THE DESIGN AND PERFORMANCE
OF HIGH-LEVEL LANGUAGE PRIMITIVES
FOR DISTRIBUTED PROGRAMMING
by

Thomas John LeBlanc

Computer Sciences Technical Report #492

December 1982

THE DESIGN AND PERFORMANCE
OF HIGH-LEVEL LANGUAGE PRIMITIVES

FOR DISTRIBUTED PROGRANIMING

by

THOMAS JOHN LEBLANC

A thesis submitted in partial fulfillment of the
requirements for the degree of

DOCTOR OF PHILOSOPHY
(Computer Sciences)

at the

UNIVERSITY OF WISCONSIN - MADISON

1982

® Copyright by Thomas John LeBlanc 1982
All Rights Reserved

ABSTRACT

We consider a distributed computing environment in which a high-level
distributed programming language kernel, as contrasted with a distributed operating
system, is sufficient support for programming applications and in which performance
Is of primary concern. We propose programming language support for such an

environment and present the performance results of an implementation.

Using the distributed programming language StarMod as a basis, we describe
communication primitives which provide interprocess communication, broadcast
communication, remote invocation, and remote memory references. Each form of
communication is integrated into StarMod in a consistent fashion maintaining the
properties of transparency, full functionality, and modularity. The costs and benefits
associated with the various models of communication are analyzed based on the
results of an implementation'that runs on 8 PDP 11/23 microprocessors connected

by a one megabit/second network.

We conclude with a comparison of the communication primitives, including design,
performance, ease of implementation, functionality, and tractability. We discuss
general lessons learned in constructing distributed programming language kernels for
"bare'' machines and suggestions for the organization of an architecture that

supports the efficient implementation of high-level language communication primitives.

ACKNOWLEDGEMENTS

First of all, | would like to thank my advisor, Bob Cook. Technically, Bob is my
thesis advisor; In actuality, he is a friend aud colleague without whom | could not
have written this dissertation. He was an ideal advisor: supportive during crises of
confldence, critical whenever required by circumstances, and always willing to lose a

tennis match when | needed a win.

| would also like to thank the other members of my committee, David DeWitt,
Charles Fischer, James Goodman, and Charles Kime. In particular, 1 would like to thank
Dave DeWitt who, using cardboard, scotch tape and bubble gum, kept the PDP
11/28's running long enough for me to perform my experiments, and Charlie Fischer
who has been a fountain of knowledge during my stay at Wisconsin; he is the reason

why, to this day, | prefer compilers to operating systems.

Special thanks are due Bob Gerber who developed the Modula kernel and was
instrumental in the early development of the StarMod kernel. His efforts saved me
months of tedious programming; his congeniality saved my sanity on more than one

occasion.

Further support along the way was also provided by the following people: Julius
Archibald, Carol Smith, the "secretaries", the "boys in the lab", and, of course, my

parents. Their contributions to my education have not gone unnoticed.

Finally, and most importantly, | want to thank my wife, Anne, for those lonely
nights she spent at home while | was in the lab. Put a light in the window Slim, I'm

finally coming home.

iv

TABLE OF CONTENTS

Chapter 1 - Introduction

1.1 Introduction and Motivation
1.2 Scope and Goals
1.3 Methodology

1.4 Implementation Environment
1.5 Dissertation Plan

Chapter 2 - Language Primitives for Distributed Programming

2.1 Introduction
2.2 Concurrent Programming Languages
2.3 Distributed Programming Languages
2.3.1 Distributed Processes
2.3.2 Communicating Sequential Processes
2.3.3 Liskov's Primitives
2.3.4 Ada Tasks
2.3.5 Synchronizing Resources
2.4 Nelson's Remote Procedure Call
2.5 Spector's Remote Operations
2.8 Summary

Chapter 3 - An Overview of StarMod

3.1 Introduction

3.2 Processes

3.3 Signals

3.4 Modules
3.4.1 Interface Modules
3.4.2 Processor Modules
3.4.3 Network Modules

3.5 Ports

3.6 The Completion Statement

3.7 Summary

Chapter 4 - Message~ and Procedure~Oriented Communication

4,1 Introduction
4.2 Message-Oriented Communication
4.2.1 Port Declarations
4.2.2 Region Statement
4.2.3 Port Call Completion Semantics
4.2.4 Implementation
4.2.4.1 implementation Description
4.2.4.2 Implementation Performance
4.2.4.3 Comparisons with Charlotte

-

-
COOOONN ~N ObhHO-

4.2.4.4 lmproving Performance
4.3 Remote Procedure Call
4.3.1 Essential Properties of an RPC Mechanism
4.3.1.1 Uniform Call Semantics
4.3.1.2 Type Chezkina
4.3.1.8 Full Parameter Functionalicy
4.3.1.4 Concurrency Control and Exception Handling
4.3.1.5 Distributed Binding
4.3.2 Orphan Computations
4.3.3 Implementation
4.3.3.1 Implementation Description
4.3.3.2 Implementation Performance
4.3.3.3 Comparisons with Nelson's RPC
4.3.3.4 improving Performance
4.3.4 Remote Process Activation
4.4 Broadcast Messages
4.4.1 Broadcast Port Declarations
4.4.2 Broadcast Semantics
4.4.2.1 Broadcast Replies
4.4.2.2 Broadcast Completion Semantics
4.4.2.3 Multicast Messages
4.4.3 Implementation
4.4.3.1 Implementation Description
4.4.3.2 Implementation Performance
4.5 Summary

Chapter 5 - Remote Memory References

5.1 Introduction
6.2 The Data Abstraction Conflict
5.3 Synchronization Issues
5.4 Remote Variable References
5.4.1 Transparency
6.4.1.1 Transmitting Complex Types
5.4.1.2 Qualified References
5.4.1.3 Pointer Types
5.4.1.4 Type-Based Synchrony
5.4.1.5 Failure and Retry
5.4.2 Synchronization
5.4.3 Address Binding
5.4.4 Implementation
5.4.4.1 Implementation Description
5.4.4.2 Implementation Performance
5.4.4.3 Comparisons with Spector's Remote References
5.4.4.4 Effects of Qualification on Performance
5.4.4.5 Effects of Synchronization on Performance
5.4.4.6 Improving Performance
5.4.5 Protection and Autonomy
6.5 Summary

Chapter 6 - A Family of Communication Primitives

vi

6.1 Introduction 86

6.2 Comparing Models of Communication 86
6.2.1 Performance 886
6.2.1.1 Network Contention 87
6.2.1.2 Interaction Between Communication Primitives 88
8.2.1.3 Local Vs. Remote Communication 89
8.2.1.4 Overhead of Marshalling Parameters 80

8.2.2 Ease of Implementation 90
6.2.3 Functionality o1
6.2.4 Familiarity of the User Interface 22
6.2.5 Formal Tractability 22
6.3 Lessons in Kernel Construction a3
6.3.1 Balance Simplicity and Performance 94
6.3.2 Simple Protocols Are Not Simple 94
6.3.3 Don't Increase Traffic to Improve Performance 85
6.3.4 Use Simple Packet Structures 96
6.3.5 Avoid Expensive Instructions 96
6.3.6 Avoid Mutual Exclusion and Synchronization 97

6. 8 7 Use a High Resolution Line Clock a8
6.4 An Architecture for a Family of Primitives a8
6. 4 1 Processor a8
6.4.2 Communication Adapter 99
6.4.3 Memory 101
6.4.4 The Network 102
6.4.4.1 Network Topology 102
6.4.4.2 Network Bandwidth 103
6.4.4.3 Processor Homogeneity 103

6.4.4.4 Language Homogeneity 1056

6.5 Summary 106
Chapter 7 = Conclusion 107
7.1 Summary 107
7.2 Future Research 108
7.2.1 Delayed Bindings 108
7.2.2 High-Performance, Processor-Synchronous Operations 108
7.2.3 Network Contention 108
7.2.4 Network Architectures 109
7.2.5 Dynamic Mapping 108
7.2.6 User Experience 109
Appendix 111
Bibliography 112

vii

Figure 4-1
Figure 4-2
Figure 4-3
Figure 4-4

Figure 4-5
Figure 4-6

Figure 4~7
Figure 4-8

Figure 4-9

Figure 4-10
Figure 4-11

Figure 5-1
Figure 5-2
Figure 5-3
Figure 5-4
Figure 6~1

Figure 6-2

LIST OF FIGURES

Execution Time (in ms.) for Asynehronous and
Synchronous Port Calls

Timing Program for Local Port Calis

Timing Program for Remote Port Calls

% Network Bandwidth Utilization for Remote

Port Calls

RPC Performance and Bandwidth Utilization

RPC Performance and Bandwidth Utilization
Without Argument Copy

Execution Time (in ms.) for Asynchronous
Broadcast Port Call To Multiple Destinations
Speedup Factor of Asynchronous Broadcast
Communication vs. Point-to~Point Communication
TBR(N) Projected Time (in ms.) and Speedup Factor
vs. Point-to-Point Communication for Asynchronous
Broadcast Port Call To Multiple Destinations
Execution Time (in ms.) for Synchronous Broadcast
Port Call To Multiple Destinations

Speedup Factor of Synchronous Broadcast
Communication vs. Point-to~-Point Communication

Remote Variable Reference Performance and

Network Bandwidth Utilization

Instruction Breakdown for Remote Variable Reference
Remote Variable Reference Performance Without Copy
Projected Timing Results (in Microseconds) for

Higher Bandwidth Networks

Ratio Between Remote and Local Execution Time for
Various Communication Models with 2 Byte Arguments
Projected Execution Time (in ms.) for Higher

Bandwidth Networks and Higher Performance Processors

30
32
34

a7
54
65

56
58
69

76
81
83

89
104

Chapter 1

INTRODUCTION

1.1. Introduction and Motivation

This dissertation considers programming language support for distributed
programming, with particular emphasis on execution efficiency. The approach is to
provide program structuring forms and a spectrum of communication primitives within

the context of a high-level, distributed programming language implementation.

Numerous factors have influenced the evolution of distributed systems
including site autonomy, decentralization, reliability, performance, availability,
resource sharing, growth potential, and geographical distribution [84]. Depending
on the relative importance of each factor, distribution of processors might span a
few inches (e.g., for performance or reliability) or thousands of miles (e.g., for

geographical distribution).

In the past, primitives for communication in distributed systems have
frequently been developed in an environment that precludes both a variety of
communication models and high performance. For example, Liskov's emphasis on
robustness lead to the selection of remote procedure call as the primitive of choice
[41], regarding other communication primitives as inadequate for constructing
robust software. Distributed operating systems frequently use message-based
communication because the process structure provided by the typical operating
system does not allow code or data sharing. In situations such as these, the opti~
mized performance of a particular implementation of the communication model may
be an important consideration. However, the performance of the entire class of
primitives, as compared with some other communication model in the same

environment, is seldom an issue. In this dissertation we take the view that multiple

forms of communication are necessary to satisfy both the program structuring and

performance requirements of distributed programs.

Our work was motivated by severar coi.siderntions. We chose to investigate
distributed programming issues from a programming language perspective because
we believe that a distributed programming language kernel Is sufficient support for
a large class of programs, particularly programs distributed to enhance performance.
Since a language-based distributed programming system can be developed more
quickly and transported more readily than most distributed operating systems,
development and maintenance costs are greatly reduced. In addition, a
programming language kernel can optimize performance for that class of programs
the language is designed to address. More general implementations, layered
protocols for example, tend to introduce significant overhead during execution
[10]. The static bindings and compile-time type checking inherent in many high-
level programming languages provide run-time protection without run-time overhead.
More important, a programming language provides a consistent model of program
organization and communication, a structured view frequently unobtainable in a
language that implements all communication using explicit subroutine calls to the

operating system.

Further motivation was provided by the work of Spector [49] and Nelson [44].
An important aspect of Spector's work was to show that one class of remote
references, remote memory references, can be executed efficiently on a local-area
network. Nelson focused on the desirability of remote procedure call (RPC) as a
communication primitive for constructing programs for distributed systems. An
experimental implementation demonstrated that RPC can also be executed
efficiently in the context of a specialized implementation. Both Spector and Nelson
acknowledge that programming language support is a necessary attribute for the

practical application of their somewhat specialized resuits.

We do not concentrate on a particular model of communication because we
believe that a communication system based on a single model of communication will
execute some large class of programs inefficiently. This impression is reinforced by
the resuits of Spector and Nelson. Two extremes in the spectrum of communic&tion
primitives, remote memory reference and remote procedure call, were shown to be
desirable forms of communication that can be executed efficiently. We consider
our work to be an extension, and perhaps a unification, of Spector's and Nelson's

work.
1.2. Scope and Goals

The theme of this dissertation is that a high-level, distributed programming
language implementation that provides a rich set of communication primitives is a
reasonable and efficient mechanism for programming high-performance, local-area
networks. We characterize the computer networks of interest as single-user,
single-address space ?mcessors executing programs with modest 1/0 and security
requirements that are distributed primarily to enhance performance. Such attributes
are commonly associated with microprocessor-based, local-area networks. While
we do not étﬁctly limit discussion to single~-user, single-address space processors,

we are primarily concerned with microprocessor-based, local-area networks.

The comparative performance of various communication models is a central
issue In our research. Therefore we examine an environment in which performance
is not limited by current communications technology. Most long-haul networks are
limited by the bandwidth of the telephone network; saving a few milliseconds in
processing time will not significantly improve performance of overnight network mail

services. Thus, we specifically exclude consideration of applications such as

inter-network mail servers.

We propose that the programming language provide the user with a uniform and

complete view of the system. No additional explicit operating system support is

4

envisioned. The resultant virtual machine is not intended to completely address 1/0
requirements, protection, and other issues to the extent typically found in operating

systems.

Our goals are two-fold. The first is to demonstrate the advantages of a
programming system in which a variety of communication primitives are supported.
Our second goal is to show that communication primitives subsumed in a high-level
language implementation can be implemented very efficiently, especially in
comparison with systems that present a more general user interface, for example,

distributed operating systems and layered network protocols.
1.3. Methodoiogy

Using the programming language StarMod [12] as our context, we explore
various models of communication between remote processors. StarMod provides a
uniform program structure and philosophy consistent with the construction of
distributed programs. Each communication primitive is considered in three steps: &D)
a language design within the StarMod context, including syntax and semantics, (2)
a run-time kernel implementation, and (3) performance analysis and fine-tuning of

the implementation for efficient execution.
1.4. impiementation Environment

Throughout this dissertation, performance results derived from an
implementation are presented. To evaluate those results and to place them in
proper perspective, it is essential that the implementation environment be well

understood.

The implementation executes on a network of 8 Digital Equipment Corporation
PDP 11/23 microprocessors connected By a Computrol megalink, a one
megabit/second, carrier-sense (no collision detection), broadcast network. The

PDP 11/23 processor executes about 170,000 instructions per second. A typical

instruction requires 6 microseconds. The microinstruction cycle time is 300
nanoseconds and the interrupt service time is 8.2 microseconds [15]. An appendix
lists the time required to execute some common machine language instructions dnd
certain frequently executed language primitives found in the run-time kernel (e.g.,

procedure call, process switch).

Each PDP 11/23 processor contains a hardware clock with 1/60 second
resolution used to measure timeout intervals and performance results. Clock
interrupts maintain the system clock and also permit the scheduling algorithm to
execute. The clock interrupt handler is always present and the associated

overhead is included in all timing results.

Test results are, for the most part, best case performances on an unloaded
network. At times, artificial loads were generated on the network for performance
evaluation in the presence of contention. In any event, there were no other users

on the network when the test results were generated.

The implementation was developed on a "bare’” machine. The entire communi-
cations kernel resides within the language kerel. No other system software Is

used, thus all software overhead is our own.
1.5. Dissertation Plan

The organization of this dissertation is as follows. Chapter 2, a summary of
related work, contains a survey of programming language proposals for distributed
systems. Chapter 3 presents an overview of the programming language StarMod, a
distributed programming language which serves as a starting point for the remainder
of the dissertation. In Chapter 4, basic communication using messages and
procedures is introduced within the context of a high-level language; syntax,
semantics, and performance are described. We also extend the notion of point-to-
point communication to permit broadcasvt communication, whereby a single

processing node may communicate with an entire network partition using a single

invaocation, and compare the performance attained with the expected performance.
in Chapter 5, a more primitive operation, remote memory reference, is considered.
We examine the advantages and dicadvantages of such a primitive operation,
propose a language design Incorporating transparent remote variable references,
and present results describing the observed performance. In Chapter 6, we use
qualitative and quantitative criteria to compare the various communication
primitives. We also discuss lessons learned during construction of the kemel and
consider architectural support for the development of high-level language kernels
for distributed programming. Chapter 7 concludes the dissertation with a summary

and suggestions for future research.

Chapter 2

LANGUAGE PRIMITIVES FOR DISTRIBUTED PROGRAMMING

2.1. Introduction

Linguistic support for parallel algorithms can be divided into two classes,
concurrent and distributed programming languages. Concurrent programs require
multiple processes to execute; distributed programs require multiple processors for
their execution. Languages designed for concurrent programming often assume that
the programs execute on a single processor. Such languages may allow shared
variables to be used for process communication and may not provide a mechanism
for message communication between processes. This is in contrast to languages for
distributed programming that need to address Issues of process communication
without shared memory, communication protocols, remote references and operations,
and network rellablliity. The difference between the two classes Is a subjective
one since, conceptually, it is possible to write distributed programs using a
concurrent programming language. Considerable effort must be expended, however,
on developing underlying software designed to map concurrent programs onto

distributed systems.

In this chapter, we review some of the important language proposals designed
to support concurrent and distributed programs, as well as other relevant work that

influenced our language development.
2.2. Concurrent Programming Languages

Both Concurrent Pascal [7] and Modula [66] are Pascal-based languages
designed for concurrent programming. Processes and monitors (interface modules)
are used to provide concurrency and synchronization. Neither language was

designed to address the particular issues associated with distributed programming.

For example, Wirth's implementation of Modqla, designed for a uniprocessor,
disables the hardware interrupt mechanism to implement mutual exclusion [556]. This
technique does not extend to muitiprocessor systems. In addit{on, both languages
assume the existence of shared memory and neither provldeé explicit constructs
for message-based communication. The primary advantage of these languages is
that they have been implemented and, therefore, provide an environment for
experimentation with concurrent programming. Additionally, the kernels associated
with their run~time packages are small and simple to write since few run-time

operations are supported.
2.3. Distributed Programming Languages
2.3.1. Distributed Processes

Distributed Processes (DP) [8] was proposed by Brinch Hansen as a language
concept for distributed programming without shared variables. As such, it was a
first attempt to address the problem of language design for distributed programming.
The concept was intended for real-time applications executing on microcomputer
networks. Remote procedure calls that may return results are the fundamental
operation used for communication; procedure argument lists are used to transmit
Information between processors. Synchronization of processes is achieved using

guarded regions [16].

DP was designed for the specific purpecse of programming real-time
applications on microcomputer networks and is somewhat inflexible as a general-
purpose language for distributed programming. Limitations include: (1) a program
composed of distributed processes consists of a fixed number of concurrent
processes, (2) each processor Is dedicated to a single process, (3) there are no
common variables between processes, a direct resuit of the requirement that each
processor be dedicated to a single process, and (4) remote procedure calis, the

only form of inter-machine communication available, are considered indivisible

operations; the calling process must wait until the remote operation is finished.

In spite of these limitations, DP is well-suited to its application environment,
microprocessor networks designed for real-time applications. In addition, the design
of DP had consliderable influence on the development of StarMod, upon which much

of the work reported In this dissertation is based.
2.3.2, Communicating Sequential Processes

Communicating Sequential Processes (CSP) [25] assumes Input and output as
the fundamental programming operations and composition of parallel processes as
the basic structuring method of programs. This language proposal uses Dijkstra's
guarded commands [16] to provide nondeterminism, a parbegin command to
introduce concurrency, and input/output commands for process communication. In
order for two processes to communicate, each must name the other as the object of
an input/output command. Each process must wait for the other to execute its

input/output command.

The primary disadvantages of CSP are that communication is symmetric (each
process must name the other to communicate), static binding is used to name
communicating processes, and there Is no facility for asynchronous communication.
Nevertheless, the numerous program examplies in [25] demonstrate the flexibility of

the proposal.
2.3.3. Liskov's Primitives

Liskov has suggested primitives for distributed programming that support
modularity, communication, and robust behavior [38,39,40,41]. A guardian is an
abstraction that represents a logical processor; guardlans are dynamic in nature in
that the population of guardians may increase or decrease during program
execution. Processes communicate by sending messages to ports, one-directional

gateways into guardians [38]. The type of communication supported has ranged

10

from the simple no-wait send [38] to the more complex remote procedure call [41].

