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Introduction

We present a simple Dynamic Economic Model , an exchange
economy in which nothing is produced (the set of available commodities
is fixed). We show that the market, at each moment, can adjust prices in
such a way as to lead the consumers to make choices satisfying the scar-
city constraints We say that the model is decentralized because each
consumer makes decisions independent of the rest of the consumers; the
only information the consumer receives from the market is the price vec-
tor.

This result is well known in the framework of a Static Equili-
brium. The model there is described by a set of available commodities

M cR™ and by n consumers i=1,..,n. The set of normalized positive

m
prices is S={peR| }p;=1). For each price vector the total reve-
j=1

nue, defined as r(p) := su%l <p,w>, is allotted to the consumers; consu-
wE

n
mer i receives an income ry(p) where r(p) = Y ri(p). Each consumer is
i=1

represented by his demand function d;(p,r), that to each price vector and
to each income associates a basket of goods (the demand). This demand
function satisfies the Walras law: for each price vector and for each
income the value of the demand does not exceed the income, i.e.
<p,di(p,r)> = r. The problem is then to find a price vector F€S, called a

Walrasian equilibrium, such that the aggregate demand satisfies the scar-



) n
city constraints of the market, i.e. },di(p,ry(p)) € M. It is possible to
i=1

show that if M is closed convex with M = M—RP®, and the functions
p - di(p,r;y(p)) are continuous on S, then such a Walrasian equilibrium
exists (see for example Aubin [4] p. 378).

This type of model, interesting insofar as it allows us to describe
and eventually to predict the behavior of a market, has a substantial
drawback due to its static character. Recently there has been an
increasing interest in endowing economics with dynamic models that
better refiect the changing behavior of the market. The Walras tatonne-
ment is the best known. In the framework of a pure exchange economy,

the evolution of prices is explained by the following differential equation:

0 ifpj=<0 andz(p) <0
Pi(t) = {Gj(zj(p)) otherwise
with initial condition p(0) = py (po € R given). z(p) denotes the excess
- demand function for commodity j (demand less offer), and G is a
differentiable sign preserving function from R into R with G'j(z) >0 for
each z€R (a description of this model can be seen in Arrow and Hahn
[1] ). However the method is not operational, the transactions cannot be
carried out unless the current prices represent a Walrasian equilibrium.
If the excess demand function for a commodity is strictly positive, then
the demand is greater than the offer and we cannot allow any transac-
tion. [t is then necessary to imagine “'the existence of a super-auctioneer -
who calls a given set of prices p and receives transaction offers from the

agents in the economy. If these do not match he calls another set of




prices..." [1].

Smale [23] describes a second‘ class of evolution model that is
not decentralized.

The model of Aubin [7] has been the inspiring source for this
work. There a dynamic decentralized model is described. However he
makes the rather strong assumption that the instantaneous demand
functions are linear on the endowment. His economic model can be sum-

marized by the following evolution inclusion:

4

%%—(t) e D(x(t)) a.e. (0.T)

x(t) €K wte[ot]
x(0) = x° (x%°eK given)

In order to show the existence of a solution to the above evolution inclu-
sion, Aubin, Cellina and Nohel [2] require K to be a convex and compact
subset of R™, D to be an upper hemicontinuous multifunction from K into
R™ with nonempty closed convex images and D(x) nTx(x) # ¢ for each
x€K, where Tg(x) denotes the tangent cone to K at x. Aubin [6]
discusses other possibilities. Essentially, in order to relax the convexity
assumption on the images of D, he requires that D be continuous (upper
and lower semicontinuous) and that D(x) ¢ Tx(x) for all x€K. This last
assummption is equivalent to the global constraint imposed in the model by
Smale [23] and it destroys the decentralization. It amounts to requiring
that the aggregate instantaneous demand never point in an inadmissible
direction for the éet of available commodities. This is the same as asking

that each consumer know the behavior of the other consumers. By



definition of the multifunction D, the requirement that the instantaneous
demand functions be linear in the endowment is the only way to guaran-
tee that D(x) is convex for each x in K.

In this setting, we show the existence of a solution to the above
evolution equation without asking D to have convex images but also
without destroying the decentralization of the model.

The model has important theoretical and practical implications.
An increasing number of large-scale economic models is being generated
to study, for example, whole sectors of the economy of a country (see for
instance Hogan and Weyant [12] ). Usually their goal is to get an optimal
point (equilibrium point) of a mathematical programming model. Thus
the economy is studied as a sequence of equilibrium points.

The size of these models is a major problem. Often they are
made up of pieces generated by different researchers, using different
tjechniques but sharing the same information. Each one of these com-
ponents represents a group of economic agents. The sizes of these prob-
lems require that decomposition techniques be used. The decomposition
is achieved by relaxing some of the constraints and by the use of iterative
methods. Sometimes the convergence of these iterative methods is not
proved.

The decentralized model we propose is a contribution toward a
different and, we hope, promising way of approaching such problems. In
our approach, the components can be modeled individually; the only
information they share is the price vector. The evolution of the system is

built into the model in a natural way, and we do not have to assume that




the economy moves from one equilibrium point to another. We therefore
suggest this decentralized approach as a possible useful technique for
analyzing and solving the kinds of large-scale economic models just men-
tioned.

In chapter 1 we will review some basic properties of multifunc-
tions, we will define the tangent and normal cones to a convex set and
state some of their properties. We will also define some notation we will
be using in the remainder of the thesis.

We present the economic model and show the existence of a
solution for the model in chapter 2. In section 2.1 we statermost of the
assumptions our model requires. These assumptions are essentially the
same that Aubin makes in [7]. Some of Aubin's assumptions have been
strengthened and the linearity condition on the instantaneous demand
functions has been removed. In place of the linearity condition we pro-
pose three new conditions. In section 22 we prove the existence
theorem, and at the same time we study the three new assumptions.
Finally, in section 2.3 we compare Aubin’s model with ours. We show that
the linearity condition, that he requires for the instantaneous demand
functions, imply two of our three assumptions. The third is not found in
Aubin's model. However, as the number of consumers increases, we
expect this assumption to be satisfied.

In chapter 3 we study a family of instantaneous demand func-
tions. They are obtained by solving a ‘‘natural’ maximization problem
and satisfy most of the assumptions made in chapter 2. For economic

models with all consumers having instantaneous demand functions in this



family, we study the behavior of the solutions as time goes to infinity in
section 3.4.

Finally, in chapter 4, we propose two algorithms to solve numer-
ically the economic model and we study their implementation. We do not
prove their correctness but we use them to get approximate solutions for

a few small examples.




1. Multifunctions

1.1 Continuity Notions

We define here the most used continuity notions for multifunc-
tions and their relationships. Most of the results in this section are well
known (see for example Berge [8] ). Our definition of upper semicon-
tinuity does not require the images of the multifunction to be compact;
we prefer to explicitly require compactness when needed.

Theorems 1.1.5 and 1.1.12 ‘will be used in the proof of the
existence theorem of chapter 2.

Let X be a topological space and A a subset of X. We will denote
by intA the interior of A, by A the closure of A and by A® the comple-
ment of AinX.

If (X.d) is a metric space we will denote by B(x,r) the open ball

of radius r with center at x, i.e.
B(x,r) :={yeX | d(y,x)<r}.

For a normed space (X,|| ||) we will denote by B the open ball of
radius 1 centered at the origin. Then, the ball of radius rn and center x
can be writtenx + rB.

RY will denote the positive orthant in R™, i.e.



RP:=1xeR™ | 520 Vj=1,..,m}
and for x and y in R™, <x,y> is the usual inner product of x and y, Le.
I
<X, y> = E:IXJ ¥;
J:
Finally, N will denote the set of natural numbers.
1.1.1 Definition

A multifunction F from a set X into a set Y is a function from X

into P(Y), the set of all subsets of Y (sometimes also denoted by 2Y).

The graph of F is graph(F) := [(x,y) € XxY | yeF(x) } Some-
times we will write (x,y)€F to mean (x,y) € graph(F) .

The domain of F is dom(F) := { xeX | F(x)=¢ ] and the range of

F is R(F) := U F(x). The inverse of F is the multifunction F~l(y) :=

zeX
{x | ye F(x) ]
It is easy to see that the graph ofv F~! is just a reorientation of
that of F: graph(F~1) = {(y,x) | (x,¥) € graph(F)

If Y is a topological space we can define the multifunction F by

F(x) := F(x) for each xeX.




1.1.2 Definition

Let X and Y be topological spaces. We will say that a multifunc-
tion F :X » Y is upper semicontinuous (u.s.c.) at x if for any open set W
containing F(x) there is a neighborhood N of x such that F(y) c W for all
y€N (or, equivalently F(N) c W). The multifunction F is u.s.c. (on X) if it
isus.c.ateveryxin X

Note that the multifunction F.R»R defined by
F(t) ;== (=|t|,+|t]) is not wus.c. However, the multifunction

F(t) = [-]t],+[t]] is ws.c.
1.1.3 Lemma

Assume (Y,d) is @ metric space and let F:X » Y be o multi-
Sunction. If F is u.s.c. at z then for each €>0 there is a neighborhood
Nof z such that F(y) c B(F(z).£) for every y € N, where:

B(4,e) := [z €Y | d(z,4) < a} and
d(z,4) := inf{d(z,a.) | a.e:A} forany AcCY.

Conwersely, if F(z) is relatively compact and for each ¢>0 there is a
neighborhood N of z such that F(y) c B(F(z),e) forall y €N, then F is

w.s.c. at x.
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Proof:
If Fisus.c., for any £>0 take W= B(F(x),e). Then F(x) c W
and there is a neighborhood N of x such that F(N) ¢ B(F(x),z).

Conversely, assume F(x) is relatively compact. If W is any open

set containing F(x), then r:=inf {d(z,W°) | ze F(x)

min | d(z,W°) | zeF(x) | is positive since d(.,W°) is (Lipschitz) continu-

ous.
Let N be a neighborhood of % such that F(y) ¢ B(F(x),r/2) for
all yeN; then F(y) c W for all yeN.

i.1.4 Definition

The multifunction F :X - Y is closed if its graph is a closed set in
XXxY with the product topology. This is equivalent to saying that if
y & F(x) then there is a neighborhood N of x and a neighborhood W of y
such that (NXW) n graph(F) =¢ or vZ F(u) for each ueN and each

vew.
i.1.5 Theorem

Let X and Y be topological spaces. If F,:X » Y is closed and
Fp:X Y s us.c. af z with Fy(z) compact, then F:=F;nFy 1is

w.s.c. ol z.
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Proof:

See theorem VI.1.7 on page 112 in Berge [8]
[
1.1.6 Definition

The multifunction F :X - Y is lower semicontinuous (l.s.c.) at x if
for every open set W such that WNF(x) # ¢, there is a neighborhood N of
x such that F(y)nW # ¢ for all yeN. We say Fis Ls.c. on X if it isls.c. at

every x in X.
1.1.7 Lemma

F:X->Y isls.c. atzifand only if F is L.s.c. af z.

Proof:

Let us note that if W is any opensetin?Y and A is aﬁy subset of Y
then WNA # ¢ if and only if WnA = ¢.

Assume that F is l.s.c. at x. If W is any open set in Y such that
WnF(x) # ¢ then WnF(x) # ¢. Therefore, there exists a neighborhood N
of x such that WnF(y) # ¢ for all yeN. But then WnF(y) # ¢ for all
YyEN and F is Ls.c. at x.

The proof for the converse is similar.



i2

1.1.8 Definition

Let (X,d) be a metric space and A and B two subsets of X. The

Hausdorff distance between A and B, denoted by 6(A,B), is defined by

6(A,B) := max sup d(x,B), glég d(y,A)

1.1.9 Definition

Let X be a topological space and (Y,d) a metric space. We say
that the multifunction F:X 7Y is continuous at x€X in the sense of
Hausdorff if for each €>0 there exists a neighborhood N of x such that
6(F(y),F(x)) <& forall yeN.

It is easy to check that 6&(A,B) = 6(AB) for any two subsets A

" and B of the metric space Y. Therefore we have the following lemma:
1.1.10 Lemnma

F X » Y is continuous at z€X 1in the sense of Housdorff if
and only if the mullifunction F is continuous af z in the sense of

Housdorff.

If (X,4) is also metric, the same argument used for functions
shows that if the multifunction F:X -+ Y is continuous in the sense of

Hausdorff and X is compact then F is uniformly continuous, i.e.

we>0 Jy>0 such that §(F(y),F(x)) <e Wwx,yeX with Ax,y) <7
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1.1.11 Definition

The multifunction F :X » Y is continuous at x if it is u.s.c. and

l.s.c. at x.
i.1.12 Theorem

Let X be a topological space, (Y,d) be a metric space and
F:X - Y be a multifunction such that F(z) is precompact. Then F is
conlinuous at T in the sense of Hausdorff if and only if F is continuous

ol .

Proof:

Assume first that F is u.s.c. and ls.c. at x€X. For >0, let
Uij(x) be a neighborhood of x such that F(y) ¢ B(F(x),e) for all yeU,(x).
In particular this means that d(z,F(x)) < ¢ for every zeF(y) and every
y €U(x).

For each z€F(x) let U,x) be a neighborhood of x such that
F(y) n B(z,e/2) # ¢ for all yeU,(x).

Since F(x) is precompact, there exist Z1,--,2q € F(x) such that

F(x) € UB(zue/ 2).

i=1
Define Uy(x) := (qj U, (x); then F(y) n B(z,e/R2) # ¢ for all i=1,
i=1

..,qand all ye Us(x).
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For each z€F(x) and each yeU,(x) there exists i such that
d(z.z) <e/2. For this i, d(zF())=d(zz) + d(z;,F(y)); therefore
d(z,F(y)) < e/2+e/2=¢.

Let U(x) = Uy(x) n Uy(x); then 6(F(x),F(y)) <& for all ye U(x)
and F is continuous at x in the sense of Hausdorff.

Conversely, if F is continuous at x in the sense of Hausdorff, for
each €>0 there exists a neighborhood N(x) of x such that

6(F(x),F(y)) < ¢ forall yeN(x). Then

d(z.F(x)) < e WzeTF(y) VyeN(x)
d(z,F(y)) < e WwzeF(x) VyeN(x).

The first inequality implies that F(y) c B(F(x).,e) for all
y€N(x). Bylemma 1.1.3 F is us.c. at x.

From the second inequality we have that B(z,e) n F(y) # ¢ for
every z€F(x) and yeN(x). Let W be any open set such that
WnF(x) # ¢. Take any 2zo€ WnF(x) and let r>0 such that B(zg,r) € W.
Taking O<e=r we have that for some neighborhood N(x) of x,

$ # B(zo,£)NF(y) c WnF(y) for all yeN(x) and Fis Ls.c. at x.

1.2 Tangent and normal cones

This section is mainly a collection of some basic definitions in
convex analysis. Almost all the results are standard and can be found in,

for instance, Rockafellar [20].
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Lemma 1.2.11 will be helpfull in the proof of lemma 2.2.1, which
is part of the proof of the existence theorem. It will also allows us to sim-

plify assumption I in chapter 2.
1.2.1 Definition

A subset C of R™ is convex if Ax+ (1-A)y € C for every
A€[0,1] and every x,y€C.

Clearly, the imnage of a convex set under a linear function is a

convex set.
1.2.2 Definition

Let C ¢ R™. The convex hull of C, denoted conv(C, is the smallest
convex set containing C, i.e. is the intersection of all convex subsets of R™
containing C. One can show that convC is the set of all the convex com-

binations of points from C, i.e.

K K
convC ={ Y A% | keN, =0 Wwi=l,..,k and }A=1).

i=1 i=1

1.2.3 Definition

The set MCR™ is affine if Ax + (1-A)y € M for every A€ R and
every x,y&€M.

It is easy to check that M is affine if and only if there exists a
subspace H of R™ and a point T of M such that M=m + H. Also M is

affine if and only if there exists a k xm matrix A and a point a€R¥ such

that M = {XERm | Ax=a }
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1.2.4 Definition

Let C be a subset of R™ The affine hull of C, denoted affC, is the
smallest affine set containing C.
It is possible to show that affC is the set of all affine combina-

tions of points in C, i.e.
k k
affC={ Y} Ax; | keN, eR Wi=l,. k and YA =1).
i=1 i=1
1.2.5 Definition

The relative interior of a subset C of R™ is
riC:= {anffC | (x+eB)naffC c C}.

- C is relatively open if C = ri C; the relative boundary of Cis C\riC. Ii C is
convex and intC # ¢ then intC =riC.
If C is convex, the relative boundary of C will be denoted by aC,

otherwise dC will denote the boundary of C.
1.2.6 Definition

A subset C of R™ is strictly convex if Ax + (1-A)y € riC for
every A€(0,1) and every x,y€C.
Two of the important multifunctions associated with a convex

set are the normal and tangent cones.
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1.2.7 Definition

Aset KCR™ isaconeif AxeK forall A>0 and x€K.

Let S be a subset of R™ The cone generated by S is

conesS := {J AS. It is interesting to note that in general coneS = JAS #
A>0 A>0

U AS (the inclusion coneS 2 U AS is always satisfied).
A=0 A=0 .

Take for example S ={(x,y)€R? | y=x®* x>0}, then coneS =

intRZ u {0} = U AS but coneS = R2.
A=0

On the other hand, if S is relatively compact and bounded away

from 0, then coneS = U AS.
A=0

1.2.8 Definition

Let Cc R™ be convex and let X€C. A point p&€R™ is normal
to Cat xif <p,x-%>=<0 for every x€C. The normal cone to C at ¥,

denoted by N¢(X), is the set of all points normal to C at g, i.e.
Ne(®) = [pERm | <p,x—%>=<0 WwxeC

It is immediate that the normal cone is indeed a cone, easily

shown to be closed and convex.



i8

1.2.9 Definition

The (negative) polar cone of a nonempty cone K ¢ R® is the set
K := {pERm | <p,x>=<0 WwxeK}.

It can be shown that K~ is a nonempty closed convex cone and

that K™~ = convKk.

1.2.10 Definition

Let C ¢ R™ be convex and let x€C. The tangent cone to C at ¥,
denoted by T¢(X), is the polar of the normal cone to C at %.

One can show that:

Te(X) = UA(C—X) and also that
A=0

Te(X) = {heR™ | d(X+Ah,C) = o(A), A>0).
In particular we have that Tg(X) € affC — % for all x€C.

1.2.11 Lemma

Let M be a closed convex subset of R™. If Ny(w) € Ng for all

w €9M, where Nyis a closed convez cone, then

1) vweM Ty(w)>d Ny ond
2) M+ N§ = M.
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Proof:

1) is a consequence of the fact that if A and B are cones in R™®
with ACB, then A™>B™.

Since 0€Ng, M+ Ny D M. Therefore, for 2) it is enough to
show that M + Ny < M.

By contradiction, assume that there exists meM and neNg
such that m + fig M.

Let m' be the closest point to m+#@ in M, and let
p:=TW+a-m

Suppose m’e€riM, then there exists an r e (0,]lpl]) such that

(m*+rB)naffMcM. Since Ny cTy(w)cafM—w TW+necaffl

Therefore peaffM —m"® and m* + r l—lg-“—E M.

T (m Pl = o e Bl = ol -
But [m+a—-(m +r”p”)ll llp T ol | = lpll =r < |pll

|Im + 0 — m®|| whichis a contradiction. So m®e M.
We have that <p,m-m'>=<0 for each meM, so peNy(m").
But <pA> = <p,p>-<pmE-m"™> = |[p|®>0 This contradicts

ne TM(In.) .



1.2.12 Corollary

Let M be a closed convex subset of R™. If Toc Ty(w) for all

w € M, where Ty ts a closed convex cone, then

1) vweM Ny(w)cTy and

2) M+ Toc M.
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2. An exchange economy

2.1 Introduction

In this chapter we state our economic model and show the
existence of a solution. The economic model consists of n consumers and
a set of available commodities. We may think of it as a stock exchange
market. For this reason we will use interchangeably the phrases
"economic agent” and "consumer”, and the phrases "commodity holding"
and "consumption level”. Each consumer holds a subse;t. of the commodi-
ties and, by making transactions in a market, is able to change his hold-
ing. The market specifies prices at which commodities may be
exchanged. This model differs from other approaches in two important
aspects. First, it is dynamie, since the model intends to describe the
behavior of the system over time, rather than to find a static equilibrium.
Second, it is decentralized, since the economic agents have restricted
information. At any time, each agent knows only his own current commo-
dity holding and the current prices of all goods.

Each agent is described by his consumption set and his instan-
taneous demand function that, for each commodity holding and for each
price vector, associates a vector that represents the desired change in
the agent’s commodity holding in a unit of time. The problem is then to
find a function for each agent that will represent the agent’s commodity

holding at each moment, and a function that will represent the price
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vector at each moment. The variation of the commodity holding at eéch
moment must equal the instantaneous demand function evaluated at the
agent's current commodity holding and the current price vector. Also,
each agent’s commodity holding must remain in his consumption set and
the total commodity holding must remain within the original set of avail-
able commodity.

Aubin [7] . to show the existence of a solution for such a model,
requires that the instantaneous demand functions be linear in the prices.
This requirement has proven unrealistic for some small scale problems
we have tested. In section 2.2 we study three assumnptions that allow the
removal of this linearity requirement and show the existence of a solution
for the economic model.

Our proof of the existence of a solution follows a different
approach than the ome given by Aubin[7] ; the study of the auxiliary
problem (P”") and the important paper by Filippov [11] are the main dev-
ices of our proof.

In section 2.3 we will compare our model to Aubin's model. We
finish this section with a more detailed description of the economic
model and the assumptions we make. Assumptions i) to viii) are basically
the same assumptions Aubin makes, although assumptions i), iii) and vii)
have been strengthened.

Let R™ be the commodity space and M ¢ R™ be the set of avail-

able comrmmodities.
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Consumer i is described by his consumption set L; ¢ R™ and his
instantaneous demand function d;:I;xS + R™, where

m
S:=ypeR" | p;>0 j=1,.,m and Y p;j=1}.
=1

At time t=0 consumer i starts with a level of consumption
x’ €L; (the endowment). We shall try to comstruct n functions
x;:[0,T] » L; i=1,..,n, where x(t) represents the consumption of consu-
mer i at time t, and a function p :[0,T] > S such that, at each moment,

the variation of the consumption of consumer i is equal to d;(x(t),p(t))

el
and the aggregate consumption level ) x(t) remains in the set of avail-
i=1

able commodities.

Let us define the linear function A:(R™)® +» R™ by: Ax:= %xi

i=1

where x = (x;,..,%,), x;€R™, and the set

I1
K:={x=(x1,..xn) € []L; | Axe M }.
i=1

We will assume:

i) Mis closed and strictly convex
i) there exists weM such that M n (w + R®) = {w}

iii) there exists £¢>0 such that Ny(w) c y ASe, for all we dM, where:
AZ0
Sg:={peS |p;>e j=1,..,m} e€[0,1/m)

n
(we actually only need Ny(w) ¢ U AS,, for all weaM n A( ITL))
Az=0 i=1
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iv) L; is convex, closed and bounded below (i.e. there exists §e€R™

such that L; € &+RJP) for each i=1,..,n
hs}
v) A(JJL)nM=#¢
i=1

vi) d;:L;%xS -» R® is continuous for each i=1,..,n
vii) there exists F>0 such that x+hd(x;,p)€L; for every x€L; and

PES

Ti
viii) d:J]L;xS » (R™)?, defined by:
i=1

dl(xl»p)
d(x,p) := _
dn(xnvp)

satisfies the Instantaneous Collective Walras Law, i.e. <p,_§1di(xi,p)> <0
i=
for every x€ ﬁlLi and every p€S. It is clear that if each consumer’s
i=
instantaneous demand function satisfies the Instantaneous Walras Law
<p,di(x,p)> < 0 for every x€L; and every p€S, then the Instantane-
ous Collective Walras Law is satisfied.

The Instantaneous Walras Law is a budget constraint. It requires
that the value of the commodity holding after making a transaction be no
greater than the value of the commodity holding before the transaction.
This law is the equivalent of the Walras Law for the Static Equilibrium
Problem.

