-
tion can enter its work phase. The designer manipulates the design with the “aid of
design tools. Savepoints protect the transaction from loss of data due to local
crashes. Changes made to files since the last savepoint are maintained in local
change files. At savepoints, these are transmitted to the file server, where they are
committed to the mirrored copies of the files, making the workstation and file server
copies identical. It is possible to recover past a savepoint if the local logs have sur-

vived the crash, or are also saved on the file server.

Thus, a design transaction is punctuated with savepoints, insuring that changes
so far will survive local failures. Activity at the workstation can continue éve;n
though the connection to the file server is broken (fortunately rare!). This is not
advisable however, since it exposes the designer tq serious loss of data in the event

of a local crash.

A beneficial side-effect of the extra redundancy in storing mirrored copies on
the file server is that browsing in-progress data is simplified. A relatively recent,
savepoint consistent version of the design can be viewed without needing to access

the data stored at the remote workstation.

When design work is completed, the transaction enters a wvalidation phase.
Verification programs are invoked to check that the modified design data is self-
consistent. If the data is not valid, this does not cause the transaction to be
aborted!® The inconsistencies have to be located and corrected, (the transaction
reenters the work phase), and validation must be retried. Self-consistency checking
may actually be distributed throughout the lifetime of the transaction, and need not
only occur at the very end of design activity. However, the system must insure that

the design data has not been changed since it was last validated.

Sthis has nothing to do with optimistic concurrency control validation [KUNG81]!

Once shown to be valid, the transaction can enter a completion phase. The in-
progress versions of the design files are made current, the old current versions
become previous, etc., and the transaction terminates successfully. The new design
file versions can now be checked out to other designers. If a designer decides to
abort his transaction, then the global and local copies of files are destroyed, and the
orlginal versions are made available again for checkout. The version-based approach

greatly simplifies undo processing.

From the above discussion, it is obvious that design transactions make a heavy
demand on disk resources. However, redundancy is unavoidable if resiliency to
erashes is to be obtained. Since the file server is dedicated to providing file ser-
vices to the network of workstations, it can be equiped with a large number of disk

devices.

4.2. Design Librarian

The Librarian is the component of design transaction manégement that coordi-
nates all access to shared design data. it manages designs, which are named
hierarchical collections»of design files. A design is analogous to a file system direc~
tory, in which intemnal nodes of the design hierarchy are subdirectories, and leaf
nodes are ordinary files. Subtrees of the hierarchy are the units of access, and are

identified by their roots.

The Librarian is responsible for creating and manipulating the designs and for
checking out design data to workstations. It is structured as a server process on
the file server machine. Request for design file services are directed to it (see fig-

ure 4.1).

The process by which a design portion is checked out is the following. A
designer identifies the portion of interest by giving the name of the root of the sub-
tree. The Librarian traces a path from the root of the design to the root of the sub-

tree. At each node along this path, control information is examined to insure that the

~14-

QR RO SR Y R R R D OO N A T T SIS S T T N S Y S o) S g) M) R Mgy g SR U R T

REQUEST s/ DESTEN |

FILE
WoRW STATION ACKNDOLEDLE. SERVER. LTRRARIAN]

< /]

_— - A
TNPROGRESS] | CORRENT
VERSTOND| | VERSTOoNS

R ey YOOI R L g) oy g W TR IY TR Y W e Y R R

data has not been checked out to another designer.

