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AN ANALYSIS OF DEFAULT REASONING SYSTEMS IN TERMS OF
CONVENTIONAL INFERENCE
Kenneth Robert Whitebread

Under the supervision of Professor Larry E. Travis

An understanding of default reasoning 1is important
both for the understanding of human intelligence and for
artificial intelligence applications such as robotics and
expert systems. Various systems have been built which
use heuristic rules to do default reasoning in some 1lim-
ited domain. However, questions about default reasoning
remain. To help answer these, a formal model of the pro-
cess is desirable.

The notions of default theory, due to Reiter, and
nonmonotonic theory, due to McDermott and Doyle, have
both been proposed as models of default reasoning. These
are the only fully developed models of default reasoning
to appear in the literature thus far.

It is our contention that these models are based on
hypotheses about the nature of default reasoning that
have not been sufficiently justified. Therefore, neither
of these models can yet be accepted as adequate formali-
zations of default reasoning.

An example of the type of hypothesis we consider |is

the supposition, made for both default and nonmonotonic
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theories, that the assumptions introduced by default rea-
soning are logical consequences of the reasoner”s initial
assumptions according to some nonstandard logic. It 1is
this assumption which leads to the well known nonmonoton-
icity property that has been attributed to default rea-
soning.

To support our contention we present a new model
called a two-level system. The hypotheses about the na-
ture of default reasconing that form the basis of ocur de-
finition of a two-level system are quite different from
those made in the development of the notions of default
and nonmonotonic theory. We argue that a two-level sys-
tem is at least as viable as a formalization of default
reasoning as either a default theory or nonmonotonic
theories. Thus, the hypotheses made about default rea-
soning in developing the latter models are not necessari-
ly the only or the best choices. Also, various proper-
ties attributed to default reasoning, such as nonmonoton-
icity, are seen to be peculiar to default and nonmonoton-
ic theories, not to the phenomenon itself. Finally, we
argue that the notion of a two-level system has a number

of advantages over the other two approaches.
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1. Introduction

1.1 Background

In ordinary or everyday reasoning humans often in-
troduce new assumptions which they have justified in some
way from the information they already know. Typically,
one factor in "justifying" the new assumption is the fact
that nothing contrary to the assumption is known or be=-
lieved. For example, my car was in good working order
yesterday and I have no reason to believe anything has
happened to it in the meantime that would cause it not to
start so I assume that it will start today. I may then
draw further conclusions from this assumption. I might,
for instance, conclude that I can use the car to reach
some destination. In artificial intelligence this sort

of reasoning is often called default reascning.

The ability to perform default reasoning appears to
be important for computer reasoning systems intended to
do common-sense reasoning. Various experimental systems
have been constructed that employ heuristic default rea-

soning principles. Winograd [W] has surveyed such sys-



tems. However, the relationship of the heuristic princi-
ples used to the intuitive notion of default reasoning ié
unclear. Is the reasoning done by systems using these
principles acceptable in the sense that an experienced
human reasoner would be 1likely to produce the same
results? Are the principles that have been tried the
only possible ones? If there are others, are they better
in some way than those already tried? Do these princi-
ples represent what a human reasoner actually does when
performing default reasoning? To answer such questions a
theory of default reasoning is desirable.

McDermott and Doyle have attempted such a theory, as
has Reiter. 1In [MD] and [M] McDermott and Doyle present
.a mathematical model called a nonmonotonic theory. In
[R] Reiter develops an alternative mathematical model
called a default theory. These two models of default
reasoning are the only fully developed ones that have ap-
peared in the literature so far. Both models turn out to
have some odd properties, for example, nonmonotonicity

(to be explained below).

1.2 Discussion of Thesis

Once a proposed model has been accepted as a faith-

ful characterization of a phenomenon, properties




discovered to be true of the model are uncritically at-
tributed to the phenomencn however odd those properties
may be. The step of accepting a proposed model is there-
fore a crucial one. It is our contention that neither
Reiter”s notion of a default theory nor McDermott”s and
Doyle”s concept of a nonmonotonic theory can yet be ac-
cepted as a model of default reasoning.