The primary thrust of Liskov's work is towards robust software for distributed
systen.. T-a approach is very high level; Clu abstraction techniques combine with
atomic transactions, which are most frequently associated with distributed

databases, to form a powerful, high-level tool for software construction.
2.3.4. Ada Tasks

Ada tasks [62] support concurrency using the procedure call model. An entry
procedure within a task differs from a normal procedure in that the entry procedure
Is executed by the enclosing task, not the calling task, which is suspended during
execution of the entry procedure. After execution of the entry procedure, both
tasks continue in parallel. This rendezvous facility was designed to provide both
process communication and synchronization. The calling task calls an entry
procedure, actual parameters are bound to formal parameters, and the calling task
waits for the called task to execute an accept statement. After the rendezvous,

the called task executes the entry procedure.

in Ada, the calling process must name the rendezvous point within the receiving
process. The naming operation is implicit in that a specific entry point for
rendezvous must be given and each entry point is associated with only one task.
Since task qualification may be used to specify the entry point, including an access
type specification (pointer to task), communication paths between individual

instantiations of task types may not always be determined statically.
2.3.5. Synchronizing Resources

Andrews's view of distributed systems as a set of resources providing service
to clients led to the development of a communication and synchronization proposal
called Synchronizing Resources (SR) [1]. A resource is a set of processes,

together with local data, that define some operation; processes are synchronized

11

by boolean expressions in guarded commands. Process communication may take the
form of remote invocation (call), blocking the caller until the operation has
completed execution, or message transmission (send), blocking the sending process
only long enough to buffer the arguments. An in statement, analogous to the accept

statement of Ada, is used to schedule execution of the operation.
2.4, Nelson's Remote Procedure Call

Nelson's thesis on remote procedure call (RPC) [44] addresses the desirability
of the remote procedure call as a model of procaess communication and control, the
properties such calls should exhibit, and the efficient implementation of remote
calls. ldeal properties for an RPC mechanism are said to include uniform call
semantics, binding and configuration, type checking, complete parameter
functionality, and concurrency control and exception handling. (It is worth noting
that any communication primitive incorporated into a high-level programming
language should, to a great extent, realize these ideal properties. These properties
are reconsidered In detail in later chapters with regards to the specific primitives

we discuss.)

Neilson's thesis presents the design of a transparent RPC mechanism in
considerable detail and then evaluates the performance of a family of mechanisms
based on the design. Special attention is paid to maintaining semantics in the
presence of processor or communication failures, via orphan algorithms, and to
parameter transmissions involving complex types, two of the most difficult issues
associated with RPC. Performance measurements are presented that show that

even a complex primitive such as RPC can be implemented efficiently.
2.5. Spector's Remote Operations

Spector's work on remote references/remote operations [49] describes a
model of semantics for remote operations in a distributed system. The model,

iIndependent of any particular language or architecture, considers both low-level

12

operations performed by system implementors and user-level operations.

Spector's model considers five attributes that apply to remote operations: (1)
rellabifity - is the ope.ation guaranteed to occur and how many times might it occur
in thg presence of communication or processor failures? (2) retumn value - does the
reference require a return value? (3) flow control - are resources available at the
site of the remote operation? (4) caller/callee synchronization - must the caller's
process or processor wait for a reply? (5) operation types - Is the operation
sufficiently low level to be executed by the communications interface? This
taxonomy of references is useful for characterizing communication in distributed
systems. The programmer may specify thé exact nature of the reference and only
the overhead necessary Is incurred. For example, one reliability attribute
guarantees that an operatl;:m will be performed exactly once. This operation
requires stable storage [30] to implement the semantics of the operation.
Considerable overhead is often associated with such storage; only those operations
requiring this level of reliability should use it. Distributed systems that provide a
rich set of remote operations, as exemplified by this model, allow the user to choose

a primitive whose performance and semantics closely match the intended usage.

An additional aspect of Spector's work was the implementation of a particular
class of primitives defined by the model. Processor-synchronous, value-returning,
remote memory load and store operations were implemented using Alto computers
connected by a 2.94 megabits/second Ethemet. The primary result was that such
references can be made extremely efficient on a local network, 155 microseconds
per reference using Spector's microcode implementation. This promising resuit was
a major motivational factor in our work in which we attempt to incorporate efficient
communication primitives based on Spector's communication model into a high-level

fanguage.

i3

2.6. Summary

A survey of relevant work suggests that, for the most part, there have been
few attempts to design general-purpose, distributed programming languages that
can be used to build higher levels of software support In a distributed system. Each
of the many language proposals we have surveyed addresses some particular
aspect of programming distributed systems. Distributed processes were developed
for a specific set of application programs, Liskov's primitives primarily address one
specific requirement (robustness), and Nelson considers one specific form of
communication (RPC). Our work is an attempt to fill the gaps between these various

approacheé.

14

Chapter 3

AN OVERVIEW OF STARMOD

3.1. Introduction

The programming language StarMod [12] grew from the desire to extend
Modula [56] to include facilities for distributed computing. The additions and
modifications to Modula primarily focus on those aspects of the language intended
to support this type of programming. in most other respects, the structure of
StarMod programs is inherited from Modula. Since much of the work in this
dissertation Is based on StarMod, we describe in detail those features of StarMod
that support concurrent and distributed programming. We also propose a new
statement for StarMod that provides a timeout mechanism, a necessary addition

used extensively by the kernel implementation.
3.2. Processes

A StarMod process declaration describes a procedure, complete with local
declarations and statements, which is to execute concurrently with other
processes. No assumption can be made about the relative speed of a process

except that it Is greater than zero.

pracess <identifier> (<formal parameters>) : <result type>;
<local declarations>
begin
<statement list>
end <identifier>;

A process is activated just like a procedure, using the procedure call statement.
The only difference is that the calling program continues to execute in paralle! with
the newly activated process. The number of concurrent processes at execution

time is limited only by the amount of available memory. There may be many

15

activations of the same process executing concurrently; each instance of the
process may have a different set of actual parameters. A process terminates when
an exit process statement is encountered or when the end of the process is

reached.

A process may return a value (the result type in the process declaration is
optional), just as a procedure may be a value-producing function. For functional

processes, the calling process must wait for the return value.
3.3. Signals

In general, processes communicate via shared variables, usually declared
within an interface module. For long term scheduling, however, signals should be
used. A variable of type signal is not a variable in the usual sense; there are no
values that may be assigned to a signal. The only valid operations on variables of
type signal are the following predefined procedures:

wait(s,p) - delay a process until it receives the signal s. The process is given
priority p, imposing an ordering on processes waiting for a specific signal.
send(s) - send signal s to that process waiting for s with the highest priority.

awaited(s) - a boolean function that retums true if there is a process walting
for signal s.

3.4. Modules

A module encapsulates a set of declarations and procedures into a closed
lexical scope. The interactions between modules must be explicitly stated in the
interface specification section. Thus, the module is a syntactic construct for the

implementation of abstractions and their interfaces.

module </dentifier>;
<interface specification>
<local declarations>
begin
<statement list>
end <identifier>;

18

A module describes a closed scope. That is, no identifiers declared in an enclosing
scope are visible within the module unless explicitly imported. Similarly, no identi-
flers declared within the module are visible in the enclosing scope uniess expiicitly
exported. These restrictions force the programmer to de.clare the interactions
between modules. The compiler enforces the protection of data within a module,

providing secure abstractions with well-defined interfaces.

As In Modula, a prefix in the module declaration specifys semantic
Interpretations for the module. Thus, the module can be used to delineate scope,

specify synchronization, enciose logical processors, and describe network topology.
3.4.1. Interface Modules

A module prefixed by interface specifies that the module is to act as a monitor
[24]. That is, only one process may execute within the module at one time,
preventing simultaneous access to encapsulated data. Thus, interface modules

provide a mechanism for short-term scheduling of processes.
3.4.2. Processor Modules

A module prefixed by processor describes the environment for a logical
procassor. in general, a processor module corresponds to a physical processor and
a single shared memory. It encapsulates all processes that are to execute on a
single processor. A processor module may encapsulate a number of processes that
have access to the shared data of the processor module. Communication between
processes within different processor modules, potentially executing on different

physical processaors, is in the form of messages.

It is possible for more than one virtual processor, as defined by a processor
module, to share a single physical processor. Similarly, the implementation may map
processes within a processor module to different physical processors to improve

the parallelism. Nevertheless, processor modules provide a mechanism whereby the

17

programmer can partition his distributed program into collections of processes,

reflecting natural divisions between physical processors.
3.4.3. Network Modules

A module prefixed by network encapsulates programs for execution on a
network of processors without shared memory. A network module is made up of
processor modules and global (network-wide) declarations. The global declarations
may Include constants, types, procedures, and processes. No global variables or
module initialization are allowed since we do not assume a shared memory exists for
all processors. Network modules are useful for defining network-wide protocols, via
constant, type, procedure, and process declarations, and ensuring standardization

betwean processor modules.

A network module may specify the topology of the underlying hardware config-
uration. The links facility allows the programmer to specify what direct communi-
catlon connections exist between processor modules. A link declaration specifies a
source processor and a series of destination processors; communication may flow
from the source to the listed destinations. For example, the following network

module declares the communication connactions for a five node star network:

network module star;
(* Processor module communication links *)
(center, north, south, east, west),
(north, center),
(south, center),
(east, center),
(west, center),
<interface specification>
<local declarations>
end star;

This feature provides a compile-time check for communication between processes
within different processor modules. Messages may flow between processor

modules only if a communication link exists between them.

18

3.5. Ports

In StarMod, processes within different processor modules communicate via
messages. Message communication is based on the concept of a port [4]. The port

mechanism is described in detall in Chapter 4.
3.6. The Completion Statement

A fundamental way In which distributed programs differ from concurrent
programs is in the notion of failure of an operation. If an operation within a
concurrent program running on a single processor is unable to proceed without
outside Intervention, the entire system fails. An advantage of distributed systems,
however, is the fault-tolerant nature of such systems; processors and processes
are expected to continue execution In spite of the failure of other processors.
Thus, it is imperative that remote operations recover from communication and

processor failures.

Most distributed systems are constructed so that a processor does not wait
indefinitely for a response from a remote site. Typically, a remote operation results
in (1) completion with correct results, (2) completion with incorrect results, or (3)
failure to complete within time t. Such a capability can be provided by a timeout
specification. This does not mean that a timeout mechanism is availabie at the user
level. Nelson has argued that, at the application level, timeouts should only be used
for reasons of performance and not as a generalized error handier [44]. An

exception handling capability is more appropriate for handling errors.

One method frequently used to express a timeout is to associate a timeout
argument with each operation. This approach is common in operating systems in
which operations are expressed as system procedure calls. For example, the

command to send a message and wait for a reply might be:

Send (message, timeout) : reply;

19

This approach, used in RIG [32], has the disadvantage that a timeout facility has
been provided at the expense of syntactic transparency; not all basifz operations
are expressed as procedure calls, so only certain operations may be time-
dependent. We prefer to allow the user to specify timeouts for user-defined
operations, not system-defined operations. In addition, the timeout mechanism
should not be restricted to any particular set of operations, for example, remote

operations.

To specify timing constraints within StarMod, we will use the completion

statement, which takes the following form:

In time t do
<statement Iist' >
otherwise
<statement Ilst2>
end;

The unit of time may be supplied by the user, but may not require mora resclution
than that provided by the implementation. If <statement llst1> has not completed
execution within time t, <statement Ilst2> is executed. It may cause the operation

to be reexecuted, modified, or aborted.

The completion statement has applications beyond the purposes we envision
for the kernel. Since it is not attached to any fixed set of operations, it may be
used to impose timing constraints on both local and remote operations. While we will
use this statement as a rudimentary exception handier within the kernel, wherein a
timeout is translated into a higher-level exception for the user, it is also applicabie

at the user level.
3.7. Summary

StarMod extends the modular philosophy of Modula to the distributed
programming environment. Virtual networks are composed of virtual processors that

communicate over specified communication channels. We will use these

20

abstractions as tools in the further development of the StarMod language and its

kernel to support various communication primitives for distributed systems.

21

Chapter 4

MESSAGE- AND PROCEDURE-ORIENTED COMMUNICATION

4.1. Introduction

Ever since the construction of the first network, it has been natural to model
communication between processors using messages. The fundamental unit of
communication at the hardware level is a packet or message; further interpretation
is unnecessary for basic communication between processes. In effect, all
communication between processors In a loosely-coupled, distributed system is, at
some level, based on messages. We are primarlly interested in the user's view of
communication, however. We define message-oriented communication to mean that
the user is explicitly aware of the messages used in communication and the
mechanisms used to deliver and raceive messages. On the other hand, procedure-
criented communication assumes that the user processes communicate using

procedure calls; the underlying message communication is transparent to the user.

Many systems have been designed that use messages as the basic form of
communication. Demos [5], Thoth [9], Medusa [46], RIG [32], and Arachne [20] are
all examples of distributed operating systems in which processes communicate via
messages. Programming languages that incorporate messages inciude PLITS [19],
CSP [26], and CLU [38]. Various forms of remote procedure call are considered in

Liskov's more recent work [40, 41], Distributed Processes [8], and RIG [32].

Lauer and Needham [33] argue that, within the context of their empirical model
for communication In operating systems, messages and procedures have equivalent
functionality. They conclude that a choice between these two forms of
communication should be based not on the intended application, but on the lower

level support for implementing the two primitives. While we agree that the

22

primitives are essentially equivalent, we do not believe the resulting conclusion
should be extended to the programming language environment. For example, If the
ease with which the transition is made to the distributed environment is an
overriding factor, one might choose remote procedure call as the preferred method
of communication because many existing concurrent programs could be easily
modified for a distributed environment without drastic changes to the program.
Thus, in spite of the message/procedure duality, the decision on which primitive to

use should be made by the user, not the language designer.

In this chapter we consider both message-oriented and procedure-oriented
communication in StarMod, including declarations, semantics, and performance
results of an implementation. We compare and contrast these two analogous forms

of communication in an attempt to clarify their basic similarities and differences.
4.2. Message-Oriented Communication

Message communication between processes in a high-level language typically
uses one of two techniques: the sending process designates either a fixed
destination process or a fixed location for receipt of the message. In the first
approach, the receiving process may aiso designate a willingness to receive the

message, as in CSP and Ada.

It the sending process must name the receiving process, process names must
either be static, as in CSP, or possibly, names are formed using a static process
name and an instance qualifier. If process instances are created and destroyed
dynamically, but process references are static, as in Modula, it is a distinct
advantage that no process must name another to communicate with it. The
communicating processes need only agree on a rendezvous location where

messages are deposited and retrieved.

in StarMod, as in Modula, a single process declaration forms a template for

(potentially) many instances of the process; each instance has the same name. To

23

explicitly name a process before communicating with it, some mechanism would have
to be introduced in the language to dynamically name processes. So, message
communication between StarMod processes uses an approach based on the port

mechanism of Balzer [4].

Ports provide a facility for interprocess communication that is especially
appropriate for communicating processes residing on different processors. A port
declaration defines the form of strongly-typed messages; a region statement acts

as an independent message handler.
4.,2.1. Port Declarations

A port declaration serves to define a queuing point for messages, that is, the
interface between the sender and receiver. Ports are not bound to processes. Any

process that defines or inherits a port name may access the port.

To emphasis the duality between the procedure call model and message
communication model, a port call and procedure call have equivalent syntax. Thus,
only procedure and port declarations need be modified if the model of communication
is changed. This is an Important factor that eases the problem of modifying

concurrent programs for the distributed environment.
The syntax of a port declaration is:
port <identifier> (<formal parameters>) : <result type>;

The rules for associating actual parameters with formal parameters are the same as
those used with procedures. A port may return a value; the type of the return value
is specified in the port declaration. Ports that return a value are called functional
ports or synchronous ports, since further execution of the sending process is
synchronized with the execution of the receiving process. Ports that have no

return value are called asynchronous ports.

24

All port parameters are passed by value. There are several good reasons for
this requirement; only minor inconvenience results from its enforcement. (We
assume here that the alternative is call-by-value-result. Thus, the overhead of a
copy operation imposed by call-by-value is required in any case.) While we don't
agree completely with Liskov that 'call-by-reference is not very useful in a
distributed program”" [40], we do believe that the combination of asynchronous
execution and reference parameters leads to potential aliasing problems and
dangling references that are extremely unsettling. One unfortunate side-effect of
requiring call-by-value semantics is that existing concurrent programs that make
heavy use of reference parameters cannot be easily distributed by simply changing

procedure calls to port calls.

To implement call-by-value semantics, a copy of each parameter is sent to the
destination machine. Complex variables, especially those containing pointer fields,
need to be marshalled. We refer to the packaging of a variable into a form
amenable for transmission as marshalling. The basic data types of StarMod (e.g.,
integer, real, boolean) require little or no marshalling. Structured variables created
by type constructors (e.g., array, record) and containing only simple data types are
similarly easy to transmit. A more difficult case is a variable containing pointer
fields. Since pointers represent local addresses not meaningful to a remote
processor, the pointer's referent must be transmitted, not the pointer itself. Alocal
copy of the referent is created and the result of the reference is a pointer to that
copy. In the general case, this process could involve tracing a series of pointers
through a data structure recursively, replacing each occurrence of a pointer with its
referent. In Herlihy's thesis [28], mechanisms for transmitting cyclic and acyclic

list structures are presented.

Not all distributed systems are made up of homogeneous processors, nor is

every Instance of an abstract data type implemented using the same

25

representation. It may be necessary to marshall all data types between different
processors If each processor uses a different implementation for each abstract
type. Herlihy and Liskov [22] have examined the problem of translating abstract

representations of data into extemal representations suitable for transmission.

Note that there Is no body of code associated with a port declaration. The
port only defines the interface between the process sending a message and the
process that receives it. A region statement processes the messages associated

with a port.
4.2.2. Region Statement

A region statement defines the message handler for one or more port
declarations. It processes input messages (arguments to port calls) and generates

return values for functional ports. The syntax of a region statement is:

region
<port name > : begin <statement Iist1> end;

<port name > : begin <statement list"> end;
end region;

Within the statement list associated with a port name, the formal parameters given
in the port declaration are visible and may be referenced as If the statement list
were the body of a port declaration. Similarly, the port name may be the object of

assignment if the port is a functional port.

The semantics of the region statement specify the order in which messages
are processed. |f only one port identifier is specified in a region statement, the
statement will wait until a message to that port arrives, after which the statement
list is executed with the message body substituted for the formal parameters of
the port. If more than one port is given within a region statement, the statement
will select that port containing the message that arrived first (the statement will

wait for a message if no port contains a message), and process that message. If

26

more than one process is within a region statement waiting for a particular port, the

region that will process the message, when it arrives, is chosen at random.

When a region statement completes, a reply message Is returned to the
process that sent the original message. The reply is of the type given in the port

declaration and is referenced within the region statement using the port name.

One important difference between the ports/region scheme of communication
and remote Invocation is that a receiving process Is not statically specified when a
message is sent to a port. One can achieve the effect of remote invocation by
assigning a single, static process to handle a functional port. The effect is then
equivalent to a remote procedure call, although the semantics may vary in the

presence of processor or communication failures.
4.2.3. Port Call Completion Semantics

The semantics of a functional port call specify that the calling process blocks
until a reply is received from the process that accepted the message. Therefore, a
functional port call fails to complete if no reply arrives within an acceptable period
of time. The timeout interval is, of course, application specific and may be specified

using the completion statement introduced in chapter 3.

It is not as apparent when a port call without an expected reply has

successfully completed its execution. Consider the following situations:

Processor A regularly and frequently sends state information to processor 8 for
load balancing purposes. The information requires sending short messages.

Processor A regularly, but infrequently, sends more complete state information to
processor B, again for load balancing purposes. The Information requires sending
long messages.

Processor A sends state information to processor B with the expectation that, if
the load balancing process on B is functioning, it will be processed soon, although
processing may continue for some time (the message is large). Processor A expects
no reply, but needs to know if the load balancing process on 8 is currently active.

Processor B requests more complete state information from processor A.
Processor A replies with the requested information.

27

Each successive situation suggests that the port call completes later in time,
representing four distinct points in the execution of a port call at which we can
state the call has finished executing and, hence, the calling process may continue
executlon. The four stages (checkpoints) in the execution of a port call are: (1)
when the message has been delivered to the network kernel on the local processor,
(2) when the message has been accepted by the network kernel on the remote
processor, (3) when the message has been delivered to a process executing a
region statement on the remote processor, and (4) when the region statement

processing the message has completed execution.

In the absence of communication and processor failures, and assuming a Jocal
network in which the average transmission delay is of short duration, checkpoints 1
and 2 are, from the user's perspective, equivalent. Intemally, however, the two are
not equivalent since checkpoint 1 requires that the message be buffered locally,
introducing significant overhead for large messages. If the maximum packet size
allowed on the network is large, the potentlial for long transmission delays exists for
checkpoint 2. In addition, packet collisions may cause retransmissions that aiso

delay the sending process.