A hlerarchical locking protocol Is employedﬁ to arbitrate access to the design
hierarchy. The protocol insures that no more than one designer has acquired a por-
tlon of the design for exclusive access with the intention of updating it, and thus
creating a new version. The intention.to acquire a subtree for exclusive access is
recorded In every node along the path. If a node is already held for exclusive access
by anocther designer, then an update request cannot be satisfied and is aborted. This
Insures that the requested subtree is not contained within a subtree aiready
checked out. The designer must be able to acquire the root of the subtree with
exclusive access. |f another designer has acquired it with the intention of updating
one of its subtrees, then the access cannot be granted. This insures that there is no
checked out subtree contained within the subtree being acquired by the designer

{see figure 4.2). Read requests never cause problems because all versions except

-15-

YRR TR 0 T SYAT) TP YY) T 0 PG WG Y A CIG G DI IR AR NI) o ey e €y Y Q)) g Y

-\ Mm&a?mesgmm
(8o | INTENT EXCLWSTVE)
CBRowN, » INTENT ERCLMSTVE)

DATA PATH

the one actually in-progress are read-only. The hierarchical locking protocol for vari-

able granularity locks has been described in [GRAY78].

If the data can be acquired, the subtree Is copied to the workstation and
ancother copy is made in the file server. The location of checked out and mirrored
copies of files is recorded in the current copy of the design hierarchy, and is associ-

ated with individual nodes within the hierarchy.

When data is checked back into the repository after validation, the back-up

coples are made current and the old current copies are made previous.

4.3. Recovery Manager

The recovery manager is responsible for insuring that as much data as possible

survives a system crash. This is accomplished by keeping copies of the data In

~16-

multiple places with different failure modes. Each checked out design file has five
files associated with it: (1) the local working file, stored at the workstation, (2) the
focal change file stored at the workstation and holding a log of changes since the
last savepoint, (3) the global working file stored in the file server, (4) the global
change file which holds changes transmitted by the workstation but not yet saved,
and (5) the redo log which contains all saved changes to the file since the in-
progress version was first created by extraction from the current file version (see
figure 4.3). The change files are differential files. The local and global change files
record the differences between the local file and its global copy. The difference

between the global working file and the current file is recorded in the the redo log.

The recovery manager supports savepoints. A save causes data and change file
buffers to be forced to disk by the local buffer manager. The local change file is
copled to the file server and is appended to the global change file. Note that only
the changes are written back to the file server, not the complete file. A background
process copies the local change file entries to the Qlobal change file, providing a

continuous save capability. This guards against data lose In the event of a local hard

WORKSTATION FILE SERVER.
[A—
GLOBAL
LoCAL CURR
LOGAL WORK CHANGE Q&?&L c,;l;r_léﬁ FI.ES.T

7

crash, and reduces the latency of a save. Space will be tight on the local disk, and
can be reclaimed as local change file entries are copied to the file server. The global
change file is then merged with the global working file to bring it up-to~date, and the

global change file is appended to the redo iog.

The merge operation can be implemented as an atomic action by performing the
merge into a copy of the global working file. The original file is deleted when the
merge completes. Save actions can be overlapped with continued work on the works-

tation, uniess a blocking savepoint is requested.

An alternative strategy requires a modification of the file server's file system.
When data pages are displaced from memory buffers to local disk, they can also be
written through to the file server over the network. A shadow page approach
[LORI77] is used to replace original pages without overwriting them. The original and
updated versions of the file are described by page maps with unupdated pages in
common. At a savepoint, the original version is replaced by the updated version. We
have not selected this approach because it would reqt;ire implementing a file system

on the server that supports shadow pages.

in the event of a soft workstation crash, i.e., memory buffers are lost, a number
of options are available. The last savepoint can be reconstructed by copying the file
server copy back to the workstation.: A more up-to-date version can be recon-
structed by merging the local and global change files into the local copy. Some
updates will be lost, since they were only recorded in the buffers, but others that
were displaced to stable storage since the last save will be able to be committed.

Note that the design file can be restored to a state beyond the last savepoint.

A hard workstation crash loses data on the workstation's disk. if we assume
that both local changes and local data have been lost, recovery can proceed as
above. The file can be restored to its last saved state by copying the global working

file back to the workstation. If the merged global working file and global change file

={ 8=

are copied back, then the file is restored to the last update known by the file server.