To develop a formal model of a phenomenon it 1is
necessary to formulate certain hypotheses about the na-
ture of the phenomenon. It is from these hypotheses
that we develop the precise definitions of the model.
Although the notions of default theory and nonmonotonic
theory appear to be quite different from each other, they
share a number of basic hypotheses about the nature of
default reasoning. The assumptions made about default
reasoning in the developments of these models are often
implicit or, at best, presented without any argument for
the elimination of alternatives. 1In the few cases where
such arguments were made we will argue that they are
weak. The effects of possible alternatives to the as-
sumptions employed, whether explicit or implicit have
thus not been thought through and understood.

We will argue that alternative assumptions lead to a
preferable model, and we will show that certain proper-

ties considered intrinsic to default reasoning on the



basis of previocus models are instead the result of unjus-
tified assumptions. Therefore, neither Reiter’s model
nor that of McDermott and Doyle should be accepted at
this point as a saﬁisfactory characterization of default
reasoning.

To support our contention we present a new mathemat-
ical model called a two-level system. The definition of
a two-level system depends on quite different hypotheses
about the nature of default reasoning. However, we argue
that a two-level system is at least as viable as a model
of default reasoning as either a default or a nonmonoton-
ic theory. Thus, the hypotheses made about default rea-
soning in developing‘the latter two models are not neces-
sarily the only or the best alternatives. Also, we shall
see that various prbperties attributed to default’feason-
ing are peculiar to default and nonmonotonic theories,
not to the phenomenon itself. Finally, we will argue
that the notion of a two-level system has certain advan-

tages over the other two approaches.

1.3 Organization

We begin Chapter 2 with some additional examples of
default reasoning and a further explanation of the in-

tended scope of the concept. We then present the defini-




tions of default and nonmonotonic theories. 1In the pro-
cess we point out the various assumptions on which these
definitions are based as well as certain peculiar
features of the resulting models.

In Chapter 3 we consider the assumptions pointed out
in Chapter 2, comparing them to alternatives and discuss-
ing their intuitive basis.

Although it is possible to determine certain isolat-
ed assumptions about the nature of default reasoning that
underlie the definitions of default and nonmonotonic
theories, the presentations of these two models do not
contain any kind of overall informal theory of default
reasoning. Because such an informal theory is necessary
to motivate a formal definition, we present our own in-
formal theory of default reasoning in chapter 4. The
formal definition of a two-level system is also presented
in this chapter.

In Chapter 5 we compare the notions of two-level
system and default theory. Various results concerning
the relation of the two models are given. It is argued
that the notion of a two=level system characterizes de-
fault reasoning at least as well as the notion of a de-
fault theory. 1In addition the properties of a two-level
system are compared to those of a default theory.

Chapter 6 contains a comparison of the notions of



nonmonotonic theory and two-level system similar to the
comparison done in Chapter 5.

Several types of heuristic rule for default reason-
ing are considered in Chapter 7. We show that such rules
can be modelled by a two-level system.

In Chapter 8 we discuss and summarize our results.
We also consider the possibility of using two-level sys-
tems as models of computer reasoning systems that do de-

fault reasoning.




2. Previous Models of Default Reasoning

In this chapter we introduce the notions of default
and nonmonotonic theories. We precede the description of
these models with a discussion of the idea of default

reasoning.

2.1 The Notion of Default Reasoning

The phrase "default reasoning" refers to an aspect
of informal or common-sense reasoning. In particular,
human reasoners seem frequently to introduce new assump-
tions during the reasoning process. A statement, deter-
mined by some process to be plausible and acceptable, is
assumed true and treated as such wuntil and unless
discovered to be false. The newly accepted statement
normally does not follow by deductive inference from pri-
or assumptions, but once accepted it may be used both as
the basis for making additional acceptable assumptions
and as the basis for making logical inferences. The
statements generated by such means are not necessarily
true and sometimes must be discarded later in the reason-

ing process when additional facts are learned.



For example, if our car ran properly when we used it
‘yesterday, we accept that it will run properly today.
Our information about the car does not allow us to infer
this statement, Nevertheless, we do expect the car to
run today. The fact that the car ran vyesterday 1is only
part of the reason for the expectation. It is also based
on the fact that 'we don”t know anything which contradicts
it. There are many reasons why the car might not run to-
day even though it did yesterday, but we don”“t know any-
thing implying that any‘of these are true. Thus we are
saying, in effect, that since the car ran yesterday and
since we do not know any information to the contrary, it
is reasonable to assume that the car will run today. The
information on which we base the adoption of this assump-
tion may be incomplete. Some condition which makes the
car inoperable may indeed be true but unknown to us.

