CONCURRENT MAINTENANCE OF A DYNAMIC
SEARCH STRUCTURE

Udi Manber

Computer Sciences Technical Report #488

November 1982



CONCURRENT MAINTENANCE OF A DYNAMIC SEARCH STRUCTURE

Udi Manber

Department of Computer Science
University of Wisconsin
1210 W Dayton st~
Madison, Wisconsin 53706

November 1982

This research was supported in part by the National Science
Foundation under Grant MCS80-03337.



ABSTRACT

The problem of providing efficient concurrent access for
independent processes to a dynamic search structure is the
topic of this paper. We develop concurrent algorithms for
search, update, insert and delete in a simple variation of
binary search trees, called external trees. The algorithm
for deletion, which is usually the most difficult operation,
is relatively easy in this data structure. The advantages
of the data structure and the algorithms are that they are
simple, flexible and efficient, so that they can be used as
a part in the design of more complicated concurrent algo-
rithms where maintaining a dynamic search structure is
necessary. In order to increase the efficiency of the algo-
rithms we introduce maintenance processes that independently
reorganize the data structure and relieve the user processes
of non-urgent operations. We also discuss questions of
transactions in a dynamic environment and replicated copies

of the data structure.



1. 1Introduction

Parallel asynchronous algorithms appear more and more in
different applications such as concurrent databases, operat-
ing systems and distributed systems. It is therefore impor-
tant to investigate data structures that support efficient
concurrent operations. In this paper we suggest one such
basic data structure, called external trees, and present a
set of algorithms to manipulate it. The design is intended
to be flexible and general so that it can be easily modified
and adapted to different applications. The situation we are
addressing 1is as follows. Many independent processes need
to maintain a common data structure, for example, in order
to update certain global information. The data structure
contains items that are ordered according to a unique key.
The basic operations a process can perform are find a given
item, update an item, insert a new item, and delete an item.
Efficient algorithms for these operations are described in
section 5. In addition to the basic operations, the
processes may wish to perform transactions that consist of
sequences of interdependent operations involving several
items. We have extended the notion of transactions to
include not only read and write, but also insert and delete.
In section 8 we discuss the implementation of such extended

transactions on external trees.

For simplicity, we assume that the data structure resides in

a shared memory. The only requirement for the shared memory



is that every process will have access to it. Hence, the
algorithms can be easily adapted to applications where phy-
sical shared memory is not available. If the processes
reside at remote sites then the number of accesses to the
shared memory should be minimized. In section 9 we discuss a
way to replicate a part of the data structure so that a
great part of each operation can be done 1locally, vyet the

amount of overhead to maintain the different copies is low.

In order to improve the performance of the algorithms we
distinguish between an action that has to be carried out
immediately and an action that may be postponed without
undermining the integrity of the data structure. We intro-
duce special processes, called maintenance processes, and
design the algorithms so that actions that can be postponed
are left to the maintenance processes. The maintenance
processes operate concurrently with the user processes. The
user processes are able to carry out the maintenance jobs

but are not required to.

In order to control the concurrency we use locks. The locks
are designed in a way that minimizes interference among user
processes, and to a second degree, between user and mainte-
nance processes. The maintenance processes are given low
priority for acquiring locks. Each basic user operation,
update, insert and delete, requires at most one lock. As a
result, transactions that involve k items require at most Kk

nodes.



2. Relation to other work

Most other work on concurrent access to dynamic search
structures deals with concurrency in balanced multiway
trees, in particular B-trees and variations of B-trees
[1,9,10,13]. Ellis presented algorithms for concurrent
search and insert in AVL trees [3] and 2-3 trees [4]. Rung
and Lehman introduced concurrent algorithms to search,
insert and delete in binary search trees [8]. These algo-
rithms, and in particular the deletion algorithm, were
improved by Manber and Ladner [12], who also introduced the

notion of maintenance processes.

The algorithms presented in this paper are simple hybrid of
the algorithms in [4] [8] and [12]. They are simpler than
the algorithms in [4] since binary search trees (instead of
2-3 trees) are manipulated and no strict balance is main-
tained. They support more concurrency since only one node
is 1locked by a process per operation. The algorithms in
this paper are also simpler than the algorithms in [8,12]

since the data is associated with the leaves.