We will also require that d satisfy the assumptions LII and 111

described in the following section.
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Assumptions i) and iv) imply that K is convex and closed.
Assumption ii) implies that we dM; hence, by assumption iii) we can take

q € Ny(w) C int R

Then M cC {z € R™ | <q,z> < <q,w> ! and therefore

n
Kc {x=(x1,..,xn) e R™M™ | x=§& i=1,..,n and <q,)) x> < <q,w> ).
i=1

Hence K is compact. Assumption v) is equivalent to saying that K # ¢.

Note:

It is possible to show that if M is closed, convex and satisfies
assumption ii), and L; is closed and bounded below for each i=1,..,n, then
K is compact (see for example Aubin [5] pg. 86). So assumption iii) is not
required td show that K is a compact convex set. However we will use this
assumption to show, for example, the lemma 2.2.1.

Now, let us define the multifunctions
0= [se 53]
D.(x) := [d(x,p) | peS, } e€[0,1/ m).

Since S, is compact and d(x,.) is continuous, D(x) is compact

13
for each xe J]L;.
i=1

Then, the problem is to find x:[0,T] - (R™)® absolutely continu-

ous and p :[0,T] » S, where T>0 is given, such that:



(1) = d(x(t).p() ae. (1)

x(t) €K wte[0,T] (P)
x(0) = x° (x% €K given)

where %%-(t) is the derivative of x with respect to t in the sense of distri-

butions. This problem is equivalent to finding a function x:[0,T] » (R™)®

absolutely continuous, such that:

{

%’g-(t) e D(x(1)) ae. (0,T)

x(t) € K wte[0,T] (P’)
x(0) = x0.

3

To show the existence of a solution to problem (P’) we will use
the Explicit Euler Method and the following strategy:
1) show that x + hD, N K # ¢ for every x€K and he (0,h]

2) show that the -multifunction D, defined by
D;o(x) ;= {veD,(x) | x+thveK ) for each x€K, is continuous in the sense

of the Hausdorff metric.
3) finally consider the problem of finding x:[0,T] - (R™)® abso-

lutely continuous such that:

dx .

=(t) € .e. [0,

X (1) € D(x(®) ae. [0.T] )
x(0) = x0.

Using Filippov’s method [11] show that (P'’) has a solution and

that this is also a solution of (P’).




2.2 Existence theorem

Assumption 1

For x;€l;, peS and h > 0 write z(x,ph):= x+hdi(x;,p).

n
Define &(x) :={ ¥ z(x;,p.h) | PES,, }. We assume that:
i=1

x€K and ¥(x) nM=¢ = conv(d(x))nM = ¢.

Assumption I can be restated in the following way:
if ilzi(xi,p,'ﬁ) g M WwpeS,, then
i=
f_‘,][?\zi(xi,p,—ﬁ) + (1-Nzi(x,9h)] g M wA€(0,1) and Wp,q€S,,.
i=
2.2.1 Lemma

z+hD(z)N K #¢ forevery zcK, he(0,h] and &€ (0,5

Proof:
K is convex; hence if x€K and ve(R™)™ are such that
x+hvek then x+hveK for all he(0,h]. Therefore it is enough to

show that x+hD.(x) N K # ¢ for each x€K.
Also Dg(x) D> D (x) for each &€ (0,e0]; therefore it is enough to
show that x+hD,(x) N K # ¢ for every x€K.

By vii) we only need to show that:

. — : n
wxeK JpeS,, suchthat 3 z(x,p.h) e M

i=1
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n
By contradiction, assume },z(x;,p,h) £ M for all peS,. Write

i=1
C:= conv®(x). Our assumption means that ®(x) nM=¢. Thus by
assumption I, ChM=¢. Then, since C is compact, by the Hahn-Banach
theorem, there exists g€ R™ and a€R suchthat <qy> < a < <g,c> for
all yeM and ceC.

By lemma 1.2.11 M+ (cone S; )~ =M, ie. y+weM for al
y€M and we(cone S, )". Since <qy> < a for every y€M, <q,w>=<0

for all we (cone S,))~, which is equivalent to g&(cone 5,)™". Also g#0,

m
therefore §:=q/ 3 q;€5,, Then, without loss of generality, we can
=1

assume that q€S,,

n .
Taking y = ),x; and p = q we get:

i=1

n n —
<4, Y %> < a < <q,Yz(x,qR)>.
i=1

i=1

n
But by the Instantaneous Walras Law, <q, »,d;(%,9)> = 0, so:

i=1

n _ n n n
<q, Y z(x,q.h)> = <q, ) x> + h<q, Y di(%,9)> < <q, ) x>,

i=1 i=1 i=1 j=1

which is a contradiction.

Another consequence of Lemma i.2.11 is that

M — R\ {0} ¢ intM. To see this define Np:= coneS, = ( AS;; then
AZ0




Ng ={qeR™ | <q,p>=0 VpeS5,}.

We show first that —RP\{0} c intNg. Take any qe&-RPP\{0}

m
and write 7 := qu; then m < 0.
=1

Let 6€(0,—eom] and ze€déB. For any peNg there exists

s€S,, and A= 0 such that p = As. Therefore

<q+ z,p> = A<Lq + 2,5> = A(<q,s> + <z,5>)

sugqjeo + [zl lIsl) < A(gom + 8) < 0
so q+2z &€ Ng,ie. q+ 0B c Ny and thus qeintNg.
Then we have M — RP\{0} c M + intNg ¢ M. But M + intNg is
open, so M — R™\ {0} c int M.
Assumption I is not convenient for isolating properties of the
instantaneous demand function; it mixes the aggregated instantaneous
demand with the set of available commodities. To overcome this draw-

back we can impose the following stronger assumption:

Assumption I

®(x) + RI® is a convex set for each x in K.

Then, since ®(x) c #(x) + R®, conv(®(x)) € &(x) + R™. There-
fore (conv®(x)) "M < (#(x) + RM) n M. But &(x) nM = ¢ implies that
((x) +RP) N M=¢ because if Yy€d(x) and z€RP® are such that
m:=%+z€M, then Yy =m—2z¢e€ M —R™ =M, which is a contradiction.

Hence assump‘tion I" irnplies assumption I.



2.2.2 Lemma

D:o K= (R™)* is an w.s.c. multifunction with compact

itrages.
Proof:
n n
Since x+hD(x) € J[L; for all x€ []JL; (assumption vii)), we
i=1 i=1
have:

[ a - -
D (x) = [VEDEO(X) | ¥ (x+hw) € M} = Dg(x) N A 1[%—(1\/1 - Ax)] .
i=1
Let us define the multifunction T :(R™)* -» (R™)® by:

T(x) := A1 ={y€(Rm)n I A(x+Ey)€M];

%——(M - Ax)

then
graph(T) = {(x.y) € (RM*x (R™)* | A(x + hy) € M} :

First, we show that T is a closed multifunction. If
(x%,y%) € grapn(T) for all k in N and (2599 - (%5) then
A(x¥ + hy¥) € M for all keN.

Since M is closed and A is continuous, A(x¥ +hy¥) -

A(X + hy) € M. Therefore (%,¥) € graph(T) and graph(T) is closed.

n .
Next we show that D, is us.c. Let x€ J]L;; then for each
i=1

pP€S;, and £>0, there exists 6(p,e)>0 (6 also depends on x but x is
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fixed here) such that:

q€S,,, lla—pll < é(p,e)

n = [|d(x,p)—d(y.9)ll < e.

ye 'HxLi  |ly—x[| < 6(p.e)
i=

But S;, is compact; therefore there exist p',..p" €S, such

_ r
that S, ¢ U (p*+d(p%¢) B).

a=1
Let 6':= min{6(p%e) | a=1,..,r }; then:

PES,, so pep®+46(p%e)B for some a

el ¢
yve ITL; . lly—xll < 6" =< 6(p%,¢)
i=1

= ||d(x,p*)—d(y.p)ll < &

Ii
ie. if yeJ]L; and |ly—x|| <6° then D,(y) € D, (x)+¢eB and therefore
i=1

n
Dg, isws.c.on J]L.
i=1

By theorem 1.1.5 Dy, is u.s.c.

In order to show the lower semicontinuity of D;o we need two

extra assumptions.

For u and v in R™ define ¥(u,v) := U (Au+ (1-A)v —RP)
A€[0,1]

and [[uv]] := TT {Av + (1=N)y; | A€[0,1] }.
j=1



Assumption 11
n
If xe[]L; and p,q€S are such that d(x,p) # d(x,q) then
i=1

Ad(x,p) # Ad(x,q).

Assumption III
Let x€K and p,qeS be such that Ad(x,p) # Ad(x,q); then for

each € >0 there exists a p® in [[p,q]] such that:
i) Ad(xp®) € ¥(Ad(x,p).Ad(x,q))

i) 0<|lAd(x,p) —Ad(x,p%)l| <€

(ie. Ad(x,p®) € ¥(Ad(x,p),Ad(x,9) n (Ad(x,[[p.a]DNTAd(x.P) ]).).
2.2.3 Lemma

For each >0 there existsa 6>0 such that:

“d(x:P) - d(‘”:?)” =&

n
pg€eES,,,ze [[L
=1

= [|4d(z,p) - 4d(z.q)]| = 5.

Proof:

The set A defined by:
A= [(d(x,p),d(x,q)) | paeS,, [dxp) - dxall= e

is compact. The function from (R™)*x(R™™ to R defined by

(u,v) -» ||Au — Av|| is continuous and strictly positive on A




Assumption II
n
If xe[[L; and p,gqeS are such that d(x,p) # d(x,q) then
j=1

Ad(x,p) # Ad(x,q).

Assumption IIT

Let x€K and p,qeS be such that Ad(x,p) # Ad(x,q); then for

each £ >0 there exists a p* in [[p,q]] such that:
1) Ad(x,p®) € ¥(Ad(x,p).Ad(x,q))

i) 0<||Ad(x,p) —Ad(x,p%)|| < e

(ie. Ad(x,p*) € ¥(Ad(x,p),Ad(x,9) n AA[[P.a)N(AdED)]).).
2.2.3 Lemma

For each £>0 there exists a 6>0 such that:

ld(z.p) —d(z.q)l=¢
n
PpgeES,, ze []L

i=1

= ||Ad(zp) —Ad(z,9)]|= 6.

Proof:
The set A defined by:

A:=1{(d(xp).d(xa) | p.q € Sy, 1d(x,p) — d(x.q)[ = ¢

Is compact. The function from R™)"x(R™™ to R defined by

(u,v) = ||Au ~ Av|| is continuous and strictly positive on A.



2.2.4 Lemma

Let McR™ be sirictly conwvex ond such that

M —-RIN\{O cintM. If uwveM then ¥(u,v)\fuv}cCintM.

Proof:
If w=<Au+(l-A)v for some A€(0,1), then, since
Au+ (1-A)veintM, Au+ (1-A)v—R® c intM and thus weintM.

If wsu and w#u (or w=<v and w # v) then weintM.

]
2.2.5 Lemma

D;o K -» (R™)™ dsls.c.
Proof:

For convenience, throughout this proof we will give R™ any of
its (standard) equivalent norms, say || ||, Then we define a norm on (Rm)n

by:
n
Il = 3 sl
1=

We will denote by B the unit open ball of either R™ or (R™)2.

Let W be any open set such that Wn D:o(x) # ¢. We will divide

the proof into 2 parts. In the first case we show that if there exists

he |
veWnD; (x) such that’ 3 (x+hv;) € intM then WnD;(y) # ¢ for ally
i=1




sufficiently close to x, so that D;o isls.c. at x.

In the second case we prove by contradiction that either there

I 3 ] -
is a v? € WnD;(x) such that ) (x+hv{) € intM or D;, is Ls.c. at x. In
i=1

either case D, isls.c. at x.

n
1) f veWnD,(x) is such that ) (x+hv;) € intM, then, for all
1

jume

i=1,..,n, v; =d;(x;,p) for some p€S, and there exists £>0 such that

n
v+ -é%—BCW and ), (x;+hv)+eBc M.

i=1

Let 6€(0,=— be such that if |[x-yll2<d then

£

2n

— i

h|ldi(x;,p) = di(y:,p)ll2 € -2-%- for all i=1,..,n. Then for any y in [[L; with
i=1

ly — x|l <é

13 0+ Be(yp)) = 3 o+ B b))l =

i=1
n - & e, £
2 lyi=xsllz + B Y [ldi(y;p) — di(xap)llz < sto=e
i=1 i=1
Therefore d(y,p) € D;o(y). Part of the inequality above also

shows that ||d(y,p) — v|| < é-%—; thus d(y,p) € W n D;,,(Y)-

2) Assume D;O is not ls.c. at x. Let d(xp®) € Wn D;o(x) and

£>0 be such that d(x,p% + eB c W, and there is a sequence {yk] cK

converging to x such that D;o(yk) N (d(x,p% + ¢B) = ¢.
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But by lemma 2.2.1, D, (y¥) # ¢, thus there exists a p*eS,,

such that:

{A(yk +Hd(y*p<) € M and
ld(y%,p%) — d(x.p% [ = e.

gso is compact; therefore there exists a subsequence {pk“} and
apoint g&8, suchthat pk°l - q.

By continuity d(y*=p*e) - d(x.q), |ld(x,q) —d(x,p®||=¢ and
A(x+hd(x,q)) € M (since M is closed). Then there is a 6 > 0 such that
lAd(x,q) —Ad(x,p%] = 6.

By assumption IIl there exists a p® € [[p%q]] c Sg, such that
Ad(x,p%) € (Ad(x,p% + ¢B) n ¥(Ad(x,9),Ad(x,p?)). Since A(x + hd(x,p?%)
and A(x + hd(x,q)) are in M, we can use lemma 2.2.4 io show that
A(x + hd(x,p%)) € intM. Therefore d(x,p%) € (d(x,p% + ¢B) n Dey(x) ©
W N Dy(x).

Thus we can use part 1) to show that D,:o is L.s.c. at x, which is a

contradiction.

2.2.6 Corollary

D;, :K » (R™)* is continuous in the sense of Housdorff with

D; (z) compact for each z € K.




Proof:

Use ]‘ernma i.1.12.

Next, consider the problem of finding an absolutely continuous

function x:[0,T] » (R™)® such that:

L (1) € D;y(x(1)) ae. (O) (P")

x(0) = x9.

Let u:=max{|d| | dED;o(x) , XEK} and let [hk} c R, be any

sequence such that:

h;€(0h] with T/h,;eN
he/hys; €N WwkeN
xy €K [x-yllsuh = 8(D;(x),D;(y) < 27%.

Such a sequence exists because K is compact and therefore D;o

is uniformly continuous on K. Let t¥:= ahy a=0,1,..,T/hy, and define

the following functions:
©(a, k) := min {q | t@ = t¥ for some b=0,1,,..,T/hq} -1
a(a,k) := max {b =0,1,.., T/ hy(a | t@H < tX }

It is clear that for each qeN with «(a,k) < q< k there exists a

beN such that td =tk



For each k, the points {té‘}T/:k define a partition of [0,T). This
a=
k-th partition is composed of the T/hy intervals of the form [tX;,tX)
a=1,..,T/hy. For each g>k, the q-th partition is a refinement of the k-th
partition.

From now on, to simplify the notation, we will use « for x(ak)
and a for a(a,k).

Then « is the index of the last partition that does not contain
t¥ as an endpoint of one of its intervals, and t% is the left endpoint of
the interval of this partition containing t¥ (ie. t¥<t¥ < tEe ).

Using Filippov’s method [11] construct a sequence of approxi-

mate solutions {x*}. x* is a piecewise linear function on [0,T] such that:

x*(0) = x°
k .
%—-(t) =d¥ Wwte(tft¥,), where d¥e Do (x%(td), va=0,1,..,T/ h—1

ie. xX

is affine on each interval of the k-th partition.
Assume we have constructed x* on the interval [0,tX], where

a < T/ hy. Then we define x*(t) on [tX,tX.;] by the following two steps:

step 1. if £k =0 then let d¥ be any element of D,:'o(xk(tff)). Otherwise,
let df € D, (x%(tX)) be such that: [|d¥ - d%|| =27

Actually, we have to show that step 1 can be carried out. First
we note that x* has already been defined on [O,té‘] which contains the

interval [tX,t&+ hy].




Since ||d|| <y forall x€K and deD,(x),
1x5(t8) = =* DI = p(td —t8) < phye

Therefore 6(Dto( x*(tXy), Dsa(xk(t"))) < 27% | and thus, there exists

d¥ € D, (x*(t¥)) such that ||d¥ — df| <27k

step 2: define x*(t) := ZK(tH) + t -t¥)dk te [tetk,].

Filippov then shows that there exists a subsequence of {x¥}
converging uniformly to a solution x of P"’. This solution has bounded and
continuous derivatives everywhere on the interval [0,T] except at a count-
able set of points at which it has discontinuities of the first kind.

But  given x¥(t¥) €K, by  definition of DA
xk(té‘)+ED:°(xk(t§)) c K. Therefore, since hye€(0,h] and K is convex,
(LX) + h,D; (x (t2" )) cK and in particular
x*(t¥,) = Kt + hdk e K

We have then that x¥(t¥) €K for a=0,1,.,T/h,. Also, for

t € (té{)té('f-l):

kit k k(s k
k - k X (ta+1) - X (ta) _+k
x4(t) = x(t) + hk (t=t)
I S t—ta Lk
ta+1"‘tk xk(t ) ta+1 t (ta-H

' Tkt
= AXE(EE) + (1-A) *(tE,,)  where ?\t:=[-—-§-“——— € (0,1).

ta+1

Therefore xX(t)€K for each te€[0,T] and keN. We conclude that

x(t) €K for each t€[0,T], and thus x is in fact a solution of P’
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Finally, having defined a solution in the interval [0,T], we can
solve the problem again with initial condition x(T) to get a solution on‘
[T,2T]. This solution together with the solution on [0,T] forms a solution
on the interval [0,2T]. This process can be repeated again and again to

define a solution on [0,).
2.3 Embedding Aubin’s model in the model presented here

In the economic model developed by Aubin [7] the only instan-

taneous demand functions considered are those of the form:
di(x;,p) = Al(x;) p + bi(x) i=1,..n

where Al:L; » R®*® and b':L; » R® are continuous.
In fact, for this example, there is no loss of generality if we only

consider instantaneous demand functions of the form:

di(x.p) = B(x)p i=1,..n
where B! :L; » R™*™ js continuous, because we can define:

Bi(x) := Al(x) + [bi(xy),..,b'(x;)]
and

. , m )
Bi(x)p = A(x)p + .lej b'(xi)
]=
. m . . .
=A(x)p + (zlpj) bi(x;) = Al(x) p + b(xy)
]=

forallpesS.
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It is very simple to check that these demand functions satisfy
assumption I'.

For assumption III, assume that x€K and p,qeS are such

that Ad(x,p) = ( ‘iBi(xi) Ip # ( ‘zBi(xi) )g= Ad(x,q) and let £>0 be

i=1 i=1

0, ns ] and define p®:=Axq+ (1-A)p.
Vil $86 |
j=

given. Take any A€

Then
Ad(x.p) = 1Bi(x)p" = A RB(x)q + (1)) DO
= AAd(x,q) + (1-A)Ad(x,p) € ¥(Ad(x,p),Ad(x.q))

(in particular this can be used to show that assumption I’ is satisfied.).

Also, since A # 0 we have
Ad(x,p%) = AAd(x.q) + (1-A)Ad(x,p) # Ad(x,p).
Finally
lAd(x,p) — Ad(x,p%) || = Al|Ad(x,p) — Ad(x,9) ||
< Al SB[l p=all = Al S8 | Vi <e.
However, assumption II is not found in Aubin’'s model. He only

requires that the instantaneous demand functions satisfy the instantane-

ous collective Walras vlaw:

e} . n . n
<p, Y di(x;,p)> = <p, 1 Bi(x)p>=<0 VWwpeS wxe ][] L; .

j=1 i=1 i=1

n .
This is equivalent to saying that —} B'(x;) is copositive (Cottle, Habetler
i=1
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and Lemke [10] ) for each x€ ﬁLi.
i=1

If instead we require that each consumer’'s demand function

satisfy the instantaneous Walras law
<p,di(x;,p)> = <p,Bi(x)p>=<0 Wwxe€l;, WpeS

we have that —BY(x;) is copositive for each x,€L;.

It is clear that a positive semidefinite matrix is copositive. We
will show that if we require —Bl(x;) to be positive semidefinite for each
¥;€L; and each i=1,..,n, then assumption II is equivalent to assumption II’
stated below.

The following lemma is a well known result and we omit its

proof.
2.3.1 Lemma
Let BeR™*™ be any symmelric positive semidefinite matriz.
Then <z,Bx> = 0 if and only if Bz = 0.
2.3.2 Corollary

If BL,B*e R™*™ are two symmetric,positive semidefinite

matrices ker (B'+B%) = ker(BY) n ker(B?).




Proof:

One implication is trivial. Let us show that ker(B!+B?) c ker(BY)
i=1,2.

If xe€ker(B'+B? then <x,(B'+B%®)x>=0. But <yBly>=0

for all y € R™, therefore <x,B'x> =0 i=1,2.

2.3.3 Lemma

Let BeR™*™ be any posiltive semidefinite malriz (not neces-
sarily  symmelric). Then  ker(B) = ker(Sp) + ker(Kp), where

Sp = %(B + B*), Kp := %(B — Bt) and B! denotes the transpose of B.

Proof:

It is an immediate consequence of theorem 3 in Robinson [19].

It is easy to check that if B!B? € R®™*™ are two matrices
Spiape = St + Sgz and  Kpi,pe = Kt + Kge. Also <x,Kgx> =0 for any
x€R™ and any matrix Be R™*™,
Assumption II”
m n
Define H:={ze€R™| }}z;=0). For xe€][[L; let us write

=1 i=1



We will assume that for eachig = 1,..,n and each x€ HL
i=1

Hn [mker(Sl(xl)) n ker(z Ki{(x )] \ [ker(Sl"(xlo)) n ker(Kl"(xlo))] =

i=1

I
This is equivalent to saying that for each xe J]L;
i=1

H n [ Aker(Si(x)) n ker(3 Ki(x))] \ A [ker(Si(x)) n ker(Ki(x))] =
j=1 i=1 i=1
2.3.4 Lemma

If Bi(z;) is negative semidefinite for each z;€l;, and each

i1=1,..,n, assumplion I is equivalent fo assumption II’.

Proof:

We will show that for x€ ﬁ L
i=1

1) there exists p,q € S such that d(x,p) # d(x,q) and Ad(x,p) = Ad(x,q)

2) H n [ N ker(S(x)) n ker(ZK‘(Xl)) A [ker(Si(x)) n ker(Ki(x))] #

i=1 1—1

are equivalent.

e}
Let p,gq€S satisfy 1) at some x€ [[L,. Then, for some
i=1

ioe{l,..,n} 10(15{10) pP# Bl°(x1°) q and ZBl X)p = ZBI(xl) q.
=1 i=1
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Write C:= Y Bi(x), D:= Bi"(xio) and u:=p—q. Then
irig
(C4D)u=0,Du#0 and ue€H,ie

u € H n ker(C+D)\ker(D) =
H n [ker(Sc4p) N ker(Keyp)] \ [ker(Sp) n ker(Kp)] =
H n [ker(S¢) n ker(Sp) n ker(Ke+Kp)] \ [ker(Sp) N ker(Kp)]

therefore

ueHn [ Aker(S(x) n ker( 3 Ki(x))] \ [ker(S(x,)) n ker(K(x,))].
i=1

i=1
Conversely, it is easy to see that the argument can be made

backwards because, for any u € H\{0} there exist p,qe S and A>0

such that u=A(p-q). In fact, define P:={j[u,~>0} and
N:={jluj<0}.Thenwecantake

A= Zuj=—}3uj;60
jeP jeN

f

u.

3\1— if jeP

Pi= |0 otherwise

\

;;—11‘- if jeN
9% =10 otherwise.