Another example of default reasoning céncerns the
characteristics of birds. We know that most birds fly
but that there are exceptions such as penguins. If we
are told that a tern is a kind of bird but know nothing
else about it, we would probably conclude that it is rea-
sonable to suppose that a tern can fly. This assumption
is justified similarly to the previous one. Since most
birds £fly and since we don“t know anything to the con-

trary about terns, it is reasonable to assume that a tern




can fly.

In both of these examples an assumption is intro=-
duced on the strength of information which supports the
assumption without entailing it and which is such that it
does not contradict the assumption. Thus, although the
newly introduced assertion is indeed an assumption in the
sense that it does not follow logically from the asser-
tions held prior to its introduction, the new assertion
is in some way justified by the assertions already be-
lieved. The assumption that our car will run is justi-
fied both by the existence of certain statements among
those we currently believe and by the absence of others.
Note that if, for example, we knew that our car had been
damaged in an accident while parked on the street over-
night, we would not accept so uncritically the assertion
that it will run properly today. /

The fact that the adoption of assumptions such as
those described 1in our examples depends on the informa-
tion known to the reasoner suggests that some sort of
reasoning process is involved. It has therefore been hy-
pothesized that there is a reasoning process used to jus-
tify assumptions of the sort discussed above. This hy-
pothetical process is called default reasoning because it
depends on the absence of certain information. The as-

sumptions thus introduced are called default assumptions.
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Humans appear to freely intermix default reasoning
and conventional reasoning., Given a set of statements
representing what one currently knows, one might generate .
default assumptions directly on the basis of these state-
ments, or one might generate them on the basis of state-
ments not among those currently known but which can be
inferred 1logically. One might also logically infer
statements from those currently known or from default as-

sumptions.

2.2 Default Theories

In this section we present the definition of a de-
fault theory due to Reiter [R]. We begin by considering
the discussion in {R] that prefaces the formal defini-
tion. This allows us to identify certain assumptions on
which the formal definition is based.

Reiter considers a default reasoning argument about
a bird similar to the example given above. His initial

rendition of this argument is:

If x is a bird, then, in the absence of any informa-

tion to the contrary, infer that x can fly.

Reiter contends that given this rendition the problem is

to interpret the phrase "in the absence of any informa-
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tion to the contrary”. His choice of interpretation
(presented without argument) is "it 1s consistent to as-
sume that x can fly". He then restates the above default

reasoning argument as:

If ¥ is a bird and it is consistent to assume that x

can fly, then infer that x can fly.

In fact, Reiter has already made two important assump-
tions about the nature of default reasoning at this
point, one explicit, the other implicit.

The explicit assumption is that the sense in which
the introduction of a default assumption depends on the
absence of certain information from the reasoner”’s
knowledge can be rendered in terms of logical consisten-
cy. The implicit assumption concerns the use of the word
"infer" in the above arguments. By stating that under
certain (still ill-defined) conditions one can infer that
x can fly, Reiter is assuming that the default reasoning
process 1s some sort of 1logical inference process.
Although the assumption of an inference process which al-
lows the derivation of default assumptions 1is basic to
Reiter”s approach, no argument in its favor is given and
in fact it is apparently not even recognized as open to
challenge.

The question arises as to exactly how arguments of
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the sort 1illustrated by the above example can be inter-
preted as logical inferences. One possibility would be
to define a suitable form for inference rules, and Reiter
appears to begin with this approach in mind. He defines
syntactic objects called defaults which are expressions

of the form:
C(: Mqlr-~-lMdk/?

where o, dl,...,qk, and P are wffs of first order
language L. The symbol M is not part of L and is meant
to be interpreted as asserting that the wff to which it
is attached can consistently be assumed. Defaults are
intended to abstract the features common to examples of
informal default reasoning arguments thus providing a
form of "default inference" rule. Reiter would like the
meaning of d:Mdl,...,qu/? to be something ligke " if ot
can be inferred and dl,...,dk can consistently be assumed
then infer ?". Thus, we would have a rule for inferring
the default assumption B. To say that a wff can con-
sistently be assumed presumably means that the negation
of the wff is not provable from the reasoner”s knowledge
(whatever that may be). A default would therefore be a
proof rule that refers to unprovability within the very
system for which it is a rule. Because of this a logic

based on -the notion of a default could not simply be a
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conventional formal theory.