The file server can employ more conventional techniques to insure that its files
are durable. Archival dumps of working and current files are taken frequently. The
file merge and append operations are implemented to insure that they are idempotent
In the event of a soft crash at the file server. Hard crashes are dealt with by restor-
Ing the global working files to their archived versions and reapplying the global fedo
logs. This brings the file back to its last saved state. The global redo file should be

dublexed to insure recovery in the event of a hard crash in the file server.

4.4, Design Data Validation

The need for applications-level consistency is a new aspect qf design transac-
tions. [NOON82, EAST81] describe mechanisms for maintaining the consistency of
design data, either by keeping track of which validation tools have been applied, or
by modeling the transaction as a flow of data among applications and verification
programs. Ways to specify the relationshipfs between design data and design check-

ers are stili under intensive study.

6. Design Transactions and Design Systems

A design system is more than a data management component. Facilities for user
interface, design tools, and design integrity management are also necessary. In this
section, we describe how design management integrates with the other components

of the design environment.

A design system is structured into four different levels (see figure 5.1). The
innermost level is concerned with storing design data on disk, and is called the data-
base component. The database component provides for shared, reliable storage of
design data. This could be implemented with a database system, but many of the
facilities provided by modern database systems, such as high level query languages,

are not strictly needed. The abundance of services provided by a general-purpose

-0~

GG YOG Y G Gy Yy T g o) e SR e Y o €) g o e i o) g S e g e) g g) e g g g T R e g e g I g P) S 0 R Y SR TR SR TR SRR SO0

USER INTERFACE: Graphics, Windows, Menus
U)
v
APPLICATIONS PROGRAMS: Editors, Simulators, Chip Assemblers, etc.
A
v
DESIGN TRANSACTION MANAGEMENT

A
Y

DATABASE COMPONENT: Reliable Storage

Figure 5.1 -- Design System Architecture

e e ey oy R o < S e e g T) Sy g v < v g o o g S Y) g e)) e g g))) G o S) e 3 Y R g e e e e raep g g g g e w2 o g g g g ey

database system may hinder performance, especially since most design data is
accessed in bulk. The key facility is a file system that is resilient to system crashes

and that provides high performance for sequential accesses.

The outermost component provides a package of services that communicate
with users at workstations. We call this the user interface component. Included here
are general packages for managing screens, windows, and menus. The existence of

such software greatly simplifies the creation of new design tools.

Application programs reside between the user interface modules and the data-
base component. In the design environment, these applications help to create, mani-
pulate, view, and validate the correctness of design data. In a conventional system,
a large portion of these programs are concerned with user interaction and data
storage. These services are provided by the respective components of the design

environment, simplifying the construction of new design tools.

The design transaction management component described in this paper resides

between the applications and the database component. It is responsible for mediat-

~20=

ing the access to the design data, through the Design Librarian. it is also responsible
for guaranteeing that design changes can survive system crashes, by providing a
savepoint facility in conjunction with the resilient file system. Finally, it is responsi-
ble for maintaining the self-consistency of design data, by providing a design valida-
tion facility. This facility provides a framework in which design validation can occur;
it does not include the particular validation tools that have to be used to check the

correctness of a design. The latter are applications programs.

Just as interface and data storage services are viewed as being generally use-
ful packages suitable for implementation as independent components, so to is design
transaction management. Very few systems available today automatically or semi-
automatically support the design validation process. This a key concept behind the

notion of design transactions, and is an open topic for research.

6. Conclusions and Status

in this paper, we have described a new transaction processing environment that -
Is significantly different from that in which the standard notions of consistency,
atomicity, and durability have evolved. The experience gained in building these latter
systems is not ﬂnecessarily approp‘riate for the design environment. We believe that
more effective systems can be built by implementing transaction management with

new techniques.