S

One can show that



H 0 [ Aker(S(e)) 0 ker( S K] \ (A [ker(S(x)) n Ker(ki(x))] =

i=1 i=1

Hn [?‘\ker(Si(xi))] N [ker(iKi(xi)) \ (r%ker(l{i(xi))].
i=1 i=1 i=1

We expect that if the number of consumers increases and their

. n .
matrices BY(x;) are not related, then H n [ ker(S¥(x))] has more and
i=1
more chances of becoming empty. Therefore, we hope that assumption

II' will be satisfied when the number of consumers in the economy is

large.
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3. Examples of instantaneous demand functions

3.1 Introduction

In this chapter we study a family of instantaneous demand funec-
tions that satisfy most of the conditions imposed in chapter 2. We con-
struct these instantaneous demand functions by solving an optimization
problem. In section 2.2 we give some small-scale examples obtained from
the classical Cobb-Douglas and Constant Elasticity of Substitution utility
functions. In section 3.3 we study continuity and differentiability proper-
ties of these instantaneous demand functions. Finally, in section 3.4, we
study the” solutions of the economic ‘model as time goes to infinity in the
case that each consumer has an instantaneous demand function in this
family.

Let L ¢ R™ denote the consumption set for a consumer. We
assume L is closed, convex and bounded below.

In optimization there are two properties closely related to con-

cavity (or convexity):
3.1.1 Definition

We say that u :L - R is strictly quasiconcave on L if

x!1x? e, x!#x?

u(x?) = u(x) = u(Ax®+ (1-A)x!) > u(x!) WwAe(0,1).



47

3.1.2 Definition

Assume u :L -+ R is differentiable at %X, then u is pseudoconcave

at X with respect to L if

xe€L

VuWx®) (x-x)<0| — u(x) < u(x).

u is pseudoconcave on L if it is pseudoconcave at each x€L.

Suppose the consumer has a wutility function u:L - R to
represent his preferences in L, which is continuous and strictly quasicon-
cave.

Given an endowment x€L and a price vector p&S consider the

following problem :

max u(x+9)
s.t. <p,6>=<0

x+del.

If 6° denotes the optimum for this problem (the existance and
uniqueness of the solution are guaranteed by theorem 3.3.5 below), we
will assume that the consumer has an instantaneous demand function
proportional to 8°, i.e. there exists a>0 (independent of x and p) such
that d(x,p) = aé’.

Note that x + hd(x,p) € L for all he[0,1/a] and therefore
assumption vii) is satisfied. Also, this instantaneous demand function

satisfies the Instantaneous Walras Law.




3.2 Examples

In the following three examples we will take L = R?.
1) The Cobb - Douglas utility function (Varian[24] ) is

u(x,%;) = xfx4™® where a€(0,1). Consider then the problem:

max (x;+06,)2(xzs+05)1™
s.t. p1(51+p262$0

(X1+61,X2+(52) € Rf .
The utility function u can be replaced by any equivalent utility

function of the form yeu where % : R - R is strictly increasing. In par-

ticular if we take ¥ = log we can write the last problem:

max {alog(x;+6;) + (1—a) log(xa+065)3
s.t. P161+p362 <0

(X1+61,X2+62) € RE .
The solution to this problem is:

8t = a P2 Xp—(1-a) p; %1 65 - (1-a) p; x;—a Pz Xz
! P P2

An important special case is when a = %. In that case,

6; _ P2Xa—P1 X3 52 = P1 X1—P2 X2 _

2ps 2 2 pz
2) The C.E.S. (Constant Elasticity of Substitution) utility fune-

1
tion (Varian [24] ) is u(x;,xg) := (x§+x8)? p#0.
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Again here we modify the utility function by applying the func-
tion Y(&) =& if p>0 or Y(§ = —& if p < 0. The solution we get for

the maximization problem is in this case:

1 1
o _ Paxe—(P1ps”) ' Px; . _ Pixa—(Pi*pa) ' Pxe
0; = 0 0g = T .
P1+(pypz?) 1P pz+(piPp2) 1P
An important special case here is when p=-1. Then
u(xy,x2) = —(—1—‘*‘ 1—) and:
Xy Xz
60 = P2X2—V P1PeX; 63 = P1X1—VPiP2X2

PitVDPiP2 P2tV PiP2

One might think that all the instantaneous demand functions
built in this way are linear in x. But this is not so.

XXz

3) Consider the utility function u(x;,xs) := log e
1

This utility

function is concave on RZ.

The solution of the maximization problem is in this case:

® + Y N
81z —(xg+1) + ~ J PEPe . P10
P1 Pz




3.3 Continuity and differentiability of the demand functions

3.3.1 Definition

We say that u :L -+ R satisfies local nonsatiation if for every &>0

and every x€L, there existsa y&€ x+eBn L such that u(y) > u(x).
3.3.2 Theorem

Let L ¢ R™ be closed, convex and bounded below. Consider the
set F(z,p):= {6ER”‘ | z+6€L, <p,6> =< O} as a mullifunction from
L xint R into R™. Assume that z°c and p®cint R satisfy:

H@®% n (int L-z% # ¢ where (1)

H(p% = [ZER’"' | <p°,z>$0}.

Then Fis L.s.c. at (z°%p9).

Note:
If X°eintL, Oe€H(PY n (int L-x°. Thus, in particular, F is

ls.c. on int Lxint R

Proof:
Let QCR™ be any open set such that Q nF(x%p%) # ¢. We
need to construct N(x% and M(p®), neighborhoods of x° and p° such that

Q NnF(x,p) # ¢ for every xeN(x% and peM(p?).
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Let 60€Q NF(x%p% and 7>0 be such that Sp+nBc Q. Let
g €H(p% n (int L-x% and write (8q,g] := { (1—A)Sg+Ag | A€(0,1] }. Then

keH(p® n (int L—x% for every ke (pg], because 6, F(x%p% =
H(p% n (L-x% and H(p® and (L—x% are convex sets.

Pick kg€ 127—B such that 6&p+ko€ (6p,g]. Then there exists an
£€(0,n/2] such that g+ko+Re B (int L-x%). Therefore d&y+koteBC

(int L—x) for each xex%&B =: N(x7).

0,

0
Let 7€ 5 be such that p%+%B c int R™. Since the func-

tion from R™ to R defined by p - <dg+kq,p> is continuous and nonposi-

tive at p% there exists v €(0,7] such that:
<6g+Ko,p> < E—“S—H—- wvp ep+yB =: M(p?).

For peM(p% define:

ko if <(50+k0,p> <0
k(P) = - <60+k0,p>

0 otherwise.
lIpll?

Then

<0g+ko,p> if <Optkep>=0

<8g+ko,p> .
<Og+Kke.p> — ——O—kip———<p,p> =0 otherwise

IIpl?

<8g+k(p),p> =

and




0 if <Bg+kep>=<0
||k(p)"k0”= <60+k0vp>

otherwise.
lIpll

<otkop> & p0)
< ¢. Therefore, for each peM(p®
ol 2l peM(E)

there exists a point k(p) such that |lk(p)=kell < € and <&p+k(p).p> =< 0.

But

Hence 0&ot+k(p) € dotkoteBC (intL—x) for each xe€N(x%. Thus
Sotk(p) € F(x,p) for each xeN(x%) and peM(p®. But also
l160+k(p) =Sl = k(P = |Ikoll + [[k(p)—koll < g—+ RS -Téz—+ g—= n. Thus

So+k(p) € 8o+ B c Q and therefore 6y+k(p) € Q N F(x,p).

Note:

This theorem could be proved using theorem 1 in Robinson [17].

In order to do that we could define
Z:=1(6,z)eR™XL | d-2z+x=0 and <p,6>=<0}.

Then F(x,p) =[I0]Z(x,p) and it is easy to see that if £ is Ls.c.
at (x,p) then F is Ls.c. at (x,p).

One can check that condition (1) is equivalent to the regularity
condition stated in Robinson [17] for the system of inequalities defining

the set £. Therefore £ isl.s.c. at any point (x,p) satisfying (1).



3.3.3 Corollary

If L =R then Fisls.c. on L\{Qxint R

Proof:

Let x°e€IL\{0} and p°cintRP®. We have to show that
H(p% n (intL-x°) # ¢.

Since x% € R®\{0}, there exists j€ {1,..,m} such that on > 0.

Define x € R™ by

xete if k#j
Xg = X-O
—215— if k=j
| p9x0
where ¢ 1is any number in the open interval |O, E‘E"LT . Then
V Px
kst

X = (Xy4,..,.Xy) € int RP. Also
X0
<px—x®>=¢ 3 pf - pf —é—s 0.
kwj

Therefore x—x° € H(p®) n (int L-x9).

3.3.4 Theorem

Let L, F and H be defined as in the previous theorem. Then Fis

u.s.c. with convezx compact images in L Xint R




Proof:

Let XmmERm‘ such that xgi, < x for every x€ L. and define:
C(x,p) = [6€Rm | x+6 = X, <p.6> <0 }

It is easy to see that C(x,p) is closed, convex and nonempty for
each xe€lL and each peRP (since 0€C(x,p)). For peintR® C(x,p) is

compact.
Since  F(x,p) = {6€R’n | x+6€l, <p,6> =< O] = C(x,p) N (L-x),

F(x,p) is closed convex and 0€F(x,p) for all x€L. and peRP. Also
F(x,p) is compact for p€intRE.
Take x°€L and p°cintR™. Define 0+ := Xpm—x° and let x and

p in R™ be such that:

x-x%=<e:=(1,.,1) € R®

300 wi=t,.,m

p€P(p%:={qe R™| -%—p,-"s 4= 3

Let 6 be in F(x,p). Then x+d6€l, so X+06= X, Thus
6= Xpin—X> Xpn—(x°+e) and therefore ;= 0o5—1.
Also x%cLl implies x%= x5, S0 6e= Xp,—x°<0. Thus

60j“"1 < 0 for all j=1,..,m. Hence

<p.o>=0 = p] -2 Pi6
1#1
p=%pl>0 .
0; = 0s;—1 = —p;6; < —p;(d.—1) Wi=l,..,m

3
"‘(501“1) >0, = 'é—pio = 0< -P; 601 )< "'é"'pl (601 l) 7i=1,...m



m m
= po= =23 pP(Gu-1) < -33 p0(6u-1) = 23 P (1-54)
R {mj R i=1 R i=1

= & < Lﬁp"(l—-d.-) < _B_in: p2(1=64.)
i 2Pj & i Pjo o P i

m
Therefore F(x,p) € {S€R™ | §oj—1 <5< —33—2 p2(1-6+) } =: G
Py i=1

for all x<x%+e and peP(p%. But G is a compact set, therefore there
exists R > O such that F(x,p) cRB for all x<x%+e and all peP(p?,

and we can write:
F(x,p) = (L —x) n H(p) = [(L - x) nH(p)] nRB.

Since L is closed, it can be shown that the multifunction
(x,p) » (L—x) n H(p) is closed. But the multifunction (x,p) - RB is con-
stant and therefore u.s.c. Hence, by theorem 1.1.6, the multifunction F is

u.8.C.

3.3.5 Theorem

If L ¢ R™ is closed, convez and bounded below, and w:L » R1is
continuwous and strictly quasiconcave, then the problem.:
min w(z+6)
s.t. <p,6>=<0

z+d € L

has a unique solution 6(z,p) for each p €int R and each z€lL. In

addition, 0 is continuous af any (z.,p)€ L xint RM® satisfying (1). In




particular 6 is continuous on int L xint R
If we also assume that u salisfies local nonsalialion, then

<p,6(z,p)> =0 foreach z €L andeach p €intRM™.

Proof:
Since u is continuous, it has a maximun on F(x,p), say at x+ ¢°.
If there is another optimal point 8!, i.e. 6! € F(x,p), 6'#6° and

u(x+6%) = u(x+61) then:
u(x+(AS1+(1-A) 69) = u(A (x+61)+(1-A) (x+69) > u(x+46% WwAr€(0,1).

But F(x,p) is convex, so Ad'+(1-A)6% € F(x,p) for all A€(0,1) ,
which is a contradiction. Therefore the maximization problem has a
unique solution that from now on we denote by 6(x,p).

By the "maximun theorem' (see theorem 1 in Robinson and
Day [16] ), 6 is continuous. |

Now, assume that u satisfies local nonsatiation. Let x€L and
VpE-:intRf.“. If <p,6(x,p)> < 0 there exists ¢>0 such that <p,6> <0 for
all 6€6(x,p)+¢eB. But then, by local nonsatiation, there exists a point
y € (x+d(x,p)+eB) n L. such that u(y) > u(x+6(x,p)). Write y = x+96;
then &> |ly—(x+d(x,p))l| = ||6 —6(x,p)|| and 6 F(x,p) which is a con-

tradiction. Therefore <p,8(x,p)> = 0.
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3.3.6 Corollary

If L =RP and wu satisfies condition (1), then 6(z.p) 1is con-

tinuous on L\{0}xint RT.

With little stronger assumptions we can show that 6(x,p) is
locally Lipschitz continuous and therefore (by Rademacher’s theorem)
almost everywhere differentiable.

The following theorem is an immediate consequence of
theorems 2.1 and 4.1 in Robinson [18].

Consider the problem:

P(a) max u(x,a)
s.t. g(x,a)<0 i=1,.r

h(x,a) = 0 i=1,..,s

where a€A, ACR¥ is open and u(.,a), g(.,a) and h(.,a) are Frechet
differentiable functions from some open set Q ¢ R™ into R, R and RS

respectively, for each a€A.

du(x,a)

o and V2u(x,a)

Let us denote V,u(x,a) the vector

i=1,..,m

8%u(x,a)

th tri
e square matrix Fx,0%

ij=1,..m

The optimality conditions for P(a) can be written as the general-

ized equation:

[V, L(x,a,A4) Ix
GE(a) 0e€| —g(x,a) + Npmygrxge| A
—h(x,a) 7




where L(xaAu) = —u(x,a) + Yng(xa) + 3uhixa).

i=1 i=1

For any point x satisfying the constraints of P(a) let us denote
I(x,a) = [i=1,..,r | gi(x,a) = O}
and, for any solution (x,A,u) of GE(a), let us denote
I*(x,A,a) = {iEI(x,a) | A >0 }
O(x,A,a) = [iEI(x,a) [A=0 }
3.3.7 Theorem

Let u,g and h be functions from (I1x4 lo R, R" and R®, respec-
t'!',vely’, which are twice differentiable with respect lo their first argu-
ment at @ point (Z,8) € (I1XA.

Suppose that T, together with poinis AER and GeER® solves
GE(&). Assume that:

i) V2u,VZg and V2h are continuous at (Z,a)

%) there is @ v>0 and neighborhoods Vof T and W of @ such that for

each T in Vand for each a! end a? in W:

1Vu(z,2!) - V,u(z,a®) | < vla! - a?||

1V29:(z.2Y) = Vz9:(z.0®) || < vlla! = a?|| Wwi=t,..r
lgi(z.ah) = gi(z.0®) || = vlla! - a?|| Wwi=1,.r
1Yk (z,0h) = Vo by (z.0®) || s vila! —a?|| wi=l,.s
lhi(z.a) = hi(z.a®) [ s v]a! - a?|] Wwi=l,..s
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iii) the gradients of the binding constraints are linearly independent, i.e.

Vee:(x,a) | i€ 1(xa) } u {Vxhi(‘x,a) | i=1,..,s } is linearly independent

iv) the strong second order sufficient condition:

yER™\ {0}
<Vegi(%,3),y> =0 Wwiel*(xAa) } = y'VAL(XA)y >0
<Vghi(x,a),y> =0 Wwi=1,.,s
is satisfied.
Then there exist a > 0, neighborhoods N of X and U of d and a
single-valued function x:U -+ N such that for each a in U, x(a) is the
unique solution of GE(a) in N. Furthermore, for each a! and a® in U one

has:
Ix(al) = x(a®) || = «|la! — a%||.

We can get as a corollary a result that is a little stronger than

the one stated by Cornet and Laroque [9].

3.3.8 Corollary

Lel u,g and h be defined as in the previous theorem. Suppose
that T solves P(&) and that u, g and h satisfy the properties i), i) and
1) of the previous theorem at (Z,&).

Also assume that:

iv’) there is a neighborhood Vof T and W of @ such that for each z in V

and for each ain W:




g:(.,@) is convez in V
h;(.,a) is af fine in V
Yy ER™\{}} and <Vyu(z,a)y>=0 = y!V2u(z,e)y <0.
Then, there is a neighborhood U of @ and a funclion z :U - R™
such that:
a) z(8)=%
b) z(e)is the mazrimizer of P(a) for eachain U

c) xis Lipschitz continuous on U.

Proof:

Because of iii), the opﬂimality conditions are necessary at X.
Therefore there exists A in R* and  in RS such that (X,A,Z) solves GE(a).

In the other hand, condition iv') implies u(.,a) is strictly
quasiconcave for each a in W (look at lemma 3.3.12 below). Therefore, if
aEW and (x,A,u) solves GE(a), then x solves P(a) and, by convexity of
gi(.,a) 1=1,..,r and h(.,a) i=1,..,s, the solution of P(a) is unique.

But condition iv') also implies that the strong second order
sufficient conditions for P(d) are satisfied at x:

- 3
A Vegi(%,3) + 2 Vohi(%,@) so

i=1

Vyu(%,3) =

"
i

<V,gi(%3),y> =0 Wwiel*(zA,3)

. <V u{¥%,a),y>=10.
<V,hi(%E),y> =0 Wi=1,.s = <VauRa)y>=0

But

Vou(xa),y> =0 = y'Viu(x,a)y <0
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g;(.,8) is convex => VZg(%,a) is positive semidefinite for each i=1,..,r
hi(..a) is affine => V2h(%,d) =0 for each i=1,..s.

Therefore:

r 3
Y VEL(RE)Y = v Vu(za)y + Yy Vig(xa)y + 3y VEh(z,a)y

i=1 i=1

> -y*V2u(z,3)y > 0.

In our case we are interested in the problem:

P(x,p) max u(x+6)
s.t. <p,6>=<0

x+6 € L.
3.3.9 Lemma
Let L be a closed convezx subset of R™. Assume that intL # ¢ '
a.ﬁd that x €L and p € R™ salisfy the following condition.:
—p € Np(z). (2)

Then there is @ %€ R™ such that <p,6% < 0 and 6%¢<int (L —z).

Note:

Condition () is satisfied if x€intL and p # 0.




Proof:

Let x%cintl. Since —pg Ni(x), there exists a point x'e€l, such
that <p,x'-x> < 0.

Define x*:= Ax! + (1-A) %0, then x» € intL for each Ac [0,1).

Also, there exists A'€[0,1) such that <p,x*—x> <0 for all
A€ A’ 1).

Take any A in [A",1) and define 69 := x*~x. Then <p,6% < 0 and

6% € intl—x.

Assume L:= {xeRm | &(x)=<0 i=1,..,r} where g;:R™ SR is

twice continuously differentiable, convex and locally Lipschitz with Vg;
locally Lipschitz on R® for all i=i,..r.
Also assume that u:R™ -» R is twice continuously differentiable,

with Vyu locally Lipschitz continuous, and that
heR™, h#0 and Vu(x)h =0 = h'VRu(x)h < 0.

In particular this last assumption implies that u is strictly quasiconcave
(see lemma 3.3.12 below) .

Then the problem P(x,p) can be written:

P(x,p) max u(8,x,p)
s.t. go(6,xp)=<0

gi(é,X,p) =0

where u(d,x,p) := u(x+6), go(d,x,p) := <p,6>, and gi(6,x,p) := gi(x+6)

i=1,..,r.



Finally assume
iii") {ngi(d,(x,p)) | i€1(8,(x,p)) ] is linearly independent for any ¢ satisfy-

ing the constraints of P(x,p) and for any x in L and p in int RP, where
I(3,(x,p)):= [i::O,l,..,r | g;(6,x,p) =0 ]

Then d&(x,p) is locally Lipschitz continuous for any
(x,p) eLxintRP satisfying (2).
There is an interesting case where i) and iii") are satisfied trivi-

allyy If L=RP them g(x)=-x i=1l,.,m. Any m vectors from
[p, - i=1,..,m} where pe€intR® and et:=(0,..,0,1,0,..,0) € R®, are

linearly indepe_ndent.»

If xeRP x#£0 and peintRP then the system:

[<p,(5> =0
x+0; =0 i=1,...m
has no solution because if §; = —x; i=1,..,m, then <p,6> < 0. Therefore
the conditions i) and iii’) are satisfied if we take A = RP\{0{xintRP® and
0 :A » R™ is locally Lipschitz continuous. Moreover, it is easy to see that
$ is also continuous at (0,p) for any p €intR™

For the following three lemmas assume L CR™ is convex,

u:L -» R is twice continuously differentiable and that:

Vu(x)h=0 = h'VPu(x)h <0 wxel WvheTy(x)\{0]. (32




3.3.10 Lemma

Assumne that the points T,z € L are such that Vu(z)(z-z) <0

and T # z. Then Vu(Z+t(z—Z))(z-Z)<0 ae. te[0,1].

Proof:
We will show that for each t€[0,1) such that
Vu(x+t (x—%)) (x—%) = 0 there exists a 6> 0 (depending on T, x and X)
such that:
Vu(R+t (x-%)) (x-X) < 0 Wwte (T,1+9).
Define g(t) := Vu(x+t (x—%)) (x—X). Then

g'(t) = (x—7)'VPu(z+t (x—%)) (x—%). and
g(t) = g(®) +g'(M) (t-1) + o(|t-T|)
= (x—R)'VRu(x+1 (x—%)) (x—%) (t-1) + o(|t=T|).

But x—% = 1_1__{ (x = (X+T(x—X))) € Tyx+I(x~%) and

Vu(x + t(x — %)) (x = %) = 0, therefore (x - D' VPu(x + T(x - ®)) (x — %) < 0.

Since lirg-qg-ltl:{ﬂ)—= 0, there exists 6>0 such that
tt -

J—"ijtt—t_it-m- < —(x - ®)'V2u(® + T(x = %)) (x — %) for each te (Li+6) and

therefore g(t) < 0 in the same interval.



3.3.11 Lemma

If Z,z€l, T #z and Vu(z)(z—z) <0 then w(z) < u(z). In

particular, u is pseudoconcave (in fact u is siricily pseudoconcave).

Proof:

We have that:
1
u(x) = u(®) + fVu(+t (x—%)) (x—%) dt
0

and by the previous lemma Vu(X+t(x—%)) (x-%) <0 a.e. te[0,1], there-

fore u(x) < u(x).

®
3.3.12 Lemma

w :L » R s strictly quasiconcave.
Proof:

This proof is a modification of the proof of theorem 9.3.5 in Man-
gasarian [13] pg 143.

For x° and x! in R™ let us denote:
[x%x!] := {}\xl +(1-2)x% | r e [0,1]]

(x0x1) := [)\xl +(1-0% | ae (0,1)} and
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= Ax! + (1-A)x° for A e [0,1].

The proof is by contradiction. If u is not strictly quasiconcave
then there exist x% x'e€L and A€ (0,1) such that u(x!) = u(x% and
u(x!) < u(x9).

Therefore, there exists % € (x0x1) such that

W(X) = min_ u(x). Hence u(x) (x° ~%) =0 and Vu(x) (x! - %) = 0.
x€ [x0,x1]

Since % € (x%x!), there exists a A € (0,1) such that % =xM

Thus

0= Vu(R) (+° - %) = AVu(®) (x* —x!) and

0= Vu(x) (x! = %) = —(1-A) Vu(g) (x - x1)

therefore Vu(x)(x®-x") =0 and Vu(x) (x!-%) =o0.
But by the previous lemma, it follows that u(x!) < u(x), which is

a contradiction.

We shall prove the following theorem for L = R, even though it

is true for more general feasible sets.
3.3.13 Theorem

Let L =R oand w:L->R be twice continuously

differentiable satisfying local nonsatiotion and the property (3):

Vu(z)h =0 = h'VPu(z)h <0 Vvzel he T (z)\{O .
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Assume that for any b € R with &>0 and for any p €iniR,

the solution T to the problem.:

max u(z)
st <p,xz><b

z €L
is such that Z >0. (For example if for each z €intR* there is a level
surface of u, {yEL lu(y)=c }, separating = from 8L, i.e. for each
continuous funcfion y :[0,1] » R™, with y(0) = z and y(1)€dL lhere

is @ t €(0,1) such that y(t)€intRT and u(y(t)) = c.) Then &(z.p) is

continuwously differentiable on int R xint R,

Proof:
We are dealing with the problem:

(M) max u(x+9)
st. <p,6>=<0

6= —x.