Note that the definition of a default involves
another assumption about the nature of default reasoning.
Informal default reasoning arguments involve the «cri-
terion that the default assumption not be contrary to
what the reasoner knows. The simplest way to view this
requirement is that the default assumption itself satis-
fies some relation with "what the reasoner knows". For
instance, in the above example from [R], where the rela-
tion in question is consistency, it is required that the
default assumption "x can fly" be consistent with some
unspecified set of assertions. The desired interpreta-
tion of a default in effect changes this requirement into
the condition that some finite set of assertions, which
may not even include the default assumption, not be con-
trary to the reasoner”s knowledge. Thus, Reiter is pos-
tulating that the introduction of a default assumption
may depend, not on concluding that the assumption is not
contrary to what 1s known, but on concluding that each
member of some set of assertions is not contrary to what
is known, Reiter does not provide an argument for this
assumption in [R] but does in [RC]. We will discuss this
argument in the next chapter.

We have not yet given a precise meaning to a de-

fault, and in fact this does not appear to be possible.
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The shortcoming of the rough interpretation given above
is, of course, that it does not specify what dl,..,dk are
to be consistent with., In our informal examples the re-
guirement has been that the default assumption not be
contrary to the reasoner”s knowledge. If "not contrary"
is to mean consistent, we presumably want the set of
assertions to be consistent with the reasoner”s
knowledge. A precise definition of what constitutes the
reasoner”s knowledge would therefore seem to solve our
problem.

Perhaps the most obvious choice would be to say that
whenever a default 1is to be applied, the reasoner”’s
knowledge at that point is just the set of assertions
that the reasoner accepts as true at that time. Thus, we
could imagine the reasoner beginning with some set of in-
itial assumptions that represent his knowledge prior to
any reasoning. If for a given default, say
q:Mql,...,Mdk/F, it is the case that  is provable from
these initial assumptions and each of dl,..., dk are con-
sistent with them, then p could be added to the set. The
reasoner could then attempt to apply some default go this
new set and so on. Unfortunately, this approach fails.

Suppose that the reasoner”s initial assumptions are
represented by some set of first order wffs W. Suppose

also that the default d:Mdl,...,Mdk/§ applies to W in




15

the manner Jjust described. Then if we apply this de-
fault, we have a new set of formulas representing what is
known, namely W |] {@}. Now, however, suppose we have
another default, say d’:Mq’l,...,Md'n/p’ such that ° 1is
provable from W |] {p}, d’l,...,d”n are consistent with W
L {p}, and B° is, say, "d;. Thus, we could add "dy to W
L {g} but the resulting set contains p when it should not
because the justification for the earlier inclusion of B
has now been undermined.

For example, let W = {P(a)} and let the set of de-
faults be D where D = [P(a):MQ(b)/R(a),P(a):MR(a)/~Q(b)}.
If the first default 1is applied to W in the manner
described above, we get W || {R(a)} as the new set
representing what is known. If the second default |is
then applied to W || {R(a)}, we get W] {R(a),~Q(b)}
representing what is known. But the condition for apply-
ing the first default was that Q(b) be consistent with
what is known. Q(b) is not consistent with the last set
derived so we must ask whether we are justified in in-
cluding R(a) in that set. 1In fact the sort of interpre-
tation desired for defaults is such that the justifica-
tion for any default assumption appears to depend on all
other default assumptions that the reasoner might accept
starting from the given initial assumptions.

Thus, on the one hand defaults as Reiter has defined
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them apparently cannot be given a well defined meaning.
On the other hand Reiter still wishes to treat default
assumptions as some sort of logical consequences of the
reasoner”s initial assumptions. Since the most important
function of the proposed model would be, given any set of
initial assumptions, to define the set of consequences
entailed by those assumptions, Reiter defines such sets
of consequences without using any formal definition of
inference rule.

The set of theorems of a conventional formal theory
can be thought of as the fixed point defined by the
operation of deduction using the inference rules of the
theory. Similarly, Reiter defines a fixed point for a
default theory but without defining explicit inference
rules. This fixed point is the set Reiter calls an ex-
tension. We now present the formal defiﬁitions of de-
fault theory and extension.