The completion time at checkpoint 3 may be quite different from that at
checkpoint 1 or 2 because the time interval between message arrival and message
processing is unbounded. This is an attribute of the ports/region construct that is
not a factor in remote invocation, since remote process representatives are, in
general, instantly avallable If buffer space for the arguments exists. We are not
sure if the difference is significant; we include it for completeness. Completion at
checkpoint 3 is easily simulated by having a reply sent immediately on message
receipt, although, within the context of the region statement, this would require
buffering the message in the user process's address space before processing it.

Alternatively, a separate reply message can be sent within the region statement

28

using a port call to the originator of the message, requiring slightly more overhead

than if checkpoint 3 were recognized automaticaily.

Checkpoint 4 is alreauy avciiabie to the user, as it is equivalent to a functional

port call.

To allow the user maximum flexibility in specifying the semantics of a port call,
we extend the port declaration to include all 4 checkpoint possibilities. The
termination specification of a port call, declared by a prefix to the port declaration,
can be immediate, on-receipt, on-delivery, or on-return, representing checkpoints
1-4 respectively. (A null specification defaults to on=-return if a result type
specification is given, otherwise the default is chosen by the implementation.) An
immediate port call will always complete if local buffer space is available. All other
types of port call may not complete in the presence of communication failures or
failures in the remote processor. Port calls that retum on-receipt require only that
the communications network and remote kemel process function correctly; on-

delivery calls are not affected by errors in the receiving process.

In most message-passing systems, only one checkpoint is visible to the user.
if performance is critical, no single checkpoint implementation is always
satisfactory. Either long messages are needlessly buffered, introducing significant
overhead on many microprocessors, or processes that send frequent, short
messages may be delayed each time a message Is sent while a long message

passes by on the network.

The checkpoints we have identified apply, for the most part, to any message-
based system. They are not peculiar to the ports/region construct, although, if
processes must rendezvous to communicate, on~delivery and on-receipt may be
equivalent. In any case, we belleve the difference in the performance of primitives
that use different checkpoints may be significant, so much so that the user should

specify what level of performance is required.

4.2.4, Implementation

In this section, we describe an implementation of the StarMod ports/region
mechanism and present some performance results. We compare our performance
measurements with results obtained by others and offer suggestions for improving

performance.
4.2.4.1. Implementation Description

Remote port calls are executed through the cooperation of three distinct
StarMod processes: the user process, a network multiplexor process, and a network
device driver process. The network muitiplexor process implements the protocol
that, among other things, guarantees that all messages are reliably received.
(Reliability is dependent on a hardware checksum facility. Software checksums

were used in initial tests, but were not used in the final tests reported on here.)

A user process that exgcutes a functional port call blocks until a reply has
been received. For port calls with no reply expected (non-blocking or asynchronous
port calls), a user process posts a message for the multiplexor and suspends until
that message has been accepted by the kermnel of the destination machine. That is,
if no checkpoint is specified in the port declaration, checkpoint 2 is assumed. We
made this choice to avoid excess data movement which is extremely time-

consuming on the PDP 11 /23, especially for large messages.

In both cases, arguments to a port call are pushed onto the run-time stack just
like procedure parameters. One difference is that extra space is pushed preceding
the message for network packet overhead. This way, the run-time stack of the
user process sending the message acts as an outgoing network packet, avoiding
the necessity of copying each message into a different buffer. The disadvantage
is that a process not expecting a reply cannot proceed immediately, but must wait
for the message to be received by the destination processor. In our implementation,

that walting period is small and is deemed a worthwhile trade-off~for improved

30

performance.

In the absence of a result specification by the user in a port declaration, a
straightforward modification to the compiler would aslow i to generate two different
kernel calls depending on the size of the argument list. Short messages could be
buffered with little or no overhead, while long messages are transmittéd directly

from the user process's stack.

Our implementation does not allow all StarMod parameter types. In particular,
pointer types and structures that contain pointer types were not implemented. No

marshalling routines were implemented.
4.2.4.2. Implementation Performance

in Figure 4-1, the time required to execute local and remote port calls is given,
both for functional (synchronous) ports and (asynchronous) ports with no return

value. The return value for all functional ports was a simple completion indicator.

The message body (port argument) was varied, from a simple integer to an array of

Execution Time (in ms.) for
Asynchronous and Synchronous Port Calls
Message Size Asynchronous Synchronous
(in bytes) Port Calls Port Calis

Local Remote Local Remote

2 3.61 11.11 4,76 20.73

: | 3.63 11.24 4.90 20.87

8 3.69 11.28 4,98 20.99

16 3.78 11.38 5.04 21.11

32 4.04 11.67 5.16 21:36

84 4.35 11.94 5.40 21.856

128 6.13 12.69 5.87 22.84
256 5.81 14.19 6.82 24.82
812 7.80 17.18 8.74 28.77
1024 12.38 23.17 12.538 36.65

Figure 4-1

31

characters 1K bytes in size, to measure the effect of message size on the
performance. Figure 4-2 shows the program that was used to derive the local
synchronous port call timing results; Figure 4-3 contains the program used for
remote synchronous port calls. The hardware clock used has 1/60 second
resolution. Loop overhead !s included in Figure 4-1; it is less than 60 microseconds
per message. The asynchronous port call results were derived similarly, except
that the total time Is computed by the recelving process, not the sending process.

The two processes began executing (almost) simultaneously for those tests.

It is important to realize what has been measured. Owing to our inability to
accurately time a single operation using a clock with 1/60 second resolution, an

averaging technique was used to derive the timing results. While the time required

Timing Program for Local Port Calis

processor module TestlLocal;
type ArgumentType = ...;
on~-return port p (arg : ArgumentType) : integer;
var ActualArg : ArgumentType;
process sender();
var Completionindicator : integer;
begin
StartTime := TIMEQ);
fori:= 1 to 32000 do
Completionindicator := p(ActualArg);
end for;
AverageTime := (TIME() - StartTime) div 32000;
end sender;
process receiver();
begin
loop
region p : begin end; end region;
end loop;
end receliver;
begin
receiver(); sender();
end Testlocal.

Figure 4-2

32

to execute a single port call and receive a reply Is accurately portrayed in Figure
4-1, it is not clear what is meant by the time required to execute a port call with no
reply expected. Since the port call is asynchronous, there are operations that are
overlapped In time on the two processors. Figure 4-1 shows the average time
required to receivé a message given that the sender and receiver are devoted
exclusively to the communication being measured. For large messages, that
average indicates the performance one can expect when many messages are sent
to a destination; it does not indicate the time required to send and receive a single
message. This may be attributed to the execution overlap on the two machines
Involved in the communication; the sending process can begin to assemble a new
message on its stack for transmission, while the receiving process is copying the

last message received onto the user's stack for processing. Since block copy

Timing Program for Remote Port Cails

network module TestRemote;
processor moduie reader;

export p, ArgumentType;

type ArgumentType = .;

on~return port p (arg : ArgumentType) : integer;

begin
joop

region p : begin end; end region;

end ioop;

end reader;

processor module writer;

import p, ArgumentType;

var ActualArg : ArgumentType;

begin
StartTime := TIME();
forij:= 1 to 32000 do

Completionindicator := p(ActualArg);

end for;
AverageTime := (TIME() - StartTime) div 32000;

end writer;

end TestRemote;

Figure 4-3

33

operations are expensive on the PDP 11/238, this overlap in execution distorts the
results for a single large message transmission. The time spent from the moment a
process begins to assemble a message until a destination process is able to
manipulate the message is procbably 4 ms. or so greater than the time given, about
the time required to copy 1K bytes. Nevertheless, the time spent before the
sending process is allowed to continue executlon (assuming an implementation of

checkpoint 2) is correctly represented.

One observation of note is that the time required to execute a remote port cali
with no arguments and to receive a null reply is about 20 ms. This is the same
figure that has been frequently reported by others [46]. Our hypothesis for this
anomaly is as follows. A message-based communication system is sufficiently
complex to admit many possibie optimizations. Work on performance is important
until an acceptable level of efficiency is achieved. According to Peterson [46], "a
time of about 20 milliseconds was quoted as the round trip time to send a (nuil)
message and recelve and answer on the Xerox Alto systems, with similar numbers
put forth for IBM systems and Multics." Thus, most implementations will struggle to
" reach this performance goal, and then struggle no further. Nevertheless, we do not
believe that is the case with our implementation because the remote port call

facility has been streamlined for efficiency.

In any case, the similarity between the execution efficiency of our
implementation and the often quoted average of 20 ms. Is misleading. The Xerox
Alto system, one of the message passing systems mentioned in [46], was
implemented on a processor twice as fast as the PDP 11/23's used in our
implementation and a communications medium, a 2.94 megabits/second Ethernet,
with almost three times the bandwidth of our medium. The similarity in execution
speed implles that our implementation is probably 2 to 3 times more efficient than

the Xerox system.

34

Figure 4-4 lllustrates the bandwidth utilization for both asynchronous and
synchronous port calls for various message sizes. Bandwidth utilization is greater
for synchronous port calls than for asynchronous calls if the message and reply are
roughly equal In size. Since sending a message requires more (constant) processing
time than sending a reply, many small messages utilize less bandwidth than many
replies of equal size. If messages are large and replies are small, as Is often the
case when a reply is used as a completion indicator, bandwidth utilization is

considerably greater for asynchronous calls.

As the figure indicates, communication using small messages does not consume
a significant percentage of the available bandwidth, even though the transmission
rate of the communications network Is only one megabit/second. This means that in
our implementation, the processor is the crucial bottleneck in message

communication; even very large messages utilize only about 1/3 of the total

bandwidth.
% Network Bandwidth Utilization
for Remote Port Calis
Message Size Asynchronous Synchronous
{(in bytes) Port Call Port Cali
2 1.44 1.54
4 1.57 1.61
8 1.84 1.75
16 2.39 2.05
32 3.48 2.862
64 5.49 3.73
128 9.20 6.81
256 16.45 9.48
612 24.68 156.29
1024 35.98 23.18

Figure 4-4

35

4,2.4,3. Comparisons with Charlotte

Charlotte, a descendent of Arachne [20], is a distributed operating system
under development at {he University of Wisconsin. It offers a unique opportunity to
compare the performance of two different implementations, each with a different
approach to the problem of support for distributed programming. Since Charlotte is
currently being developed on the same network of PDP 11/23's that was used for
our tests, it is especially Interesting to compare the performance of the two
implementations. (We should note th:at the Charlotte implementation will continue to

undergo significant modifications. The performance results are preliminary.)

Message communication in Charlotte is based on send/receive primitives. The
send primitive is nonblocking, that is, the sender may continue execution once the
message has been buffered. The implementation determines whether buffering
takes place locally or on the remote destination; currently, the sender blocks until
an acknowledgement has been received by the remote destination. The current
Implementation uses an almost identical stop-and-wait protocol for communication

as was used in the StarMod kernel.

h The time required to send a message from one user process to another on a
different machine under Charlotte is about 47 ms.; a process sending messages to
itself requires about 29 ms. to send and receive a message [42]. The figures are
not significantly affected by message size, for all sizes from O to 30 bytes. The
same timing figures for the StarMod implementation are about 11 ms. and 3 ms.

respectively.

The time required to send a message under Charlotte may be roughly divided
into inter-process and inter-machine communication. Preliminary test resuits show
that approximately 29 ms. per message is required for inter-process communication;
inter-machine communication requires about 18 ms. per message. Thus, a process

sending messages to itself takes about 29 ms. per message, without any context

36

switching, while the same process requires an additional 18 ms. per message to

send the messages to a remote process, again without context switching.

It is not surprising that Charlotte communication is significantly more expensive
than our port call implementation. The underlying protocol in Charlotte is a layered
protocol that tends to introduce considerable overhead. Other factors that
contribute to the difference in performance include: (1) Charlotte is written in C
and Modula, hence different compilers were used in the two implementations. The
quality of the code produced by the various compilers could be a factor in the
performance comparison. {2) The StarMod kemel is constructed using Modula-like
processes. Charlotte contains a single system process and interrupt handlers;
language-level context switches do not occur in Charlotte. (3) Charlotte provides
dynamic communication links that require run-time processing. Nevertheless, we
believe the structure of the two kernels is the primary reason for the disparity in
performance. StarMod message communication exhibits a factor of 4 speedup over
similar communication in Charlotte, using the same stop-and-wait protocol. The
Charlotte kemel is a layered protocol that explicitly reflects inter-process and
Inter-machine communication. The StarMod kernel is tailored for the type of

communication supported by StarMod and was designed for high performance.
4,2.4.4, improving Performance

As we have previously stated, one of the most costly operations performed by
the processor is copying large messages. Each time a message copy is avoided,
performance can be greatly improved. One copy was eliminated from the outset;
messages are transmitted onto the communications line directly from the user's
stack without resorting to a system buffer. Thus, the only remaining data transfers
of consequence occur from the sending process's stack to the destination
processor and from the buffer area on the destination ‘processor to the receiving

process's stack. Transmission onto the communications line is unavoidable;

a7

however, we can eliminate the second copy operation.

in StarMod, a message is received via a region statement. This statement
delineates the scope of a port's parameters and, hence, the message itself. In
effect, the user's stack buffers the message during the execution of the region
statement. If the compiler generates code to reference the message body relative
to a general purpose register, rather than the stack pointer register, then the
message can remain in the original buffer and need not be copied onto the user
process's stack. This modification improves the performance of synchronous
remote port calls containing large messages (1K bytes) by 10.3% and local port
calls for the same message by 30.8%. The improvement had little effect on the
measured transmission rate for asynchronous remote port calls. Again, owing to the
overlap In execution of the copy operations on the two communicating processors,
the copy operation on the receiver was "free', as far as our measurements were
concerned. In actuality, the user process would receive the message about 4 ms.
sooner than before; however, certain memory organizations may preclude the use of

this optimization.

If memory is organized into kemel and user address spaces, we would expect
incoming messages to be buffered in kernel space until the user destination process
is identified. The kemel process would then copy the message into the appropriate
user process's space. In general, user programs are not allowed to reference
kernel space, preventing any optimization that requires user programs to reference
network buffers directly. Fortunately, microprocessor-based, local~area networks
frequently employ single-user, single-address space machines as in, for example,
process control systems. In these systems, it's conceivable that all programs run in
the equivalent of kemel space, making it possible for all processes to reference

network buffers directly.

38

Further significant performance improvements beyonfi those discussed would
require more powerful hardware. For large messages, 25% of the execution time is
spent on network transmission. The time required to send a 1K byte message to a
remote site and receive a reply would decrease from 36.65 ms. to 26.5 ms. if the
previous optimization were Implemented on a 10 megabits/second network.
Substantial improvements would also be expected If a faster processor were used

as well.
4,3. Remote Procedure Call

Using Nelson's definition [44], "remote procedure call is the synchronous
language-level transfer of control between programs in disjoint address spaces
whose primary communication medium is a narrow channel'". Even though remote
invocation and message passing are analogs, message-oriented systems and
systems constructed using remote invocation often differ in the relationship
between communicating processes. Typically, messages are passed between
cooperating processes that act as parthers in a computation. Communication is
frequently two-way, especially if messages are used to synchronize distributed
processes. Remote Invocation, in particular RPC, is based on a master/slave
relationship. The invoking process Is a master requesting some service and
communication is one-way, from master to slave. (Aithough a remote call may return
a value, it is only in response to a specific request. Control flows from the master

process to the slave process and returns.)

in this section, we consider the design of an RPC mechanism for StarMod,
highlighting those important features identified by Nelson as essential for a
transparent RPC mechanism, and also present the performance results of an

implementation.

39

4.3.1. Essential Properties of an RPC Mechanism

Nelson [44] identified five essential properties that an RPC mechanism should
exhibit: uniform call semantics, type checking, full parameter functionality,
concurrency control and exception handling, and distributed binding. Pleasant, but
nonessential, properties of an RPC mechanism include good performance, atomic
transactions, respect for autonomy, type translation, and remote debugging. We
briefly consider each of the essential properties with regards to an RPC mechanism

for StarMod.
4,3.1.1. Uniform Call Semantics

The primary advantage of the remote procedure call is that its semantics are
inherited from the local procedure call, allowing the programmer to disregard the
complications that typically arise in the execution of remote operations. A
transparent RPC implementation must, to the fullest extent possible, maintain the
same semantics used for local procedure calls. Otherwise, remote and local
procedures must be coded differently, requiring the programmer to make decisions

about program distribution early in the life cycle of the program.

Remote procedure calls are easily integrated into StarMod. Conceptually, a
remote procedure call is a call to a procedure declared in some other processor
module. Again, we do not insist that all processor modules are mapped onto
Individual physical processors, but a procedure call that appears at compile-time to
be a remote call will be executed by the kernel at run-time. That is, the kernel will
map the call to a physical processor at run-time. This may result in the execution of
a local procedure call if more than one logical processor shares a single physical
processor. In any case, the syntax and semantics are exactly the same for local
and remote calls in the absence of machine crashes. (We assume that the kernel

provides reliable messages.)

4.3.1.2. Type Checking

A remote procedure call is treated exactly like a local procedure call by the
compiler. Processor modules are the unit of compilation, but the compiler supports
strong type checking across compilation boundaries. Thus, the same level of static
type checking applied to local procedure calls applles equally well to remote

procedure calls.
4.3.1.3. Full Parameter Functionality

There is no conceptual or practical problem in allowing all basic data types of
StarMod as parameters to a remote procedure call. StarMod contains all the basic
types found in Modula, as well as pointer types. While pointer types do present
certain difficulties for the system implementor, as will any type containing local
addresses, transparency requirements force the admissibility of these types In
remote procedure parameter lists. Dynamic arrays and procedure parameters, such

as those found in Mesa [43], do not exist in StarMod.
4.3.1.4. Concurrency Control and Exception Handling

Concurrency control and exception handling are not a fundamental aspect of
the RPC mechanism itseif; howewver, reasonable support from the programming
language in which the RPC mechanism resides is highly desirable. In StarMod,
concurrency is provided by the process declaration inherited from Modula. A
timeout facility was proposed in Chapter 3. That facility, together with a
reasonable exception mechanism, such as that found in Ada, are sufficient support

for a transparent RPC mechanism.
4.3.1.5. Distributed Binding

A programming language system that supports RPC must have some means of
compiling, binding, and loading distributed programs onto a network. For our

implementation, a rudimentary distributed binder was constructed that accepts as

41

input a list of previously compiled processor modules and a mapping of virtual
processors to physical processors. The binder modifies the specified cbject files
so that internal tables are consistent with the processor mapping, then loads each
processor module onto the appropriate physical processor. The binder currently

supports only a 1-to-1 mapping between logical and physical processors.
4.3.2. Orphan Computations

One issue of importance with regards to the reliability of an RPC mechanism is
how the system recovers from a remote procedure call that fails. To illustrate some
of the difficulties involved, consider a distributed program running on three
machines labeled A, B, and C. If procedure P1 on machine A calls procedure P2 on
machine B, execution of P1 is suspended until Pz completes. If machine B crashes
during execution of Pz’ P1 will remain suspended indefinitely. If we assume that the
RPC implementation includes a timeout mechanism, then P1 will eventually be allowed
to continue and may Invoke P3 on machine C to perform the same task P2 was
assigned. Before P3 completes, machine B might restart and attempt to recover
from the failure. Recovery allows Pz to complete execution, causing P1 to receive
results from a computation it had assumed no longer existed. The problem occurs
because an orphan computation, namely Pz, was not exterminated when machine B
crashed. Determining when to abandon a remote computation and ensuring that the
results of an abandoned computation are not used is an important part of any RPC

implementation.

Different techniques have been used to deal with orphans. For the most part
they are variations of two different methods, extermination and expiration. These
tWo approaches differ primarily In the amount of computation and stable storage
required by the algorithm per remote procedure call and when a machine is restarted
after a crash. We will present an overview of the two approaches here, and direct

the reader to Lampson's work [31] and Nelson's thesis [44] for details.

42

Extermination is the process of finding and aborting orphan computations that
result from a crash. Each processor records In stable storage its outstanding
remote calis and the calls it Is vurrer*ly processing. After a crash, the remote calls
being processed locally are aborted and machines processing outstanding calls are

requested to abort those calls.

Expiration (deadlining), a technique analogous to timeout, is used to determine
when a computation has existed beyond its expected lifetime; such computations
are likely to be orphans. Each remote call carries with it an expiration time, the
point at which the computation will automatically abort. Determination of the
expiration time is a crucial parameter that will have significant effects on the
performance of both remote calls and recovery. An expiration time that is
unrealistically short will cause non-orphan processes to abort; too long an
expiration time will slow recovery from crashes. A variant of this approach allows
an expired process to request a postponement of its deadline, preventing non-

orphan computations from aborting needlessly.