Since x€int R and peintRT®, the feasible set

{6 ER™ | 6= ~x and <p,6>=0 satisfies Slater's constraint

qualification (Mangasarian [13] ). Therefore the Kuhn - Tucker conditions
are necessary. They are also sufficient because u is pseudoconcave.
Also condition (3) implies that u is strictly quasiconcave, so we

have all the assumptions of Theorem 3.3.5. Therefore &(x,p) is well




defined and at least continuous.
By local nonsatiation, if 6 denotes the solution of (M) (for a fixed
X and P), <p,6> = 0. Also, by assumption, ¥;+3;>0 for all j=1,.,m,
therefore the Kuhn - Tucker conditions are:
—Vu(X+8)+Ap =0
<p,6>=0
A=0.
Disregard the last inequality to get H(8,AX,p) =0 where
H :R™xRxR™x R™ » R™+,

The matrix

V(G';‘)H(B,X,i,p) =

~V2u(x+8) P
' 0

is nonsingular because if

| VenHEG.A%,D) [5] =0 'then {;tv::-(?%) ¢+np=0

But, from the first equality, since pe€intR], if £€=0 then
n = 0. Otherwise P'€=0, hence APt = Vu(x+6)& = 0 and therefore
£VPu(Z+3) € < O (note that since x€intL we have Ty (x) = R™) Premulti-

ply the first equality by & to get:
—£VPU(R+B)E+NDE=0 = npE= EVRU(R+3)E <O
which is a contradiction because p'¢ = 0.

By the Implicit Function Theorem, there is an open set

U ¢ R™XxR™, containing (%,p) and a function (4,A) :U » R®xR such that:
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H(6(x,p).A(x,p)x,p) =0 V(x,p) €U
6(%P) =6 AXDP)=A
¢ and A are continuously differentiable in U.
Since Vu(x+38) # 0, A >0. By shrinking U if necessary, we can

ensure that A(x,p) > 0 for all (x,p)€U; then 6(x,p) is the solution to
the problem (M) for each (x,p)eU.

3.4 Liapunov functions and stability of Pareto maxima

In this section we review some results that appear in Aubin, Cel-
lina and Nohel [2].

Let us recall some of the notatidn we used in chapter 2 and the
previous sections of this chapter that we will be using here.

We have n cbonsumers; consumer i is characterized by its con-
sumption set L; ¢ R™, which we assume closed convex and bounded below,
and its demand function d;:L;xS - R™.

The set of available commodities M ¢ R™ is closed convex and
satisfies conditions that guarantee that the set

n
K:={x=(x,..%p) € [[L; | Axe M} .
i=1

i=
is compact and nonempty (for example conditions ii and v of chapter 2).

n
For x = (X3,-.%a) € [[L; and p€S we write:
i=1




dl(X;:P)
d(x,p) := and D(x):= {d(x,p) |pesS ]
dn(¥%5,P)
Aubin, Cellina and Nohel wofk with loss functions rather than
utility functions, but our functions are the same as theirs up to a change
of sign. (Also they use the implicit Euler method while we use the explicit

Euler method in the proof of the existence theorem.).
3.4.1 Definition:

The solutions of 0€D(X) are called the critical points of the
multifunction D. If €K is such a critical point, the constant trajectory
x(t) =X is obviously a solution to problem P’ of chapter 2 (with initial
coﬁdi’cion Xo = X).

Let V:K - R® be a function. A point x€K is a Pareto max-
imum of V on K if there is no y€K such that V(y)=V(X) and

V(y) # V(X), i.e if we set
IIEX) :={yeK | V(y)= V(%)

e K is a Pareto maximum of V if and only if

[I(x) = V-IV(x).
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3.4.2 Theorem:

If Vis continuous on K, then for every T € K the set I[I(Z)

conlains a Parefo mazimal point.

Proof:

Let x€K and define the following partial ordering on II(%) :

V(x) = V(y)
x,y€II(X) then xRy <« V(x) # V(y).
By the Hausdorff Maximal Principle, there is a maximal totally
ordered subset T of TI(X).

Let x;,...%3 € T, then we can assume that x; X x3.. T %;. There-

s . .
fore xg€ NII(x;). But K is compact and [I(x) c K is closed for each
i=1

x €K because V is continuous, therefore N II(x) # ¢.
xeT

T has a maximal element Z for if not let Z € N T(x). Then, for
xeT

each x€T there exists y€T such that x<y. Therefore
V(Z)=V(y) = V(x) and V(y) # V(x); so V(Z)=V(x) and V(Z) # V(x), ie.
xXZ Thus Z>x forall x€T and Z€T because T is maximal. This is
equivalent to saying that Z is maximal for T which is a contradiction.

Now we show that in fact Z is a Pareto maximal point for V on
K. By contradiction, assume that there exists z°€K such that z'>z.
Then z'>x for all x€T and, since T is maximal, z°€T. But Z is maxi-
mal for T; therefore 2> z° which is a contradiction because the relation

T does not permit the existence of two points x,y € K such that x<y




and y T x
3.4.3 Definition:

Let u:R®* > R and x,h € R® be such that the limit:

u(x+9h) — ulx)
i)

Du(x)(h) := gijg

exists. Then we say that u has a right derivative, Du(x)(h), at x in the

direction of h.

Definition:
Let u:R® - [—, +x) be a concave function. The domain of u is

defined by:
domu := | x€R® | u(x)'> —o0 }

We will denote by H, the subspace parallel to affdomu,ie H,
= —x + affdomu, where x is any point in affdomu (in particular, x can

be any point in domu).
3.4.4 Theorem

Let u K » [—w, +o) be a concave funclion with a nonempty
domain. Let z €domu and h e€R be such that the segment
[z —Fh,z + Oh] is conlained in the domain of w for some ¥ > 0.

Then Du(z)(h) exists and satisfies:



) wE)=ul =Fh) . peypy s wlz +Bh) ~ u(z)
0 9

2) h - Du(z)(h) 1s concave and positively homogeneous.

Note:
If x€eridomu and h € H;;, then there exists a positive number
¥ such that the interval [x —¥h,x + §h] is contained in the domain of

u.

Proof:
See for example theorem 2.1 in Aubin [3] or theorem 23.1 in

Rockafellar [20].

3.4.5 Lernma

Let u R » [—w,+x) be concave and z :RK - R° be Gateauz
differentiable al t €R".

If z(t)eridom u and there is a neighborhood N of t such that
z(N) c domwu, then woz 1is right differentiable at t on any direction
heR and

D(uez)(t)(h) = Du(z(£))(=' (£)h).
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Proof:

Since X(N) C domu for some neighborhood N of t, it is easy to
see that x'(t)h € Tgomo(x(t)) for all heR. It is also possible to show
that Tgomu(z) € Hy for all zedomu. Therefore Du(x(t))(x'(t)h) exists
for all heR.

It is known (see for example theorem 10.4 in Rockafellar [20] )
that u, restricted to domu, is locally Lipschitz continuous at any point
ze€ridomu. Then, if L is the Lipschitz constant for u near x(t), for ¥

small enough

L] x(t + 9h) - x(t) _ <(t) bl + u(x(t) + 9x' (L h) — ulx(t))

| 4 9
< u(x(t + 9h)) — u(x(t))
U,
0, 0

Taking limits, we conclude that: Du(x(t))(x'(t)h) = D(uex)(t)(h)
< Du(x{t)(x'(t)h).

3.4.6 Definition:

Let v:(R™™ > [-w,+x) be a concave function with
K cridomv. Assume that D(x) ¢ H, for all x€K. Then v has a deriva-
tive Dv(x)(z) from the right at each point x€K, in any direction ze€D(x).

Let us define

B(x) := inlll){x) Dv(x)(z).
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We say that v is a Liapunov function on K for the multifunction D

if By(x)= 0 for each x€K.
3.4.7 Lemma

Let L c R™ be closed, convex and bounded below, and
U :R™ - [—o, +x) be a strictly concave function with L C ridom w.
For each. x €L and each p €S denote by 6(z,p) the solution

of the problem.

max u(z + 6)
s.t. <p,6>=<0

z+8e L.

Then Du(z)(6(z,p))=0 foreach z€L andeach peS.

Note:

Since strict concavity is a stronger condition than strict
quasiconcavity, we have all the conditions of theorem 3.3.5. Therefore
6(x,p) is well defined for all (x,p) € LxS and continuous at each point

(x,p) satisfying (1).

Proof:

By definition we have that 6(x,p) € —x + L € affdomu and
u(x) < u(x + 6(x,p)). Therefore, since x € L c ridomu, there exists a
positive number ¥ such that the interval [x —96(x,p),x + 96(x,p)] is

contained in ridomu.




Also, by strict concavity:

ulx + Ad(x,p)) = uA(x + 8(x,p)) + (1-A)x) > ux) WA€(0,1).

Thus
— 1 WX+ A6(x,p)) —u(x)
Du(x)(d(x,p)) = Algg,, Y =0.
W
3.4.8 Theorem

For i=1,..n let the wutility function wu; :R™ - [—x, +x) be
strictly concave with L, c midomw;. For 2€L; and p&€S denole by

6;(z,p) the solution of the problem.:

max w;(z + &)
s.t. <p,6>=<0
z+d6€l;.

Assume that for each 1i=1,..,n there exists a constant o; >0
such that d;(z,p) = a; 8;(2,p) foreall z€l, andall peS.

For z = (z,,..,z,) € (R™)" define v;(z) := w;(z;) and the func-
tion V(R™)" » R* by V(z):= (vy(z),..,v,(z)). Then each v, is a

Ligpunov function on K for the multifunction D and, for every y€RP

n .
Y 7: v; is also a Liapunov function for the multifunction D.
i=1



Proof:

n
We only need to mention here that for all x€ J]L,
i=1

D(x) ﬁai(—-xi+Li) C ﬁHul = H,
i=1 i=1

n n
and that K ¢ I’[L1 C [[ridomuy; c ridomv;. Therefore v; is a Liapunov
i=1 i=1

function on K.

The inequality:

n
Y 7By(x) B, ()
i=1 12.;71"1

n
holds for any y€R}, so })7;v; is also a Liapunov function.
i=1 :

3.4.9 Theorem

With w;, v; and d; defined as in the previous theorem, let us
suppose that the assumptions i - vii and I - /1] of chapter 2 are satistfied.
If z:[0,T] > K is a solution to the problem P’ of chapter 2,
then t » w;(t) := uw;(z;(t)) is an absolutely continuous nondecreasing

Sfunction for each i=1,.. n.




Proof:

The solution x :[0,T] » K is absolutely continuous; therefore x is
differentiable almost everywhere in (0,T). Also K c ridomv;, therefore
the right derivative D(vjex)(t)(h) exists for almost all t in (0,T).

On the other hand, by lemma 3.4.7 D(v)(x((t))(d(x(t),p(t))) =0
for all t€[0,T].

But x'(t) = d(x(t),p(t)) almost everywhere in (0,T), therefore
D(v)(x(())(x'(t)) = Dwy(t)(1) = 0 for almost all t in (0,T).

Finally, the function v; being Lipschitz continuous on K (recall
again theorem 10.4 of Rockafellar ) and the function x being absolutely
continuous implies that v;ex is absolutely continuous. In fact, if L is the

Lipschitz constant of v on K:
=g <og=s..=f=T =

0=
,4_% | viox(B;) — viox(oy) | < L 2 | x(B;) — x(oyy) | < Le .

N
whenever ) (B; — a;) < 6. Therefore there exists a measurable function
i=1

g :[0,T] » R such that:
T

viox(T) = v;ox(0) + fg(t)dt wT € [0T].
0

It is possible to show that g(t) = D(v;ex)(t)(1) almost every-
where in (0,T) (see for example theorem 9 on pg 103 of Royden [21] ). So,

T 0=0<T=sT



w(®) = w(o) + /D))t = w(a).

3.4.10 Corollary

Under the same condilions of the above theorem, each Fareto

mazximal point T of Von Kis a crilical point of D.

Proof:

Let us first note that the strict concavity of the functions: y
i=1,..,n implies that II(X) = V"V(x) = {x}, for if x€K is another Pareto
maximal point,

VOx + (1-A)F) > AV(x) + (1-A)V(R) = V(®) WA (0,1)
which is a contradiction because Ax + (1-A)x € K for all A€[0,1].

If we take x°=7% V(x(t))=V(X) for all t>0 by the theorem

above. So x(t) = ¥ for all t>0 and

0 = x'(t) = d(x(t),p(t)) = d(x,p(t))  Wwt=0.

Therefore 0€D(X).




3.4.11 Corollary

Under the same conditions of the above theorem, for each

z € K, lI(z) contains a critical point of D.

Proot:
It is an immediate consequence of theorem 3.4.2. and corollary

3.4.10.

3.4.12 Definition:

Q < K is stable for the problem P’ of chapter 2 if for any neigh-
borhood M of Q, there exists a neighborhood N of Q such that, for any ini-

~ tial value x°€N, all the.solutions of P’ starting at x° remain in M.
3.4.13 Theorem

Suppose we have the same assumptions of the previous
theorem. Then, for aeny Pareto mazimum T €K, the subset

[I(z) := V"1V(z) 1is stable.

Proof:
See theorem 3.3 on pages 110-111 and remark on page 112 of
Aubin, Cellina and Nohel [2].
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We saw in the proof of theorem 3.4.8 that the inequality:

11
A:Bi(x) =Ba X
Enn<8g,

holds for any A€ R} . If we assume that whenever x is not a Pareto max-

imum, there isa A€ RE\{0} and &>0 such that:

Bf (y) = ¢ for every y satisfying wv(y) = vi(x) Wi=1,..n,
Vi

MV
=1

we can show the following:
3.4.14 Theorem

Suppose the assumptions of the last two theorems hold. Lel
z R, » K be any solulion of P’. Then, the set [z(t) | ¢ ER+} has accu-

mulalion points and any such accumulation point is a Parefo marimum

of V.

Proof:

This is a modification of the proof of the last remark on pg. 112
of Aubin, Cellina and Nohel [2].

As before, define wi(t) := w(x;(t)). We have shown that w; is a

nondecreasing absolutely continuous function and we also have:
W"i(t) = Dui(xi(t))(di(xi(t),p(t))) a.e. t>0 \7’1=1,..,n.

Since K is compact, the functions w; i=1,..n are bounded

above. Therefore, for each i=1,..,n, there exists c¢;€R such that




wi(t) » c; as t - o

Also x(t)eK for each teR,. Therefore, for any increasing
sequence {ta] c R, with t, - =, there exists a subsequence of {x(ta)}

converging to some point xeK. This point X satisfies:

(%) = sup u(x;(ta))-

Let us assume that X is not a Pareto maximum. Then, there

exists A€ RPN{0} and &= 0 such that:

Bihw(xm) =g WwWt=0.

1=1

Therefore
éxiwg(t) = ig?\iDui(xi(t))(di(xi(t),p(t))) >z ae t>0
so
é;l)\iwi('r) - i‘;}iwi(o) = z g:lAiDui(Xi(t))(di(xi(t),p(t))) dt=eT.

The right-hand side goes to +o as 7 » + which is a contradiction.



4. Numerical analysis of the economic model

4.1 Introduction

In this chapter we study numerically the economic model
described in chapter 2. We will discuss the use of both the explicit and
implicit Euler Methods. Some small-scale examples are provided and
solved with both methods. The programs are provided in appendix 2.

Both methods require the solution of a system of inequalities at
each iteration. We have decided to use a method due to Robinson [15] for
solving these systems. In general we will not meet the requirements that
guarantee the é’onvergence of this method, so a different technique may
be required. It is not the purpose of this chapter to address this prob-
lem. For the examples we have tested, the method we are using has per-

formed adequately.
4.2 The explicit Euler method

By the proof given in chapter 2 we cannot expect more than to
construct an approximate solution that is an element of a sequence hav-
ing a convergent subsequence.

In the proof of the existence theorem we use the explicit Euler
method. We aré concerned here only with the solution of the technical

problems posed by the method.
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Specifically, suppose we have a h>0 such that
%+ hdi(x,p) € Ly for each x€Ll;, peS and i=1,..n, and an > 0 such
that Ny(x) C coneS, for all x€M. We are given x°€K and we choose

he(0,h]. Having x¥*€K we construct x¥*! € K by solving:
x¥*1 € x* + hDg(x¥).
This means we have to find a price vector p¥€S such that:

pjk =2t Vi=1l,..m

n
.leik +h di(Xik,pk) € M.
i=

Let us assume that there exists a convex function f:R™ - R¥
such that: M = [ZERm | i(z) <0 ] Then we have to solve the problem of

finding a price vector p¥€ R™ such that:

V. m k
) 2pf-1=0

j=1
ii) e-pf<0 Vj=1,..m (P1)

iif) 13 (¥ + hdy(xk,p%)) < 0.

i=1

v

In section 4.4 below we describe an algorithm to deal with this

problem.



4.3 The implicit Euler Method

Here we will provide sufficient conditions for the use of the
implicit Euler method, i.e. we will furnish conditions that guarantee the

existence of solution for the system

+1 _ ok ‘
_XE.._h_LE D,_.(xk“)

at each iteration k, for some fixed stepsize h. No proof is provided that
this method will generate a sequence of approximate solutions, as we let
h go to 0, having a convergent subsequence. However, it is a common
feeling among people working in differential equations that the implicit
Euler method is in general more stable than the explicit Euler method,
and in fact more stable than most of the methods derived from finite
difference schefnes. ‘

We will make use of the topological degree theory. Some of the
definitions and properties of this theory are summarized in appéndix 1.

As always, let L; represent the consumption set and d; the

demand function of consumer i. We make the following assumptions:
i) 1jis a closed convex set

ii) there exists a closed convex cone K;CRP and a point ¥ € R® such

that L; X;+Ki

iii) d; (usually defined only on L;jxS) is a continuous function from

(%' +K) xS into R™ (or can be extended continuously over (x;+K;)xS)
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iv) there is an E>0 such that x+hdi(x,p) € I; for each X€Ll;, pesS

and i=1,.n
v)  lldi(x’+Ak,p)ll < Alldi(x+k,p)|| for each A>1, ke K, and peS.
4.3.1 Lemma

Let keTy(z) and z€dl;,. Then z-Ak & i L; forall A>0.

Note:
If z€1; and z+kel; then keTy(z).

Proot:
If z-Akeintl; then there exists >0 such that

z—Ak+rBcl; and therefore -Ak+rBc Tr(z). But keTy(z) and
Tp,(2) is a convex cone, therefore Bc Ti, and thus R® = T(z). However

Ni,(z) # {0}, therefore Tr,(2z) # R™ and we have a contradiction.

4.3.2 Lemma

Under the above condilions there erxists an h'c (0,h] such
that, for every i=1,..,n, xcintl;, peS and h €(0,h"], there exists a

z € L; solving the nonlinear system z —h d,(z P)=zx.
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Proof:
Consider the homotopy Hye€ C([0,1]xL;,R™) defined by:

Hy(t,2) := z — thd(z,p).

Let u; := max{||di(x+k,p)|l | keK;n B and pES_E} and take

h;’€ (0,h] such that uh’<¥%. Define h':= min [h; | i=1,..n ] Choose
x€intl; and let R>1 be such that g—-> |lx—x;"|, then for all he (0,h"]:

Hy(t,z) # x  Wwte[0,1] Wwzed(l; n (x/+RB)).

In fact, 9(L;nx'+RB) cdL; u [3(x'+RB) n L] and  if

lz=%ll = R with z€L; then:
llz - thdi(z,p) — x| 2 llz—x%/]| — thlldi(z.p)Il = llx—x/ll
>R -thRuy — |lx—x| = l}- lx—x]l > 0
since by v) ||di(z,p)|| = Ru;. On the other hand, if ze€dL;:
z+ hdi(z,p) €Ly = z—-hdz,p) € intly = z —hd(z,p) #x.
By homotopy invariance:

1 = deg(id,(x+RB) n L;,x) = deg(Hy(0,.),(x,+RB) n L;,x)
= deg(Hh(l")r(Xi°+R B) n I—‘l’x)

therefore z — hd;(z,p) = x has a solution z € x’+RBnL;.

Condition iii) above may appear a little confusing, however in

the important case when L; = x+K; (for example L; = R) it reduces to




requiring that d;:L;xS » R™ be continuous.

Also in this case we can give an interpretation for condition v);
proportionally, the more a consumer has the less he wants to change.

We do not want to exclude the case where xe€dL; therefore we

need to strengthen our assumptions. Besides iv) above we will require

vi) —di(z,p) & TLl(z) wzedl, WpeS.

However there are cases for which this condition is too restric-
tive. Consider for example the case where L; is a polyhedral convex cone.
If z is in the relative interior of a face F of L; then it is possible that

z+hdi(z,p) € F for some peS; therefore —di(z,p) € Ty, (2).
4.3.3 Lemma

If z€dl;, and keintTy(z) then —kZ T;(z) and therefore,

Jorall A>0,2z—-Ak & L;.

Proof:

Let r>0 such that k+rBcTy(z) . If we assume that
—k € T,(z) then, since T(z) is a convex cone, B¢ Tp(z) and therefore
R™ =Ty (z) . But Ni(z) # ¢, therefore Tp(z) # R™ which is a contradic-
tion.

Now, if for some A>0 z—Ake€l; then —k € Ty (z). Therefore

z—Ak &1L forall A>0.



Thus a stronger condition than vi) is to require that:
vi") di(z,p) € intTy(z) for each z€dl; and peS.
4.3.4 Corollary

If the assumption i) to wvi) are salisfied there exisls a
h°e(0,kR] such that, for each i=1,..,n, z€l;,, p€S and he(0,h"],

there exists z € L; solving the system z —hd;(z,p) =z.

4.3.5 Lemma

r ()
Assume that d(.p):]]L;, » (R™)* 1is Lipschitz continuous

i=1
’ n
with constant o. Then for all he o,nﬁn{h’,-é-} and ze [] L,
i=1
3
z —hd(z,p) =z has o unique solution z(z,ph)e€ []L;, which is
i=1

Lipschitz continuous in z with constant (1 — ah)™L

Proof:
If z—hd(z,p) =x and Z—hd(z,p) =x z-2 = h{d(z,p)—-4d(Z,p)).
Therefore ||z —Z| = h||d(z,p) —d(Z,p)|| < ahl|z—Z||. But ah<1,s0 z=7Z.
If z-—hd(z,p)=x and Z-hd(Zp)=% then |z-7%Z <
llx — =l + hlld(z,p) — d(z.p)ll =[x — %l| + ahllz — 2Z||. Thus

llz -zl =

1 .
—L - =




4.3.6 Lemma
Suppose thal assumptions i) to vi) are satisfied and that

I3

n
d:[] L; xS » (R™)* 1is Lipschitz continuous with constant . Let
i=1

n
Then, for every z€ [[L; and he(0h™), the set ¥(z,h)
i=1

defined by

n n
o(z ,h) :={Ezi |ze [[L; and z —hd(z,p) =z forsome pesS,
i=1

i=1

1s nonemply and compact.

Proof:

’ n
Let xe JJL; and he (0,h*). By corollary 4.3.4 ¥(x,h) # ¢.
i=1

If z¥ —hd(z5p¥) = x with p*¥eS,, k=1,2, then
2! = 22| = hlld(z',p") — d(z%p® || = Bh(||2! — 23] + ||p! - P?I).
For instance, if we use the euclidian norm, ||p! — p?|| = V2 for
each p!,p? € S; therefore ||z! — z%|| < Bh(||z! — 23| + V2), so

Ve

1 .52 —
It -2l = 25

and in particular ®(x,h) is bounded.
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Assume that the sequence {zk} C ®(x,h) is such that z¥ - z°

Let ;pkESgg such that z* — hd(z¥,p*) = x. Without loss of generality we

can assume that {pk} is convergent, i.e. there exists p°€S€u such that

k L

p =p.

Since d is continuous, z'—hd(z'p") =x and therefore

z" € 3(x,h); so F(x,h) is closed.

Now we make the following

Assumption

There exists an h€(0,h*) such that:

x€K,he(0,h] and B(x,h) N M = $ = conv(®(xh)nM=¢.
This assumption plays the same role as assumption [ in chapter
2, and in fact:

4.3.7 Theorem

Suppose that assumptions i) to vi) are satisffied and that

LA
d: 1L xgao - (R™)* is Lipschitz continuous with constant 8. Then,
i=1

forevery z€K ond he(0,R] J(z,h)NnK # ?.