A default theory is a pair of sets (D,W). W is a set

of closed wffs (i.e., sentences) 1in some first order

language L. D is a set of defaults of the form:

o Mdlr e o IMdk/¥
where d, dl,...,dk, and ? are wffs of .., Both D and W
are allowed to be infinite but are countable.

If each wff occurring in some member of D is a sen-
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tence, the default theory is said to be closed. Since
Reiter deals mainly with closed default theories and
treats nonclosed theories by relating each one to a cer-
tain closed theory, we consider only those which are
closed.

Given the definition of default theory we define the
extensions of a default theory. Let (D,W) be a closed
default theory. For any set of sentences S let [7(S) be

the smallest set X satisfying:

1. W C X;

2. X contains the usual axioms for and is closed
under the usual inference rules of predicate
calculus;

3. If (d: Md;,...,dq,/B)€D and € X and "ql,...,~qk$s
then § € X. (Here, ~d is the negation of the wff

q.)

A set E of sentences is defined to be an extension of
(D,W) if E = [7(E). We will use Th(X) to stand for the
closure of X as defined in condition 2.

Note that [* is not a monotonic operator (see [A],
for example). Since logicians generally agree that the
concept of a monotonic operator constitutes the most gen-
eral setting in which one can speak of inference rules,

the fact that [” is not nonmonotonic should not surprise
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us, given our observation of the problems in assigning a
formal meaning to defaults.

An extension is any fixed point of the operator [
We see that an extension E is deductively closed and in-
cludes W, the initial assumptions. In addition E con-
tains various default assumptions. If q:Mdl,...,Mdk/p =
D, d € E, and ql,...,qk are consistent with E, then P € E
also. Thus, an extension is defined to be any set having
those properties that Reiter would expect to be true of
the set resulting from applying defaults as inference
rules if they could be so applied.

A default theory can have more than one extension
because the reasoner might have a choice between incon-
sistent default assumptions. A default theory can also
have no extensions. This appears to be intended to han-
dle situations such as would occur, for example, with a
default theory whose only rule is :M(A v "A)/(A & ~A).
The wif A v "A is a tautology and consistent with any
consistent set of wffs while A & “A is of course incon-
sistent. We do not wish to have inconsistent extensions
of consistent sets of assumptions. 1In fact, if W is con-
sistent, then the default theory having only this default
has no extensions. If W is inconsistent, then the de-
fault theory having only this default has the single ex-

tension consisting of the whole language L.
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The definition of an extension in effect supplies a
definition of a logical consequence relation. Although
this relation is not actually based on a notion of de~
fault inference rule, it still retains consistency as a
criterion for satisfying Ehe relation. The conseqguence
relation defined by the notion of an extension is there-
fore still a nonstandard one.

In examining the notion of a default theory we have
discerned three underlying hypotheses about the nature of
default reasoning. First, we have the hypothesis that
default assumptions are consequences of the reasoner”s
initial assumptions according to some nonstandard logical
consequence relation. Second, there is the hypothesis
that to say that there is no information contrary to a
default assumption means that the assumption is con-
sistent with some set of assertions. Finally, it is hy-
pothesized that there may be default assumptions which
are justified, not because they themselves are not con-
trary to the reasoner”s knowledge, but because the
members of some finite set of assertions are not contrary
to the reasoner”s knowledge.

The notion of a default theory displays two impor-
tant properties. The first of these is nonmonotonicity.

Suppose we have a conventional formal theory with

axiom set A. Suppose also that the assertion p is prov-
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able from A. Then any set of axioms containing A as a
subset will also have p as one of its theorems. Thus,
there is an obvious monotonic relation that holds among
pairs of formal theories. Adding to the set of axioms
cannot reduce the set of theorems.

If we had succeeded in translating the above ill-
defined rule for inferring that x can fly into a well de-
fined one, we would have produced a rule which violates
monotonicity. A reasoner might well use such a rule to
conclude that x could fly only to find out later that x
could not fly. Adding this discovery as a new axiom
would make the inference that x can £fly impossible.
Thus, such a system would be nonmonotonic. In fact, de-
fault theories can be nonmonotonic in the following
sense. There are default theories, say (D,W) and (D°,W”)
such that D is a subset of D7, W is a subset of W”", and
yet there exists a formula p such that p is a member of
some extension of (D,W) and not a member of any extension
of (D”,W7).