One advantage of an RPC mechanism over a message-oriented scheme Is that,
In many situations, the programmer would be required to duplicate the effect of an
RPC impiementation were it not suppiled as a primitive. An RPC mechanism that
provides at-most-once semantics (on return from a remote procedure call, the
programmer Is guaranteed that the procedure was executed exactly once)
establishes a reliability goal that is difficult to attain using only messages.
Unfortunately, orphan algorithms assume the existence of some form of stable
storage. It may not be cost effective to provide such storage for each pmces»sor in
a microprocessor-based network. If the network is required to reference stable
storage, the overhead associated with a remote call may be significantly increased,

even if little data is required by the orphan algorithm.

4,3.3. Implementation
4.3.3.1. impiementation Description

The RPC implementation was incorporated into the kernel that supports the
port implementation previously described. In particular, a remote procedure call is
implemented with the cooperation of a user process, a network muiltiplexor process,

and a network device driver process.

The differences between a synchronous port call and a remote procedure call
are minor; the code executed by a remote procedure call is a subset of the code
executed by a synchronous port call. RPC does not need to examine and modify
the complex data structures needed to support synchronous and asynchronous
message communication. Some machine mapping functions are avoided because
only remote (nonlocal) procedures are handled by the kernel, whereas both local
and remote port calls are joint kernel operations. (If virtual processors are not

mapped 1-to-1 with physical processors, this would no longer be true.)

As with port calls, a remote procedure call causes a network packet to be
constructed on the calling process's stack containing the argument list. A mapping
table determines the machine and address of the remote procedure and sends the
argument packet to that site. The calling process then suspends. A representative
process is created on the remote site that invokes the remote procedure with the
appropriate arguments. On termination of the procedure, the remote representative
process returns a value (possibly just a completion indicator) to the calling process

and then dies.

We should note that a realistic RPC implementation must provide detection and
recovery of failures. Our implementation does contain timeout detection, but we did
not Implement full recovery from remote machine failures. We would expect the
performance to degrade somewhat, especlally if repeated references to stable

storage [30] ’are required to support the recovery algorithm. Nonetheless, the

a4

implementation provides a reasonable measure of RPC performance in the absence

of machine crashes.
4.3.3.2. Implementation Performance

In Figure 4-5, the time required to execute a remote procedure call, with a null
body, is shown for various size argument lists. Marshalling of parameter lists was
not Implemented, therefore, argument size Is the most important variable factor in

the performance of the remote procedure call.
4.3.3.3. Comparisons with Neison's RPC

Nelson's thesis [44] was devoted entirely to the study of the remote
procedure call. The detailed design of a transparent RPC mechanism is presented
along with the performance results of a family of RPC mechanisms. Nelson's
implementation executes on Dolphin processors (a successor to the Alto) connected
by a 2.94 megabits/second Ethernet. Some tests were also performed using
Dorado processors, a successor to the Dolphin that executes Mesa about 8-10

times faster.

RPC Performance and Bandwidth Utilization
Size of Argument Ms. Per Call % Bandwidth
Uist (in bytes) {null body) Utilization
2 20.13 1.76
4 20.17 1.82
8 20.22 1.98
16 20.36 2.28
32 20.60 2.87
64 21.09 4.02
128 22.08 8.16
256 24.05 9.91
6512 28.00 156.83
1024 35.88 23.77

Figure 4-5

45

Nelson's family of mechanisms includes an implementation that runs at each
level of the Pup bytestream protocol [6]. A stub generator translates a Mesa
Interface into an RPC implementation that uses the Pup level 2 bytestream protocol
or a speclal bytestream implementation, based on the the level 1 socket interface,
that is significantly faster than Pup bytestreams. A high performance version that

does not use the Pup pratocol was also implemented.

The stub implementation, which uses Pup level 2 (bytestreams) on the Dolphin,
requires from 24 to 28 ms. to execute a remote call with no arguments between
two Dolphins on an unloaded network, depending on whether software checksums
and byte or word operations are used. The optimized version using Pup level 1
(datagram service) requires from 10 to 11 ms. for the same call. The high
performance version is able to execute a remote procedure call with no arguments
in 0.8 ms. This last result Is significant as it offers. hope for tremendous
improvements in the performance of all other remote operations. The considerable
difference in performance within the family of mechanisms is primarily attributed to
the overhead associated with the Pup protocol and the Mesa process machinery;
the most efficient version uses neither. A measure of the best case performance
that can be expected of an RPC implementation is the microcoded version that
executes on the Dorado; it is capable of performing a remote call with no arguments

in 1456 us.

it is difficult to compare our implementation with Nelson's because both the
environment and the Implementations are considerably different. Nevertheless, the
optimized version that uses the Pup level 1 protocol is most comparable to our
“bare" machine implementation. In comparing the two implementations, we find that
Nelson's is twice as fast. This is to be expected since the Dolphin processor is 2-3
times faster than a PDP 11/23 and the communications medium used by Nelson has

3 times as much bandwidth as our network.

46

It is worth noting that the significant difference In performance between
Nelson's best case (without microcode) implementation and our implementation is
misleading. The highly optimized versions of Nelson's implementation access the
network device directly, similar to the type of operation we explore in Chapter 5.
These implementations are based on the assumption that certain shortcuts are
acceptabie if the call itself will execute very quickly. Our RPC implementation did
not take advantage of those shortcuts, primarlly because there Is no reasonably
small upper bound on the amount of time required to execute a remote call. Had we
implemented our RPC mechanism using similar techniques, we would have
significantly reduced the execution time of a remote procedure call in our

implementation.

One interesting result of Nelson's work is the quantification of the overhead of
a typical bytestream protocol. Each level in the Pup protocol introduces about 10
ms. of overhead. It is precisely this type of overhead that a specialized language

kernel is designed to alleviate.
4.3.3.4. Improving Performance

As with the other communication primitives we have considered, one of the
most important factors in the performance of an RPC implementation is the
frequency of data copy operations. One disadvantage of communication based on
messages Is that a message must be buffered between the sending and receiving
processes. This is true because, in general, the destination process is not known in
advance. Nonetheless, communication based solely on remote procedures can take
advantage of the knowledge that each incoming message is a procedure invocation
that will create a new instance of a process to execute the called procedure.
(Other types of messages exist, for example, acknowledgements and replies to
previous remote procedure calls; however, we assume that those messages are

processed immediately and their buffer space is reclaimed.) Thus, we can read

a7

network messages directly into the stack space associated with the next process
to be created, saving a copy operation. Figure 4-6 illustrates the effect of this

performance improvement.

Recall that a similar technique was suggested to avoid a copy operation on
receiving a message for a port. The limitation which applied, namely that the
memory organization must allow a user process to reference memory allocated by
the communications kernel, does not apply in this case since the buffer memory
used is that of the user process's stack. The only requirement is that the available
memory for process stack allocation exceeds the size of the largest possible

network packet.
4.3.4, Remote Process Activation

Given the duality between procedure calls and messages, it is logical to
consider a procedure-criented analog of sending messages asynchronously. In
single processor systems, procedure and process Invocation create synchronous

and asynchronous Instantiations, respectively. In the same vein, we can extend

RPC Performance and Bandwidth Utilization
Without Argument Copy
Size of Argument Ms. Per Call Percent % Bandwidth
List (in bytes) (nuil body) Improvement Utilization
2 20.06 0.35 1.75
4 20.08 0.45 1.83
8 20.13 0.45 1.99
16 20.22 0.69 2.29
32 20.41 0.92 2.80
84 20.80 1.38 4.08
128 21.64 2.45 6.31
266 23.04 4.20 10.35
612 26.03 7.04 17.03
1024 32.02 10.76 26.63

Figure 4-6

48

the concept of RPC, a synchronous transfer of control between programs on
different machines, to include remote process activation (RPA), the asynchronous

transfer of control between programs on different machines.

Just as RPC inherits syntax and semantics from local procedures, RPA is
derived from local processes. Creation of a process via a process call is an
instance of RPA if the process Is declared in a different logical processor. The
original process may proceed asynchronously with respect to the newly created
process, after the parameters have been buffered (at the discretion of the

implementation).

RPA can be simulated using RPC. That is, each remote process can be invoked
by first invoking an associated remote procedure that creates an instance of the
remote process and returns. Such an approach would impose some overhead on the
system performance, as well as force the programmer to write extra program code.
Ancther, more compelling, rationalization, motivated by a desire for transparent
distributed systems, is that we want to allow all forms of communication that
normally execute on a single processor to be extended to the distributed

environment. RPA is a logical extension of local process activation.
4.4, Broadcast Messages

Many of the local area networks in use are broadcast networks; each message
directed onto the network may be received by any station connected to the
network. This organization has the advantage of trivial routing algorithms
(messages need only be routed between networks, as in inter-network mail delivery
systems) and is more efficlent than an organization in which messages must be

passed from machine to machine until the final destination is reached.

We should note that not all local-area networks are broadcast networks.
Broadcasting that is not directly supported by the hardware can be achieved by

routing algorithms. Improved performance is attained by improved routing

49

[18,58,64].

Message broadcasting is the sending of a single message to all processors in a
logical network, which may be a subset of a physical network. Usually, this feature
is simulated by simply sending the message to each processor individually. This
approach forces the programmer to define a different message handler in each
processor and to send muitiple copies of the same message onto the network,
consuming considerable network bandwidth and local processing time for large

messages.

It is not essential for a software system that supports broadcasting to be
implemented on a broadcast network. The kemel may perform all routing of
messages, so the complexity of broadcast communication is hidden from the user.
The algorithms used to route messages would be no different (possibly) than those
used to route individual messages. The only difference is that each processor

stores the message before forwarding it.

In this section, we consider additions to the port mechanism of StarMod to
support broadcasting. We also present the performance results of an
implementation and compare those resuits with the expected gain in performance

versus point-to~point communication.
4.4.1, Broadcast Port Declarations

Recall that, in StarMod, a network module encapsulates network-wide objects
for use by all processor modules. Declarations within a network module provide
consistency and standardization for global objects. To provide broadcast
communication, we extend the notion of a local port, declared within a processor
module, to that of a network port, declared within a network module. Network ports
are queuing points within egch processor for broadcast messages. A message sent
to a network port Is broadcast to every other processor module in the distributed

program and may be retrieved on each processor from the local copy of the network ”

80

port. The port need only be declared once in a distributed program; different types
of broadeast ports can be created using a single declaration for each. Just as a
broadcast networl. is the most efficient architecture for delivering packets to all
stations on a network, a broadcast port is a much more efficient mechanism for
dglivering system-wide messages than many local ports. An empirical measure of
the performance improvement attained using the broadcast capability will be given

Iin a later sectlon.
4.4.2, Broadcast Semantics

Broadcast port calls are similar to local port calls, differing only in the number
of destination machines and the number of reply values expected. These

differences affect the manipulation of reply values and the choice of checkpoints.
4.4.2.1. Broadcast Replies

A broadcast port that specifies a retum value expects one from each
processor module in the distributed program. Therefore, a broadcast port with a
return value of type T actually returns an array of type T as a result. The index
type of the array Is an enumeration type containing the names of all processor
modules in the program. This type is implicitly declared in a network module, wherein
each processor module is declared, along with all other system-wide definitions.
Thus, the value returned by processor X may be referenced using the array

subscript notation with index X.

It is possible for communication or processor failures to prevent some
processors from returmning a value within the timeout interval; eventually, the port
call will return with an exception. Some elements of the result array will contain
valid responses, other elements will be undefined. The programmer should initialize
the resuit array in an application-specific way, so that valid replies can be

recognized and partial results processed.

81

4.4.2.2. Broadcast Completion Semantics

The points at which a broadcast can be said to have completed are the same
as for lccal port calls. The difference is that many different processors may have
to arrive at that point before cOmpletion.- Hence, the checkpoint specification
introduced for local ports may also be applied to broadcast ports. The trade-offs
are the same In each case; however, wait time may be much greater for a broadcast
and is dependent on the number of destination machines. Therefore, message size
may not be a primary factor in choosing a checkpoint. For example, in normal
situations, there is little difference between checkpoint 1 and 2. This is not true
for broadcasts, since the time to receive acknowledgements from all processors Is
considerably greater than the time to receive one acknowledgement. Even large
messages can be buffered in less time than that required to receive multiple

acknowledgements.
4.4.2.3. Multicast Messages

Multicasting differs from broadcasting in that only a subset of the virtual
network receives the message. Until now, we have assumed that the entire virtual
network, which is a subset of the physical network, receives messages directed to
network ports. In reality, we would prefer that the network port mechanism provide
multicasting, since broadcasts are a special case of multicasting. We will modify

the semantics of network ports to support this capability.

A network port declaration specifys a queuing point for messages that is made
avallabie to each virtual processor. Processor modules that import the network port
name receive messages directed to It; broadcasts to a non-imported port are
transparent to that processor module. The result type of a multicast is the same as
before, an array Indexed by processor module; however, not all components will be

defined for all multicasts.

52

To determine when a multicast has received all its replies, each kernel must
know how many virtual processors imported the network port. This value is a load-
time integer constant created by the distributed bindur. Ac the internal tables are
modified to reflect the load-time processor mapping, a port mapping Is also
maintained. A load-time constant is created and stored in each port table entry

indicating the number of replies expected for each muiticast port.
4.4.3. Implementation
4.4.3.1. Implementation Description

StarMod programs are distributed onto a network partition, a subset of all
available processors on the network. The processor mapping table, a compiler-
generated table that is configured at load time, describes the partition of the
network. In particular, the table describes the recipient processors of a broadcast.
The megalink network harglware allows a processor to specify a secondary network
address, an alias for the hard-wired network address. The secondary address is
used for broadcasts; each processor in the partition sets the secondary address to
the partition number. Only processors in the partition receive packets sent to this

secondary address.

Each pair of processor modules in a distributed program are logically connected
by a virtual channel. To broadcast a message, a processor must make available all
jts virtual channels. Once a processor receives a broadcast request from a user,
only currently outstanding port calls are processed until all virtual channels are idle,
that Is, all outstanding requests have been sent and acknowledged. Then, the

broadcast message is transmitted.

As the preceding suggests, it is possible for a port call to be suspended during
execution, independent of the checkpoint specified in the declaration. A more
complete implementation could take into account the urgency of a port request, as

Implied by the checkpoint specification, to determine whether certain port calls take

63

precedence over broadcasts. Such a facility would be especially important for
real-time systems in which processes execute at different priorities; a low priority
broadcast would not prevent an urgent port call from executing. This discussion
only pertains to the delay that occurs before the broadcast is actually transmitted,
while all outstanding messages are acknowledged. Once the broadcast Is
transmitted, no communication can take place over any virtual channel until an

acknowledgement has arrived on that channel.

Acknowledgements for a broadcast are sequenced to prevent the numerous
collisions that otherwise would occur when all processors in a partition attempt to
acknowledge the broadcast at the same time. Every processor delays about 1 ms.
for each processor that precedes it in the partition, sufficient time to allow the

preceding processor to acknowledge the broadcast.

The timeout interval before retransmitting a broadcast is dependent on the
number of processors In the partition. The message is resent, using poi.nt-to-point
communication, to each processor that does not acknowledge the broadcast within
the timeout interval. Ideally, the message would be rebroadcast if enough
processors faiied to recelve the initial broadcast. We did not implement this

capability.
4.4.3.2. Implementation Performance

Figure 4-7 shows the performance characteristics of our asynchronous
broadcast port call implementation. The failure rate was between 1% and 2% for
most of the test runs. That is, from 1% to 2% of all broadcast messages were
retransmitted because either the original message or an acknowledgement was lost.
The message was then retransmitted to the particular machine(s) that did not
acknowledge the message until an acknowledgement was successfully received by

the processor issuing the broadcast.

Execution Time (in ms.) for Asynchronous Broadcast
Port Call To Multiple Destinations
Message Size - Number of Broadcast Destination Machines
(in bytes) 1 2 3 4 6 6
2 17.24 20.21 22.98 28.42 28.22 32.22
4 17.32 20.66 23.04 26.48 28.36 32.36
8 17.41 20.72 23.04 26.862 28.62 32.46
18 17.85 20.75 23.09 26.77 28.80 32.71
32 18.04 21.00 23.32 26.91 29.06 32.94
64 18.36 21.23 23.57 27.02 29.31 33.19
128 19.16 22.24 24.48 27.51 29.83 33.47
258 20.76 23.66 256.90 28.64 31.02 34.35
512 23.72 26.71 29.00 31.53 34.21 37.48
1024 29.62 32.78 356.13 37.50 41.286 44.02
Filgure 4-7

As the first column of Figure 4-7 demonstrates, there is a fixed amount of
overhead, about 6 ms., associated with bmadf:ast communication beyond the
amount needed for single-destination communication. This overhead can be
attributed to increased computational requirements on the broadcasting processor.
Extrapolation suggests that each additional destination machine requires 2-3 ms.

1o process, significantly less time than a point-to-point port call.

Figure 4-8 shows the speedup achieved by using broadcasting versus point-
to-point communication. In reality, we would expect the improvement to be greater
than that shown because the comparison was made with idealized point-to-point
performance results; the improvement factor does not include the effect of network
conteni_:ion that arises in realistic systems. Contentlon is inherent in the broadcast
capability (multiple destination machines may attempt to acknowledge a broadcast

simultaneously) and is included in the performance figures presented.

As expected, there is a decrease in efficiency when the broadcast capability
is used to communicate with only one machine. The overhead associated with

broadcasting is not offset by any savings in transmission time. The speedup factor

&6

Speedup Factor of Asynchronous Broadcast Communication
vs, Point-to-Point Communication
Message Size Number of Broadcast Destination Machines
(in bytes) 1 2 3 4 & 6
2 0.64 1.10 1.45 1.88 1.96 2.07
4 0.65 1.09 1.46 1.70 1.98 2.08
8 0.65 1.09 1.47 1.69 1.97 2.09
16 0.64 1.10 1.48 1.70 1.98 2.08
32 0.64 1.10 1.49 1.72 1.99 211
64 0.85 1.12 1.62 1.77 2.04 2.16
128 0.66 1.14 1.56 1.886 2.13 2.27
266 0.68 1.20 1.64 1.98 2.29 2.48
512 0.72 1.29 1.78 2.18 2.51 2.75
1024 0.78 1.41 1.98 2.47 2.81 3.16
Figure 4-8

becomes significant when large messages are transmitted or more than four
destination machines are Involved. Not surprisingly, the theoretical speedup factor
of N for a broadcast to N machines Is not attained. In fact, the potential speedup
appears to be severely limited. The following analysis describes the expected
speedup for an arbitrary number of destination machines and also explains why the

theoretical speedup is not achieved.

The time required to execute N point-to-point port calls (assuming no

retransmissions) is
TPC(N) =N*(Pr+Tr + Ao::k1 + Ackz)

whera Pr is the local processing time, Tr Is the transmission time (including the time
required to push the port arguments onto the run-time stack), Ack‘l Is the time
required to compose and send an acknowledgement on the destination machine, and
At:.k2 is the time to receive and process an acknowiedgement. A single broadcast to

N destinations (assuming no retransmissions) requires time

TBR(N) = Pr + Opr + Tr + Ack, + N *Oack + N * Ack,

56

where Pr, Tr, Ack1, and Ackz are as before, Opr is the overhead of local processing
assoclated with broadcasting and Oack is the overhead assoclated with sequencing
muitiple acknowledgements. Note that since the composition of acknowledgements
Is overlapped In time on the muitiple destinations, time Ack1 is required to compose
and send N acknowledgements, excluding sequencing to avoid collisions, assuming
transmission time Is an insignificant factor in Ack1. In our implementation, we
estimate Pr = 7 ms,, Ack1 = Ack2 = 2 ms., Opr = 5§ ms.,, Oack = 1 ms., and Tr varies

from 0.128 ms. to 8.304 ms.