When deletions are allowed to be performed concurrently with
searching, a searching process may end up in a deleted part
of the tree and, if no precautions are taken, may yield a
wrong result. The simple approach to this problem is to
lock out searching processes from parts of the data struc-

ture that are being modified until the modifications are



completed. If the data structure is modified frequently
then this approach cannot support high level of concurrency.
The approach taken in [8,12] is to allow searching processes
to reach deleted nodes, but maintain recovery paths so that
they can continue from them correctly. Processes can there-
fore search down the tree without being blocked even in the
presence of concurrent deletions. However, maintaining
these recovery paths, which consist of pointers from deleted

nodes to their fathers in the tree, is quite complicated.

In this paper we consider both approaches. Since the data
is always associated with the leaves, deletions and other
reorganizations of the tree occur mostly at the bottom of
the tree. As a result, even if processes are locked out
during a deletion, they are locked out from only a small
part of the tree. In sections 4-6 we follow the first
approach. We design locks that minimize the interference
between searching and deleting processes. In particular,
low priorities are given to the maintenance processes which
carry out non-urdgent tasks. Algorithms that use the second
approach are presented in the Appendix. We simulated algo-
rithms wusing both approaches [11] and found that under ran-
dom insertions and deletions there was no significant
difference in the average amount of time a process was

blocked.



3. The data structure

The model of concurrency we are using is that of a single
global memory to which an unbounded number of processes
(with their own private memories) have access. For simpli-
city, we assume that the global memory is divided into units
of constant size, which are called nodes. Each node can
contain several fields. A process can either read or write
in one field of one node as an indivisible step. The basic
operations of a process are inserting a node, deleting a

node, and updating the data associated with a node.

We will attempt to define the algorithms and the data struc-
ture in a simple and general manner. For that reason, we
avoid dealing with implementation details independent of our

algorithms.

The data structure we investigate here is very similar to a
regular binary search tree with one notable difference: The
data is always associated with the leaves. More precisely,
there are two kinds of nodes, internal nodes, and external
nodes, which are always leaves in the tree (an internal node
may be a leaf temporarily due to an incomplete deletion).
Internal nodes are used only for directory purposes, and the
data 1is always associated with the external nodes. We call

this data structure an external tree.

Each node has a key field, according to which the nodes are

ordered, and two pointer fields, pointing to its two sons,



and denoted by left and right respectively. An external
node also has a data field, which is usually a pointer to
another data structure that holds the data associated with
the key. An internal node contains an additional flag,
called the garbage flag, which indicates that the node has
been deleted. Such nodes can eventually be collected by a
garbage collector and reused. There are also lock fields

which are discussed in detail in the next section.

There is also a 1list which is wused by the maintenance
processes. It contains keys of nodes that need a mainte-
nance job. Whenever a maintenance process becomes ready, it
takes a job from that list and carries it out. The list can
be organized as a queue although it is not necessary since
the maintenance jobs are independent and need not be carried
out in the same order they were "requested". We discuss the

maintenance list in detail in section 6.

An internal node may have the same key as an external node.
The rules for searching for a key x are as follows: Branch
left if the key of the current (internal) node is > x, oth-
erwise branch right, until an external node or a nil pointer
is reached. The search always ends at the bottom of the
tree, although it may end in an internal node due to an
incomplete deletion (as will be explained shortly), in which

case the search is of course unsuccessful.



4. Locking

We use three types of locks: exclusive locks (X-locks),

shared locks (S-locks), and edge locks (E-locks). All locks

apply only to internal nodes. Access to an external node is
controlled by locking its (internal) father. We will return

to this point shortly.

Exclusive locks and shared locks are used in the standard
way. When a process holds an exclusive lock to a node no
other lock can be put on that node. As a result, every
other process that needs any access (either read or write)
to that node is blocked. Such a lock is needed for deletion
to prevent processes from using a deleted node. The shared
lock, on the other hand, allows other processes access to
that node. Many shared locks can be put on the same node at
the same time. The shared 1lock”s purpose is to block
processes wishing to acquire an exclusive lock and delete
the node. The shared and exclusive locks are similar to

RHO-locks and XI-locks [3] (see also [6]).