We have described the architecture of a design transaction management sys-
tem. It is part of an overall design environment being constructed at the University
of Wisconsin-Madison. Currently, the database storage component has been imple-
mentegi. The design of the transaction manager, as documented in this paper, is now
complete, and implementation is underway. The first tool we intend to build is a chip
assembly system for the manual hierarchical composition of design data across its
representations, and the maintenance of consistency across these representations

[KATZ82c]. The tool will be interfaced with shared data through the transaction

-2f-

manager.
7. References

[BROWS8 1] Brown, M. R., R. Cattell, N. Suzuki, 'The Cedar DBMS: A Preliminary Report,”
Proc. ACM SIGMOD Conference, Ann Arbor, Mi., (May 1981), pp. 2056 -- 211.

[EAST81] Eastman, C. M., "Database Facilities for Engineering Design," Proc. {EEE, V
69, N 10, (October 1981), pp. 1249 -- 12638.

[GRAY78] Gray, J., "Notes on Data Base Operating Systems," IBM San Jose Research
Report# RJ2188(30001), (February 1978).

[GRAY81] Gray, J., "The Transaction Concept: Virtues and Limitations,” Proc. 7th Intl.
Conf. on Very Large Databases, Cannes, France, (October 1981), pp. 144 -
164.

[GUTT82] Guttman, A., M. Stonebraker, "Using a Relational Database Management
System for Computer Aided Design Data,” IEEE Database Engineering
Mewsletter, V 5,-N 2, (June 1982), pp. 21 -- 28.

[HASK82a] Haskin, R. L., R. A. Lorie, "On Extending the Functions of a Relational Data-
base System,” Proc. ACM SIGMOD Conference, Orlando, Fi., (June 1982), pp.
207 -~ 212.

[HASK82b] Haskin, R. L., R. A. Lorie, "Using a Relational Database System for Circuit
Design,” IEEE Database Engineering Newsletter, V 5, N 2, (June 1982), pp. 10
== 14,

[KARS82] Karszt, J., H. Kuss, G. Lausen, "Optimistic Concurrency Control and
Recovery in a Multi-Personal Computer System,’" ACM SIGSMALL Newsletter, V
8, N 4, (November 1982), pp. 12 -- 21.

[KATZ82a] Katz, R. H., "A Database Approach for Managing VLSI Design Data,”" Proc.
19th ACM/IEEE Design Automation Conference, Las Vegas, Nv., (June 1982).

[KATZ82b] Katz, R. H., T. J. Lehman, "Storage Structures for Versions and Aiterna-
tives,” University of Wisconsin-Madison Computer Sciences Technical Report
#4789, (July 1982). Submitted to IEEE Transactions on Software Engineering.

[KATZ82c] Katz, R. H, S. Weiss, "Chip Assemblers: Concepts and Capabilities,"”
University of Wisconsin-Madison Computer Sciences Technical Report #486,
(November 1982). Submitted to 20th ACM/IEEE Design Automation Confer-
ence, Miami, Fi., (June 1983).

[KATZ82d] Katz, R. H., "DAVID: Design Aids for Vi.SI using Integrated Databases,"
IEEE Database Engineering Newsletter, V 5, N 2, (June 1982), pp. 29 -- 32.

[KUNG81] Kung, H. T., J. T. Robinson, “On Optimistic Methods for Concurrency Control,”
ACM Trans. on Database Systems, V 6, N 2, (June 1981).

[LORI7Z7] Lorie, R. A., "Physical Integrity in a Large Segmented Database, " ACM
Trans. on Database Systems, V 2, N 1, (March 1977), pp. 81 -- 104.

©D D

[LORISZ] Lorie, R. A., W. Plouffe, "Complex Objects and Their Use in Design Transac-
tions,"” IBM Research Report RJ 3706 (42922), (December 1982).

[NOON82] Noon, W. A,, K. N. Robbins, M. T. Roberts, "A Design System Approach to
Data Integrity,” 19th ACM/IEEE Design Automation Conference, Las Vegas,
Nv., (June 1981).

[REED79] Reed, D., "Implementing Atomic Actions on Decentralized Data,” Proc. 7th
ACM SIGOPS Symp. on Operating Systems Principles, 1979.

=23~