Nonmonotonicity is an unusual property for a reason-
ing process to have. No human reasoning activity ob-
.served so far has displayed it. It is therefore impor-
tant to ask whether the nonmonotonicity displayed by de-
fault theories reflects a property that 1is inherently

part of default reasoning. If not, we must guestion the
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suitability of default theories as a model of default
reasoning.

The second property of interest is the lack of a no-
tion of inference rule in a default theory. As we have
already pointed out, defaults, the only candidates for
rules in a default theory, do not have a well-defined
meaning and therefore cannot be taken as inference rules.
Instead, the sets of assertions that are to be con-
sidered the consequences of a given set of initial as-
sumptions are defined as certain fixed points. As can be
seen from the examples that we have given, informal de-
fault reasoning arguments have a deductive flavor about
them. It is therefore natural to attempt to define some
notion of a rule for introducing a default assumption.
Although even ordinary deductive reasoning need not be
thought of in terms of inference rules, it is important
to discover whether the lack of a notion of rule in de-
fault theories reflects an intrinsic feature of default

reasoning.

2.3 Nonmonotonic Theories

Examination of the development of the notion of a
nonmonotonic theory in [MD] shows that this model is

based on the same three hypotheses about default reason-
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ing that we found underlying the definition of a default
theory. Furthermore, nonmonotonic theories can indeed be
nonmonotonic and do not possess any notion of default
inference rule just as is the case for default theories.
The chief difference between the two models lies in the
attempt by McDermott and Doyle to include within the non-
monotonic theory itself assertions that can be interpret-
ed as "d is consistent with what is known".

Reiter uses expressions of the form Mq 1in defining
defaults and gives them the informal meaning of "it is
consistent to assume ". However, the language in which
the axioms and consequences of a default theory are ex-
pressed does not itself contain such assertions about
consistency. If the assertion "it-is consistent to as~
sume " were to be made at all in a default theory, it
would have to be made outside of the language in which
the reasoner”s initial assumptions, default assumptions,
and inferred assertions are expressed. Actually, no such
assertion can be made at all in a default theory.

It is assumed by McDermott and Doyle that assertions
of the form " is consistent with what is known" or "it
is consistent to assume " should be expressible in a
model of default reasoning. (The reasons for this as-
sumption will be considered in Chapter 6.) Their approach

to realizing this involves the introduction of a special
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symbol into the language in which the assertions of a
nonmonotonic theory are to be expressed.
We begin with a formal language, LM’ which is based

on an ordinary £first order language. LM contains wffs

built up in the usual way from gquantifiers, connectives,
and atomic formulas consisting of predicate symbols ap-
plied to suitable arguments. However, a special symbol,

M is included in the alphabet for L If d is any wff of

M
M! then Mg is also a wff of LM' The goal of McDermott

and Doyle is to develop a system in which a formula such

L

as Mg can be interpreted to mean that it 1is consistent
with "what is known" to believe (.

Along with LM we assume a set of logical axioms and
inference rules exactly analogous to those for the Predi—
cate calculus. From these axioms and rules, provability
i5 given the wusual syntactic definition. Thus, up to
this stage, the symbol M is transparent to the defini-
tions made.

The next step is to define the set of formulas which
are "nonmonotonically provable" from a set, A, of wffs of

L thus defining the notion of nonmonotonic provability.

MI
This requires some intermediate definitions. For A and S

sets of wffs, let

As,(s) = {Mp | "pés} - Th(a);



24

NM, (S) = Th(a L As, (5)) .

Here, we assume that A contains the usual axioms for the
predicate calculus and define Th as before. We then de-

fine the class of fixed points of A, FP(A), for any A by

FP(A) = {S | S a set of wffs & NM, (S) = S}.

A

Finally, we define the set of wffs TH(A) to be the inter-
section of all sets in the class FP(A) if FP(A) is not

empty and L, if FP(A) is empty. TH(A) represents the set

M
of wffs nonmonotonically provable from A and is called

the nonmonotonic theory of A. AsA(S) is called the set

of assumptions from S.