One way to implement shared and exclusive locks is to asso-
ciate a counter with every internal node. The value of the
counter, if non-negative, equals the number of processes
currently holding a shared lock on that node. An exclusive
lock is indicated by -1. It turns out to be simpler for the
algorithms described in the next section to require that in

order to obtain an exclusive lock the corresponding shared



lock has to be obtained first. Hence an exclusive lock can
be obtained only if the value of the counter equals 1, indi-
cating only one shared 1lock (its own). The shared and
exclusive lock procedures are described below. We assume

that they can be carried out as indivisible operations.

procedure S-lock(a) ;
while a.lock < 0 do wait ;
a.lock := a.lock + 1 ;

procedure S-unlock(a) ;

a.lock := a.lock -1 :

rocedure X-lock(a) ;
%*Wé assume that the shared lock
has been obtained first
while a.lock > 1 do wait
a.lock = -1 ;

procedure X-unlock (a)
a.lock = 0 ; {The shared lock is also removed}

This is obviously not the only way to implement such locks.
Notice that the exclusive lock in this implementation has
the lowest priority. Another way to implement the locks
could be to disallow any new shared locks once an exclusive
lock has been requested. We chose this implementation
because the exclusive locks are used only by the maintenance

processes and they should have the lowest priority.

The edge lock is used to control access to an external node.
It 1is similar to a binary semaphore. Each possible key

value at any time t is associated with a wunique internal



10

node: either this node is the father of an external node
with the same key or such an external node could be inserted
there at time t. Each basic operation involves one key.
Before the operation is carried out the (internal) node
associated with the key is locked with an edge lock. 1In
order to increase the concurrency we do not lock the whole
node but only the appropriate half, hence the name edge
lock. Only one edge lock can be put on a given edge at any
given time. A process that attempts to lock an already
locked edge is blocked until the edge lock is removed. The
edge lock is thus associated with the pointer to the exter-
nal node rather than with the internal node itself. The edge
lock 1is compatible with the shared lock but not with the
exclusive lock. For simplicity we also require that the
corresponding shared lock be acquired before the edge lock
so that any request for an exclusive lock will be blocked
and the node will not be deleted while the edge lock is
held.

The decision to associate locks with internal nodes rather
than external nodes where the data reside proved to be very
beneficial. This way all the overhead resulting from the
concurrency is restricted to the internal (directory) nodes.
As a result, the external nodes are in a sense independent
of the data structure. The data associated with the exter-
nal nodes may also be a part of other data structures at the

same time (using additional locking). This independence sim-



11

plifies the design of the interfaces between the data struc-
tures, and possibly between the different concurrency con-
trol protocols. It also turns out that the algorithms

become significantly simpler.

The procedure for locking a node in a given "direction" with
an edge lock is given below. Again, it is assumed to be an
indivisible operation. Each internal node has two Boolean

variables denoted by left-lock and right-lock.

procedure E~lock(a,x) :
if a.key > x then
| Checking this condition need not be a part
of the indivisible step since both a.key and
x cannot be changed.
begin
while a.left~lock do wait ;
a.left-lock := true ;
end else
begin
while a.right-lock do wait ;
a.right-lock := true ;
end ;

procedure E-unlock(a,x) ;

if a.key > x then a.left-lock := false
else a.right-lock := false ;

5. Basic user operations

In this section we present procedures for the basic dynamic
operations. Since the data is associated with the leaves a
deletion of an external node is quite simple. However, some
reorganization of the tree is still needed, and since it can

be postponed, we leave it to the maintenance processes. We



12

assume that the root of the tree is a special purpose node
that can never be deleted. An informal proof of correctness

is given in section 7.