Proof:

By contradiction; if ®(x,h) nK=¢ then by corollary 4.3.4
®(x,h) N M = ¢. By assumption above conv(®(x,h)) N M = ¢.

But &(x,h) is compact, hence conv(®(x,h)) is also compact.

Therefore there is a qegto such that <q,w> < <q,9> for each weM
and g€ ®(xh).

n
In the other hand, for each peS,; there exists ze [[L; such
i=1

n
that z-hd(z,p) =x, ie. Y z; € B(x,h). By Walras law
i=1

n n -
<p, 2 Zi> = <p: E Xi>'
i=1

i=1

n
In particular, if we take p=q we can find ze HL1 such that
. i=1

n Il n
<q,}z;> < <q, 3, x> and ),z € ®(x,h). This is a contradiction because

i=1 i=1 i=1

n
in e M.

i=1

The problem is now : given x°€K we choose hE(O,ﬁ] and

7€(0,6q). Having x*€K we construct x¥*'€K by solving:
x¥ € x¥*1 — hD,(x**1)

i.e. we have to find a price p¥*'€S and a consumption level x¥*! such

that:



{
pftl=2y wi=l,.m
x¥*lel;, Wi=1,..,n

n
YxEtleM
i=1

X]M'-il - hd(xk+1,pk+1) - Xk .

\

Again, if we assume that there exist convex functions

fo :R™ - Rk", fi :R™ > R i=1,..,n such that M= {ZERm | fo(z) = 0} and

L= {z eER™ | fi(z)so}, then the problem is to find p*¥*''eR™ and

¥+ e (R™? such that

{

N D k4l
i) Elpj -1=0
]=

ii) y-pf*'=0 wj=1,..m

iii) fy(xk*) =<0 wi=1,.,n (P2)
n

iv) fo(Nxk*hY =<0
i=1

[ v) <K+ hd(xk"’l,pk"'l) —-—xKk=0.

4.4 An algorithm

Problems (P1) and (P2) can be stated as: find Z€ R® such that
g(Z) € A, where g :R° »R' and A is a nonempty closed convex cone in Rt.
In particular A is of the form (—-R}_‘)x {0} ¢ R*xR% where ti+ta =t

Robinson [15] describes an algorithm for solving this problem in
the case where g is continuously differentiable and g’ is Lipschitz continu-

ous on Xp € R® (g’ denotes the jacobian matrix of g at x).
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If L is the Lipschitz constant of g’, assume that there is a point

Zg € Xp and real numbers B and p with the following properties:

a) for each yeR' there exists £€ RS such that yeg'(zy) €—A

b) Basup[mf[né'll | g’(Zo)$€n+A} | neR' and |n||=< 1}

¢) p=min {Ilz —zol| | g(z0) + &'(20) (z — 20) € A}

d) 0<h=<¥ where h:=BLpg.

po= (1 =VY1—2h

Let h

and Q::[zlllz-—ZQHSr]. If

(1 € X, then he shows that his algorithm generates at least a sequernce.
Any sequence thus generated remains in (1 and converges at least linearly
to some Z€(l such that g(z) €A

In our case, even if we assume that f (in the case of (P1)) or f;
i=0,1,..,n (in the case of (P2)) are continuously differentiable, we cannot
expect g to be continuously differentiable because, in general, the instan-
taneous demand function is only Lipschitz continuous.

In the examples we will provide, the assumptions of theorem

3.3.13 are met. In this case the instantaneous demand function is
differentiable but still we cannot guarantee its gradient is Lipschitz con-
tinuous.

The qgestion of whether a modification of this algorithm can be
used in the general case remains open. Perhaps we could still formulate

this problem as a nonlinear nondifferentiable optimization problem.
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There are a number of algorithms in nondifferentiable optimization but
we have chosen not to use them here because they are not very efficient.

0

Starting from a point 2z°, Robinson’s algorithm generates a

sequence {z"‘] in the following way: having 2z* choose z%*! to be any

solution of
min{l]z —-z2| | g(2®) + Vg(z®) (z—-z%) € A ). (N)

This is a Newton type algorithm. ‘

We usually have a good starting point for this algorithm; in the
case of (P1) we can take z%= p*¥! and in the case of (P2) we can take
20 = (& +d(z*,p¥), p¥).

When A is a polyhedral convex cone (which is our case), (N) can
be expressed as a linear program if we take, for examplg, the 1. or the |;

norm in R®.
4.5 Example 1

Let us consider an economy with only two consumers and two
goods, where each consumer is characterized by the Cobb-Douglas

instantaneous demand function, i.e. for i=1,2:




L=R? a€(01)
[ 1
b1
vzel; WpeS di(zp) = (aipeze — (1-a) P12y) | _y
Pz
It is easy to check that
Ad(x,p) = d4(ADx,p) WX = (X;,Xz) € LixLy WpEeS (%

(1-a, 0 0 o0
0O a 0 O
0 0 1-az O
0 0 0 a

where, as always, Ax = x;+Xxz and D :=

Also d;(0,p) =0 for all peS and , if zeRZ\{0] then
dqi(z,.) :S » R® is injective.

For zeR? define:

M1
7o —t(zy +25) | t
1

g(zt) := 5

te(0,1).
t—1

"Then

dg, -1 g, _ 1
EE—(Z:t) 2t2 ’ —az'é_—(Z:t’) - ta

dga 23 8%z Zy
—(z,t) = , {z,t) = :
5 Y 2(t—1)2 " 82 ) (1-t)3

therefore g(z,.) :(0,1) > R is convex for each z€R?, for i=1,2.

Let us show that for this example, assumptions I', II and III of

chapter 2 are satisfied.



Assumption I’
Since DxeR? for each XERE and since (

*) above holds, it is
€nough to show that for each to, t; € (0,1), ze R2

and A€[0,1], there is
tha e conv{ to,ti} such that:

Ag(z.t) + (1-0)g(z,ty) € g(zt)) + R2.

We have shown that g(z,

) is convex, therefore we cap take
th = Aty + (1

—A)to. In fact we can show more, namely that

f Zo—1t, (ZI +Zz)

2t,
Ag(zt,) + (1“)\)g(2»to) = Zz‘t‘(21+22)
R(t°-1)
where
N tot, .= toti — Aty = (1-A)t,
to: t’ =

- Atg + (1-A)t; Ato + (1-A)t; — 1

Then Ag(z,ty) + (1

conv {to,tl }

Assumption I

-A)g(z,£o) € g(z,s) + RZ for each s e [tot]c

If d(x,p) = d(x,q) then xe (REXRE)\SOf

and p # q. Therefore
ADx € RE\{0} and, since d

1(2,.) is injeetive whenever z x g

Ad(x,p) = d;(ADx,p) = d;(ADx,q) = Ad(x,q).




Assumption III

Let xeRZxR? Let p,gq€ S, then there exist t,s € (0,1) such
that:

o=t 4=

For A€[0,1] let pp:=Ap + (1—-A)q, then:

At + (1-A)s ta
PAZ |1 —=(At+ (1=-A)s) | =7 |1ty

and
Ad(x,p)) = d,(ADx,p,) = g(ADx,t)) < Ag(ADx,t) + (1-A) g(ADx,s)
= Ad;(ADx,p) + (1-A) d,(ADx,q) = AAd(x,p) + (1—A)Ad(x,q)
therefore
Ad(x,p,) € AAd(x,p) + (1-A) Ad(x,q@) — RE © ¥(Ad(x,p),Ad(x,q))
for all A€[0,1]. But Ad(x,p) # Ad(x,q) implies x# 0 and p # q, there-

fore:

Ad(x,p)) # Ad(x,p) forall A€[0,1) and, by continuity,

[|Ad(x,pa) — Ad(x,p)|| < € {for Aclose to 1.

Finally, pa€[[p.q]] for all A€(0,1].

It should be clear for this example that, due to property (*), if
we have n consumers (n > 2) behaving according to the Cobb-Douglas
instantaneous demand function, the same arguments we used above
shows that assuinptions I', I and III are satisfied. However, the nice con-

vexity property of the function g(z,.) is destroyed if we have more than



two goods.

Now we need to choose a set of available commodities. Let us

take for example:
M:= {zeR2 | (21+1)% + (zo+1)% < 100} = (-1,—1) + 10B.

It is easy to see that all the required conditions are satisfied, in

particular we have that:

vgg 1 ‘
Ny(w) € cone 1 |+ |vgg|| = cone S, wwedMnA(L;xLp)
i
h = ————= ().091325
WSS 7= oo+ 1

because A(L;XLs) = R%, and any point in the normal cone to M at
w € M n A(L; xL,) can be expresed as a positive linear combination of

the exterior normals to M at the points (0,V99-1) and (V89-1,0).

4.6 Example 2

We consider now an economy with 3 goods and two consumers,
where each consumer is characterized by the Cobb-Douglas instantane-

ous dernand function. For i=1,2:

L=R} af7ne01) a+Bt+trn=1
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[ <p.z>a4 — Dy 2
P1

<P,z2>f; —Ps2

wzel, WpeS dizp) = | —= [;’; P2Z2
2

<P,Z>7; =~ P3Z3
P3

The set of available commodities is defined by

M={zeR} | (z;+1)? + (22+1)% + (z3+1)2< 200} = (-1,—1,-1) + V200B.

We have not checked for this example if assumptions I' and III
are satisfied. We can use exactly the same argument we used above in

example 1 to show that assumption Il is satisfied.
4.7 Example 3

Again let us take an economy with only two goods and two con-

sumers. Assume that consumer i is characterized by

=R
wvzel, WpeS di(z,p) = Bi(z)p

where B!:R? - R®*? is continuous (i.e. it is an Aubin type of consumer).
Write BY(z) := (BL;(2))f=1 and let us study the following two

conditions:
1) Instantaneous Walras law: <p,Bi(z)p>=<0 VWpeS Wvzel;

2) Bi(z)pETLl(z) wpeES Wwzel;.
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Note that we can think of B! as being defined only on M n R%,
where M is the space of available commodities.
In general, since we have assumed each L; to be bounded below,

say by &, we can think of d; as being defined only on (M — 3 &) n L;.
ki

Therefore we can relax conditions 1) and 2) accordingly.
Condition 1) is equivalent to saying that the matrices —B!(z) and
—B%(z) are copositive. By theorem 4.2 in Cottle, Habetler and Lemke [10]

this is equivalent to

Bi\() <0 Bialz) <0 |
if Bia(z) +Bi(z) >0 then 4Bi;(z)Bia(z) = (Bla(z) + Bi,(2))?

for each ze M N RE and i=1,2 (note that. this says that either Sg, is
negative semidefinite or has only non positive entries).

Condition 2) implies condition vii) of chapter 2 (in this particu-
lar case, where L, is a polyhedron, they are in fact equivalent). Also, it is

not difficult to see that condition 2) is equivalent to

z;=0 => B} (z)=0 and Big(z)=0

7z2=0 => Bi(z)=0 and Big(z)=0 =12,

In particular, we have that Bi(0) = 0 i=1,2. Take for example

M:={zeR?|2,+0.12;<5 and 2, +0.12,<5) and
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Bl(z) =
r-—221 + 0.3z7 -2y + 25 — 1.22% + 2,25 — 0.223
[0.521 —Rzp + 2% + 0.52y25 — 23 —25 + 0.223
B?(z) =
r'-ZZI + 0.4z% — 0.32,2, —1.52; + 225 + 0.1z} + 0.52,25 — 0.423
[1.821 — Rzp — 0.362% + 0.32,2; + 0.423 —25 — 0.125

It has been checked numerically that the matrices B!(z) and
B%(z) are copositive at any point ze{o,1,2,3,4,5 }x{o,1,2,3,4,5 }

Assumption II' has not been checked for this example so we do
not know if assumption II is satisfied. The set M is convex but not strictly

convex and therefore assumption i) is violated.
4.8 Numerical results

We tested each of the three examples above with the explicit
Euler method and the implicit Euler method. The first hundred iterations
are listed below for each case.

We encountered some difficulties when using the implicit Euler
method with the first example. We believe they may be overcome by, for
example, using double precision. By perturbing the current iteration by
a small amount and restarting the algorithm, we were able to continue
the method. Even with these difficulties, the method yielded results com-

parable to those achieved with the explicit Euler method. In fact, in all
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three examples, the results achieved with the two methods are compar-
able.

We can observe in the numerical results for example 3, an
"abnormal behavior"” of the market. Each consumer loses all of his assets
in a short period of time. This has been characteristic for a few examples
we have constructed with consumers satisfying the linearity condition in
the demand functions. We suspect this behavior is intrinsic to this condi-

tion.




Example 1 with parameters al = 8.3 and a2 = 8.8
Solved with the explicit Euler method.

consumer 1 consumer 2 prices
time x1 x2 x1 %2 pl p2

4.0000 2.0008 2.1800 4.P000 0.6000 0.4000
3.7660 2.3048 2.2081 3.8635 B8.5653 8.4341
3.5740 2.4384 2.3526 3.7223 8.43913 ©6.5087
3.4820 2.6548 2.4921 3.5883 0.4838 8.5112
3.2478 2.8019 2.6135 3.4681 8.4867 8.5133
3.1897 2.9311 2.7356 3.3587 B.4858 0.5158
2.9859 3.8471 2.8414 3.2597 8.4837 8.5163
2.8749 3.1586 2.9374 3.1701 8.4828 8.5174
2.7754 3.2431 3.9246 3.8831 8.4816 8.5184
2.6862 3.3256 3.1038 3.9157 9.4888 8.5132
2.6862 3.33% 3.1756 2.9495 0.4801 0.51399
2.5344 3.4657 3.2405 2.8836 8.4797 B.5203
2.46899 3.5250 3.29393 2.8355 B.4792 98.5208
2.4121 3.5782 3.3524 2.7867 8.4789 8.5211
2.3601° 3.6260 3.4803 2.7427 8.4789 8.5211
2.3136 3.6686 3.4438 2.7028 B.4782 8.5218
2.2717 3.78689 3.4831 2.6668 0.4782 8.5218
2.2341 3.7414 3.5184 2.6345 B.4782 8.5218
2.2802 3.7725 3.5581 2.6854 B.4782 8.5218
2.1782 3.7988 3.5785 2.5786 9.4771. 8.5229
2.1432 3.8245 3.6058 2.55468 B.4771 8.5229
2.1183 3.8467 3.6296 2.5329 0.4771 0.5223
2.0971 3.8666 3.6509 2.5134 B.4771 0.5229
2.8774 3.8846 3.6702 2.4953 0.4771 0.5229
2.0597 3.8007 3.8875 2.4801 @.4771 8.5229
2.9438 3.9153 3.7038 2.4653 0.4771 0.5229
2.8294 3.9283 3.7171 2.4531 0.4771 0.5229
2.8165 3.8401 3.7297 2.4416 0.4771 8.5223
2.0848 3.95@7 3.7418 2.4312 0.4771 8.5229
1.9944 3.9683 3.7512 2.4218 0.4771 8.5223
1.9858 3.9688 3.7604 2.4135 @.4771 8.5223
1.9766 3.9766 3.7687 2.4053 8.4771 8.5229
1.9683 3.9835 3.7/82 2.3381 0.4771 8.5223
1.9621 3.9838 3.7823 2.3393@ 8.4771 8.5229
1.8558 3.9954 3.7883 2.3875 8.4771 8.5229
1.8593 4.9985 3.7343 2.3825 98.4771 8.5229
1.9453 4.@00851 3.7892 2.3781 B.4771 8.5229
1.9408 4.9092 3.8836 2.3741 8.4771 8.5229
1.8368 4.9123 3.8076 2.3705 8.4771 8.5223
1.8381 4.81682 3.8111 2.3672 9.4771 8.5229
1.8299 4.8132 3.8143 2.3643 8.4771 8.5229
1.8269 4.9219 3.8172 2.3617 B.4771 8.5223
1.9243 4.0243 3.81898 2.3583 8.4771 8.5229
1.9219 4.9265 3.8222 2.3571 8.4771 8.5223
1.8197 4.9285 3.8243 2.3552 @.4771 8.5229
1.9178 4.8382 3.8282 2.3535 8.4771 8.5223
1.91680 4.6318 3.8278 2.3518 8.4771 8.5223

s ® 3 e e e e & ®» S e & & ® e & © & s * © ©
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2.3412 8.4771 8.5229
2.3408 0.4771 8.5229
2.3405 B.4771 8.5229
2.3483 8.4771 8.5229

.8409 2.3401 0.4771 8.5229
3.8411 2.3338 @.4771 8.5229

3.8413 2.3337 6.4771 0.5229
B446 3.8415 2.3395 9.4771 0.5229

8397
8409
3484

. 8406

3.8430 2.3381 B.4771 0.5229
3.8438 2.3381 9.4771 8.5229
3.8438 2.3381 0.4771 0.5229
3.8431 2.3381 9.4771 8.5229
3.8431 2.3381 B.4771 0.5229
3.8431 2.3381 @.4771 0.5229

3.8431 2.3388 @.4771 8.5229
3.8431 2.3380 @.4771 0.5229

3.8431 2.3388 @.4771 2.5229
3.8431 2.3380 B.4771 @.5229

3.8431 2.3380 @.4771 0.5229
3.8431 2.338¢ @.4771 0.5229

3.8429 2.3383 8.4771 0.5229
3.8629 2.3382 @.4771 8.5229
3.8429 2.3382 8.4771 9.5229
3.8438 2.3382 @.4771 0.5229
3.8430 2.3382 ©.4771 8.5229

3.8427 2.3384 B.4771 8.5229
3.8428 2.3383 @.4771 8.5229
.B658 3.8428 2.3383 8.4771 8.5229

-B457 3.8427 2.3384 8.4771 8.5229

3

3

3

3

3
1

8421 3.8383 2.3419 8.4771 0.5229
8425 3.8393 2.3415 @.4771 8.5229
$458 3 84286 2 3385 B 4771 0.5228

. 8458
. 8457
. 8458
. 8458
4

468
460
. 8469
468
460
. 8468
. 8468
.B4E8
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8429
8432
8435
8437
2440

8442
o/

4.8616 3.8384 2.3423 B.4771 ©.5229

asa 4.8611 3.8379 2.3428 9.4771 ©.5229
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3615 4.9451 3.8421 2.3398 8.4771 8.5229
1.39013 4.8452 3.8422 2.3389 8.4771 0.5229
1.9612 4.9453 3.8423 2.3388 0.4771 9.5229
1.8612 4.8454 3.8424 2.3387 @.4771 8.5229
1.9011 4.8455 3.8425 2.3386 8.4771 8.5229
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e
°
e
°
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1.8145 4.9332 3.8294 2.3505 @.4771 8.5229
1.9138 4.9345 3.3308 2.3493 B.4771 9.5229
1.8118 4.8357 3.83280 2.3482 9.4771 8.5229
1.8166 4.9367 3.8331 2.3471 8.4771 ©.5229
1.9896 4.8377 3.8341 2.3462 @.4771 ©.5229
1.8887 4.8385 3.8351 2.3454 B.4771 8.5229
1.9878 4.8333 3.8359 2.3448 8.4771 0.5229
1.9071 4.0400 3.8366 2.3440 9.4771 B.5229
1.9684 4.9406 3.8373 2.3434 B8.4771 8.5229
1.9017 4 8443 3.8418 2.3332 B8.4771 8.5229
1.9016 4.8458 3.84280 2.3391 0.4771 8.5229
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1.
1.
1.
1.
1.
1.
1.
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Exampie 1 with parameters al = 8.3 and a2 =8.6
Solved with the implicit Euler methad.

consumer 1 consumer 2 prices
time x1 x2 x1 x2 pl p2

4.0000 2.0008 2.1008 4.0000 0.6000 @.4000
3.7866 2.2831 2.1831 3.8831 B.5782 0.4238
3.6108 2.4537 2.3277 3.7482 8.4915 8.5085
3.4501 2.6872 2.4562 3.6249 0.48% 0.5184
3.3863 2.7458 2.5747 3.5122 8.4876 0.5124
3.1741 2.86839 2.6838 3.4091 0.4858 0.5141
3.0554 2.9885 2.784@8 3.3149 @.4845 Q.5155
2.9478 3.8812 2.8768 3.2288 Q.4834 0.5166
2.8594 3.1719 2.9604 3.1581 0.4823 8.5177
2.7822 3.2533 3.8378 3.8783 0.4815 0.5185
2.6822 3.3279 3.1086 3.8127 8.4809 B.5191
2.6097 3.3848 3.1736¢ 2.9528 2.4803 0.5137
2.5441 3.4554 3.2327 2.8382 0.4737 0.5283
2.4845 3.5183 3.2868 2.8484 Q.4735 0.5205
2.4385 3.5539 3.3363 2.8823 0.4738 0.5218
2.3816 3.6843 3.3814 2.7614 B.4788 B.5212
2.3372 3.6456 3.4226 2.7236 0.4785 0.5215
2.2963 3.6825 3.46802 2.6831 Q.4782 8.5218
2.28084 3.7188 3.4945 2.8577 8.4781 8.5213
2.2271 3.7465 2.6232 0.4782 0.5218
2.1972 3.7733 2.6038 B8.4776 B.5224
2.1698 3.7989 2.5733 B.4778 8.5222
2.1458 3.8216 2.5577 B.4777 8.5223
. 2.1227 3.8418 2.5377 8.4771 0.5223
2.1924 3.8685 2.5138 B.4774 B.5226
2.0838 3.8775 2.5834 B.4774 8.5228
2.8671 3.83927 2.4884 8.4771 B.5223
2.8584 3.988l 2.47683 0.4803 8.5197
2.8363 3.8219 2.4642 B8.4781 0.5213
2.8248 3.9323 3.7186 2.4527 8.4778 8.5238
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doiok error ok 38 minor iterations done without converging

2.0248 3.9325 3.7185 2.4525 8.4778 8.5238
2.0128 3.8427 3.7300 2.4421 B.4778 8.5238
2.0826 3.9528 3.7484 2.4326 Q.4778 8.5238
1.9333 3.8685 3.7488 2.4239 B.47780 8.5238
1.9843 3.9681 3.7584 2.4161 B8.4778 8.5238
1.9773 3.9751 3.7663 2.4883 B.4778 8.5238
1.9783 3.9815 3.7734 2.4824 B.4778 8.5238
1.9840 3.3872 3.7798 2.3%5 8.4778 8.5230
1.9582 3.9925 3.7857 2.33812 8.4778 8.5238
1.8838 3.9973 3.7911 2.3863 08.4778 B.5238
1.9482 4.9816 3.7359 2.3813 09.4778 8.5238
1.9433 4.0@55 3.8803 2.37/9 8.47790 0.5238
1.9408 4.9@81 3.8844 2.3742 8.4778 8.5238
1.9364 4.0126 3.8888 2.3783 0.4770 8.5230
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1.9332
1.9382
1.89275
1.9251
1.9229
1.9289
1.9198
1.9174
1.9153
1.9145
1.9132
1.8121
1.9111
1.9101
1.9083
1.9885
1.9478
1.9071
1.80686
1.9068
1.9e55
1.9651
1.9047
1.9043
1.9248
1.9837
1.9a34
1.9632
1.9039
1.9028
1.9026
1.9024
1.9623
1.9021
1.9020
1.9019
1.9018
1.9017
1.9016
1.9015
1.9014
1.9014
1.9013
1.90814
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4.08437
4.8438
4.0433
4.9449
4.08441
4.9442
4.0442
4.0643
4.0644
4.0644
4.8443

sk error ok 30 minor

:

.8373

éeée'g

3
8

2.3678
2.3651
2.3626
2.3663
2.3582
2.3564
2.3547
2.3531
2.3517
2.3504
2.3492
2.3482
2.3472
2.3463
2.3455
2.3648
2.3442
2.3436
2.3439
2.3425
2.3621