Figure 4-9 shows projected performance resuits, using TBR(N), for large
networks. As the number of destination machines increases, the speedup factor

approaches the maximum, for this implementation, of about 3.7 for small messages

TBR(N) Projected Time (in ms.) and Speedup Factor vs.
Point-to-Point Communication for Asynchronous Broadcast
Port Call To Multipie Destinations

Destination 2 Byte Speedup 1024 Byte Speedup
Machines Message Factor Message Factor

2 20.14 1.10 32.4 1.43
& 29.14 1.81 41.4 2.80
10 4414 2.52 56.4 4.11
20 74.14 3.00 86.4 5.36
40 134.14 3.31 146.4 6.33
60 194.14 3.43 206.4 6.74
80 254.14 3.50 266.4 6.96
100 314.14 3.54 326.4 7.10
200 614.14 3.62 626.4 7.40
300 814.14 3.65 226.4 7.50
400 1214.14 3.66 1226.4 7.66
500 1614.14 3.87 1526.4 7.58
1000 3014.14 3.68 3026.4 7.66
2000 6014.14 . 3.69 6026.4 7.69
3000 8014.14 3.70 9026.4 7.70
4000 12014.14 3.70 12026.4 7.71
5000 15014.14 3.70 15026.4 7.71
10000 30014.14 3.70 30026.4 7.72

Figure 4-9

&7

and 7.8 for large messages, representing the ratio between the time required to
execute a point-to-point port call and the time required to process an additional
broadcast destination. Using TBR(N), we estimate that a speedup factor of 3 is
attained for small messages when 20 destination machines are involved; 5340
machines are required to reach a speedup factor of 3.7. (Figure 4-9 is slightly
misleading because entries were rounded to a single decimal place.) Similarly, a
speedup factor of 5.36 is possible for large messages with 20 destination
machines; 3000 destination machines Increase the speedup factor to 7.7.

Additional destination machines have little effect on performance improvement.

The figures obtained for TPC(N) and TBR(N) using the estimated values are
very close to the observed performance results for N = 1 to 6. The variance is
about 1% in all cases. We conclude that TBR(N) is an accurate measure that can be
used to estimate the performance of our broadcast port implementation as the
number of destination machines increases beyond the number of machines for which

we have empirical data.

We have shown that, In our implementation, the speedup achieved by
broadcasting versus point-to-point transmission is limited by the time required to
send an acknowledgement to the originating machine from each additional machine
in the broadcast. By decreasing the acknowledgement time, we can effectively
increase the speedup. One possible solution would be to use a token ring
architecture that allows the communications adapter to acknowledge a message by
setting a bit in the trailing portion of the message as it passes by on the ring. In
éuch a case, acknowledgement time would be zero, allowing the speedup to

approach the theoretical maximum.

Figures 4-10 and 4-11 show the performance and speedup for broadcast port
calls with a reply value. The amount of traffic on the network was greater than

that necessary because message acknowledgements were not piggybacked with

58

Execution Time (in ms.) for Synchronous Broadcast
Port Cail To Multiple Destinations
Message Size Number of Broadcast Destination Machines
(in bytes) 1 .2 a3 4 & 8
2 24.42 31.67 40.02 45.99 52.84 59.17
4 24.48 31.72 40.10 46.11 652.91 59.24
8 24.55 31.90 40.23 46.21 53.18 59.33
16 24.88 32.21 40.44 486.32 £3.32 59.48
32 24.95 32.76 40.62 46.55 53.64 50,77
84 25.40 33.14 4113 46.90 54.02 60.31
128 26.40 34.29 42.09 47.89 56.13 61.46
266 28.37 36.37 44.28 49.97 57.21 83.41
512 32.33 41.00 47.91 54.65 60.93 87.10
1024 40.32 48.38 54.33 61.12 67.81 74.28
Figure 4-10

return values. In a realistic environment, the acknowledgements would be delayed
untll a reply is ready, greatly decreasing network contention. The kemel does not
support a delay to piggyback acknowledgements because, in nearly all our test
cases, the overhead associated with waiting for a carrier message was too great
and the probability of an out-going message arrival in the near future was too small
to justify waiting for an out-éoing message. (Acknowledgements are piggybacked if
a carrier message is waiting. Such was not the case in our test programs.) In
particular, an asynchronous port call with a 2 byte argument would have required
more than twice as much time as is currently necessary because the minimum delay
is too long and the logical separation between the port mechanism and
communication protocol prevents the protocol from knowing that a reply is
expected. Thus, in this instance, the performance of.the broadcast capability is
adversely affected by a design decision that supports efficient point-to-point

communication.

59

Speedup Factor of Synchronous Broadcast Communication
vs, Point~to-Point Communication
Message Size Number of Broadcast Destination Machines
(in bytes) 1 2 3 4 5 6
2 0.85 1.81 1.55 1.80 1.96 2.10
4 0.85 1.32 1.56 1.81 1.97 2.11
8 0.856 1.32 1.67 1.82 1.97 2.12
16 0.86 1.81 1.57 1.82 1.98 2.13
32 0.86 1.30 1.58 1.84 1.99 2.14
84 0.886 1.32 1.69 1.88 2.02 217
128 0.87 1.33 1.63 1.1 2.07 2.23
256 0.87 1.38 1.68 1.99 217 2.36
612 0.89 1.40 1.80 2.11 2.38 2.57
1024 0.91 162 2.02 2.40 2.70 2.96
Figure 4-11
4.,5. Summary

Message- and procedure-oriented remote communication, including broadcasts,
have been incorporated into StarMod while maintaining the philosophy and structure
of the language, including modularity, transparency, strong typing, and a virtual

representation of networks.

Our implementation results are consistent with other reported experiences
[46] in that the time required to send a null message and receive a null reply is 20
ms. or so. To place our performance results into proper perspective, one must take

into account the following factors:

(1) Our implementation uses a microprocessor and communication medium that do
not take advantage of state-of-the-art technology. We believe the figures
we have presented could be easily improved by a factor of 2 to § with
sophisticated hardware.

(2) We provide asynchronous, as well as synchronous, communication.
Asynchronous message communication is more efficient, by a factor of two,
than synchronous message communication. Users may choose the primitive
most appropriate for the application, with an improvement in performance if the
less sophisticated, asynchronous primitive is applicable.

(8) The execution time of remote message communication is within a factor of 3 of
local message communication. With most other primitives, the difference

60

between local and remote operations is an order of magnitude slowdown In
execution speed.

(4) BRemote communication to multiple machines using broadcast ports can improve
performance by a factor of 1.1 to 7.8 depending on the message size and
number of broadcast destinations. The perfornance improvement saves both
communication bandwidth and processor executlon time, berw.ting other
network users as well as other local processes:

Both message- and procedure-criented communication should be supported by
the underlying software In a distributed system. An implementation that supports
one form of communication can be easily modifled to allow the other; the result
should be comparable performance for both forms of communication. Message
communication, as we have defined it, allows a process to communicate with others
via ports without naming individual processes. Remote procedure cails allow the
user to write programs using the same familiar constructs employed in single
processor systems. By allowing both forms, the user is free to choose the most
appropriate form for the problem at hand, rather than being forced into an

uncomfortable mode of communication.

Message-based communication should also include broadcasting, particularly if
the network is a broadcast network. While the performance improvement was not
as dramatic as expected, primarily because of the need to sequence
acknowledgements, a significant improvement in the speedup factor of broadcasts
could be readily attained with the addition of a sophisticated network interface. In
particular, either collision detection or a token ring would make the sequencing of
acknowledgements unnecessary, decreasing the time required for each machine to

send its acknowliedgement.

81

Chapter 5

REMOTE MEMORY REFERENCES

5.1. Introduction

A remote memory (variable) reference is a memory (variable) reference issued
by a processor that is resolved by another processor's memory. We will use the
terms remote memory reference and remote variabie reference interchangeably,
recognizing that the two operations are not equivalent. A remote memory reference
Is a reference to a machine-specific quantity, a memory location, while a remote
variable reference is a reference to a language-specific quantity, a variable of any

size, type, or structure.

The primary advantage of remote memory references over remote procedure
calls or message communication is, as we shall demonstrate, that a remote memory
reference can be reasonably executed as a processor-synchronous operation.
That is, the local processor issuing the request waits for the request to be satisfied
or for a timeout to occur, rather than attempting to do other useful work. This way,
multiple context switches are avoided, resulting in extremely high performance, an

order of magnitude higher than other communication primitives.

In his thesis [44], Nelson strongly recommends that neither local nor remote
global variables be used, instead a (remote) procedure should be used to
encapsulate and provide access to data. In this.chapter, we offer a different point
of view on remote memory references. First, we address two important concerns
associated with remote memory references, the conflict with data abstraction and
the lack of synchronization. Then, we discuss the incorporation of remote variable
references into a high-level programming language and present the results of an

aefficient implementation.

62

5.2. The Data Abstraction Conflict

Modern data abstraction techniques attempt to isolate data dependencies
within local modules. Two issues of concern are /ocality of control (only the defining
module may modify its local data structures) and /ocality of effect (only the defining
module need be modified to Implement changes to local data structures). The main
criticism of remote variable references is that such references violate the integrity
of data abstraction. In this regard, there is a similarity between remote varlable
references and inter-module variable references. The lack of uniform references
[21] in nearly all programming languages prevents inter-module variable references
from supporting locality of effect. To maintain the spirit of data abstraction without
uniform references, programmers compensate using one of two techniques. One
approach requires that the programmer use a procedure call to reference data from
outside the module of definition. This way, the structure of a reference is isolated
within a procedure In the defining module. The language implementation may provide
a form of macro-substitution, so that little or no run-time overhead is incurred. In
those cases where the language implementation does not support the in-line
substitution of code, the programmer pays a severe penalty, usually an order of

magnitude, for using this abstraction technique.

Another approach is to allow all references to data from outside the defining
module to explicitly reference the data, but all such references are read-only.
Since variables are only modified in the defining module, locality of control is
enforced. Still, references from outside the defining module require explicit
knowledge of the representation of the data; if the structure of the data changes,
the effect is not localized. This approach, used In Modula [66], has the advantage
that inter-module variable references are as efficient as local references, while

maintaining locality of control.

63

Remote variable references are simply inter-module references in which the
enclosing modules are processor modules, Either of these two techniques can be
applied to remote variable references; most distributed programming language
proposals incorporate only the first option. Nevertheless, by allowing a program to
explicitly read, but not write, remote memory, locality of control is still preserved,

with a significant improvement in performance.
5.3. Synchronization Issues

One advantage of message communication and remote procedure call is that
synchronization between distributed processes is inherent in the communication
primitive. The remote procedure or message handler executes in the context of a
user process on the remote machine, respecting local synchronization. Remote
memory references, however, have no inherent synchronization, nor is an explicit
context for execution defined. This is an important point that must be addressed

before remote memory references can become practical.

We should note that not all variable references require synchronization. Mutual
exclusion is often used to coordinate readers and writers of data; if the control
flow dictates that readers and writers never conflict, there is no need for this form
of synchronization. Variable references that do not need to be synchronized shoulid
not have to pay the overhead of synchronization for each reference. In particular,
references to static tables that, once initialized, are never modified, do not require

synchronization after the initialization phase of execution.

We can provide synchronization for those remote variable references that must
be synchronized using either of two approaches. One approach is to provide
synchronization for logical groups of references using some other primitive, possibly
messages, to define critical regions or rendezvous points. For example, consider a
database application in which there are reader processes and writer processes,

with priority given to readers. A control process monitors the state of the

64

database, which may be either read-enabled or write-enabled. A process that
wants to read (write) sends a request message to the control process asking
permission to read (write) the database. A response to a read (write) request
message signals permission to proceed; all incoming writer process requests are
excluded by the control process. Subsequent data retrieval operations may be
performed by the reader processes using remote memory reference since mutual
excluslon is ensured. A final message exchange signals the control process that all
operations by the reader processes are completed, at which time the writer process

Is sent a message allowing it to continue.

This approach has the advantage of being programmer-defined; no
modifications or extensions to the communications kermel or compiler are necessary.
The disadvantage is that, just as with semaphores, programmer-defined
synchronization of critical regions is error-prone. Remote memory references are
not inhibited, even if the control process is bypassed. In addition, failure to send a
completion message may cause other processes to needlessly wait for the

database to become free.

Alternatively, we can attempt to ensure that each remote memory reference is
Individually synchronized with respect to any process that might modify the data,
just as an interface module ensures that each interface procedure call is
individually synchronized with respect to other interface procedures within the

module. A synchronization scheme for this purpose is detailed in a later section.

We conclude that synchronization is not incompatible with remote memory
references. Just as different levels of synchronization, from ne synchronization to
mutual exclusion, are used to coordinate references to local data, we can devise

similar synchronization primitives for remote memory references.

65

5.4. Remote Variable References

The primary issues that need be addressed when incorporating remote variable
references into a high-level language are transparency, synchronization; address
binding, and efficiency of execution. In the following sections, we present a design
for remote variable references within StarMod and the performance characteristics

of an implementation.
5.4.1. Transparency

A transparent remote variable reference mechanism for StarMod must allow a
user to import and export variables of any type across processor module
boundaries. Note that we distinguish between static transparency and dynamic
transparency. Static transparency is a qualitative measure observed at compile-
time; dynamic transparency is a quantitative measure observed at run-time. If a
remote variable reference Is indistinguishable from a local variable reference at
compile-time, the reference exhibits static transparency. Unfortunately, it is
unlikely that any remote reference implementation will be as efficient as a local
reference. This significant difference in execution speed, observed at run-time,
makes dynamic transparency an unrealistic goal. Nevertheless, if inter-module
references are infrequent and efficient, reasonable dynamic transparency can be

attained.

We assume throughout this discussion that the static processor boundaries
delineated by processor module declarations provide enocugh information to the
compiler to determine whether an operation should be treated as a remote
operation. Some references, compiled as remote operations, may actually be local
references at run~time if processor modules are mapped to processors many-to-

one.

5.4.1.1. Transmitting Complex Types

To provide static transparency, it must be possible to reference a remote
variable uf any typc. Using the same technique applied to port parameters, complex
variables, especially those containing pointer fields, are marshalied before being

transmitted.

The basic data types of StarMod require no marshalling and are retrieved by

kernel requests of the form:
RemoteVar {machine, address, 1);

This request is for 1 word of memory from the machine and address specified.
Structured variables created by type constructors (e.g., array, record) are

retrieved by kernel requests of the form:
RemoteVar (machine, address, n);

where n is the size of the variable, a compile-time constant unless dynamic

structures are allowed.
6.4.1.2. Qualified References

One disadvantage of remote variable references Is that arbitrarily large data
structures might be marshalled and transmitted unnecessarily. In particular, if a
reference to a pointer variable causes its referent to be transmitted, an entire list
structure is marshalled and transmitted, even if the pointer is only used in a
dereferencing operation for a simple object. To optimize remote variable
references, we will perform type qualification on the remote instance of the variable
and transmit the resultant, fully-qualified object as the value of the remote
reference. We will couch the discussion In terms of the StarMod type qualification
operations that are available in most modem programming languages, but the

concepts extend naturally to handle other type constructors.

67

The three qualification operations of interest are pointer dereferencing, array
element selection, and record qualification. These three operations can be
expressed using two qualification operators, indirection and indexing. Remote
variable references for qualified objects will be constructed using a syntax similar
to compiled machine code. We do not propose actual machine code so as not to

preclude heterogeneous networks.
The format of a kernel request for a remote variable reference of any type is:
RemoteVar (machine, address, op,, .. op , typetag, size);

where machine is the processor where the remote reference is to be satisfied,
address is the remote address of the variable, each operator, op, to op,, is one of
{INDEX, INDIRECT] followed by a (potentially null) argument, typetag is a base type

specification, and size Is the size of the qualified object, if known.

The operators INDEX and INDIRECT are used to represent the machine language
constructs typically employed in compiling qualified references. The operator INDEX
represents an indexing operation used for referencing fields of records and
subscripted array elements. All index operators are followed by the value of the
index as determined by the local machine; computation of the index may itself
require a remote variable reference. The operator INDIRECT represents indirect

addressing and is used in pointer dereferencing.

More specifically, let M)c be the machine identifier for the machine that exports
variable x, Ax is the address of x, Tx is the type tag for x, and Sx is the size of x.

Variable x is referenced by the following:
RemoteVar (Mx, A,op,.0p, T, Sx);

If x is of type pointer to y then, x~ is referenced by:
RemoteVar (Mx, Ax, 0P, 0P , INDIRECT, Ty, Sy);

If x is a record type with field y, x.y is referenced by:

68

RemoteVar (Mx, A ,0p,,..0p , INDEX; O » Ty, Sy);

where 0y is the offset of field y within record x. Finally, If x is an array of type y

then, x[z] is referenced by:
RemoteVar (Mx, A ,0p,,..op , INDEX, 2!, Ty, Sy);

where 2' is the value of the index z modified to reflect the virtual origin and element

size of the array type (if known).

The compiler generates these encodings of qualified references each time a
remote variable is referenced. Rather than generate machine code that performs
indirection and Indexing, a remote request that represents the qualification is
constructed on the run-time stack. Then, a call to RemoteVar is generated. T/he
correct number of words are transmitted starting at the address calculated by

interpreting the arguments of RemoteVar.

Each type or variable that requires marshalling that is exported by a processor
module has an associated routine to marshall instances of the type. The routine
may be programmer specified, as in [22], or compiler specified. If the result of a
qualified reference contains pointer fields or if different data representations are
used by different processors, the result must be marshalled. In either case, the
need for marshalling can be determined at compile-time. The typetag field conveys
the necessary information. It may contain the address of a marshalling routine or a

static type identifier used to calculate the address of a marshalling routine.

By performing type qualification on the remote machine, we may drastically
reduce the amount of marshalling and transmissions that must occur. A static
analysis of Pascal programs [11] has shown that more than half of all pointer
references contain dereference qualification; more than 82% of all array references
contain subscripts. We conclude, therefore, that the overhead of performing remote

qualification would be more than offset by the savings in transmission time, local

processing time to marshall large structures, and local data space to buffer copies

of remote variables.
5.4.1.3. Pointer Types

A serious problem with transparent remote references involving pointer types is
that a program segment may produce different results depending on how processor
modules are mapped to processors. For example, consider the following code

segment:

(® q is of type ~ BaseType *)
var p : ~ BaseType;

>
.

p:=q;

if p = q then ... else ... endif;

If q Is a local (non-remote) variable, the conditional expression will be true. On the
other hand, if q is a remote variable, assignment to p will cause the referent of g to
be copied into the local address space; the value of p would be the address of the
local copy of the referent, while q contains the address of the remote copy of the
referent. Thus, the conditional expression will only be true if the semantics of
pointer comparisons are changed to compare the pointers' referents, not the

addresses contained in the pointer locations.

There is no transparent solution to this problem that does.not change the
well-known semantics of pointer equality. But, rather than prohibit all remote
variable operations involving pointers, we will subscribe to the caveat used for
floating point arithmetic. Just as equality comparisons between floating point
quantities may not be meaningful, equality comparisons between pointers on

different processors may not be meaningful.
5.4.1.4. Type-Based Synchrony

Not all remote variable references should be treated equally. The basic

motivation for these remote references is the potential for extremely high

70

performance attained by Issuing the references as processor-synchronous
operations. There is an important difference, however, in the expected
performance between a remote variable reference that reads a singie int_ger and
one that retrieves a large array structure. Similarly, remote references to variables
that must be marshalled before being transmitted are likely to take significantly
longer than references to simple variables, s6 both type and size are important
factors. Transparency dictates that remote references to large structures look like
references to simple variables; reason dictates that some references are executed

processor-synchronous and others are not.

In many circumstances it is possible for the compiler to determine whether a
reference will delay the processor for an unacceptable length of time. Such
references can be automatically issu;ad as process-synchronous operations, that
is, only the requesting process is delayed. This ensures that no processor is idie

while a time-consuming, compiex remote variable reference is in progress.

Of course, there are many situations In which the compiler cannot know at
compile~time how long a reference will take. Dynamic structures may be very small
or very large and no compile-time decision can be made as to whether the reference
should be Issued as a processor- or process-synchronous operation. In that case,
the reference is issued as a processor-synchronous operation with a very short
timeout interval. If a reply is not received within the specified period of time, the

reference is aborted and reissued as a process-synchronous operation.
5.4,1.5. Failure and Retry

Certain circumstances may cause a processor-synchronous reference to
automatically retry some operation that has failed. For example, if the
communications line is busy when a processor-synchronous request is issued, the
request may‘walt a short period of time, depending on the mean packet length, and

try again. If requests are sequenced, the remote request may be retransmitted

T1

when a reply is not received within the expected time limit. A processor-
synchronous reference that ultimately fails to complete within an acceptable time

frame Is relssued as a process-synchronous reference.

A remote reference is unable to succeed as a process-synchronous reference
only if the remote processor has failed or if communication between the two
machines is disabled. Both of these events are well-defined exceptions. Thus,
remote reference retry and failure is masked from the user. Exceptions are used to
pass unusual conditions that occur during a remote variable reference to the user,

including processor and communication failure.
8.4.2. Synchronization

We have already discussed situations that use remote memory references
without synchronization or with programmer-defined synchronization. In this section
we consider how to provide system-defined synchronization for remote variable

references.