For simplicity we use the notation b.direction(x) to denote
b.left if x < b.key, and b.right otherwise. We assume that
an external node can be easily identified as such. Function
strong~search({(x) returns the (internal) node associated with
the key x and locks its appropriate pointer with an edge
lock. Nodes encountered during the search are locked with a
shared lock on the way down to make sure that they are not
being deleted. A node is unlocked only after its son is
locked and found to be non-deleted (the garbage flag would
indicate if the node had been deleted). 1In this way, even
if a node encountered during the search had been deleted in
the middle of the search, there is no need to backtrack
since its father is still locked (hence it has not been
deleted), and known to the process. In the Appendix we show
how to avoid using the exclusive and shared locks altogether
by maintaining a father pointer so that a process that finds
itself in a garbage node can backtrack. An edge-lock, which
does not block searching processes, can be used to avoid

conflicts among deleting processes.

function strong-search(x) ;
begin

b := root
S~lock (b)
L., : a := b.direction(x) ;

- we



13

while a # nil and a is not external do
begin
{at this point b is guaranteed not to be garbage}
S~-lock(a) ;
if not a.garbage then

begin
S—-unlock (b)
b := a ;

end ;

{1f a is garbage we find the new son of b.
A lock on a garbage node is ignored. }
a := b.direction(x) :
end ;
E~-lock (b,x) :
a := b.direction(x) :
if a # nil and a is not external
in case another internal node has been
inserted before the edge lock was put on }
then | E—unlock{b,x) ¢ go to L ] ;

14
else return b b remains locked }
end ;

Procedure update is straightforward.

-e

procedure update (x,f)
begin -
b := strong-search (x)
a := b.direction(x) :
if a = nil or a.key # x
then report "node (x) is not in the tree"
else begin
b.direction(x) .data := f(b.direction(x).data)
{update using the function f}
end ;
E-~unlock(b,x) : S-unlock(b)
end ;

~e

Procedure insert first finds the right place to insert using
strong-search which 1locks the appropriate pointer (if the
key is not in the tree strong-search will return the inter-

nal node to which this key should be inserted). Then, if

.
’



14

the pointer turns out to be nil, which is the result of a
previous deletion of an external node, a new external node
is created and a pointer to it simply replaces the nil
pointer. (A deletion of an external node is followed by a
deletion of the corresponding internal node. This last
deletion is <carried out by the maintenance processes and
thus can be delayed as will be shown in section 6.) If the
node associated with the key points to an existing external
node then a new internal node is created with the new and

existing external nodes as its sons.

procedure insert(x) ;
begin -
b := strong-search(x)
a := b.direction(x) ;
if a # nil and a.key = x then
report "node (x) is already in the tree" ;
else
begin
create a new external node newex with key x ;
if a = nil then b.direction(x) := newex
else
begin
create a new internal node newin with key (a.key+x)/2
if 2 < a.key then
begin

newin.left := newex ;
newin.right := a ;
end else
begin
newin.right := newex ;
newin.left := a ;
end
b.direction(x) := newin ;
end ;
end ;

E-unlock (b,x) ; S-unlock(b)
end ;

[



15

A deletion is quite simple since only leaves are deleted.
After an external node has been deleted its (internal)
father is left with only one son, which implies that it 1is
not needed any more and should be deleted. We leave the
task of deleting internal nodes to the maintenance
processes. The key of the internal node is put in a mainte-

nance list called a delete-list. When a maintenance process

becomes ready it takes a key from that list and carries out

the deletion (see section 6).

procedure delete-external (X) ;
begin
b := strong-search(x) ;
a := b.direction(x) ;
if a = nil or a.key # x then
report "node (x) is not in the tree"
else begin
b.direction(x) := nil ;
put b.key in the delete-list ;
end ;
E-unlock (b,x) : S—-unlock(b) ;
end :

oy

Algorithms for the maintenance processes

The only task left for the maintenance processes is deletion

of internal nodes. First, the internal node with the given

key is found using a procedure similar to strong-search. The
keys are taken from the delete-list. An alternative way is
to let the maintenance processes constantly traverse the
tree and look for internal nodes that can be deleted. Once

a candidate node is found, it is locked with an exclusive



16

lock, and since it has at most one son it can be easily
deleted. The reason an exclusive lock 1is needed 1is to
prevent processes from being "stuck" in a garbage node. One
can avoid using exclusive locks by maintaining "father"
pointers so that a process that finds itself in a garbage
node can backtrack (see Appendix). Notice that such a node
may have no sons, 1in which case its father can also be
deleted. A maintenance process cannot delete the father
without having a shared lock on the "grandfather", hence it

puts the father key in the delete-list.