2.3417

2.3413
2.3418
2.3408
2.3494
2.3461
2.3393
2.3397
2.3335
2.3333
2.3332
2.3390
2.33839
2.3388
2.3387
2.3336
2.3385
2.3384
2.3383
2.3382
2.3382
2.3381
2.3379

iterations done

8.4778
8.4778
8.4778
B.4778
B.4778
8.4778
B.4778
8.4778
8.4779
8.4778
B.4779
B8.4778
B.4778
8.4778
8.4778
B.4778
B.4770
B8.4779
B.4778
B.4778
B.4778
8.4778
8.4778
B.4778
8.4778
B8.4778
8.4778
8.4778
8.4772
8.4778
B8.4770
8.4779
B8.4778
8.4779
B8.4779
8.4778
8.4779
8.4778
B.4778
8.4778
B.4778
8.4778
B.4772
8.4767

without

B.5238
8.5230
8.5230
8.5239
8.5238
8.5238
8.5230
8.5239
8.5238
8.5238
8.5230
8.5238
8.5238
8.5239
B.5238
8.5230
8.5238
8.5230
8.5230
8.5230
9.5238
8.5230
8.5239
8.5239
8.5238
8.5239
8.5230
8.5230
8.5238 .
8.5238
8.5230
8.52308
8.5230
8.5239
8.5239
8.5238
8.5230
8.5230
8.5238
8.5230
8.5230
2.5230
8.5230
8.5233

converging
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Example 2 with parameters alphal = 8.2 betal = 8.5 gammal = 8.3
alpha2 = 8.5 beta2 = 8.3 gamma2 = 8.2
Solved with the explicit Euler method.

consumer 1 consumer 2 prices
time x1 %2 3 x1 x2 3 pl p2 p3

4,0000 1.0000 3.2000 2.0008 3.0008 7.0000 0.5000 0.2008 @.3000
3.7264 1.692@ 3.1968 2.1700 3.2550 6.5467 ©9.5090 0.2008 0.3098
3.4802 2.3118 3.1924 2.3238 3.4845 6.1387 0.5008 0.2000 0.3080
3.2827 2.7955 3.1869 2.4778 3.6454 5.7730 08.4808 B.2192 0.3000
3.8743 3.1488 3.1887 2.6443 3.7371 5.4468 0.4531 8.2469 0.3000
2.9883 3.43%H 3.1752 2.8068 3.8014 5.1525 0.4428 B.2580 0.3000
2.7628 3.6828 3.1787 2.9613 3.8456 4.8883 0.4331 0.26689 0.3009
2.6331 3.8862 3.1673 3.1@91 3.8752 4.8522 9.4268 8.2748 0.3008
2.5194 4.053% 3.1643 3.2486 3.8937 4.4394 0.4203 0.2797 B.3009
2.4181 4.2876 3.1635 3.37396 3.9841 4.2481 0.4156 0.2844 0.3000
2.3305 4.3348 3.1629 3.5013 3.9085 4.9768 9.4119 0.2881 9.3008
2.2522 4.4446 3.1638 3.B155 3.9084 3.9212 Q.4883 0.2912 9.3088
2.1838 4.5388 3.1636 3.7287 3.9051 3.7820 @.4864 B.2335 B.3009
2.1217 4.622% 3.1847 3.8177 3.83% 3.6567 0.4043 0.2957 8.3000
2.0673 4.6949 3.1660 3.9078 3.8924 3.5439 0.4027 8.2973 0.3008
2.8191 4.7581 3.1676 3.9883 3.8843 3.4425 0.4014 0.2986 0.3008
1.9763 4.8136 3.1693 4.9638 3.8756 3.3511 9.4203 8.2937 8.3000
1.9383 4.8624 3.1718 4.1323 3.8667 3.2683 0.3934 0.3006 0.3000
1.9844 4.9054 3.1728 4.1947 3.8577 3.1949 £.3987 8.3013 9.3000
1.8743 4.9434 3.1746 4.2516 3.8483 3.1283 ©.33982 9.3018 9.3000
1.8474 4.9778 3.1764 4.3033 3.8484 3.0683 0.3977 0.3023 0.3000
1.8234 5.0068 3.1781 4.3503 3.8323 3.0143 8.3973 0.30927 8.3000
1.8028 5.8333 3.1737 4.3923 3.8245 2.9657 0.3378 0.3030 06.3000
1.7828 5.8568 3.1813 4.4315 3.8173 2.9228 8.3968 0.3632 9.3009
1.7657 5.8777 3.1827 4.4865 3.8185 2.8826 8.3966 0.3034 8.3000
1.7504 5.09683 3.1841 4.4982 3.8041 2.8472 8.39%64 8.3036 8.3000
1.7368 5.1130 3.1852 4.527¢ 3.7983 2.8151 8.3962 ©8.3037 ©9.3001
1.7246 5.1279 3.1862 4.5538 3.7928 2.7862 ©.39%68 0.3838 8.3002
1.7137 5.1412 3.1871 4.5767 3.7879 2.7681 @.3%58 @.3939 8.3063
1.7839 5.1532 3.1879 4.5988 3.7833 2.7366 B.3958 0.3049 8.3003
1.6952 5.1638 3.1886 4.6173 3.7731 2.7155 ©.3957 8.3848 8.3803
1.6874 5.1734 3.1893 4.6347 3.7752 2.B965 ©.3%6 0.3841 8.30803
1.6803 5.1819 3.1838 4.6584 3.7717 2.6733 0.3356 8.3041 0.3003
1.8748 5.18% 3.1905 4.6645 3.7685 2.8639 ©.3956 ©£.3041 94.3003
1.6683 5.1964 3.1818 4.6773 3.7656 2.6500 B.3%56 0.3842 8.30083
1.6632 5.2026 3.18915 4.68388 3.7623 2.63768 0.3355 0.3842 0.3003
1.6587 5.2081 3.1819 4.63992 3.7685 2.6263 8.335 8.3842 9.3003
1.6546 5.2139 3.1923 4.7686 3.7584 2.6162 8.3355 0.3042 9.3003
1.65039 5.2175 3.1827 4.7178 3.7564 2.6871 ©.33%5 86.3842 0.3003
1.6476 5.2215 3.1938 4.7246 3.7546 2.5983 0.3%5 8.3042 0.3903
1.6446 5.225¢ 3.1833 4.7315 3.7538 2.5915 @.3%5 0.3842 0.3003
1.6419 5.2283 3.1835 4.7377 3.7515 2.5843 8.3%5 08.3942 8.3003
1.8386 6.2311 " 3.1838 4.7432 3.75@2 2.5789 8.3355 8.3043 9.3003
1.8373 65.2337 3.1848 4.7482 3.7489 2.5735 8.3355 0.3843 9.3003
1.8354 5.2361 3.1842 4.7527 3.7479 2.5687 0.33%K5 0.3843 0.3003
1.8336 5.2382 3.1944 4.7568 3.74689 2.5643 B.335 0.3843 0.3803
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1.6321
1.8306
1.6284
1.6282
1.8272
1.6263
1.6254
1.8247
1.6240
1.8234
1.6229
1.6224
1.8218
1.6215
1.8212
1.6208
1.6208
1.6283
1.6201
1.6133
1.6187
1.6185
1.6193
1.6192
1.6131
1.6198
1.8188
1.6188
1.6187
1.6186
1.6186
1.6185
1.6184
1.6184
1.8183
1.6183
1.8183
1.6182
1.6182
1.6182
1.8182
1.6181
1.6181
1.6181
1.6181
1.6181
1.6181
1.6181
1.61808
1.6188
1.6189
1.6188

5.2481
5.2417
5.2433
5.2446
5.2459
5.2470
5.2489
5.2483
5.2497
5.2584
5.2511
5.2516
5.2522
5.2526
5.2531
5.253%
5.2538
5.2541
5.2544
5.2548
5.2548
5.2551
5.2552
5.2554
5.2555
5.2557
5.2558
5.2559
5.2560
5.2561
5.2562
5.2562
5.2563
5. 2564
5.2564
5.2565
5.2565
5. 2565
5.2566
5.2568
5.2568
5.2567
5.2567
5. 2567
5.2567
5.2567
5.2563
5.2568
5.2563
5.2563
5.2568
5.2563

3.1946
3.1347
3.1948
3.1958
3.1351
3.1952
3.13953
3.1953
3.1854
3.1955
3.1855
3.1856
3.1956
3.1357
3.1957
3.1958
3.1958
3.1958
3.13958
3.13953
3.1959
3.1953
3.1959
3.1958
3.1959
3.1968
3.1568
3.19608
3.1560

3.1868-

3.1968
3.1360
3.1368
3.1368
3.19609
3.1968
3.1368
3.1368
3.13608
3.1968
3.1968
3.1361
3.1861
3.1861
3.1861
3.1861
3.1361
3.1961
3.1961
3.1861
3.1961
3.1861

4,76085
4,7638
4.76857
4.76394
4.7718
4.7748
4.7759
4. 7777
4.7732
4,787
4,7828
4.7831
4.7842
4,7851
4.7853
4,.7867
4,7874
4,78308
4.7885
4,7890
4.7835
4,7833
4.7883
4,7306
4.73903
4.7811
4,7914
4.7816
4.7318
4.7328
4.7921
4,7923
4.7324
4,7325
4.7926
4.7327
4,7328
4.7323
4.7923
4.7330
4,7338
4.7331
4.7931
4.7932
4,7932
4.7332
4.7333
4.7833
4.7933
4,7933
4.7334
4.7334

3.74609
3.7452
3.7445
3.7438
3.7433
3.7427
3.7423
3.7418
3.7414
3.7411
3.7408
3.7485
3.7482
3.7400
3.7338
3.73%
3.7334
3.7333
3.7391
3.7339
3.7383
3.7388
3.7387
3.7386
3.7386
3.738
3.7384
3.7384
3.7383
3.7383
3.7382
3.7382
3.7382
3.7382
3.7381
3.7381
3.7381
3.7381
3.7338
3.7380
3.7388
3.7330
3.7384
3.7380
3.7380
3.7389
3.7388
3.73809
3.7379
3.7373
3.7373
3.7373

2.56084
2.5568
2.5537
2.55088
2.5482
2.5453
2.5438
2.5420
2.5403
2.5388
2.5374
2.5362
2.5358
2.5348
2.5331
2.5323
2.5316
2.5318
2.5304
2.5298
2.5284
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2 5256
2.5255
2.5265
2.5254
2.5254
2.5254
2.5253
2.5253
2.5253
2.5253
2.5252
2.5252

8.33%5
8.3355
8.3355
8.3%5
8. 335
8,355
8.3355
8,395
8.3%5
8.3%4
8.3%54
8.3%54
8.3%4
8.3%54
8.3354
8.3%4
8.3%4
8.3%4
8.3354
8.3%4
8.3%4
8.33%54
8.33%4
8.334
B8.3%4
8. 354
8.3%54
8.3%4
8.3%4
8.3%54
9.3%4
8.3%54
2.33%4
8.3354
8.3%4
8.3%4
8.3354
8.33%4
8.33%54
8.3354
8.3%54
8.3354
8.33%54
B.33%4
8.3%54
8.33%54
8.3%4
8.3%4
8.3%54
B.33%4
8.3%4
8.33%4

8.3843
8.3043
8.3843
8.3043
8.3043
0.3843
8.3843
8.3843
8.3843
8.3843
8.3843
2.3843
8.3843
8.3843
8.36843
8.3843
8.3843
8.30843
8.3843
6.3843
8.3043
B.3043
8.3843
6.3843
8.3043
8.3843
8.36843
8.3043
8.36843
8.3843
8.3043
8.3043
8.3043
8.3843
8.3843
8.3843
8.3843
8.3043
8.3843
8.3843
8.3043
8.3843
8.3843
8.3043
8.3843
8.3643
8.3043
8.3043
8.3843
8.3943
8.3843
8.3d43
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8.3003
8.3003
8.3083
8.3003
8.3003
8.30a3
8.3003
9.3883
9.3093
8.3083
8.3023
8.3083
B.3003
8.3003
8.3083
8.3083
8.3083
8.3003
8.3803
8.3003
8.3093
8.3003
9.3083
8.3083
8.3083
8.3083
8.3083
9.3003
8.3083
8.3003
8.3e03
8.3ee3
8.3003
9.3083
8.3083
8.3283
8.3083
8.3083
8.3083
8.3083
8.3083
8.3083
8.3083
8.3083
9.3083
8.3083
9.3083
2.30e3
8.3083
8.3083
8.3003
B.3083
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Example 2 with parameters alphal = 8.2 betal = 8.5 gammal = 2.3
alpha2 = B.5 beta2 = 8.3 gamma2 = 8.2
Solved with the implicit Euler method.
consumer 1 consumer 2 prices
time x1 %2 *3 x1 x2 *x3 pl p2 p3

4.0000 1.0000 3.2000 2.00080 3.0000 7.0000 O.5000 0.2008 0.3000
3.7551 1.6826 3.1744 2.1751 3.2851 6.5763 0.4866 ©.1868 8.32687
3.5235 2.2341 3.2076 2.2872 3.4648 6.2208 8.5261 8.2048 8.2631
3.3275 2.6586 3.1868 2.4561 3.605 5.8740 0.4578 0.2268 8.3154
3.1683 2.983%6 3.1341 2.8889 3.7154 G5.5413 ©0.3950 B8.2478 8.3530
3.8174 3.2718 3.1845 2.8743 3.7942 5.2508 B.4124 0.2553 0.3324
2.8748 3.4885 3.1048 3.0183 3.83683 G5.0056 0.4236 0.2693 8.3005
2.7530 3.68978 3.8892 3.1773 3.8733 4.7716 ©0.406868 8.2745 8.3139
2.64846 3.8659 3.0864 3.3148 3.8953 4.5671 ©.4123 8.2815 8.3062
2.5455 4.9838 3.0728 3.4638 3.9099 4.3723 8.3325 98.2872 8.3283
2.4597 4.1338 3.0647 3.5880 3.3167 4.1983 @.3321 0.292 8.3157
2.3828 4.26406 3.8593 3.7235 3.9179 4.8414 0.38398 B.2963 0.3139
2.3181 4.3319 3.0484 3.8546 3.9134 3.8329 B.3760 0.3613 8.3227
2.2634 4.4098 3.8387 3.9797 3.9845 3.7576 0.3714 B.3054 8.3232
2.2154 4.4759 3.0298 4.1@008 3.8919 3.6337 ©8.36863 8.305 8.3243
2.1746 4.5314 3.8217 4.2168 3.8753 3.5284 9.3611 @.3135 8.3254
2.1486 4.5773 3.0143 4.3283 3.85688 3.4165 ©8.3553 0.3176 8.3264
2.1123 4.6144 3.0973 4.4374 3.8346 3.3214 B.3587 8.3221 8.3272
2.0838 4.6432 3.0028 4.5437 3.8093 3.2345 B.3456 8.3289 B.3278
2.8727 4.6648 2.3996 4.B474 3.7888 3.1555 B.3485 8.3322 8.3273
4.6773 2.9988 4.7481 3.7433 3.8844 ©8.3361 8.3379 B.3260
4.6831 3.0013 4.8458 3.7146 3.8211 B.3328 B.3444 B.3237
4.6849 3.0067 4.936 3.6801 2.9657 B.3314 B.3478 0.3297
4.6831 3.0146 5.8182 3.6453 2.9174 ©.3319 0.3513 8.3178
4.6779 3.8254 5.0944 3.6118 2.8753 0.3384 B.3558 8.3145
4.6697 3.8389 G.1641 3.5780 2.8403 B.3303 0.358 0.3111
4.8588 3.8553 5.2276 3.5445 2.8121 9.3366 8.3623 8.3971
4,8453 3.9752 5.2845 3.5115 2.7837 8.3315 B.3660 8.3025
4.6299 3.8986 G5.3348 3.473%5 2.7738 0.3335 0.3691 8.2974
4.61%6 3.1165 5.3767 3.4533 2.7573 B.3351 0.3643 8.3000
4.6079 3.1365 65.4141 3.4232 2.7454 B.3364 0.3671 8.2365
4.6001 3.1523 5.4483 3.4093 2.7332 8.3376 8.3640 0.2984
4.5908 3.1699 5.4747 3.3838 2.7248 0.3385 8.3661 B.2354
4.5843 3.1842 5.4394 3.3733 2.7161 B.33%4 8.3840 B.2968
4.5767 3.1998 5.5211 3.3583 2.7184 8.3402 8.3657 8.2342
4.57€9 3.2130 5.5400 3.3452 2.7847 B.3487 8.3643 8.2358
4.5642 3.2275 5.5563 3.33% 2.7016 0.3416 8.3657 9.2927
1.9731 4.5588 3.2481 G5.5786 3.3216 2.6385 @.3420 B.3649 8.2939
1.9682 4.5545 3.2511 65.5832 3.3123 2.6354 0.3423 B.36843 0.2334
1.96837 4.5511 3.2606 G5.5342 3.3043 2.8923 0.3426 0.3637 8.2337
1.9593 4.5485 3.2889 G5.6848 3.2975 2.6834 @.3423 0.3631 8.23948
1.8853 4.5455 3.2774 G.6126 3.2988 2.6874 @.3431 0.3633 9.2331
1.9515 4.5430 3.2843 5.6203 3.2852 2.6856 0.3433° 08.3635 8.23933
1.9480 4.5418 3.2915 5.6271 3.2802 2.6838 0.3434 0.3632 08.2334
1.9448 4.5383 3.2978 5.6332 3.2755 2.6824 0.3434 8.36835 0.2931
1.9417 4.5372 3.3035 5.6386 3.2715 2.6812 B.3436 0.3632 ©8.2332
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1.9389 4.5354 3.3098 5.8434 3.2676 2.6803 ©8.3437 9.3634 0.2823
1.9383 4.5336 3.3144 5.6475 3.2640 2.6798 0.3439 8.3637 0.2924
1.8341 4.5313 3.3198 65.6517 3.2602 2.67398 0.3436 0.3643 0.2921
1.9316 4.5309 3.3244 5.6545 3.2576 2.6797 0.3445 0.3633 0.2922
1.9292 4.5286 3.3230 5.6583 3.255¢0 2.6800 8.3445 B8.3637 0.2918
1.9271 4.5289 3.3336 5.6531 3.2525 2.6806 B.3446 B.3648 B.2815
1.9252 4.5251 3.3381 5.B611 3.2489 2.6814 B.3446 0.3643 0.2811
1.9234 4.5233 3.3425 5.66828 3.2475 2.6824 B.3447 8.3644 0.2903
1.9217 4.5213 3.3483 5.68644 3.2451 2.6836 B.3447 08.3647 8.2305
1.9202 4.5193 3.3513 5.6658 3.2427 2.6850 8B.3448 0.3658 9.2902
1.9179 4.5184 3.3552 G5.6652 3.2418 2.6867 8.3463 8.3637 0.2308
1.8157 4.5175 3.358@ 5.6646 3.2418 2.63886 ©.3465 0.3638 8.2897
1.9136 4.51684 3.3829 5.6637 3.2402 2.6906 0.3467 8.3648 B8.2833
1.9115 4.5153 3.3667 5.6628 3.23% 2.683927 8.3463 0.3641 08.2339
1.9096 4.5141 3.3785 G5.6618 3.2385 2.6958 0.3479 08.3643 8.2887
1.9077 4.5123 3.3744 5.66805 3.2378 2.68974 0.3473 0.3644 8.2383
1.9868 4.5117 3.3782 5.8581 3.2372 2.79080 8.3476 0.3644 8.2873
1.9633 4.5184 3.3821 5.8574 3.2366 2.7827 8.3479 B.3645 8.2876
1.9015 4.5116 3.3834 5.6548 3.2382 2.7839 0.3488 0.3628 8.2832
1.8993 4.5128 3.3846 5.8523 3.2338 2.7843 0.3483 8.3618 8.2392
1.8972 4.5148 3.3857 5.8433 3.2413 2.7853 ©6.3491 8.3617 8.2832
1.8952 4.5152 3.3887 5.8475 3.2429 2.7988 8.3432 8.3616 8.2832
1.8333 4.5163 3.3875 5.68452 3.2444 2.7077 8.3483 8.3615 8.2892
1.8915 4.5174 3.3882 5.6431 3.2458 2.7985 0.3484 ©8.3614 8.2832
1.8898 4.5184 3.3832 5.6408 3.2473 2.7935 B.3497 0.3614 ©6.2883
1.8881 4.5193 3.3991 5.6386 3.2486 2.7185 8.3498 0.3614 B.2388
1.8865 4.5208 3.3916 5.6365 3.2498 2.7115 ©8.3483 8.3614 B.2387
1.8851 4.5287 3.3913 5.6345 3.2509 2.7125 B.3483 8.3614 86.2337
1.8837 4.5213 3.3923 5.83268 3.2513 2.7136. 9.3508 B.3614 0.2386
1.8823 4.5219 3.33938 5.6308 3.2523 2.7146 0.3501 0.3614 8.2385
1.8811 4.5223 3.3947 5.6238 3.2537 2.7156 ©.35202 8.3614 8.2384
1.8739 4.5227 3.3357 5.6273 3.2546 2.7167 8.3503 B.3614 9.2383
1.8788 4.5231 3.3986 5.8257 3.2553 2.7177 8.3584 8.36l4 8.2382
1.8779 4,523 3.3978 5.6245 3.2561 2.7182 ©.3501 8.3613 8.2386
1.8774 4.5241 3.3978 5.6248 3.25686 2.7182 8.3486 ©.3613 8.2331
1.87786 4.5245 3.3970 5.6235 3.2578 2.7182 0.3436 8.3613 8.2331
1.8766 4.5249 3.3978 5.6231 3.2574 2.7182 8.3486 8.3613 ©.2831
1.8762 4.5253 3.3963 b5.8228 3.2578 2.7181 ©.34%6 98.3613 8.2891
1.8759 4.5256 3.39689 5.6224 3.2582 2.7181 0.3496 9.3613 98.2891
1.8756 4.5259 3.3963 5.8221 3.2585 2.7181 0.3486 ©.3613 ©£.2891
1.8753 4.52682 3.3988 5.6219 3.2583 2.7188 0.3436 0.3613 ©.2891
1.8751 4.,52685 3.3988 5.6216 3.2539 2.7180 0.3496 6.3613 0.2891
1.8743 4.5267 3.3988 5.6214 3.2532 2.7188 8.3436 0.3613 @.2891
1.8747 4.52683 3.3987 5.6212 3.25%5 2.7189 9.3436 0.3613 0.2891
1.8745 4,5271 3.3967 5.6218 3.2596 2.7179 8.3436 0.3613 0.2891
1.8744 4.5273 3.3967 5.6209 3.2538 2.7179 0.3495 9.3613 8.2891
1.8742 4.,5275 3.3987 5.6207 3.2608 2.7179 0.3485 0.3613 @.2891
1.8741 4.52768 3.3966 5.6286 3.26@01 2.7178 ©.3435 0.3613 @.2331
1.8748 4,5278 3.3966 5.6205 3.2602 2.7178 B.3455 08.3613 8.2381
1.8739 4.5279 3.3986 5.6204 3.2604 2.7178 9.3435 0.3613 0.2891
1.8738 4.5289 3.3985 5.6203 3.2605 2.7178 8.3435 0.3613 0.2331
1.8737 4.5281 3.3965 5.6283 3.2606 2.7177 @.3435 2.3613 0.2831
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Example 3
Solved with the explicit Euler method.