In StarMod, lccal processes are synchronized for mutual exclusion purposes
using interface modules (monitors). One approach to remote variable reference
synchronization is to provide the effect of a monitor for data accessibie by remote
processors. That is, a remote variable reference is executed as if it were a call to
an interface procedure within the module. The remote reference contains, as an
argument, the address of the semaphore associated with the interface module. The
semaphore is examined to see if the interface is occupied. This is a special
operation, not a P operation, as the process cannot be allowed to wait if the
interface is occupied. Most of the time we expect that the reference will find the
module unoccupied and will be able to return a result immediately. In those cases
where the Interface module is occupled, the remote variable reference is aborted
and reissued as a process-synchronous reference. It Is not possible for the

reference to read an inconsistent copy of the data because no process can enter

T2

the interface module while the reference is executing. This Is true because the
reference is executed as a processor-synchronous operation with respect to both

the local and remote processors.

if the time spent by any one process within an interface module is short, as
should be the case, why can't a remote variable reference still be executed as a
processor-synchronous reference, even if forced to wait for the interface module?
A request cannot be executed as a processor-synchronous operation on the remote
machine and then be forced to wait for an interface module, as no other process,
including the current owner of the module, will be allowed to continue. A new
process rebresentative for the reference has to be created and queued for the
module. The overhead usually assoclated with process creation, deletion, and
switching makes it impractical, §n most cases, to wait for an interface module during

& processor-synchronous reference.

If a processor-synchronous reference is reissued as a process-synchronous
reference, the remote processor creates a process representative for the
reference. The reference process will perform P and V operations on the semaphore
and Is allowed to wait for the interface If necessary. Thus, the time required to
copy the data onto the network or into a network packet is a protected critical

section.

Note that we have only extended local synchronization to include remote
references executed locally. References to global variables not defined within an
interface module are not included; by definition, the programmer has implicitly

declared that no synchronization is necessary.

In all cases where synchronization is required, the compiled form of remote
varlable references must be modified to include synchronization information. In
particular, the reference must contain a synchronization flag and the address of a

semaphore. Alternatively, remote references can be mapped into a compiler-

73

generated, Interface module description table on the remote processor that
contains the address of the semaphore for the interface module, as well as the
address limits of its data structures. This approach may be preferable if processor
modules are separately compiled as semaphore addresses may not be available. In
either case, the appropriate information can be made available at compile-time and

0

Is statically generated.
5.4.3, Address Binding
As previously discussed, remote variable references take the form:
RemoteVar (machine, address, op,, .. 0P, typetag, size);

These requests, generated at compile-time, contain compile-time quantities
(machine identifier, nonrelocated address, etc.) that must be transformed to run-
time quantities. A distributed loader loads a distributed program consisting of
processor modules onto a network and modifies the processor modules' internal

tables to reflect the program distribution.

Each processor module Is assigned a static identifier at compile-time. A
processor mapping table, produced by the compiler and modified by the distributed
loader, specifies the mapping from static processor identifiers to actual machine
identifiers. When processor modules are distributed among physical processors by
the distributed loader, the processor mapping table is updated to refiect the run-

time distribution of modules.

Remote variable addresses are resolved using a segment address table. Each
segment, corresponding to a compiler-generated relocation counter, has an entry in
the segment table with its base address. Typically there are two segments, text
and data. When a processor module is loaded, the distributed loader updates the
segment table with the appropriate base addresses. Variable addresses are

maintained as offsets from the start of the segment in which they reside. Remote

T4

variable requests can then be resolved by adding the segment table entry to the

offset given in the request.
5.4.4. 'mplementation

In this section we describe the design and performance of an implementation of
StarMod remote variable references. We also compare our performance results with
those obtained by Spector [49] and offer suggestions for further performance

improvement.
5.4.4.1. Implementation Description

As we have said, remote variable references are executed as processor-

synchronous operations. The reasons for this approach include:

(1) Remote memory references that retrieve small data structures are sufficiently
simple and efficient that the processor is not idle for very long.

(2) The time overhead associated with the additional context switching required
for process~-synchronous references Is comparable to the wait time required to
process a remote variable reference (2-4 bytes in iength).

(8) The time required to use the more general communication mechanism, including
additional context switches (at least four), would greatly increase the time for
a remote memory reference.

(4) The minimum process time-slice interval, as determined by the hardware clock,
is much greater (by a factor of 20) than the time to execute a remote memory
reference. Hence, most remote variable references from a process will finish
executing within that process's time slice.

A remote memory reference is compiled into a call to procedure RemoteVar.
This procedure assembles a request packet containing the arguments to RemoteVar
and attempts to transmit the packet to the destination machine. Any outstanding
read request that has not been serviced (the network device is always reading
when not writing) is interrupted. If the communications line is busy, RemoteVar will
delay for at most 100 microseconds and try again. This is sufficient time to allow
any small packet to pass, including acknowledgement packets and requests by
other machines. (If the mean packet length is considerably larger than the 12

bytes needed for acknowledgements and remote memory requests, the delay should

5

be increased accordingly.) When the request has been transmitted, the local
processor continuously tests the network device to see if a reply has arrived.
(Allowing the interrupt handier to perform this function would significantly increase
the total time required for a reference.) When the reply arrives, it is pushed onto
the stack, the network device Is reset to read, and RemoteVar returns to the user

process. °

The remote processor handles remote memory requests at the device level.
Incoming messages are checked for validity, then, remote memory requests are
processed immediately. A preallocated network packet is filled with the reply
information. Data is copied Into the network packet, which is then transmitted. The

requesting processor will ignore the reply if it had already aborted the request.

Only simple remote variable references were Implemented, including all simple
types, arrays (without pointers), and records (without pointers). Qualification and

marshalling were not implemented.
5.4.4.2. implementation Performance

Figure 5-1 shows the time required to execute a remote variable reference for
data structures of varying sizes and the network bandwidth utilization for each

reference. The results were obtained by using the following timing program:

StartTime := TIME();
fori:= 1 to 32000 do
LocalVar := RemoteVar;
end for;
AverageTime := (TIME() - StartTime) div 32000;

Loop overhead was calculated by executing the timing program without the remote
variable reference; loop overhead was not included in our timing results. In addition,
for complex assignments (i.e., large arrays), the time required to move the values
from buffer storage into the local variable was not included. Note that all timing

results presented are based on successful execution of a processor-synchronous

78

Remote Variable Reference Performance
and Network Bandwidth Utilization
Size of Remote Microseconds Per % Bandwidth
Variable (in bytes) Reference Utilization
2 880 14.566
4 Q77 14.74
8 1028 1712
16 1122 21.39
32 1324 27.79
84 1730 36.07
i28 2547 44.60
256 4178 61.70
512 7439 56.57
1024 13963 69.47
Figure 5-1

remote reference. If the communication medium is unavallable or a response is not
raceived in a short period of time, the remote variable reference is reexecuted as a
process~-synchronous reference. This requires significantly more time to execute
since the more complex protocol mechanism used to implement synchronous ports is
brought into play. Depending on the average packet length, which determines the
amount of time a remote variable reference will wait for a free communications line,
a remote memory reference reexecuted as a process-synchronous reference can
take from 18 to 20 ms. to retrieve one word, slightly less than the time required to
execute a synchronous port call. This small improvement in performance is due to
the fact that remote memory references require less processing time than a port

call and a user process is not invoked to reply to the remote reference.

Two processors communicating via remote variable references 2 bytes in size
can impose a 14.55% load on the one megabit/second network; the effective data
rate is 18 kilobits/second. Remote variable references 1024 bytes in size can
Impose a $9.47% load on the network for an effective data rate of 586

kilobits/second.

7

The data should not be interpreted to mean that we advocate using a
processor-synchronous implementation for operations requiring over 10 ms. to
'.:xecute. Instead, the data allows the system designer to determine which remote
variable references should be exefzuted as processor-synchronous references and
which references should be executed as process-synchronous references. The
data suggests that variables up to 8 bytes in size, more than 98% of all references
[11], can be retrieved by a processor-synchronous reference without undue delay.
The compiler could generate calls to a processor-synchronous operation for remote
references up to 8 bytes in size, requiring about 1 ms. to execute, and a process-
synchronous operation for remote references to large data structures requiring

significantly more than 1 ms. to execute.

Figure 5-2 shows the breakdown of the Instructions executed for each remote
varilable reference. Since the kernel implementation is written in a high-level
language (StarMod), some instructions could be saved by coding In assembly
language. In particular, the procedure setup and exit routines are more complicated
than necessary for this application. Also, a generalized block move routine, written
in assembly language for efficiency, was required to construct a packet containing
the data. (In a later section that considers performance improvements, the copy
code is rendered unnecessary.) We estimate that coding the entire operation in

assembly language would yield an improvement of about 8% in performance.
5.4.4.3. Comparisons with Spector’'s Remote References

in Spector's thesis [49], an experiment performed on Alto computers
connected by a 2.94 megabits/second Ethemet Is described. The Alto has an
internal cycle time of 180 nanoseconds, executes approximately 330,000
Instructions per second, and has a memory bandwidth of 29 megabits/second.
Remote operations, including remote memory reference, were implemented in

microcode. It was shown that on an unloaded Ethermet, microcoded remote memory

78

instruction Breakdown for Remote Variable Reference
Requesting Machine
Push arguments to RemoteVar 4
Procedure setup for RemoteVar 10
Setup request 80
Awalt completion loop 3
Setup read request 7
Await completion loop 3
Remote Machine
Handle interrupt a5
Process switch (if necessary) a8
Setup response a2
Copy reply data to buffer 10 + 2 * size
Send reply 33
Requesting Machine
Cleanup 16
Procedure exit for RemoteVar 10
Pop arguments to RemoteVar 1
Figure 6-2

references could be executed in 155 microseconds; a single processor is capable
of Issuing 5000 remote memory references per second. A software version, using
the raw datagram facilities of PUP Level O for packet transport [6], executes the

same remote reference in 4.8 ms.

The corresponding remote reference in our StarMod implementation requires
844 microseconds on a one megabit/second network; a single processor is capable
of issuing 1090 remote memor>; references per second. (The implementation was
"special-cased” for 1 word requests for comparison purposes, saving 36
microseconds over the general implementation). A 2.94 megabits/second network
would decrease the total transmission time per reference from 112 microseconds to
38 microseconds, enabling a remote reference to execute in 770 microseconds.

Since the Alto is approximately 2 times faster than an PDP 11/23, the execution

79

time could be reduced to 404 microseconds on an Alto. Assuming a speedup factor
of 2 to 5 when microcoding software, our implementation would require from 81 to
202 microseconds if coded in microcode on an Alto. This estimation is consistent

with Spector's results.

A comparison of Spector's software version with our implementation shows the
advantage of specialized language kemels. Our remote memory reference executes
almost 6 times faster than Spector's BCPL implementation, using hardware that is
hatf as fast. Clearly, the overhead associated with i:he raw datagram facilities of
PUP Level O protocol is prohibitive for remote memory references. Our
Implementation demonstrates the efficiency advantages of specialized high-level

language kernel operations over more general layered protocols.

While it is difficult to draw conclusions from a comparison of such drastically

different experiments, we belleve the following claims are supported:

(1) The StarMod implementation of remote memory references is extremely
efficient given the available hardware.

(2) The lower levels of standard network protocols are too general to efficiently
support remote memory references.

(3) Results from work on efficient low-level communication primitives implemented
in microcode or with specialized hardware may be incorporated directly into a
high-level language implementation with little or no loss in performance.

(4) Remote memory references executed as processor-synchronous operations
within a high-level language Implementation are an order of magnitude more
efficient than most other communication mechanisms and, assuming a
reasonable level of transparency, are a valuable primitive for communication in
a distributed program.

5.4.4.4, Effects of Qualification on Performance

The implementation of remote variable references has been made very
efficient by limiting the amount of processing needed to satisfy a reference.
Remote qualification adds complexity to the reference that increases both
transmission and processing time. Each level of qualification adds at most two

words to the argument list; approximately 45 microseconds are needed to push

80

these arguments onto the run-time stack and transmit them to the remote
processor. The qualification operations must be interpreted by the remote site,
requiring up to 40 microseconds per qualification. Thus, we estimate that each
qualification operation requires on the order of 85 microseconds, or 10% of a simple
reference. This Is an extremely small price to pay to avoid marshalling and

transmitting large structures.
5.4.4.5. Effects of Synchronization on Performance

The synchronization method presented earlier has little effect on the
performance of remote variabie references. The semaphore implementation allows a
process to determine whether an interface module is occupied in one machine
instruction. Synchronization information in the request packet adds 16
microseconds to the transmission time. We estimate the total time overhead
associated with‘ synchronization to be §0 microseconds, or about 6% of a remote
reference. This does not include the unfortunate case in which the interface

module is occupied.
5.4.4.6. Improving Performance

As the size of the data structure retrieved using a remote memory reference
increases, the time required to perform the operation is dominated by the copy
costs of assembling a network packet (assuming a fixed communications
bandwidth). The copy is unavoidable in most circumstances because the packet
header information must immediately precede the data. There are two solutions to
this prablem; one involves special hardware and the other requires modifications to

the compiler.

One way to avoid assembling a special network packet is to build a network
interface that accepts two addresses; one for the packet header and one for the
data or packet body. There are two advantages to such an approach. in a system

that uses memory management, the packet header can be composed in kemel

81

address space and the data can remain in user address space. This avoids the
problem of copying data from user space to kernel space and vice versa.
Additionally, data would not have to be copied into packet buffers, as the data and
packet header may now be assembled independently. Network Interfaces that

Implement this scatter-gather technique are currently available.

An altemafive solution is to allocate space for packet header information in
memory before each data structure. The compiler can determine whether the
time/space trade-off is reasonable for a particular data structure and, for large
structures, simply allocate additional storage preceding the structure. The internal
copy costs would then be zero. Figure §-3 shows the timé required for remote
variable references using this technique. Note that network utilization for large
structures has risen from 59.47% to 89.28%. Our experiments show that this
approach improves performance by 8% to 20% for small data structures of 4 to 64
bytes and up to 33% for large data structures of 1024 bytes. The expected
improvement on a processor with a hardware copy instruction would not be quite as

high. This approach can be used by both processors involved in the communication

Remote Variable Reference Performance Without Copy
Size Microseconds Percent % Bandwidth
(in bytes) Per Reference Improvement Utilization

2 880 0.0 14.565
4 899 8.0 16.02
8 831 9.3 18.90
16 996 113 24.12
a2 1128 14.8 32.62
64 1391 19.6 44.86
128 1915 24.8 59.32
258 2966 29.0 72.83
512 6066 31.9 83.06
1024 9301 33.4 89.28

Figure 5-3

82

if suitable compiler modifications are made. That is, the remote machine couid
transmit a response packet containing the actual data structure, not a buffer copy.
The local processor could read large data structures directly into the location
desired, for example, the run-time stack for parameters or local data space for

complex assignments.

Careful examination of Figure 5-3 reveals that the execution time is still a
function of the length of the remote reference, even though the copy operation has
been eliminated. We attribute the excess time to interrupt routines; the longer an
operation requires to execute, the more likely it is to be interrupted by some other
process. In particular, the clock handier and process scheduler are inherent to the
kemel and must execute periodically, interrupting all other processes except
processor-synchronous operations, which complete before handling the interrupt.
Therefore, time-consuming, processor-synchronous operations have a high
probability of being immediately followed by an Interrupt routine. The effect is to

slightly distort the timing resuits for long references by approximately 2%.

Another option to greatly improve performance is the installation of a
communications medium with higher bandwidth. The one megabit/second
transmission rate of our experimental network is clearly not state-of-the-art.
Ethemet networks [14] with a bandwidth of 10 megabits/second are currently
available and technology advances suggest that 100 megabits/second networks
will be available within the next few years. Figure 5-4 summarizes the effect this
technology would have on the timing resuits we have demonstrated (ignoring for the
moment the issue of PDP 11/23 memory hardware support for 100
megabits/second DMA). The projected estimates of Figure 5-4 were derived using
755 us. as the constant processing time of a reference, excluding transmission
time. The transmission time for different length references and bandwidths was

then added to the basic processing time. This way, we are able to factor out the

83

Projected Timing Results (in Microseconds)
for Higher Bandwidth Networks
Number of Bytes 1 Mb 10Mb 100 Mb
2 880 767.8 756.28
4 899 769.4 7686.44
8 931 772.8 756.76
16 995 779.0 757.40
a2 1128 791.8 758.68
64 1391 817.4 761.24
128 1916 868.6 766.36
256 2966 g70.0 776.50
512 5066 1174.8 796.98
1024 9301 1584.4 837.94
Figure 5-4

discrepancy caused by interrupt routines that was previously mentioned.

Again; the data should not be Interpreted to mean that we advocate building
networks with relatively slow microcomputers and a 100 megabits/second network.
Instead, the data demonstrates that even inexpensive microcomputers can
communicate very efficiently using remote variable references, if the

communications medium is powerful enough to support those references.
5.4.5. Protection and Autonomy

Two issues associated with remote memory references not yet discussed are
remote memory protection and processor autonomy. Mechanisms must exist that
prevent rogue processors from examining remote memory locations where access is
restricted. Also, a local processor should reserve the right to prohibit remote

memory references from executing.

One approach, the one favored by StarMod, is to use a uniform address space
within a distributed program. In StarMod, a processor module encapsulates a logical
processor and defines the interface with other processors. Variables exported by a

processor module may be read using a remote variable reference; all other memory

84

locations are protected against outside inspection by the compiler. This protection
Is extended to qualified references by requiring that the type be exported before
qualification is permitted. Run-time checking can be used to ensure that

qualification isn't used to access otherwise Inaccessible memory.

In addition, all StarMod network packets carry a program identifier, preventing
other programs from interacting maliciously with a running StarMod program.
Processor autonomy is enforced at compile-time and is reflected by the export list

associated with a processor module.

An alternative approach is to base remote operations on some form of
capability [18]. The primary advantage of the uniform address space in StarMod is

that protection is enforced at compile-time, not run~time.
§.5. Summary

In this chapter we described how to extend the variable importation and
exportation philosophy of StarMod across processor boundaries in a transparent
fashion. In addition, we presented the results of an implementation that suggest
that remote variable references can be made reasonably efficient without
constructing special hardware or resorting to microcode. Other studies [49, 50]
have shown that such references can be made extremely efficient if special

hardware or microcode is employed.

A comparison between the performance of memory references, both local and
remote, and message communication may be criticized on the grounds that memory
references require synchmnizatio;l techniques that greatly increase the
performance of the reference. Without this synchronization, the references are
deemed impractical. This criticism Is only partiaily valid. Even though such a
comparison is not between primitives of equal functionality, it is logical to compare
the performance of various methods of communication in those circumstances where

any one of a number of alternatives Is reasonable; certainly performance would be

85

an important criterion in primitive selection. We have shown that remote variable
references can be synchronized without introducing significant overhead (in the
general case). In the worst case, the performance is slightly less than message
communication, since a reference that fails is immediately reissued using message-

based communication.

One of Spector's goals [48] was to have a processor issue 1% of its non-
Instruction memory references to a remote processor, yet suffer no more than a
50% speed degradation. Spector was able to achieve this goal within the context
of a special-purpose implementation in microcode. Using our implementation, a
StarMod program In which references to remote variables are 1% of all variable
references will degrade in speed by approximately $9.3%. (Assuming an average
instruction time of 6 us. for the PDP 11/23, a program executing a remote
reference 1% of the time would execute 67,843 instructions/second, instead of
166,666 instructions/second.) Even though the goal was not met, and probably
could not be met within the restrictions of our environment, we believe the result is

a promising one.

Chapter 8

A FAMILY OF COMMUNICATION PRIMITIVES

6.1. Introduction

Having designed a programming language that supports multiple models of
communication and analyzed an implementation of the run~time kernel, we draw on
these experiences to compare and contrast the communication primitives we have
considered. In this chapter we compare the various models of communication that
have been discussed, using both qualitative and quantitative criteria, summarize our
experiences in constructing the kernel implementation, and consider architectural

support for a distributed programming language kernel.
6.2. Comparing Models of Communication

There are numerous factors that influence the choice of communication
primitive; the relative importance of these factors dictates which model of
communication best meets the circumstances. In this section, we will reexamine the

communication primitives in light of these factors.
6.2.1. Performance

From a performance standpoint, shared memory is the most efficient form of
communication between processes. Where shared memory does not exist, remote
memory references are a viable alternative. We have shown that a remote memory
reference issued as a processor-synchronous operation cal:t be executed very
quickly; however, higher-level forms of communication are often desired.
Asynchronous port calls require 10 times more execution time because they cannot
be reasonably executed as processor-synchronous operations. Synchronized
communication (e.g., RPC) requires twice again as much time to execute because of

the need to process a reply message.