procedure delete-internal(y) ;
begin
b := root ;
S-lock (b) ;
L + a := b.direction(x) :
while a # nil and a.key # y and a is not external do
begin
S-lock(a) ;
if not a.garbage then
begin
S-unlock (b) :
b = ;
end :
:= b.,direction(x) :
end
if a
S-lock (a) ;
if a.garbage then go to L ;
X~lock (a)
if b.left
begin

o~

i} ~e

nil or b.right = nil then

if a.left = nil then b.direction(y) := a.right
else b.direction(y) := a.left ;
a.garbage := true ;
if b.direction(y) = nil then
put b.key in the delete-list ;
end ;
X-unlock (a) ;
S-unlock (b) :
end ;

nil or a is external then [S-unlock(b) ; terminate ]

°
14



17

7. Informal proof of correctness

We do not restrict in any way the order in which the
processes access the shared memory. As a result, we cannot
guarantee termination of a process. A process may be
blocked forever from an external node by other processes
that always get the corresponding edge lock before it. One
can overcome this problem in various ways, for example, by
maintaining queues for acquiring locks. The integrity of
our system does not depend on any such queuing mechanism.
Notice that since the locks are acquired on the way down the
tree, no deadlock can occur so some progress is always being
made. In this section we prove the integrity of the con-
current search structure. We show that at any moment each
process sees the data structure as if it was 1its own con-
sistent search structure, and 1its only interaction with
other processes is when it is blocked and needs to wait for
a lock. The notion of integrity has to be precisely
defined. We define a set of correctness assertions that

imply the integrity and prove them correct simultaneously by
induction on time.
The data structure consists, at any moment t, of a binary

tree; this fact is the main assertion.

Al. Every node v, at any moment t, is a root of two (possi-
bly empty) subtrees. The left subtree contains only

nodes with keys less than v.key, and the right subtree



18

contains only nodes with keys greater than or equal to

v.key. An external node has no sons.

Assertion Al implies that the data structure 1is consistent
at any given moment. We also have to show that the algo-
rithms are correct. First we have to define what it means

for a strong-search to return the "correct" (internal) node.

Each possible key, at any moment t, 1is associated with a
unique (internal) node and there is a unique path from the
root to this node. By assertion Al, the data structure is a
valid search tree at any moment, hence the definition of
this association is simple. The reason we can rely on the
assertions for the definitions 1is because we prove the
assertions simultaneously by induction. Thus, if the defin-
itions are meaningful, by induction, at time t, and we prove
that the assertions are true for t+l, then the definitions
are meaningful at t+l. For each key x, we define patht(x)
to be the path, starting from the root and ending at a leaf,
in which the next node is chosen according to the (regular)
search at time t. In other words, we freeze the tree at time
t, and let patht(x) be the path a strong-search will follow

from the root to a leaf without being blocked. The last

internal node in patht(x) is the node associated with x at

time t: this node is denoted by nodet(x).

A2. A non-garbage node a, which is locked with an S-lock in

function strong-search(x) at time t, is contained in



19

patht(x).

Function strong-search is designed so that a pointer to at
least one such non-garbage node is always maintained, hence
it is always on the "right track". 1In addition, we have to
argue that when strong-search finally returns a node, it is

the right one.

A3. If strong-search(x) returns node b at time t, then b =

nodet(x).

We prove assertions Al-A3 by considering every step of every
procedure that modifies the tree. We assume that initially
the data structure is consistent, hence the assertions are
satisfied. Assuming that Al-A3 are true at time t, we will
show that for any next step, taken by any procedure at time
t+l (we assume that every step, taken by any process, takes

one unit of time), Al-A3 remain true at time t+1.

It is easy to verify the effects of the different locks. A
shared 1lock guarantees that the node will not be deleted.
An exclusive lock prohibits any access to the node, and an
edge lock serves as a binary semaphore on the corresponding

edge.

First we show that assertion A3 is implied by Al-A2 at any
time t. Let b be the node returned by strong-search(x) at
time t. By Al patht(x) is well defined. By A2, b 1is on

patht(x). If x < b.key then patht(x) should "turn" left at



20

b. However, b.left-lock had been acquired by the strong-
search before b.left (a) was found to be an external node or
nil, and as long as b.left-lock is held the status of b.left
cannot be changed. Hence b is the last internal node on
patht(x) which implies that b = nodet(x). The case of x >

b.key is similar.