consumer 1 consumer 2 prices
time x1 x2 x1 x2 pl p2

3.0000 1.5008 1.5009 3.0000 0.6000 0.4000
2.3417 1.6823 1.5579 2.7695 B.33688 0.8632
1.9831 1.6996 1.6102 2.56804 B.3368 0.6532
1.7413 1.6285 1.8544 2.3708 8.3368 9.66832
1,5587 1.5359 1.6892 2.1991 8.3368 8.8832
1.4189 1.4388 1.7138 2.8435 9.3368 0.6632
1.2856 1.3225 1.7280 1.9026 0.3368 0.6832
1.1762 1.2160 1.7313 1.7747 ©.33688 B.6632
1.9787 1.1137 1.7260 1.68587 ©9.3363 0.66832
B.95¢8 1.8171 1.7109 1.5532 B.336838 0.6832
8.9167 B8.9267 1.8876 1.4572 ©.33688 0.6832
8.8374 B.8428 1.6578 1.3695 ©.3368 B.6832
B.7768 8.7652 1.6200 1.2893 B.3368 0.6632
B8.7879 B8.6938 1.5776 1.2158 ©.3388 0.6632
- B.6507 9.6283 1.5397 1.1483 0.33688 0.6632
8.5978 B8.5684 1.4803 1.8859 B.33688 B.6632
8.5498 8.5136 1.4272 1.6282 ©.3368 B.6632
8.5848 B8.4637 1.3722 8.97468 8.3368 B.6832
B.4624 ©.4183 1.3160 8.9247 8.3368 B.6832
B8.4233 8.3771 1.2593 8.8788 8.33688 B.6632
8.33885 8.3397 1.2026 0.8342 0.3368 0.6832
8.3558 B.3057 1.1464 8.7938 0.3368 9.6632
8.3%57 8.2758 1.8918 8.7548 0.33688 0.6832
0.2380 8.2473 1.6368 8.7171 ©.3368 9.6832
8.2725 0.2222 8.8841 0.6821 6.3368 0.8532
0.2499 8.199% B.9330 02.6438 8.3363 0.6632
8.2274 B.1793 8.8837 98.6171 8.3368 0.6532
8.2076 8.1609 98.8362 0.5868 0.3383 0.6832
B.1834 B.1444 B.7908 B.5573 0.3368 B.6632
8.1727 B.12%5 0.7474 8.5302 9.3368 8.6632
8.1574 9.1161 9.7853 8.5638 8.3368 8.6632
8.1434 0.1841 9.6665 98.4785 8.33688 8.6632
8.1365 6.0933 0.6289 0.4544 0.3368 0.6632
8.1188 8.9837 B.5333 9.4313 ©.3368 0.6532
8.1830 0.9758 B.5596 0.4092 B.3368 0.6832
8.98982 Q.9672 B.5277 ©.3881 8.33688 £.6632
8.0832 08.9682 8.4974 B.3679 0.3368 B.6632
B.0811 B.9539 9.4688 B.3486 0.3368 0.6832
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» B.0736 B8.9483 0.4418 0.3393 0.3368 0.6832
. B.96B8 02.9433 0.4163 ©2.3128 8.3368 0.6532
. 8.0606 8.0388 0.3922 9.29%61 8.33688 0.6532
. B.05580 0.9348 8.3695 0.2802 B.3368 9.6632
. B.8498 ©9.8312 0.3481 9.2658 9.3368 0.86632
. B.8451 8.9279 8.3279 0.2507 ©.33688 B.6832
. B.9409 98.9250 B8.3088 0.2378 ©.33688 B.6632
. 8.9378 0.9224 8.2998 0.2240 9.3368 8.6632
. 8.8335 9.9201 9.2733 2.2117 ©9.3368 8.6632
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8.0383 0.9182 8.2573 ©.1939 0.3363 8.8832
8.9274 8.9162 0.2429 ©.18338 8.3363 6.6632
B8.9248 B.9145 0.2287 8.1783 8.3368 0.6632
B8.8224 8.9130 8.2154 8.16883 0.3368 ©.6632
B.0283 ©.0116 9.2028 ©8.1583 0.3368 9.6632
8.9183 ©.9184 0.1303 8.1499 6.3368 B.6632
8.9166 8.993% 8.1797 0.1415 B8.3388 0.68632
8.0158 9.9984 ©.1692 8.1335 0.3368 @.6632
B.0135 £.8975 0.1593 8.1253 9.33688 0.8632
8.0122 8.9068 ©.1500 8.1187 8.3368 ©.6632
8.6118 B8.9061 @.1412 ©2.1119 6.3368 ©.6632
8.0099 ©.9955 ©.1323 9.1855 9.3388 8.6632
8.0099 0.9049 0.1251 0.0995 8.3368 B.8632
8.0831 8.0844 ©9.1178 ©9.8938 0.3368 8.6632
B.0973 ©.0939 0.1193 0.9884 0.3388 8.6832
8.9066 9.0035 0.1944 ©9.8833 0.33688 0.6632
8.0053 8.9032 0.9982 8.9785 0.3388 @.6632
B.9¢54 8.9023 8.0925 B.6740 0.3388 B.6632
B.0048 ©.9026 ©.8878 0.9697 6.33688 B.6532
8.0043 ©.0023 0.8813 B8.9656 B.33688 ©.6632
B.0839 0.90921 0.9771 9.9618 ©.3388 0.6632
B.0835 9.9819 0.9726 B.9582 0.3368 0.6632
B.9632 8.0017 8.0683 0.8549 £.3368 0.6632
8.9623 2.9015 0.9643 ©0.8517 B8.3368 ©.8632
8.0026 0.0914 0.9605 8.8487 B.3363 0.6832
B.9823 08.9912 B8.0568 0.8458 6.3368 0.6632
8.0821 9.9011 ©.8536 B8.8432 6.3368 6.6632
0.9019 0.8018 ©.0584 8.84058 B.3368 0.6632
8.8017 98.9088 0.8475 8.8383 8.3368 0.6632
8.0015 B8.09038 ©.0447 0.9360 9.3368 B.6632
B.0014 ©9.0087 ©.8420 8.9333 8.33683 6.6632
8.8012 9.9006 0.03368 9.6319 8.3368 0.6632
8.0011 B.9006 0.8372 8.8301 8.3368 8.6632
8.0018 0.9005 ©8.9350 0.8283 £.3368 ©.6832
8.0003 8.9005 ©.0330 8.8266 8.3368 6.6632
B.0898 9.9084 6.8319 8.8251 8.3368 6.6632
B.0607 ©8.9084 B8.0292 8.02368 6.3368 8.8632
0.9097 9.0003 0.8275 0.6222 8.3363 0.6632
0.0006 0.9003 0.8259 ©.6203 8.3368 6.6632
8.9865 9.9003 0.9243 8.8137 8.3368 8.6632
0.9005 ©0.9002 0.0229 ©.9185 9.3368 9.6632
8.0084 @.0002 8.9215 ©.9174 ©.3368 8.6832
8.0694 9.9902 0.0203 0.9184 ©8.3368 0.6632
B.0684 @.9902 ©.8191 8.8155 9.3368 9.8632
B.0003 0.0062 B8.0180 0.0145 8.3368 B.8632
B.0003 0.8001 B.8169 8.9137 ©.3383 B.6632
0.0883 9.9001 0.9153 8.6123 9.3368 B.6632
8.0002 @.0001 0.0158 ©.8121 0.33688 0.6832
B.pEg2 9@.0001 9.0141 ©9.9114 8.3388 0.6632
8.9602 9.0901 Q.0132 ©9.9197 8.3388 0.6632
B.9802 8.0001 8.0125 0.0181 0.3368 0.6632
8.9092 9.9001 8.8117 8.88S5 ©8.3368 0.8632
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Exampie 3
Solved with the implicit Euler method.

consumer 1 consumer 2 prices
x1 x2 x1 x2 pl p2

2

3.0000 1.5000 1.5080 3.0000 0.6008 ©.4000
2.6868 1.7851 1.3973 2.8346 98.6139 8.3801
2,258 1.73964 1.2489 2.8131 0.7337 8.2663
2.8243 1.7832 1.9756 2.7547 8.8323 8.1877
1.7983 1.7887 B.9557 2.8582 B.7656 0.2344
1.5867 1.5949 8.8662 2.5243 0.7323 0.2677
1.4833 1.4654 B.7828 2.3353 B8.7526 8.2474
1.2376 1.3307 8.7048 2.2614 8.7785 8.2235
1.9888 1.1973 8.6325 2.1242 8.7867 8.2133
B.953¢ 1.0634 0.5672 1.9848 B.8016 0.1984
B.8326 B.943%5 9.5979 1.8445 8.8155 0.1845
B.7248 0.8339 B.4541 1.7849 8.8284 B.1716
8.6283 0.7382 0.4854 1.5675 B.8464 B.1598
8.5440 @.6473 0.3615 1.4336 B8.8515 0.1485
B.4633 B.5653 0.3218 1.3246 8.8616 8.1384
B.4038 B.43934 0.2860 1.1815 ©£.8788 0.1232
8.3466 0.4294 B.2533 1.8651 ©£.8792 9.1208
8.2963 08.3729 08.2258 8.9561 0.8868 0.1132
8.2538 @.3233 0.1998 0.8549 ©.8345 08.1055
8.2165 0.2793 8.1755 0.7615 8.9024 8.8978
8.1843 B.2413 0.1544 0.67658 8.9102 9.8338
g.1566 8.2889 @.1353 0.5881 9.9179 0.8321
8.1323 8.1801 8.1182 8.52/6 B.9252 8.8748
8.1125 0.1552 8.1029 0.4648 8.932 0.8678
B8.6%51 9.1335 0.98393 8.4871 B8.93838 8.9612
8.0803 0.1148 0.8772 8.3552 ©8.9449 0.8551
8.0677 B.038 Q.9666 0.3110 8.5500 0.2500
B8.0571 0.0847 8.9%575 ©.2711 0.8508 0.0508
B.8481 8.8727 8.9437 08.2359 8.9528 0.2500
B.0406 Q.0624 8.8431 0.2051 B.9508 0.0500
8.89342 0.9535 8.8373 9.1781 0.9588 8.0508
B.0288 9.8453 0.8323 0.1545 8.9500 0.0508
B.0243 0.9333 0.8280 0.1339 8.85500 0.0509
B.0205 0.09337 8.9243 9.1168 08.85080 ©6.0500
8.9173 0.9289 0.9211 8.1084 9.5500 0.9500
8.0146 ©.8247 8.9183 0.8863 0.9500 0.02508
8.9123 0.8212 8.9153 8.8752 B.5508 8.0508
8.0124 0.9181 ©0.09138 0.0651 02.8508 0.05008
8.0887 0.9155 9.9128 0.0553 0.9588 9.0508
B.8874 0.9132 9.9194 0.8487 8.9508 0.2500
B.0062 0.0113 ©.9038 0.8421 B.5500 0.0588
8.0852 0.9997 ©.8978 0.8364 0.9568 0.0500
B.0944 0.0083 9.09068 0.8314 0.9508 0.0508
8.0037 0.007]1 ©.8253 0.82/2 8.9500 0.9580
8.0631 0.09060 ©.9051 0.8235 08.9500 0.0588
8.8627 B.0852 8.8044 0.0203 B.9508 9.9508
g.0622 0.0844 ©8.8639 0.0176 8.9500 9.2500
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8.0019 0.2038 @.2033 0.0152 ©.9500 0.2500
8.0016 ©.90932 0.0029 0.9131 8.9509 B.2509
8.0013 9.0027 0.8025 8.9113 8.9500 ©.9500
8.0011 ©.9023 0.2022 0.0898 0.9500 0.9500
B.0010 8.0020 0.20819 0.0085 0.9509 8.2500
B.0008 ©.9017 0.8016 ©.9073 8.9500 8.0500
6.9897 8.9015 ©.0914 0.9063 @.9500 0.8500
B.0006 0.9012 0.2612 8.8055 8.9509 ©.0500
8.0005 9.9011 0.2911 0.0847 ©.9508 8.2500
8.0084 ©.0009 18.900S 0.0841 ©8.9560 0.9509
8.0003 0.9008 0.0008 0.8036 9.9500 0.0580
8.9003 0.0007 0.0007 0.9031 B.9509 8.2589
8.0002 9.0006 0.0006 0.0027 0.3500 9.2588
8.0002 9.0005 9.0005 ©.0023 8.9500 0.9500
8.0002 ©.0004 0.0005 0.0420 0.9500 0.2500
B.0001 ©.9003 0.0004 0.0017 ©.9509 B.2500
8.0001 0.0003 0.0003 ©.9015 ©8.9500 B.0509
8.0001 0©.9002 0.8003 0.0013 0.9500 8.2508
B.0001 B8.9002 ©.0003 0.0011 B.9500 B.0500
6.000] 0.9002 0.0082 ©.0018 8.9509 ©.0500
B.0001 9©.0002 0.0002 ©.0008 ©8.9509 8.2509
8.0001 0.0001 0.2002 ©.0007 ©8.9500 ©.9500
0.0000 0.000]1 0.2091 0.0006 0.9500 0.2508
B.0000 0.0001 2.0001 ©.0205 8.5508 9.0500
B.0000 0.0001 ©.9001 ©.0005 9.9509 9.0508
B.0000 0.9001 0.0001 ©.0004 ©.9508 ©.0500
B.0000 ©.0001 ©8.0001 0.9094 B.9580 0.0500
9.0000 0.0000 0.9001 9.9093 B.9508 0.9500
B.0000 0.0000 0.0001 ©.0083 ©.9508 0.0500
B.00028 0.0000 0.8001 0.0002 8.9500 0.9509
0.9000 9.0000 ©8.0000 B.0002 9.5500 ©.0500
8.0008 0.0000 0.2000 ©.9002 ©.9500 0.0500
0.0000 0.09000 0.0000 ©.8001 ©.9509 0.0508
0.0000 ©.0000 9.0000 ©.9001 ©.9580 0.2508
0.0000 9.0000 9.0000 0.0801 B8.9500 ©.0500
B.06090 ©.9000 0.0000 0.0001 B8.3508 9.2500
8.0000 ©.9000 0.0000 0.0001 8.9508 0.9500
0.0000 0.0000 0.0000 2.9801 ©.9508 0.9500
0.0008 0.0008 0.2000 ©.0801 0.9500 0.2508
£.0000 0.0000 ©.0000 9.0091 ©.9580 ©.0500
0.0000 0.0000 9.0000 ©.0008 0.9500 O.0500
B.0000 9.0000 B.0000 9.0000 B8.9580 ©.0500
8.0000 90.9000 0.9000 0.09000 0.9509 ©.0500
0.0000 ©.9000 0.9000 0.0000 ©.9509 ©.0500
0.0000 9.0000 9.0000 0.0000 9©.9500 ©.0500
B.0000 ©.0000 ©.0000 9.0000 ©8.39500 B.09508
B.0008 0.0000 0.0000 0.0098 ©9.9500 0.9500
8.9000 0.0000 0.2000 ©.8008 ©9.9500 0.0509
B.0008 0.0000 9.0000 ©0.0000 ©.39500 B.0509
0.0000 0.0000 0.90080 ©.9008 0.9509 ©.0500
9.0000 ©.0000 0.0000 0.0008 0.9509 0.9500
8.00080 0.0000 0.9000 ©.9008 ©0.3500 8.89500
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o. Appendix 1

In this appendix we summarize some of the properties of topo-
logical degree theory.

This appendix was extracted from the notes of a course in non-
linear analysis by Rabinowitz [14] (another good reference ' is
Schwartz [R2] ).

Let {1 be an open bounded subset of R®. We will denote by
C¥(Q,R™) mt.he set of functions from () into R™ which are k times continu-
ously differentiable, and by C¥({(,,R™) the subspace of CX(Q},R™) consist-
ing of all functions, that together with their derivatives up to order k
coincide with the restriction of continuous functions on {I. C%Q,R™) and
Co%0,R™) will be denoted by C(Q,R™) and C(Q,R™) respectively.

We endow CX(Q1,R™) with the norm

fom (a)
12 g, Ry : ,max  sup Il o' (x) || gen -

Ifm=n, g CH{Q,R™), and x€Q, Jo(x) will denote the Jacobian
determinant of ¢ at x.
For the rest of this appendix (1 will be an open bounded set of

R™, i.e we shall consider functions from 1 ¢ R™ to R™.



117

5.1 Definition

Let ¢ € CY{(Q,R™) and define:
S:= {XEQ | Ju(x) = O}.

Then for b € R®\(p(dQ) U ¢(S)) we define the Brouwer degree

of ¢ with respect to (1 at b as:

deg(p.(1b) := 3 sgndy(x).
xe€g (b)

By the implicit function theorem, the set ¢~!(b) is discrete and

since {] is compact, this set is finite.
5.2 Sard’s theorem

If Q, ¢ and S are defined as above then ¢(S) has measure 0.

5.3 Lemma

Let o C¥3TO,R™) and b ¢ ga(GQ)Uga(S): Then there is a neigh-
borhood U of ¢ in. CYQ,R™) such that for all y€ U n C*(,R™) one has:
b # y(8Q)

z €y l(b) = Jy(z) #0
deg (¥.,0,6) = deg (9,0,b).
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5.4 Lemma

Let g€ C3OL,R™) and b,8¢ ¢(8Q)up(S). If b and B belong to

the same component of R™ \g(3Q), then deg(p,Q,b) = deg(¢,Q,8).

These two lemmas together with Sard’s theorem allow us to
extend the definition of degree to every function in C({J,R™).
If be(R™\p(8Q)) v o(S) deg(y,Q,b) is not defined. However,

since measure (¢(S)) = 0, we can choose b as close as we please to b, such
that b& ¢(S). But R™\(38Q) is open; therefore we can choose b to lie in
the same component of R™\¢(3Q) as b. Then we can define:
deg(»,Q,b) := deg(#,0,5).
By the previous lemma, this definition does not depend upon the
choice of 5. Also, this definition extends the last lemma to all
b,g € R™\g(30).

5.5 Corollary

Let pe C3Q,R™) and b € R™\¢(8Q). Then there is a neighbor-

hood U of ¢ in. CYTL,R™) such that for all Y€ U n C*Q,R™) one has:

b & ¥(0)
deg (¥,(1,b) = deg (¢,0,b).
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5.6 Corollary

Let HeCY[0,1]xT,R™) be such that H(t,)e C¥T,R™) for all
t€[0,1], end b & H([0,1]%0Q). Then deg(H(t,.),,b) isindependent of
¢

5.7 Definition

Let ¢eC(QR™), b& ¢(8Q) and r:=d(b,p(8Q)). Take any

Y€ C¥Q,R™) such that |l = ¥llcqpm < %— and define:

deg(y,Q,b) := deg(v,Q,b).

In order to show that this definition does not depend upon the

choice of ¥ let us use the last corollary.

It ¥,92 € CAOLR™) are such that ||¢ = ¥illeqmpm < 5= define:

H(t,x) := ty,(x) + (1-t)ys(x) x€Q te[0,1].
Then H satisfies all the conditions of the last corollary. Since
Y (x),¥2(x) € ga(x)+—£——B for all xeQ, H(t,x) Eqa(x)+£—-B for all xeQ.

Thus b H([0,1]x8Q) and deg(¥;,,b) = deg(¥,,Q,b).
5.8 Theorem

Let ¢ C(QR™) and beR™\g(8Q). Then deg(eQ,b) is

defined and possesses the follounng properties:

i) Normalization:
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_ 1 if beq
deg (id,0.0) =g it b ¢ Q

where id :R™ -» R™ is the identity, i.e. id(z) =z for all z € R™.

i) Continuily with respect to ¢
There is a neighborhood Vof ¢ in C(QL,R™) such that b ¢ ¥(9Q)
and deg (¢¥,Q,b) = deg (¢,Q,b) forall yeV.

#i1) Continuity with respect to b:

If B belongs to the same component of R™\¢(3Q) as b, then
deg(9,Q,b) = deg (¢,Q,8), ie. deg is constant on componenis of
R™ \(80Q).

i) Homotopy invarience:
Let  HeC(0,1]xQ,R™) end b H([0,1]x3Q). Then
deg (H(t,.),Q,b) 1s constant on [0, 1].
v) Additivity:
' Suppose Q=Q, U Qy where Q; and Qy are two disjoint open

sets. If b & ¢(8Q;) U 9(8Q) then
deg (¢,0,b) = deg(9,0,,6) + deg (v,02,b).

wi) Fzxcision.

If KcQ isclosedand b ¢ ¢(K) then
deg (¢,0,b) = deg (¢,Q\K,b).

vii) Restriction:
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Let ye C(OR"x{Q), where n < m, and ¢(z) =z —yY(z). Let
P .R™ > R* denote the orthogonal projection of R™ into its first n com-
ponents, ie. if z=(Ty,...T,) ER™®  then P(z)=(zy..%,). If
b =(8.0) e R x{Q\p(8Q) then

deg (¢,0,6) = deg(7.I\8) where
Fr=PON(R*x{AQ)) and 7(z) = P(p(z,0)) wzel.
viii) Cartesian product:
Let o, € C(0;,R™), where Q; c R™ 1is bounded and open, and
b; € R™\y,;(3Q;) fori=1,2. Then
deg ((¢1,92),01%Qp,(81,02)) = deg (¢1,01,b1) deg (2,02, 2).

As a corollary, it can be shown that if bg ¢(]) then

deg(p.Q,b) = 0. Conversely if deg(e,1,b) # 0 there exists x€Q such
that ¢(x) =b.
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6. Appendix 2

Here we provide the listings of the computer programs used to
construct the approximate solutions to the problem (P’) of chapter 2.

We first give the complete listing of the pfogram that uses the
explicit Euler method (problem (P1) of chapter 4) at each step. The sub-
routines GRADD, DEMAND and GRADF are provided by the user. In the
listing below, these three subroutines are constructed to solve example 1
of chapter 4.

Next we provide only part of the listing of the program that uses
the implicit Euler method (problem (PR) of chapter 4) at each iteration.
The first four subroutines of this program, SIMPLEX, ADJUST, PIVOT and
DISPLAY are the same four subroutines listed in the first program and we
do not list them again.

In the second program; the subroutines GRADD and GRADF are
provided by the user. In the listing below, these correspond to the exam-
ple 3 of chapter 4.

The programs were written in C, the "official” language of the

UNIX system.
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/%
THE EXPLICIT EULER METHOD

*/

#include <stdio.h>

jdefine poseps 9.2001 /% positive tolerance %/
fdefine negeps -8.0001 /% negative tolerance */
fdefine NCONS 5 /% maximum number of consumers */
fdefine MGOOD 18 /% maximum number of goods %/
fdefine MGOOD2 28 /% 2 times MGOOD */
fdefine NM 58 /% NCONS times MGOOD */
jdefine NCOL 68 /% maximum number of columns in the tableau x/
fidefine NROW 70 /% maximum number of rows in the tableau */
fidefine RMAX 1000008.8 /% numerical infinite */

/% The first 3 subroutines are the SIMPLEX method %/
SIMPLEX(R, I,J,N,M, TYPE, phase, endcond, apt)

/% This subroutine constructs a basis and inverts it. It also checks
if there are redundant constraints and whether the problem is
infeasible.

All the columns associated to slack variables are put in the
first basis. For each equality constraint we choose a column
associated to a (structural) variable to put in the basis.

[ after inverting the basis and modifying the tableau the right
hand side has negative components we add an artificial variable,
put its column in the basis and solve an auxiliary probiem to
find a feasible basis for the original problem (phase 1}.

After finding a feasible basis we solve the problem (phase 2).

R is the tableau. It contains the (modified) matrix asociated to
the non basic variables, the right hand side (in R[.]1[81) and
the objective function. .

I is the set of indices of basic variables.
J is the set of indices of non basic variables.

N is the number of variables of the problem (the tableau has N+l
columns) .

M+l is the number of rows in the tableau.