) 87

Aside from these absolute measures, there are other factors that influence the
performance of a distributed program. We will examine some of those factors to

determine how they affect the performance of the individual communication models.
6.2.1.1. Network Contention

Network contention affects the performance of the various communication
primitives in different ways. Remote memory referenées are most severely affected
because a reference that is unable to execute quickly must be reissued as a
process-synchronous reference. In our implementation, that results in a factor of
23 degradation In execution speed. A processor that issues 1% of its non-
instruction memory references to remote memory and fails to execute a remote
memory reference processor-synchronously 1% of the time, will slow from executing
166,666 instructions/second to 60,060 instructions/second, a 64% degradation.
The same processor issuing all remote memory reférences as processor-
synchronous references will execute 87,8483 instructions/second. To avoid the
overhead introduced by network contention, a small maximum packet length ensures
that a remote variable reference will be able to use the communications line when

needed, allowing the reference to execute processor-synchronously.

Broadcasts are also greatly affected by contention. Depending on the
Implementation, a broadcast that Is not acknowledged by all intended recipients
may be rebroadcast to all nodes or sent to each individual node that did not receive
the initial broadcast. ldeally, the issue of how to retransmit the message would be
based on the percentage of 'nodes that received the original message. In our
Implementation, a broadcast message Is retransmitted individually to each node that
did not acknowledge the message. Because a broadcast message requires some
computation by every node, each rebroadcast caused by contention influences

performance, however slightly, on every node.

88

The performance of port calls and remote procedure calls is not as severely
affected by contention. Each time the device driver attempts to send a message,
but is unable to do so because the communications line is busy, a timeout interv.ul is
scheduled and the device driver process is suspended. An exponential back-off
algorithm heips avoid congestion of the line immediately after a long packet has
passed. The only unnecessary delays in our implementation introduced by

contention are, once again, caused by the long minimum timeout interval.
6.2.1.2. Interaction Between Communication Primitives

Since the StarMod kernel supports multiple modeis of communication, it is
possible for one primitive to interfere with the efficient execution of another. In
particular, each of the communication primitives can affect the performance of a
broadcast because broadcast communication requires that each virtual channel
between the local processor and every other processor be free. A broadcast
request is queued until all virtual channels are free; subsequent point-to-point

communication requests are also queued in the interest of fairness.

The execution time of a remote memory reference can be severely affected by
other communication primitives because such references are sensitive to network
delays. The arrival of a port call at a processor awaiting a response to a remote
memory reference may cause the response to be lost. For higher-level primitives,
this is not a serious drawback, since those primitives are not as sensitive to
transmission errors. However, remote memory references executed as processor-
synchronous references are not retransmitted untll successful. Instead, the
reference Is reissued as a process-synchronous reference, at a high cost in

performance.

6.2.1.3. Local Vs. Remote Communication

Before distributing a concurrent program to improve performance, one must
consider the type of communication used by the concurrent program to determine
how to best distribute the program and also how to estimate the expected
improvement in performance. If processes in the distributed version of the program
are to communicate using the same form of communication as the concurrent
program, the ratio between the execution times of the remote and local form of
communication will, in part, dictate the amount of speedup that can be achieved by
distributing the program. Primitives with a high ratio of remote to local execution
time may not achieve expected speedup because the increased parallelism will be

partially offset by the increase in communication costs.

Figure 6-1 shows the execution times and ratios of the communication models
as derived from our implementation. Not surprisingly, the highest ratios occur for
those communication primitives whose local execution is directly supported by the
hardware, procedures and memory references. The complexity of the port call
implementation causes the execution time to be quite high for a local operation,
significantly lowering the ratio between remote and local execution. The resuit:
distributing a concurrent program whose processes communicate via shared

variables will not improve performance as much as distributing a concurrent program

Ratio Between Remote and Local Execution Time
for Various Communication Models with 2 Byte Arguments

Communication Type Remote Local Ratio
Asynchronous Port Call 11.11 ms. 3.60 ms. 3.1:1
Synchronous Port Call 20.73 ms. 4.76 ms. 4.4:1
Memory Reference 880.0 us. 4.27 us. 206:1
Procedure Call 20.13 ms. 84.0 us. 240:1

Figure 6-1

0

whose processes communicate via ports (assuming the same Increase in
computational parallelism for both). Therefore, higher performance is attained by
distributing those prccesses that communicate via ports to different physical
processors and grouping processes that use shared varlables on the same
processor. This is a general rule that should be used when distributing a concurrent

program to improve performance.
6.2.1.4, Overhead of Marshalling Parameters

The need to marshall arguments is not an important point for comparison
because all communication models require marshalling; in fact, we expect that all
communication primitives would use the same marshalling routines (if marshalling in-
line is not appropriate). The ratio of overhead attributed to marshalling versus the
total time required to execute a primitive may be unacceptable, however. That s, it
might be considered unreasonable for a remote memory reference to request a data
structure that would require considerable effort to marshall and transmit. To ensure
that no processor is needlessly idle, it would be good programming practice to limit

the amount of marshalling associated with a remote memory reference.
6.2.2. Ease of Implementation

Our experience has shown that each of the models of communication we
considered can be implemented with a reasonable amount of effort. Asynchronous
message passing is the easiest to implement, broadcasting the most difficult. While
it is not possible to rank the relative difficulty of implementation for each
communication mechanism, primarily because we did not undertake a complete
implementation of each primitive, we can draw some conclusions based on our

experience.

The type translation mechanism is the same for each communication model
because all support full functionality; each primitive permits arguments of any type.

Once a type translation scheme is implemented, a nontrivial task by itself, it ceases

81

to be an issue for comparison among the various primitives.

Messages require more code to implement than RPC because of the
nondeterministic nature of the ports/region concept. On the other hand, the
machinery necessary to guarantee the semantics for remote procedure call in the
_presence of crashes was not implemented. Since the orphan algorithms represent a
considerable amount of work, we conclude that RPC is significantly more difficult to

implement than port calls; the latter do not require orphan algorithms at all.

The processor-synchronous memory reference Is easy to implement, but only if
some other form of process-synchronous communication already exists. The first
attempt to execute a remote memory reference does not require the more complex,
secure protocol used for messages. If a remote memory reference fails to succeed,
however, it must resort to a higher-level primitive, preferably one that is also
available to the user. Thus, an implementation that supports only remote memory
references as the model of communication must build, internally, much of the
Implementation used for message passing, even though user processes are not

allowed to communicate via messages.
6.2.3. Functionality

The type of support for communication that a primitive provides is an important
factor in determining appropriate situations for its use. For example, remote
procedure call has been criticized as '"inappropriate’” for distributed database
implementations; the master/slave relationship imposed by RPC is artificial in some
situe‘«tions, particularly in the cohort-sponsored recovery of a transactlon that

occurs when a coordinator fails [17]. An IPC facility based on a peer-peer

relationship is preferable.

A primary reason for supporting multiple forms of communication is to allow the
user to choose a communication model appropriate for the application. The

primitives we have considered offer different levels of functionality for different

92

program environments.
6.2.4. Familiarity of the User Interface

One advantage of RPC is that its syntax and semantics are inherited fruin lou..
procedures. Programmer familiarity makes RPC easy to use and less error-prone. In
addlflon, concurrent programs based on procedure calls may be easily distributed to
improve performance without significant code modification. Unfortunately, a familiar
user interface may be a disadvantage in that the overhead associated with remote
communication may be hidden by innocuous appearances. This is particularly true
about remote variable references. Nevertheless, given a choice, many programmers
will choose a model of communication with which they are familiar, often without due

consideration of the performance trade-offs invoived.
6.2.5. Formal Tractability

The inherent complexity of distributed programs has led many researchers to
investigate proof techniques for communication primitives [2,3,27,28, 35,29, 47].
In an environment in which program correctness proofs are deemed necessary, a
model of communication might be chosen based on its formal tractability. For
example, Schlichting and Schneider [47] suggest that the ports/region
communication mechanism, based on static references to a communication channel,
is preferable to a communication mechanism in which arbitrary processes may
communicate (e.g., dynamic communication links in Arachne [20]) because the
reduced number of pairs of processes that may communicate require fewer
satisfaction formulas to be constructed. Synchronous forms of communication, such
as remote procedure call and port calls with reply, are shown to have much simpler
proof rules than asynchronous communication primitives; the increased parallelism
introduces added complexity, suggesting that the proof rules for broadcasting are

likely to be even more complex.

83

A formal argument can also be made for inclusion of remote memory references.
Proofs for distributed programs typically view each process in Isolation during the
sequential part of the proof, but eventually must consider the entire system's
state. If a remote memory reference is considered to be an atomic operation (our
implementation suggests that, to some degree, this is a reasonable assumption), it
may be used by a process to interrogate the state of other distributed processes.
Thus, the programmer is no longer limited to local memory references while

constructing a program whose proof requires global information.

We do not believe that the formal properties exhibited by any of these models
of communication should be used to justify their prohibition. Factors such as
performance, Implementability, and ease of use are more likely to be of primary
concern in the implementation of real systems. It is frequently the case, however,
that formal arguments clarify practical experience; the harder it is to reason
formally about a program, the harder it is to understand the program. So, formal
tractability is one of many factors to consider when comparing communication

primitives.
8.3. Lesson# in Kernel Construction

During the implementation of the StarMod kernel, whose performance has been
previously detailed, we attempted many different approaches to various problems to
determine the effect each approach had on the complexity and performance of the
kemel. While performance may be used as an objective measure of the success of
a particular technique, the complexity of each approach was measured
subjectively, based on the amount of code required for its implementation, the
amount of debugging required, and the ease with which corrections were applied.
The resuit of these different approaches to the implementation of the kernel is a
series of lessons or general principles that apply to the construction of

communication systems in general and distributed programming language kernels in

24

particular, lessons that are especially important when performance is a primary

criterion.
6.3.1. Balance Simplicity and Performance

A delicate balance between simplicity and performance must be maintained to
avoid unnecessary complexify or extremely poor performance. For simplicity, an
original version of the kernel was constructed in which each incoming message was
handled by a process created for just that purpose. The performance, per
message, was not considered acceptable; process creation, deletion, and context
switching were simply too time-consuming compared to the amount of time the
process handier actually executed. As an experiment, the kernel was recoded so
that only one process acted as both a device driver and message handler. This
approach soon became overly complicated and error-prone. In addition, performance
suffered because the network device was inactive while messages were
processed, causing the next incoming message to be lost. Our eventual solution
was a compromise between these two extremes. A simple device driver process,
dedicated to initlalizing the device and processing its interrupts, minimizes the time
during which the device is nelther reading nor writing. A second process serves as
a virtual channel multiplexor/demultiplexor. This process Implements the
communication protocol and calls routines to quickly handle incoming messages. The
resulting organization suggests a good compromise between program complexity and

performance.
8.3.2. Simple Protocols Are Not Simple

Simple communication protocols are not simple to program. We implemented a
stop-and-wait protocol, using a 1-bit sliding window, because the complexity of
allowing muitiple outstanding packets in a sequence was not justified, particularly in
& local-area network where mean transmission time is small. Modifications to the

basic protacol, as presented in Tanenbaum [51], were required to allow the protocol

a5

to reach an idle state in which no extraneous transmissions are made between
kernel processes; even more changes were required to implement broadcasting. A
general pattern emerged in which seemingly minor changes often had undesirable

effects on performance.
'6.3.3. Don't Increase Traffic to Improve Performance

A distributed control protocol, such as SDAM [36,37], can be used to improve
throughput in the face of network contention. SDAM assumes that network nodes
can eavesdrop, receiving the source, destination, and direction of each packet on a
bus-oriented network. An implicit token is contained in the delay between
transmissions, in effect, sequencing each node's access to the communications line.
End-nodes, residing at each end of the bus, are used to generate control tokens for

directing token flow.

Alternatively, explicit tokens can be exchanged to sequence access to the
network. This may be appropriate for networks that are (a) unable to peek at each
packet on the network, invalidating the assumptions of SDAM and (b) not heavily
congested with communication traffic. Our experiences suggest that these
mechanisms designed to improve performance, at a cost of increased network
traffic, frequently succeed only at the latter, to the detriment of the former. For
example, an acknowledgement sequencing scheme for broadcast messages was
attempted in which each processor in the sequence would wait for a continuation
message from the previous member of the sequence, acknowledge the broadcast,
and then send a continuation message to the next processor in the sequence. The
rationale for this was (1) the acknowledgements must be sequenced to avoid
numerous collisions and the resultant long delays because the hardware did not
provide collision detection, (2) the message would allow the next processor in the
sequence to acknowledge the broadcast almost immediately after the previous one,

since the communications line is certainly free and the messages are short, and (3)

even loosely synchronized clocks would have been too inefficient because the
clock resolution was not high enough. Unfortunately, if a continue message is lost,
it must be resent after timeout, again introducing the clock. The added complexity
did not improve the performance; on the contrary, performance degraded becauée
many continuation messages were lost. Instead, acknowledgements were loosely
synchronized using busy-wait loops of about 800 us. in duration. The average

performance was much better than that attained using the previous scheme.
6.3.4. Use Simple Packet Structures

The fundamental object of concern in a communication kernel is the packet.
Experience suggests that packet organizations that contain more than the absolute
minimum amount of information should be avoided. In our implementation, the lack of
dynamic allocation caused us to make some decisions on data structure design that,
in retrospect, we belleve were a major source of errors. Our basic packet format
inciuded numerous special fields for system use, including link fields for packet
queues. Thus, only one packet allocation routine was needed to allocate storage
for the packet, and all information typically associated with packets. Unfortunately,
we also decided to use argument lists composed on the user's stack as packets,
avoiding an extra copy for each message. These two types of packets were
Inherently incoméatible and disceming between the two added unnecessary
complexity. A simpler packet format, containing only information mandated by the
hardware and a message followed by an indirect link to other information, would
have greatly simplified all packet handling in the kernel and probably would have

avoided our most difficuit bugs.
6.3.5. Avoid Expensive Instructions

Be wary of expensive instructions, principally when programming in a high-level
language. On the PDP 11/23, the multiply, divide, and shift instructions are

extremely time-consuming relative to the other instructions, making bit operations

87

expensive. Assembly language listings were used to determine where and why such
instructions were used; where possible, statements were recoded to avoid use of
these instructions. We found that attempts to reduce packet size by packing
multiple fields in a single word often resulted in a considerable increase in
processing time to decode the fields, a factor of two or three more than the time

required to transmit the information in a separate word.
8.3.6. Avold Mutual Exclusion and Synchronization

Mutual exclusion and synchronization are expensive operations and should not
be used in situations where they are not required. General abstractions protected
by monitors and accessed only by protected procedure calls are extremely
attractive from a programmer's point of view; however, their overuse can be
detrimental to performance. In our implementation, each call to a protected module
requires about 50 instructions of overhead, regardiess of the size of the called
procedure. Procedures that simply return without modifying data within the monitor
should be coded as non-protected procedures. The representation of some
abstractions may require exclusion simply to examine the abstraction; in practice,
we have found that many abstractions do not have this property. For example, our
Implementation contains numerous interface modules that implement message
queues; procedures to add and retrieve messages from the queue are exported as
part of the module. Each call from outside the monitor to retrieve a message from a
queue is preceded by a test to ensure that the queue Is non-empty, avoiding an
Interface call if, as is frequently the case, the queue is empty. This is not
equivalent to using a protected procedure since some other process may be in the
act of adding a message to the queue; testing the queue from outside the module
could suggest no message is in the queue, while an interface call would block until
the process in the module completed, after which a message could be retrieved. In

this instance, no errors resuit as the message will be retrieved the next time the

queue Is examined. The disadvantage Is that the queue representation must be
visible outside the implementation module, a small inconvenience for increased

performaiice.
6.3.7. Use a High Resolution Line Clock

A high-resolution line clock in each processor is a vital ingredient for a high-=
performance implementation. Much of the communications protocol is time
dependent; message retransmission, broadcast acknowledgement sequencing, and
piggybacked acknowledgements are all driven by the clock. A high-resolution clock
allows timeout intervals to be finely tuned for each communication primitive and to
be used in more situations. An acceptable resoiution is about twice the time
required for a context switch, since timeout intervals significantly less than that
are Insufficient to allow other work to be done by another process. The lack of a
high-resolution clock influenced many of our implementation decisions; for example,
acknowledgements were not delayed in order to be piggybacked since the minimum
delay was too long and would have had a serious effect on the performance. This
decision resulted in decreased performance for synchronous broadcast ports

because each machine sent separate acknowledgements and replies.
6.4. An Architecture for a Family of Primitives

During the construction of the language kemel, we frequently found our
attempts to improve performance were obstructed by the hardware. In this section,
we examine the various components in the architecture of a local-area network and

suggest architectural support for distributed programming language kernels.
6.4.1. Processor

Our experiments show that the processor can easily become a bottleneck in
communication, especially if a high-bandwidth network under light load is employed.

The lowest level primitive we implemented, remote memory reference, consumes anly

14.566% of the available bandwidth, an effective transfer rate of 18
kilobits /second. Spector was able to generate a load of 42% on a 2.94
megabits/second Ethemet by using microcode and a faster processor
fapproximately 0.33 MIPS), resulting in an effective transfer rate of 1.28
megabits/second. Spector suggests that each processor in a local network of up
to 50 processors connected by a 100 megabits/second network needs to execute
at a rate of 1 MIPS to be effective; our results suggest that a 0.17 MIPS processor
such as ours is Incapable of effectively utilizing current technology, even if a small
number of processors Is Involved and the local network has only 10

megabits/second bandwidth.

if, as we assume, the network has been constructed to increase performance,
it is reasonable to assume that higher-performance processors would be employed.
Small networks of up to 10 processors can efficiently utilize a 1 to 10
megabits/second communication line if the processors execute instructions at a
rate of 0.33 MIPS to 0.5 MIPS. Processors that execute less than 0.33 MIPS do
not efficiently utilize current communications technology. The instruction rate of
the processor is not as important an issue in communication performance, however,
if a separate communications controller (adapter) is used to transmit and receive

packets on the network.
6.4.2. Communications Adapter

Spector's remote reference/remote operation model differentiates between
two types of operations, primary and secondary. A primary reference is executed
by special low-level processes, not user-level processes. Secondary operations
are more complex and tend to require process switching and request queuing on the
main processor. These operations are distinguished by their compiexity in relation
to the capabilities of the communications adapter. In particular, with the

appropriate hardware, a primary reference could be executed directly by the

100

communications adapter. The sophistication of the communications adapter is likeiy
to be the single most important factor in the efficiency of extremély optimized,

primary operations such as remote memory reserence.

The performance of our implementation of remote memory references was
seriously affected by the lack of a communications processor to process the
references. Nearly one third of the instructions required to perform a reference
were used to field the interrupt and switch contexts. An intelligent controller could
field and process the request without requiring a context switch on the main
processor. Evidence is provided by Spector's microcoded version of the remote
memory reference, which required 280 microcode Instructions, that higher
performance s possible. His implementation avoided the user process machinery
and, even though the referencé still executes nearly 100 times slower than the
same reference executed locally, most of the time was spent on transmission.
Increased bandwidth would greatly improve the performance of Spector's
implementation, whereas greater bandwidth would not have as important an effect
on the performance of our implementation because a large percentage of the time

required to process a reference is consumed by the process machinery.

A communications adapter composed of a bit-sliced processor with local
memory would greatly improve performance. Such a processor, dedicated to
communications, can have a significant effect on performance as communication
traffic increases. Unfortunately, it may not be a cost effective alternative, notably
so when the resulting communications adapter is more sophisticated, hence more
expensive, than the main processor. Without some form of front-end processor,
however, the performance of communication Is limited by the process switching
machinery on the main processor. As long as process switching is involved, primitive
remote operations, such as remote memory reference, will continue to require two

orders of magnitude more time to execute than a comparable local operation;

101

composition of a request, transmission time, request processing, and a context

switch will continue to require on the order of 100 instruction times.

We wouid also like the communications adapter to implement scatter-gather,
that is, multiple addresses may be used to specify the source or destination
address of a packet. This avoids some packet assembly operations in the main
processor, reducing copy costs and improving performance. If multiple addresses
are allowed, copy costs can be eliminated from the cost of communication. For
example, the address of each parameter in a message might be transmitted to the
communications adapter, along with the address of the packet header. The resuit is
an implementation similar to call-by-reference in that only addresses are necessary
(although the communications adapter would also be given the length of each field),

rather than the copy operation used for call-by-value parameters.

A scatter-gather communications adapter can also help avoid copying data
between different segments in virtual memory into a common segment. A kernel
residing in a virtual memory organization that assigns a different set of mapping
registers to each user may have to use more than one set of registers to map all
the addresses specified In a transmission request. For example, the packet header
may permanently reside in kernel address space, while the message body is always
transmitted from the user's address space. (Typically, no message is transmitted
that contains fields in more than one user's space.) The kemel maps virtual
addresses to physical addresses, that are then sent, as a transmission request, to

the communication adapter.
6.4.3. Memory

Memory requirements are minimal and easily met. If the network is
asynchronous, the bandwidth of the memory is unlikely to be a limiting factor. Direct
reception of messages on a synchronous network with 100 megabits/second

bandwidth is possible if the memory has a cycle time of about 300 ns.