We have to consider the three procedures, insert, delete-
external and delete-internal. The correctness of procedure
update follows directly from the correctness of strong-

search which is implied by A3.

procedure insert(x). By A3, b = nodet(x) and a is either an

external node or nil. Without loss of generality we can
assume that x < b.key. Since the left edge 1lock in b is
held by the insert procedure, no other process can change
b.left. b.left is changed in procedure insert only in the
last step (except for unlocking), hence there is no
interference from other processes during the insert. Al 1is
satisfied after the insertion since b was on patht(x), only
a son of b is modified, b was found at one time (during

strong-search) to be an internal node and a node cannot

change from internal to external (or vice versa). A2 is
satisfied since the only possible change in any patht+l(y)
(as compared to path,(y)) is to make it longer and end in

newin.

The new internal node, newin, 1is created only when x #



21

a.key. Since b is associated at time t with both x and
a.key, newin.key (which equals (x+a.key)/2) is a unique key.
Hence, although an internal node”s key can be equal to some
external node”s key, no two internal nodes can have the same

key.

Procedure delete-external. By A3, b = nodet(x), hence if

there is an external node with key x it is a son of b. If
b.direction(x) = nil then nothing is done. Otherwise, by
Al, since b.direction(x) is an external node it has no sons,
hence setting it to nil does not change any path or any
association. Hence A2-A3 are still satisfied. Al is

clearly satisfied.

Procedure delete-internal. The search used in this pro-

cedure 1is very similar to strong-search. The main differ-
ence is that we stop whenever we find an internal node with
the given key rather than always go all the way to the bot-
tom. The other difference 1is that the more powerful
exclusive lock is used. We have already shown that the keys
of the internal nodes are unique. Hence, we can use the
same arguments as in the strong-search case (defining
internal—nodet(x) for example) to show the correctness of
this search. Once the node is found, it is locked with an
exclusive lock and checked to have only one son. The dele-
tion is then straightforward. The father is locked with a
shared lock so that it cannot be deleted. Since the deleted

node is 1locked with an exclusive lock no other process can



22

access it at that time, which implies Al, A2 and A3. The
keys associated with the deleted node change their associa-

tion to either its predecessor or its successor.

8. Generalized transactions

In many applications a user wishes to make a sequence of
updates to several nodes such that the whole sequence will
be regarded as one atomic operation. Such a sequence is usu-

ally called a transaction[5,7]. In a concurrent environment

a transaction cannot be physically carried out in one indi-
visible step, hence some rules have to be imposed so that
concurrency can be allowed. The problem of designing a con-
currency control mechanism to support the concurrent execu-
tion of transactions received much attention lately. Such a

control usually guarantees serializability: namely, the out-

come of the concurrent processing is always the same as an
outcome of a serial processing (in some order) where there

is no concurrency.

The association of each key in our data structure with a
unique node and the fact that the dynamic operations are
local to the node with the corresponding key allow us to
extend the scope of the transactions to include not only
updates, but also deletions and insertions. For example: A
transaction may now be of the form "replace a given node
with another node", i.e. "delete node x and insert node vy".

If the tree holds a file directory such that the keys are



23

file names, then the simple example above corresponds to
changing the name of a file. Since each key can be con-
trolled by one lock (the edge lock in this case), a transac-
tion consisting of k keys can be carried out with at most k
locks. The two-phase locking protocol [5] can be easily
extended to support such generalized transactions. A simi-
lar protocol which supports generalized transactions on reg-

ular binary search trees is described in [11,12].

Since these generalized transactions are powerful and vyet
conceptually simple they can be used as building blocks in
the design of general concurrent algorithms. The design
would be divided into two steps. First the transactions
(namely the simulated atomic operations) are defined and the
problem is solved using them as atomic operations, and
second a concurrency control protocol is designed to simu-

late the transactions efficiently.