TYPELI] = -1 rou i represents the objective function
%] row i represents an equality constraint
1 row | represents an ineguality constraint (it must be <=),
#*/
float RII [NCOL];
int I, xJ,xTYPE;
float *opt;
int N,xd, phase, xendcond;
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{

int iobj,iobjl, iart, jpivot,i, j,k,n;
float pivot,aux;

xendcond=0; xopt= 9.0;

/% A basis is constructed and inverted %/

for (j=1; j<=N; j+) JljI=j-1;
n=N; i=8; iobj= Whl;
whileli <= ¥ &8 xendcond == 8) §
if(TYPELi] == 8) §
pivot=poseps;
for (j=15j <= N; j++) |
aux=R[il [jl;
iflaux < B8.8) aux= -aux;
iflaux > pivot)
pivot=aux;
jpivot=j;

j .

if{pivot > poseps) | /% 1t is possible to put a column *x/
*/

/% in the basis.
ADMST(R,N, %1, i, jpivot);
[il=d[jpivotl;
if(jpivat <N} }
Jljpivotl=JINI;
for (k=0:k <= W3k++) Rk [jpivotl=RIk] [NI;
J
N-—-;
{ else }
aux=R[il [81;
iflaux < B.8) aux= -aux;

iflaux > poseps) xendcand= 23 /% The problem is infeasible. */

/% The constraint is redundant and x/

else |
/% we delete it from the tableau. »/

ifli <) §

I[il=] sl

for (j=0; j <= N3 j++) RLiT[j1=RIM [j1;

I~=3
}
K3

J

J
} else if(TYPELI] == 1) {Ilil=n; n++;}
else iobj=i;
i+

J

Iliobjl=n+l;
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fart=n: /% if we need it, the index of the artificial variable
Wwill be equal to the number of (structural) variables + the number
of slack variables %/

i f Gkendcond == @) |
iobjl= #+l: pivot= negeps;
for (=831 <= Hisi++)
if(il=iobj & RIi11Q] < pivot) ¢
iobjl=i;
pivot=R[il[@];

}
ifliobjl <= ®N § /% Phase 1 is required.
for (j=0; j <= N; j++) /% Put in the basis the artificial
pivot=Rliobjll [j1; /% variable taking out the most
Rliobjll [j1=0.9; /% negative.

for{i=0s1 <= "M i++) iflil=iobj) RLIL[jI1=RIi1I[jl1-pivots
J
n=N+1¢
for (i=8; i<=st; i+ RIilnl= -1.8; /% This is the objective function
/% for phase 1.
Rliobjl (nl1=0.8;
Jinl=Iliohjll; Ilicbjlli=iart;
PIVOT(R,I,J,n,x, iobjl, iobj, iart,1,endcond);

if{Iligbjll == iart) /% The artificial variable is
/% still basic.
if(RLiobjll1[@] <= poseps) § /% The artificial variable is @.

jpivot=8; j=1;

while(jpivot == @)
if(RLiobjll [j] < negeps) jpivot=j;
i+

]

ADJUST R, n, 1, iobjl, jpivot);

Iliobjll=J[jpivotl;

Jljpivoti=JInl;

if(jpivot != n) for(i=8;i<=xi+) RIil[jpivotl=RIil [n];

{ else | /% The problem is infeasible.

*endcond=2;
*opt= Rliobjl] [8];

| else §
j=ls while(J{jl!= iart) j++s
PF(jlen)
Jjl=Jinl; ‘ :
for (i=8; i <=3 i++) RLiI[j1=RLi1In];

¥

~

*

¥

¥E¥

*/
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i f(xendcond <= 1 && phase ==2) /% 1f the problem is feasible and
/% we want an gptimal solution
/% solve phase 2.
*endcond=0;
PIVDT(R.I,J,N,*ﬂ,iobj,iobj,iart,phase,endcond);
if (kendcond == 1) sopt=Rlicbj] (8];

J
}

ADJUST (R,N, M, ipivot, jpivot)

/% This subroutine adjust the tableau R. The pivot is
Rlipivot] [jpivot] and the tableau has M+l rous and N+l columns. %/

float RIJINCOL];
int N,M, ipivot, jpivot;

int i,j;
float pivot;

pivot= Rlipivot]l [jpivotl;
Rlipivot]l [jpivotl= 1.8;
for(j=8s j <= N; j++) Rlipivotl [j1 /= pivots
for(i=B;i < Msi++)
if(i != ipivot) §
pivot=RI[il [jpivot]:
RLil[jpivotl= 8.8;
for (j=B8;j <= N; j++) RLiI[j] -= pivotsRlipivot] [l

PIVOT(R,1,J,N,M, icb ], iobj2, iart, phase, endcond)

/% This subroutine iterates with the simplex method. It assumes that
a feasible basis is given and that it has been inverted so only
the portion associated to the non basic variables is kept in the
matrix R (the tableau is in the compact form).

R is the tableau.

I is the set of indices of basic variables.

J is the set of indices of nonbasic variables.

N is the number of variables of the probiem (the tableau has N+l columns).

*/
x/
*/

M is one less than the number of rous in the tableau. If one row represents

the objective function, then M is the number of comstraints of the linear
problem.

iobj is the row that represents the objective function for this phase.
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iobj2 is the row that represents the objective function for phase2. If we
ke dont want any row to be treated differently then iobj2 must be set to
2 number greater than M.

iart is the index of the artificial variable (in case of phase 1).

phase = 1 means we are seeking a feasible point
= 2 means we are seeking an optimal point

endcond = 1 optimal solution
= 2 infeasable problem
= 3 unbounded problem
%/
float RII [NCOLI;
int xI,%Js
int N,M, iobj, iobj2, iart,phase,*endcond;
¢
int ipivot, jpivot,i, j;
float aux,pivot,ratio;

while(xendcond == @)
j=ls
if(phase!=1) uhile(j <= N 83 Rliobjl [jl >= negeps) j++:
elise while{j <= N & Rliobjl[j]l <= poseps) j++;
if(j <= N) | /% there is a negative cost %/
jpivot=js ipivot=M+l; pivot=RMAX;
for(i=0; i <= Ms i++)
iflil=ionj2) §
aux=R [i] [jpivatl;
iflaux > poseps ) |
ratio=R[i] [@] /aux;
if{{ratiopivot-poseps) ||
(ratio < pivot+poseps &8 I[i]l < Ilipivotl)) §
pivot=ratio; '
ipivot=i;

J

if(ipivot <= M) § /% the iteration is bounded %/
ADWUST(R,N, M, ipivot, jpivot);
i=I[ipivotl;
if(i == iart) xendcond=1;
[Lipivotl=d[jpivotl;
Jljpivotl=is
} else xendcond=3; /% the problem is unbounded x/
{ else xendcond=1; ’ /% the problem is solved */

)
}
DISPLAY (X,P,N,M, i terl, i ter2, h,out)

/% This subroutine prints the level of consumption for each consumer and the
price vector after a period of time of iterxh.




*/
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X contains the current level of consumption of each consumer.
P is the current price vector.
N is the number of consumers.

M is the number of goods.

iterl is the number of iterations of the Euler method that have been
performed.

iter2 is the number of iterations of the Robinson’s algorithm
performed in this iteration of the Euler method.

h is the stepsize.

out indicates the form in which the output will be given. If out
= @ the output is given with some comments and additional
information. If out != B the output is given in the compact form;
only the consumtion levels and the prices for each iteration are
printed in as many columns as required.

float xX,xP;
float hg
int N,M,iterl, iter2, cut;

¢

int ii,i,k,nms
nm = NoidMs

iflout == B) §

printf("@teration %d time = %.2f", iterl, iterlxh):
printf{("Bumber of minor iterations performed = %d",iter2);
ii=0;
for (k=B; k N; k++)
printf ("Gonsumer %d8,K);
for (i=8; i <M; i++)
printf("%.5F ", X[ii1);
T i

5

]

printf ("Bricesd);

for (i=8; 1M i4+) printf("4.5¢ ",Plil);
printf("9);

| else §

for (i=8; i <mg i++) printf ("%8.4F",X[i]1);
for (i=8; i i++) printf("%8.4F",P[il);
printf{"9);

/% The next tup subroutines are constructed for the case where
each consumer has a Cobb-Douglas demand function with 2 goods.
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*/
GRADD (G, X,P, i,N,M)

/% This subroutine receives the level of consumption of each
consumer and the current price, and returns the matrix Gs

Gkl [j1 = derivative of k-th component of the demand function of consumer
i with respect to the price of the j~th good.

X contains the level of consumption of each consumer.
P contains the current price vector.

i is index of the consumer.

N is the number of consumers.

M is the number of goods.

*/
float GIMG000] MGOCD] ;
float xX, *»P;
int i, N, Ms
¢
int i» K, point;
float zMGOODI ¢
float alpha,beta,gamma;

point = ixl: ‘
for (j=8; jdM; j++) z(jl = Xlpoint+jls

if(i == 8) §
alpha
beta
! else §
alpha =
beta =

[

J

G a1 @]
Glel 1]
G111 @1
G111

-alphaa [11xz[11/ (P [@]1xP 18] )
alphaxz{11/P[@];

betaxz (@1 /P [11;

-betaxd [B1xz (8] / (P[11xP [11) 5

nonouou

!
DEMAND (D, X, P, i ,N, M)

/% This subroutine receives the level of consumption of each
consumer and the current price, and returns the vector D:

D demand of consumer i.




X contains the level of consumption of each consumer.
P contains the current price vector.

i is index of the consumer.

N is the number of consumers.

M is the number of goods.

*/
float *D, *X, *P;
int i, N, Ms
¢
int j, k, point;
float zMGOODI;
float aipha,beta,gamma, sum;

point = a1
for (j=8; jdM; j++) z[j] = Xlpoint+jl;

ifli == @) {
alpha = 8.3
beta = 8.7
 else §
alpha = 8.6
heta = 8.4

3

sum=98, B
for (j=0; j<2; j++) sum += P{jIxz[jl;

D8] = alphaksum/PI2] - z[9];
D01 = betaksum/P[1] - z[1];

J

/% The next subroutine describes a circular feasible region by the
inequal i ty:

(x141)3k2 + (x2+1)3k2 <= 108.
*/

GRADF (G, 2)

/% This subroutine receives a point z and returns the value and
derivatives of the functions defining the feasible set, at the
point z.

GLil1 i@l is the value of the i~-th function.
Glil[j1 is the derivative of the i-th function with respect to

the j-th variable.
%/
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float GIMGOOD] MGODDI s
float xz;

{

int j.ks

J

Gl (8] = (z[@] + 1.8)%(z[0] + 1.8) + (z[1] + 1.@)x(=z[1] + 1.0)-108.9;
GPl 1] = 2.0%(z[8] + 1.8);
GBl[2] = 2.2%(=z[1] + 1.9);

CUADRO(R, X, R0, TYPE, h, pmin, N, M, Md, endcond)

/% This subroutine set up the tableau for the SIMPLEX method.

*/

R is the tableau
X contains the current level of consumtion for each consumer
RO contains the approximation to the new price vector

TYPE characterizes each row of the tableau as an equality
constraint, inegual ity constraint or objective function

h is the stepsize for the implicit Euler method
pmin is the lower bound for each price

N is the number of consumers

M is the number of goods

M2 is the number of constraints characterizing the set M of
available commodities

endcond Will be set to 1, in case the simplex method is not
necessary for this iteration, and to 2 otheruise

float RI1 INCOLI;
float *(,3R0;

int *TYPE:

flogat h,pming

int N,M,Md, xendcond;

int i,j,k,1,ii,point,ml,mld,n28, m39;
float GIMGOODT MGOODI , SUM (MGOOD] MGOOD] , Z MGO00T , B MG0AaDI ¢
float sumg

ml = Mel; ml@ = mldi@; m20 = ml8+M; m38 = m20+M;

for (i=8; i <=m38s i ++)




for (j=B8; j<=ml; j++) RIi1[j] = 8.9;

for(i=8; id; i++)
for (j=8; j<M; j++) SUMILIT[j1 = B.9;

point = M;
for (j=8; jMs j++) ZI[j1 = X[j1;
for(i=1;i<N;i+H) §
for (j=0; j<Ms j++) ZLj1 += Xlpoint+jl;
point += M;

5
TYPE[Gl = -1
TYPE(L] = B;

for (i=2; i<=m30; i++) TYPELi]l = 1;
RIA1 [ml] = 1.8;
for (j=8; j<aml; j++) RI11[j] = 1.8

il =1

for (i=l;idmlsi++) §
il
RLiil1[8] = —pming
RLii1ILi] = -1.8;

)
for (i=0; i<N;i++) ¢
DEMAND (D, X,R0, i,N,M) ¢
GRADD(G,X,R0O, i,N,M) ;
for (k=@;kMs k++) §
for (j=8; j<d; j++) SMIKI [j] += GIkI[j];
ZIk] += haD [kl
J
J
point = MB;
GRADF (G,2) s
for (i=8; i dM8; i++) §
ii4+s

RLiil(B] = -G[il[@];
if(RIIi1[B] <= negeps) point = i;
faor (j=0; j<d1; j++) ¢
sum = 9.9;
for (k=03 ks k++)
sum += GLil k+11%SUMIK] [j];
RLIi1 [j+1] = heksum;
RLii118] += hksum«RO[]j];
J

iflpoint < M3) xendcond = 2; else kendcond = 1;

for (i=0;idM;i++)



i i+

RLii10@1 = ROLil;

RIii1li+l] = 1.8;

RLOiliml] = -1.83
}

for(i=8;idh i)
i idds
RLii1(81 = -ROC[il;
ROiILiI+1] = -1.8;
RIiilml] = -1.9;
J

J

main( )
/% n number of consumers
m number of goods

md number of constraints defining the production set
iterl maximum number of major iterations
iter2 maximum number of minor iterations
h stepsize
pmin lower bound for each price
epsi precision required for minor iterations
*/

¢

float RINRCW] INCOLI;

float XINMI,PIMGOODI ,ROMGOOD] ¢

int I INROWI,JINCOL] , TYPE INROWI 5

float h,pmin,epsi;

int n,m,md, iterl, iter2, out;

float norm,opt,aux;

int i,j,k,l,ii,kiterl,kiter?,endcond, nm,N,M;

scanf (" 4hd%dbdbd%d% f4F%4f ", 8n, 8m, &mB, &i terl, &i ter2, &out, &h, &omin, 8epsi);
nm=rkin; N=m+l;

/% Xlkkm+i]l = amount of good i consumed by consumer Kk %/
for (i=8; i<dm; i+) scanf('%f",8X[il1);

/% PLi]l = price of good 1 %/
for (i=8; idn; i++) scanf ('%f",8PLi1);

printf("The stepsize is h = %8.5f8,h);
DISPLAY (X,P,n,m, 8,0, h, out};

endcond= 1; kiterl= 8;

whilelkiterl < iterl &8 endcond < 2) §
for (i=0;i<m;i++) ROLiII=PILil;
kiter2=0; norm=RMAX;
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while(kiter2 < iter2 && norm > epsi &8 endcond < 2)
CUADRO (R, X, R0, TYPE, h, pmin, n,m, m@, 8endcond) 5
if (endcond == 2) §

M= 3x%m+l-+md;
SIMPLEX(R, I,J,N, 8M, TYPE, 2, 8endcond, 8opt) ;
i f (endcond < 2} §
norm = -R[Q] [@]1;
for (i=8; i<ng i++) RO[i1=0.9:
for (i=1;i<; i++) §
ii=Ilil;
if(iiqn) ROLiiI=R[il[01;
J

kiter2++;

} else §
norm = 9.9;
J

J
iflendcond = 1) §
iflnorm <= epsi) §
il = B
for(i=@;idmgi++) PILil= ROLil;
for (i=8; i<n; i++) §
DEMAND (RO, X,P,i,n,m) s
for {j=8; j<m; j++) X[ii+j] += haROLj1;
il += mg
J
Kiterli+:
DISPLAY (X,P,n, m,kiterl,kiter2,h,out):

} else
endcond= 3;
printf "Gk error xkk %d minor iterations done without
convergingd,kiter?);

 else printf("@kk error sk the minor iteration is infeasible');

printf("9);
J
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/%
THE IMPLICIT EULER METHOD

*/
#include <stdio.h>
fidefine poseps 9.20001 /% positive tolerance £ 74
fdefine negeps -8.00081 /% negative tolerance ®*/
fidefine NCONS 5 /% maximum number of consumers ®/
fidefine MGOOD 10 /% maximum number of goods */
fidefine MGOOD2 20 /% 2 times MGOOD */
fdefine NM 50 /% NCONS times MGOOD %/
jdefine NCOL 69 /% maximum number of columns in the tableau %/
fidefine NROW 78 /% maximum number of rouws in the tableau */
fidefine RMAX  10009028.8 /x numerical infinite */
GRADD G, X,P, i,N,M
/% This subroutine receives the level of consumption of each

consumer and the current price, and returns the matrix G:

GL.1[@] = demand of consumer i.

GIkl[jl = derivative of k-th component of the demand function of consumer

i with respect to its j-th variable.
X contains the level of consumption of each consumer.
P contains the current price vector.
i is index of the consumer.
N is the number of consumers.
M is the number of goods.
*/
float GIMGOODI MGOCD2I 5
float *X, xP;

int i, N, M
¢

int j, k, point;
float zMGCODI:

point = ixdl;

for(j=0; jM; j++) z[j] = Xlpoint+jl;

if(i == @)
GBI [1] = PIOI%{-2.0+8.6%xz[0]) + P[1lx(~-1.0-2.4%z[@]1+z[11);
GIBI[2] = PIlI1x(1.8+z(0]1-0.4%z[11);
G131 = -2.0%=z(0]1+8.3%z[Q1xz (0] ;
Gl [4] = -z[@]+z(1]-1.2%z (@] %z [@]+z [B]%z (1] -B. 2%z [11%=z[11;
GI1IM] = Pl@1%(0.5+2.0%z [21+8.5%z[11) ;
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GI1[2] = PIOI%{(-2.8+0.5%z [8]1-2.8%z[11) + PI1I%(-1.8+8.4%z[11);
GI11 (3] = 8.5xz[0]1-2. 8%z [1]+z [0 %z [0]+8.5%z [@1%z [11 -z [1]1 %z [1]1;
Gl11[4] = -z[11+0. 2%z [11%z[1];

{ else
GIBI[11 = P[B1%(-2.8+8. 8%z [@] -0. 34z [11)+P [1]% (-1.5-8, 2%z [8] +8.5xz [11) 5
GOl [2] = P[@Ix(-8.3%z[01) + P[11%(2.0+8.5%z[0]-8.8%z[1]);
GOl [3] = -2.0%z[B]1+0.4%z[0)xz [8] -8, 3%z (B 5z [1] 5
GIOI [4] = -1.5wz[@1+2.0%z[11+8. 1xz [8] %z [8] +. Sz [8] sz [1] ~0. 4%z [1]*2[1]°
GI11I1] = P@1%(1.8-8.72%z [81+8. 3%z [11);
GI11[2] = P[BI%(-2.0+8.3%z [@]1+8.8%2 [1]1) + P[11x(-1.8-8.2%z[1]1);
GI111[3]1 = 1.8%z[8]-2. 8%z [1]1-8.36xz [8]%z (9] +8. &ZM]*Z[I]-I-@J&*Z[I]*Z[I]
Gl [4] = -z[11-8. 1%z [11%z[11;

J
Gal (8] = G2l [31xP (8] + GIO1 [41xPI11;
G181 = GI11[31xP 8] + GI11 [41xP[1];

j

GRADF (G, z)

/% This subroutine receives a point z and returns the value and
derivatives of the functions defining the set of available
commodities, at the point z.

GLil[Bl is the value of the i~th function.

GLil[j] is the derivative of the i-th function with respect to
the j-th variable.

*/

float GIMGOODI MGOOD2I ¢

float xz;

¢
GlRI[B] = z[1] + B.1x=z[8] - 5.9;
Gl 1] = 8.1;
G121 = 1.98;
G118 = z[8] + B.1x=z[1] - 5.8;
GOIal =1.9
GUIR2! = B8.1;

}
CUADRO(R,G, X, PSI RO, TYPE, h, pmin, N, M, M)
/% This subroutine set up the tableau for the SIMPLEX method.
R is the tableau
X contains the current level of consumtion for each consumer

PSI contains the approximation to the new level of consumption
for each consumer
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RO contains the approximation to the new price vector

TYPE characterizes each row of the tableau as an equality
constraint, inegquality constraint or objective function

h is the stepsize for the implicit Euler method
pmin is the lower bound for each price

N is the number of consumers

M is the number of goods

M@ is the number of constraints characterizing the set M of
available commodities

*/

float R INCOL], G[] MGOOD21;

float ®¢{,«PSI,:R0;

int %TYPE;

float h,pmin;

int N,M,M0;

¢

int i,],k,ii,point,nm,nml, nm2,nlm, niml,n2m, n2ml, n3m, n3ml, n&m, nSms

float z[MGOOD] ;

float sum;

nm=NoiMs  rml=nm+l; nm2=nml+is
nim= rm+f; nlml= nim+ls
n2m=nml+nim; n2ml=n2m+l;
n3m=n2m+nim; n3ml=n3m+l;’
ndm=n3m+M8; nSm=n4m+M;

for (i=8;s | <=rSm; i ++)
for (j=8; j<=nlml;s j++) R[i1{j1= 8.8;

TYPE[Rl = -1;
for(i=l;i<erml;i++) TYPELil1=8;
for (i=nm2; i <=nbm; i++) TYPE[il=l;

RI0] [nlml]l=1.8; ii=1l; point=8;
for (1=8; idN;i++) §
GRADD(G,PSI, RO, i,N,M s
for (k=@;k M k++) §
sum=G [k [@];
for (j=1; j<=i; j++) |
sum ~-= (GIk] [jIPSI [point+j-11+G (K] [j+MIxRO[j-11)
Rl [j+point] = -aGIK] [l
REii1 Inm+j] = -hG k] [j+M1;

J

RLViITLii] 4= 1.8;
RI1i1[01 = X[ii-1]+hksum;
i 14+3




point += M;

Rinmll (@] = 1.9 for (j=rml; j<=nlm; j++) RInml] [jl =

for (i=8; i <nms i++) §
i id+g
RIii1001 = PSILils
RIiILi+1] = 1.8;
Riil[niml] = -1.8;

]

for (i=8;id1;i++) §
i+
RLii1(8] = ROLil;
RLEIICi+nml] = 1.9
RLiil[nlml]l = -1.9

-e

J

for (i=8; i <nm; j++) §
(R
RIiil1[0] = -PSI[il;
RIIiILi+1] = -1.8;
RIiillnlmll = -1.8;

]

for(i=8;id; i) §
ity
RIiil1[8] = -ROLil;
RLi1[i+nml]l = -1.8;
RLNil[nlml] = -1.9;

J
" point=8; for(j=8; jdi; j++) z[j]l = 9.8;
for (k=8; kaN; k++) §
for(j=8; j<1; j++) z[jl += PSI [point+jls
point += M;

J
GRADF (G, 2) ;
for (k=8; k18 k++)

for (j=1; j<=M; j++) GIK] [B] —= GIk] [j1szl[j-11;
for (i <0; i 18; 1++) §

ii++; RLT11[8] = -GLil[8]; point = B;

for (k=B; k N;k++) §

for (j=1; j<=M; j++) RILiil [point+jl = GLil[jl;

point += Ms

}
)
for (i=8; il i++) §

T ity

RLIi1[8] = —pming

RO [i+nml] = -1.8;
j

J

1.98;
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main{ )
/% n number of consumers
m number of goods

md number of constraints defining the production set
iterl maximum number of major iterations
iter2 maximum number of minor iterations
h stepsize
pmin lower bound for each price
epsi precision required for minor iterations
*/

¢

float RINROW] INCOL], GIMGOOD] MGOOD2] s

float XINMI,PSI (NMI,PIMGOODI, RO IMGOODIT 5

int I INROWI,JINCOLI, TYPE INRCWI;

float h,pmin,epsi;

int n,m,md, iterl, iterZ, out;

float norm, opt, aux;

int i,j.k, I,ii,kiterl,kiter2, endcond, nm,nlm,N,M;

scanf (" %d%d%dddhdtd b t%4F%F" , 8n, 8m, &mB, &i terl, &i ter2, 8out, &, 8pmin, &epsi);
nm=rkms nlm=nm+m; N= nlm+l;

/x X[kxm+i]l = amount of good i consumed by consumer k %/
for (i=0; i<dwm; i++) scanf ("'%f",8K[il);

/% PLil = price of good i %/
for (i=8s i<n;i++} scanf ("%, 8PLi1);

printf("The stepsize is h = %8.5f8,h);
DISPLAY (X,P,n,m, 8,8, h, out) ;

k=0;

for (i=8;i<n;i++) |
GRADD(G,X,P,i,n,m);
for (j=0; j<m; j++) PSI[k+j] = taGLjl[81;
k += m;

endcond= 1; kiterl= 0;

while(kiterl < iterl &8 endcond < 2) §
for (=8 i <wm; i++) PSILil 4= X[il;
for (i=8sidan; i++) ROLI1=PLil;

kiter2=0; norm=RMAX;
whilelkiter2 < iter2 && narm > epsi && endcond < 2} §
CUADRO (R, G, X,PSI, RO, TYPE, h, pmin, n,m, md} ;
M= 3xnlm+l+m8; _
SIMPLEX(R, I, J,N, &M, TYPE, 2, &endcond, 8opt) ;
if(endcond <2} §
norm = -R[@] [81;
for (i=8; i<nms i++) PSIL[il=8.0;
for (i=0; i<n; i++) RO[i1=8.8;
for (i=1; i<=M; i++) §
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