102

The organization of memory can have an impact on the performance of the
kernel. For example, on the PDP 11 /23, there are two modes, kemel and user mode.
Kernel programs run In kerel address space, while user programs are mapped o
memory using one of a set of four mapping registers. Operations requiring a change
in the current set of registers will take longer than operations that do not. The Intel
8086 [26] uses segment registers to refer to a user's data, but provides a
segment override prefix, a one byte instruction that specifys the segment register
to be used. The overhead, in this case, of referencing a user's data from within the
kernel would be quite small, assuming the user's segment registers are readily

available.
6.4.4. The Network

When we consider the network as a whole, other issues arise that have
considerable impact on the kernel implementation. These include network topology,
network bandwidth, processor homogeneity, and language homogeneity. The
topology of the network will have an impact on the basic communication protocol
within the kemel, as well as the need for routing algorithms. The available
bandwidth is abviously an important factor in the system performance. Also, even
though we have limited our discussion to‘ local-area networks, we still must address
the issue of heterogeneous networks. It may be desirable to construct a high-
performance, local~area network using different types of processors. In addition,
there may be compelling reasons to allow multiple language implementations on the

network.
6.4.4.1. Network Topology

A token ring architecture that allows a message to be acknowledged at little or
no cost (an acknowledgement bit is set in the message as it passes through the
destination machine) would have a significant effect on the performance of all

higher-level communication primitives, particularly broadcasts. The speedup

103

attained by broadcasting would not be limited by the time required to send an
acknowledgement from each additional machine in a broadcast since
acknowledgements would be free. Such an architecture would permit the
theoretical spéedup of a factor of N to be achieved when broadcasting to N

machines.

Alternatively, a packet-switched network would require the communications
kernel to route messages, an unnecessary complication in a broadcast network.
Such an organization would clearly have an adverse affect on performance;

however, other circumstances may dominate.
8.4.4.2. Network Bandwidth

Current technology readily supports 10 megabits/second communication in a
local-area network; 100 megabits/second bandwidth will be commonplace in the
near future. Figure 6-2 summarizes the execution costs of the various models of
communication we have implemented in light of increased bandwidth and processor

speed. (The figure assumes 2 byte arguments.)

One observation of note Is that, since our communication primitives are
processor bound, an inct:ease in bandwidth from 10 megabits/second to 100
megabits/second has little effect on the performance of any of the communication
primitives (assuming reasonably small messages from 2 to 64 bytes in size). On the
other hand, an Increase in processor speed improves performance significantly.
However, the increased bandwidth would have a more dramatic effect on system

performance as the number of processors In the network increased.
6.4.4.3. Processor Homogeneity

Frequently, local-area networks are composed of heterogeneous processors.
Although StarMod programs consist of homogeneous logical processors, there is no

requirement that these logical processors be mapped to a set of homogeneous

104

Prajected Execution Time (in ms.) for Higher
Bandwidth Networks and Higher Performance Processors

Processor Network Async.‘ Sync. RPC Remote
MIPS Bandwidth Port Call Port Call Mem Ref

A7 1Mb 11.11 20.73 20.13 0.880

A7 10 Mb 10.96 20.41 19.81 0.765

A7 100 Mb 10.924 20.38 19.78 0.763

.33 1Mb 5.64 10.64 10.24 0.504

33 10Mb 65.48 10.22 8.92 0.389

.33 100 Mb 5.47 10.18 0.89 0.377

S 1 Mb 3.82 7.14 6.94 0.379

5 10 Mb 3.66 6.83 6.63 0.263

5 100 Mb 3.65 6.80 6.60 0.252

1 1 Mb 2.00 3.75 3.865 0.2563

1 10 Mb 1.84 3.43 3.33 0.138

1 100 Mb 1.82 3.40 3.30 0.127

Figure 6-2

physical processors. In particular, we examined one form of delayed binding,
quallfied references, in which a form of quadruples was used to encode the
reference for interpretation by the remote processor. This approach was taken for
those cases where the processor on which the reference is to be executed is a

different architecture from the requesting processor.

An additional problem that arises in heterogeneous networks is the issue of
type translation. Just as local addresses are not considered meaningful to a remote
site, a local interpretation of a bit string as some basic data type may not be a
meaningful interpretation for a different architecture. In other words, even basic
types may require marshalling when transmitted between different architectures. In
[22], Herllhy and Liskov address the problem of type translation in heterogeneous

networks.

105

6.4.4.4. Language Homogeneity

StarMod programs encapsulate logical, distributed processors that combine to
form a logical network, homogeneous with respect to the implementation language.
It Is conceivable, however, for logical StarMod netWorks to communicate with other
logical processors or networks, implemented in some other language, within the
reaim of a single physical network. Crossing the gap between logical networks is
similar to the problem of communication between different physical networks; a

uniform interface must be defined through which the networks communicate.

A StarMod program can declare templates for objects (e.g., processes,
procedures, ports, variables) that are defined by a logical network implemented in
some other language. The template deciaration provides all the information
necessary for StarMod programs to communicate with processes residing in
different logical networks in a type-safe manner (limited, of course, by the type
checking capability of the other logical networks). The same approach is often
used to present a uniform interface between different programming languages on

the same processor.

Certain properties must be consistently maintained by the kemel on each
physical processor, independent of the particular implementation language.
Communication protocols and address binding are two issues of concern. Message
formats must be the same for all communicating logical networks or each processor
must translate incoming messages into an internal representation, significantly

degrading performance.

One advantage of a specialized language kernel is that the implementation can
be tailored to the types of communication supported by the language. This applies
especially to the protocol used in communication. A special-purpose kernel is
unlikely to impfement a general communications protocol similar to those used for

most local-area networks. To communicate with processes that run above such a

1086

protocol, the StarMod kernel would have to communicate in terms of that protocol. A
certain loss In performance is traded for the added flexibility of communicating with

these processes.

Additionally, address binding must be consistent if remote memory references
or remote procedure call are to be allowed between logical networks. Techniques
for address binding are often dictated by architectural concerns; thus, a network
composed of homogeneous processors is likely to have uniform address binding on
all processors. This is especially true for microprocessor-based systems without
virtual memory. In any case, static addresses contained in remote references must
be mapped to run-time addresses. The mapping function need not be the same on
each processor, even though the domain of static addresses is the same for all

machines.
8.5. Summary

in this chapter we evaluated the communication primitives using various
criteria, including performance, discussed our experiences in developing the
language kernel, and considered architectural support for a distributed programming
language kemel, including processor, memory, cqmmunlcations adapter, and

bandwidth requirements.

107

Chapter 7

CONCLUSION

7.1. Summary

In this dissertation we have demonstrated that multiple forms of
communication, spanning a spectrum of complexity and performance, can be
consistently integrated into a single programming language and its kemel.
Message-based communication, remote procedure call, broadcasting, and remote
variable references were incorporated into StarMod in a manner consistent with the

modular philosophy and virtual-network orientation of the language.

Analysis of the implementation's performance shows that we have achieved
good communication performance without resorting to special hardware or
microcode. Comparisons with other work show that the performance results we
observed are at least comparable to, and often better than, the results of others.
We attribute these performance results to the specialization of the language kernel,

which tailors the implementation to the communication primitives supported.

An important aspect of our work is that we have quantified the costs and
benefits associated with various models of communication. In particular, we have
shown that low-level operations executed processor-synchronously are an order of
magnitude more efficient than higher-level communication primitives executed as

process-synchronous operations.

Finally, we have developed a distributed programming language testbed
environment that can serve as a vehicle for future study of programming in

distributed systems.

108

T.2. Future Research

In this section we suggest problems for future research that are natural
extensions of the work presented in this Jissertation or that are related to our

work.
7.2.1. Delayed Bindings

One way to minimize communication costs is to minimize communication. We
considered a form of delayed binding that allowed qualification to take place on a
remote processor, reducing marshalling and transmission costs. This is just one
example of delayed binding, in which interpretive code is produced by the compiler
and transmitted to a remote processor under the assumption that the code could be
transmitted quickly and the data could not. We can extend the concept to
expressions (expression evaluation takes place at the source of the operands and
the result is transmitted back to the origin of the expression) and even statements

{procedures migrate to data if the data is large and the procedure is small).
7.2.2. High=-Performance, Processor-Synchronous Qperations

We investigated the performance of low-level, processor-synchronous
operations, in particular remote variable references, and found that such operations
are much more efficient than process-synchronous operations. Also, Nelson's work
demonstrated that remote procedures could be executed very quickly if allowed to
execute as processor-synchronous operations. Further experimentation should be
undertaken to determine what other types of operations might reasonably be
executed processor-synchronously and ' mechanisms developed to specify and

determine synchrony.
7.2.3. Network Contention

The observed performance of network communication protocois in the presence

of contention is frequentiy much worse than expected. We have presented

109

performance results in best-case situations, with no network contention except
that introduced by the particular communication primitive of interest. Practical
experience using real-world, local-area networks with average network load is

necessary to assess the genuine value of our performance resuits.
7.2.4. Network Architectures

The topology of the network is an important factor in the performance of
distributed programs. OQur results are based on a bus-structured network without
collision detection. Further experimentation is needed to determine the effect on
performance of other network architectures, including token ring, packet-switched,

and circuit-switched networks.
7.2.5. Dynamic Mapping

For the most part, we have presented a static view of the world. Truly
distributed systems tend to exhibit dynamic properties that are not supported by
the programming language as we have defined it; in particular, we have not
considered processor failures, network partitioning, the addition of new processors,
or process migration. Further extensions are needed to provide these dynamic
aspects to our otherwise static approach to programming distributed systems. A
reasonable balance between the advantages of static binding inherent in most
programming languages and the dynamic binding found in most operating systems is
needed to ensure maximum programmer flexibility while maintaining high

performance.
7.2.6. User Experience

An important hurdle that must be overcome before distributed systems can
reach their full potential is the problem of distributing existing concurrent programs.
One way to greatly ease the effort necessary to transform a concurrent program

into a distributed program is to incorporate transparent primitives for distributed

i10

programming into a high-level, concurrent programming language. If remote memory
references and nonlocal variable references are indistinguishable, processes that
communicate using shared variables may be distributed across maiy mechines
without extensive code modifications. Similarly, a message-based communication
facility that inherits its syntax and most of its semantics from the procedure model
allows a concurrent program executing procedures to be transformed into a

distributed program sending messages without much effort.

User experience is the most important factor in assessing the ultimate value of
language-level primitives for communication. The implementation described in this
dissertation is a major step towards gaining the necessary experlence; it lays a
foundation upon which future work in high-performance, language-level primitives

for communication In local-area networks can be based.

111

Appendix

PDP 11/23 Operation Times

increment register 1.72 us.
Move x to y (both in memory) 7.23 us.
Move x to y (both in registers) 1.72 us.
Jump to address 4.27 us.
StarMod procedure call 83.60 us.
Interface procedure call 247.70 us.

Process creation/termination 274.70 us.

Process switch 220,40 us.
Send a signal 190.00 us.
Walit for a signal 2386.00 us.

> Timing figures for machine instructions are from [16]. Other figures were derived
from the implementation.

(1]

[2]

[3]

[4]

(61

[6]

[7]

[8]

[e]

[10]

[11]

[12]

(13]

[14]

[18]

112

Bibliography

Andrews, G.R., "Synchronizing Resources," TOPLAS 3, 4, pp. 406-430 (Oct
1981).

Apt, KR., Francez, N., and de Roever, W.P,, "A Proof System for
Communicating Sequential Processes,” TOPLAS 2, 3, pp. 359-385 (July
1980).

Ashcroft, E.A., "Proving Assertions About Parallel Programs,” JCSS 70, pp.
110-135 (Jan 1975).

Balzer, R.M., "PORTS -- A Method for Dynamic Interprogram Communication
and Job Control,” Proc. of AFIPS SJCC Computer Conf. 39, (1971).

Baskett, F., Howard, J.H., and Montague, J.T., "Task Communication in
Demos,"” Operating Systems Review 11, 5, pp. 23-31 (Nov 1977).

Boggs, D.R., Shoch, J.F., Taft, E.A, and Metcalfe, R.M., "Pup: An
internetwork Architecture,” Report CSL~-78-10, Xerox Palo Alto Research
Center (1979).

Brinch Hansen, P., "The Programming Language Concurrent Pascal,” IEEE
Trans. on Software Eng. 1, 2, pp. 199-207 (June 19785).

Brinch Hansen, P., 'Distrlbuted Processes: A Concumrent Programming
Concept,” Comm. ACM 21, 11, pp. 934-841 (Nov 1978).

Cheriton, D.R., Maicoim, M.A., Melen, L.S., and Sager, G.R., 'Thoth, a
Portable Real-Time Operating System,” Comm. ACM 22, 2, pp. 106-1186
(Feb 1979).

Clark, D.D., "Modularity and Efficiency in Protocol Implementation,”
Technical Report, Computer Systems and Communications Group, MIT
Laboratory for Computer Science (July 1982).

Cook, R. and Lee, 1., "A Contextual Analysis of Pascal Programs,"” Software
- Practice and Experience 12, 2, pp. 195-203 (Feb 1982).

Cook, R.P., "*MOD - a Language for Distributed Computing,” /EEE Trans. on
Software Eng. 8, 6, pp. 563-571 (Nov 1980).

Dalal, Y.K., "Broadcast Protocols in Packet Switched Computer Networks,"
Ph.D. Thesis, Stanford University (Apr 1977).

Digital, et al.,, The Ethernet Local Area Network, Data Link Layer and
Physical Specifications Version 1.0. (Sept 1980).

Digital Equipment Corporation,, Microcomputers and Memories. (1981).

[16]

[17]

[18]

[1e]

[20]

[21]

[22]

[23]

[24]

[25]

[26]
[27]

[28]

[29]

[30]

[a1]

113

Dijkstra, EW., "Guarded Commands, Nondeterminacy, and Formal Derivation
of Pragrams,” Comm. ACM 18, 8, pp. 4563-457 (Aug 19785).

DuBourdieu, D.J., "Implementation of Distributed Transactions," Proc. 6th
Berkdley Workshop on Distributed Data Management and Computer
Networks, pp. 81-94 (Feb 1882).

Fabry, R.S., "Capability-Based Addressing,” Comm. ACM 7, 7, pp. 403-412
(July 1974).

Feldman, J.A., "High Level Programming for Distributed Computing,” Comm.
ACM 22, 8, pp. 353-368 (June 1979).

Finkel, R.A. and Solomon, M.H., ""The Arachne Distributed Operating
System,” TR #439, University of Wisconsin - Madison Computer Sciences
(July 1981). :

Geschke, C. and Mitchell, J., "On the Problem of Uniform References to
Data Structures,” Proc. Int. Conf. on Reliable Software, pp. 31-42 (June
1975) Also in SIGPLAN Notices 10, 6.

Herlihy, M. and Liskov, B., "A Value Transmission Method for Abstract Data
Types,”" TOPLAS 4, 4, pp. 527-551 (Oct 1982).

Herihy, M.P., 'Transmitting Abstract Values in Messages,” Master's
Thesls, MIT Laboratory for Computer Science (Apr 1980).

Hoare, C.A.R., "Monitors : An Operating System Structuring Concept,”
Comm. ACM 17, 10, pp. 649-566 (Oct 1974).

Hoare, C.A.R., "Communicating Sequential Processes,”" Comm. ACM 21, 8,
pp. 666-677 (Aug 1978).

Intel Corporation,, The 8086 Family User's Manual. (Oct 1979).

Keller, R.M., "Formal Verification of Parallel Programs,” Comm. ACM 19, 7,
pp. 371-384 (July 1976).

Lamport, L., "Proving Correctness of Multiprocess Programs,” IEEE Trans.
Software Eng. SE-3, 2, pp. 125-143 (Mar 1977).

Lamport, L. and Schneider, F.B., "The 'Hoare Logic' of CSP, and All That,”
TR 82-490, Cornell University (May 1982).

Lampson, B.W. and Sturgis, H.K., "Crash Recovery in a Distributed System,"”
unpublished, Xerox Palo Alto Research Center (Apr 1979).

Lampson, B.W., "Applications and Protocols,” in Distributed Systems -
Architecture and Implementation, ed. B.W. Lampson et al.,Springer-Verlag,
Lecture Notes in Computer Science 105 (1981).

[32]

[33]

[34]

[38]

[ae]

[37]

[38]

[39]

[40]

[41]

[42]
[43]

[44]

[48]

[46]

[47]

114

Lantz, K.A., "Uniform Interfaces for Distributed Systems,” Ph.D. Thesis,
University of Rochester (May 1980).

Lauer, H.C. and Needham, R.M., "On the Duality of Operating System
Structures,” Operating Systemis Review 13,2, pp. 3-19 (Apr 1979).

LelLann, G., "Motivations, Objectives, and Characterization of Distributed
Systems," in Distributed Systems - Architecture and Implementation, ed.
B.W. Lampson et al.,Springer-Verlag, Lecture Notes in Computer Science
1056 (1981).

Levin, G.M. and Gries, D., "A Proof Technique for Communicating Sequential
Processes," Acta Informatica 15, pp. 281-302 (1981).

i, L. and Hughes, H.D., "Definition and Analysis of a New Protocol,” Proc.
6th Conf. on Local Computer Networks, (Oct 1981).

U, L., Hughes, H.D., and Greenberg, LH., "Performance Analysis of a
Shortest-Delay Protocol,’” Proc. 6th Berkeley Workshop on Distributed Data
Management and Computer Networks, pp. 259-273 (Feb 1982).

Liskov, B., "Primitives for Distributed Computing,” Proc. 7th Symp. on
Operating Systems Principles, (Dec 1979).

Liskov, B., "Linguistic Support for Distributed Programs: A Status Report,”
Computation Structures Group Memo 201, MIT Laboratory for Computer
Science (Oct 1980).

Liskav, B., "On Linguistic Support for Distributed Programs," IEEE Trans. on
Software Eng. 8, 3, pp. 203-210 (May 1982).

Liskov, B. and Scheifler, R., "Guardians and Actions: Linguistic Support for
Robust, Distributed Programs,” Proc. 9th POPL Conf., pp. 7-19 (1982).

Michael, A., Private Communication. (Oct 1982).

Mitchell, J.G., Maybury, W., and Sweet, R., "Mesa Language Manual,” TR
CSL~79-3, Xerox Palo Alto Research Center (Apr 1979).

Nelson, B., 'Remote Procedure Call,” Ph.D. Thesis, Carnegie-Mellon

University (May 1981).

Ousterhout, J.K., Scelza, D.A., and Sindhu, P.S., "Medusa: An Experiment in
Distributed Operating System Structure,” Comm. ACM 23, 2, pp. 92-105
(Feb 1980).

Peterson, J.L., "Notes on a Workshop on Distributed Computing,” Operating
Systems Review 13, 3, pp. 18-27 (July 1979).

Schlichting, R.D. and Schneider, F.B., "Using Message Passing For
Distributed Programming: Proof Rules and Disciplines,” TR 82-491, Cornell
University (May 1882).

[48]

[49]

[60]

[61]
[62]

[63]

[64]

[56]

[s6]

1186

Spector, A., "Extending Local Network Interfaces to Provide More Efficient
Interprocess Communication Facilities," Proc. ACM Pacific 80, (Nov
1980).

Spector, A., "Multiprocessing Architectures for Local Computer Networks,"
o D, Thesis, Stanford University (Aug 1981).

Swan, R.J., Fuller, S.H.,, and Siewiorek, D.P., "Cm* - A Modular, Muiti-
microprocessor,” Proc. AFIPS 1977 NCC 46, pp. 637-644 (1977).

Tanenbaum, A., Computer Networks, Prentice-Hall, Inc. (1881).

United States Department of Defense, Ada Programming Language,
(Military Standard) (Dec 1880).

Wall, D.W., "Mechanisms for Broadcast and Selective Broadcast,” Ph.D.
Thesis, Stanford University (June 1980).

Wall, D.W., "Selective Broadcast in Packet-Switched Networks," Proc. 6th
Berkeley Workshop on Distributed Data Management and Computer
Networks, pp. 239-258 (Feb 1982).

Wirth, N., '"The Design and Implementation 'of Modula,” Software - Practice
and Experience 7, 1, pp. 67-84 (Jan 1977).

Wirth, N., "Modula - A Language for Modular Multiprogramming,” Software -
Practice and Experience 7, 1, pp. 3-35 (Jan 1977).