9. Replicated copies of the data structure

When distributed computation is involved, namely when the
users reside in remote sites and communication with the
shared memory is expensive, replicated copies of the shared
memory are used. The same shared memory model can apply to
this case, even though the memory is not physically shared.
The external tree data structure and the algorithms
described in the previous sections can be adapted to the

case of replicated copies. Moreover, we can replicate only



24

parts of the data structure in the following way. We con-
sider the tree to be divided into two parts. The top part,
which consists of a subtree containing the root, and the

bottom part, which consists of the rest. The division is

across a horizontal (but not necessarily straight) line. We
further assume that the top part and the roots of the sub-
trees of the bhottom part contain only internal nodes that
are never deleted. In this case the top part can be repli-
cated and distributed among the users with no concurrency
problems. Moreover, each user can rebalance the top part to
optimize it according to its own use. The main feature of
having each key associated with a wunique node is still
preserved. The decision where to divide the tree depends on
the application. The condition that a node in the top part
will never be deleted is not necessary. A process that
wishes to delete a node in the top part broadcasts this wish
to all the other users; if all agree, they acknowledge, and
each carries out the deletion in its own copy. A survey of
algorithms for updating distributed databases is given in
[2]. Such a broadcast algorithm is generaly more expensive
than a simple access to the shared memory, a fact that leads
to a tradeoff: If the top part is made larger then more
local accesses can be used, but also more broadcasts may be

required.

Due to the flexibility of the data structure, one can also

replicate the bottom part (which is being physically



25

shared) independently of the top part, for example, for
reliability purposes. If the number of copies of the bottom
part is small (2 or 3 copies are sufficient for reliability
purposes), then the following modification to the algorithms
can be made. 1In order to carry out any operation (e.g.
insert, delete), a user process will be required to acquire
the corresponding edge locks for all the copies. Each
external node will have pointers to all its copies, as well
as a pointer to its (internal) father. These ©pointers can
be used by the user process, which finds the node in one
copy, to find the corresponding nodes in the other copies.
If a process wishes only to read the data associated with an
external node then it is sufficient to lock (and access)
only one copy. The modifications to the algorithms are
straightforward. As for the maintenance operations, it is
also possible to have the internal nodes of different copies
of the bottom part connected through such pointers. How-
ever, maintenance processes need not be very efficient, thus
they can find the different copies by searching through the

tree.

10. Conclusions and further research

We presented a design of a simple data structure and rela-
tively simple concurrent algorithms to manipulate it. The
algorithms support high degree of concurrency, yet they are

not too complicated. As a result, they can be used as a



26

basic search structure in the design of concurrent algo-
rithms. The data structure and the algorithms can also be
used in conjunction with a concurrency control protocol to
support transactions containing dynamic operations (insert
and delete) as well as static operations (read and update).
The data structure can be adapted to a distributed environ-

ment in an efficient way.

We have not discussed the question of balancing the tree in
this paper. We are currently working on efficient balancing
schemes that may be used with external trees. We are also
working on implementing other operations such as simple

range queries,

Acknowledgement

I would like to thank Richard Ladner for many helpful dis-
cussions, and Raphael Finkel for many comments that improved

the clarity of the paper.



27

REFERENCES

[1]

[2]

[3]

(4]

[5]

[6]

[7]

18]

9]

[10]

[11]

[12]

[13]

R. Bayer and M. Schkolnick, "Concurrency of Operations
on B-trees", Acta Informatica Vol 9, pp. 1-22, 1977.

P.A. Bernstein and N. Goodman, "Concurrency Control in
Distributed Database Systems", ACM Computing Surveys,
Vol 13, pp. 185-222, June 1981.

C. Ellis, "“Concurrent Search and 1Insertion in AVL
Trees", IEEE Transactions on Computers, Vol C-29, pp.
811-817, September 1980.

C. Ellis, "Concurrent Search and 1Insertion in 2-3
Trees", Acta Informatica, Vol 14, pp. 63-86, 1980.

K.P. Eswaran, J.N. Gray, R.A. Lorie, 1I.L. Traiger,
"The Notions of Consistency and Predicate Locks in a
Database System", Communications of the ACM, Vol 19,
pp. 624-633, November 1976.

J.N. Gray, "Notes on Database Operating Systems", in
Operating Systems: An Advance Course, Springer-
Verlag, pp. 393-481, 1978.

J.N. Gray, "A Transaction Model", in Automata,
Languages and Programming, Lecture Notes in Computer
Science, Volume 80, Springer Verlag, 1980.

H.T. Rung and P.L. Lehman, "Concurrent Manipulation of
Binary Search Trees", ACM Transactions On Database Sys-
tems, Vol 5, pp. 354-382, September 1980.

Y.S. Kwong and D. Wood, "A New Method for Concurrency
in B-trees", IEEE Transactions on Software Engineering,
Vol SE-8, pp. 211-222, May 1982.

P.L. Lehman and S.B. Yao, "Efficient Locking for Con-
current Operations on B-Trees", ACM Transactions On
Database Systems, Vol 6, pp. 650-670, December 1981.

U. Manber, "Concurrency Control for Dynamic Data Struc-
tures and Fault Tolerance", Ph.D. Thesis, University of
Washington, July 1982.

U. Manber and R.E. Ladner, "Concurrency Control in a
Dynamic Search Structure", 1in ACM Symposium on Princi-

ples of Database Systems, Los Angeles, pp. 268-282,
March 1982.

B. Samadi, "B-Trees in a System With Multiple Users",
Information Processing Letters, Vol 5, pp.l1l07-112,
October 1976.



28
Appendix I

In this Appendix we describe algorithms for strong-search
and delete-internal that do not use exclusive or shared
locks. The algorithms for update, insert and delete-
external are unchanged. We assume the existence of an addi-

tional pointer field, called father in each internal node.

Initially the father pointer is set to nil. When a process,
which is looking for x, finds an internal node that seems to
be the node associated with x, it locks the node and then
checks to see whether the node has been deleted. If the
node has been deleted (i.e. the garbage flag is on) then at
the time of the deletion its father pointer was set, and the
father was on the path to the new node associated with x.
Hence, it was correct at that time to continue from the
father. The father may be deleted later as well, in which
case the same procedure is repeated. When an internal node
is deleted both its edge locks are acquired first. As a
result, holding one edge lock of a node 1is sufficient to

prevent that node from being deleted.

The garbage collection is more complicated in this case.
One cannot reuse a deleted node as long as there may be some
processes still looking at it. One possible solution is as
follows ([8]. When a node is deleted a pointer to it is
entered in a queue Q. Such node can be reused after all the
processes that were active at the time of deletion terminate

(new processes cannot reach the node). The garbage



29

collection is done is two phases. When a garbage collection
process becomes ready it copies Q to another queue R (Q has
to Dbe locked while it is copied to prevent insertions), and
resets Q to nil. (If linked lists are used to represent the
queues then this step can be done very efficiently.) The
garbage collection process takes note of all the processes
active at the time R is created. When all these processes

terminate R can be appended to the available 1list.

function strong-search(x) :

begin

b := root ;

L : a := b.direction(x) ;

while a # nil and a is not external do

begin
b °
a

r

a
b.direction(x) ;

end ;
E-lock (b,x) ;
if b.garbage then
begin
E-unlock (b,x) ;
b := b.father ;
go to L ;
end ;
a := b.direction(x) ;
if a # nil and a is not external
in case another internal node has been
inserted before the edge lock was put on }
then begin
E-unlock (b,x) ;
go to L ;
end
else return b ; { b remains locked }
end ;



30

procedure delete-internal (y) ;

begin

b := root ;

I, : a := b.direction(x) ;

while a # nil and a.key # y and a is not external do
begin

b :

a s
end ;

E-lock (b,y)

if b.garbage then

begin

E-unlock(b,y) :
b := b.father ;
go to L ;
end
if a # nil and a is not external then

begin
E-lock (a,a.key-1) ; {left-lock}

{ The left edge lock is acquired to make sure a_is
not deleted (the right lock will do as well).}
if a.garbage then

begin
E-unlock(b,y) ; E-unlock(a,a.key-1) ;
go to L ;
end
E-lock (a,a.key+1l) ; {right-lock}
{ Both edge locks have to be acquired to make sure

a j;
b.direction(x) ;

no other process uses a (for example insert to a).}

if b.left = nil or b.right = nil then
{b can indeed be deleted}

begin
if a.left = nil then b.direction(y) := a.right
else b.direction(y) := a.left ;
a.garbage := true ;
a.father := b ;
if b.direction(y) = nil then

put b.key in the delete-list ;
end ;

E-unlock(a,a.key~-1l) ; E-unlock(a,a.key+l) ; E-unlock(b,y)

end ;
end ;

e
14