The idea behind the concept of a nonmonotonic theory
is that the ability to prove Md, where M is interpreted
as "o is consistent with what is known", will allow us to
express rules for default reasoning similar to those
which Reiter hoped to capture through the definition of a
default. Thus, if we have a theory in which it is possi-
ble to prove expressions of the form Mg, we can add to

such a theory axioms of the form:

B(x) and MF(x) implies F(x).

If B(xX) is interpreted as "x is a bird" and F(x) as "x

can fly", this axiom would express the sort of rule in-
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tended by Reiter in the example given above. The diffi-
culty is that expressions of the form Mg are not provable
since the definition of a nonmonotonic theory depends on
fixed points not on explicit inference rules just as the
definition of a default theory does.

Note that the definition of the class FP(A) is simi-~-
lar to the definition of the class of extensions of a de-
fault theory. However, the extensions of a default
theory are treated as alternative sets of beliefs. The
set of formulas accepted as true by the reasoner, given
the sets W and D, may.be any one of the extensions of
(D,W). Here, instead of treating each member of FP(A) as
one possible set of beliefs for the reasoner, the set of
formulas defined to be accepted as true given that the
reasoner accepts the formulas of A is TH(A), which is
just the set of formulas common to every member of FP(A).
We will discuss this difference between default theories
and nonmonotonic theories in Chapter 6.

Although nonmonotonic theories look quite different
from default theories, these two models share certain
basic hypotheses about the nature of default reasoning
and also have certain unusual properties in common. 1In
later chapters we will consider the relationships among
such properties and hypotheses.

Because the formulas of a default theory are ex-
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pressed in an ordinary first order language, there is no
difficulty in seeing how one could attach meanings to
them, The only difficulty connected with interpretation
arises from the definition of a default. Since defaults
are not part of the language in which the assertions of
the model are expressed, Reiter”’s method of getting
around the problem by defining an extension as a fixed
point leaves us with a model for which we know how to de-
fine an interpretation.

In the case of nonmonotonic theories, however, the
language includes a symbol, M, for which there is no
standard interpretation. In [MD] an attempt is made to
provide a semantics for nonmonotonic theories. As Davis
points out in [D], this attempt does not succeed. 1In [M]
a modified notion of nonmonotonic theory is presented and
for this version a semantics is given. The difference
between the definition of a nonmonotonic theory in [M]
and the one we have presented here is that the modified
definition depends on axioms and inference rules for a
modal logic instead of axioms and rules for the predicate
calculus. The syntactic definition of a nonmonotonic
theory remains the same in both cases. Furthermore, the
modified definition is based on the same hypotheses and
displays the same properties as the original version.

When we discuss nonmonotonic theories in Chapter 6 we
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will be concerned with the informal meaning intended for
this model. As our analysis and conclusions will apply
equally to the original definition and the modified ver-
sion, we will consider only the original definition as

just presented.
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3. Alternative Hypotheses About the Nature of Default

Reasoning

In this chapter we consider the three hypotheses
that we have found to underlie the definitions of default
and nonmonotonic theories. Their plausibility will be
considered, and alternatives will be suggested. Further,
we argue that the suggested alternatives are more intui-

tive.

3.1 The Relation of Default Assumptions to Initial

Assumptions

It is natural to conceive of default reasoning 1in
terms of some sort of inference. Examples of the process
consist of "premises" and a "conclusion". However, the
nature of the conclusion is open to argument. For in-
stance, the exemplary rule concerning a bird given in the
previous chapter was stated according to Reiter”s (and
McDermott”s and Doyle”s) interpretation. It had the

form:

If x is a bird and it 1s consistent to assume that x

can fly, then infer x can fly.
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To apply such a rule, one would need two premises, one
asserting that x is a bird and the other that x”"s ability
to fly could consistently be assumed. According to this
interpretation, one would then conclude the default as-
sumption "x can fly". But does a human reasoner actually
conclude a default assumption as the result of a default
reasoning process?

There is another possible version of the above rule.

It is as follows:

If ¥ is a bird and it is consistent to assume that x

can fly, then it is reasonable to assume x can fly.

In this case, the reasoner would be concluding from his
argument, not that x can fly, but that it is reasonable
to assume that x can fly.

The first form of the rule manifests the view that a
default assumption is itself some sort of logical conse-
guence of the reasoner”s prior assumptions. This view
seems a distortion of the intuitive notion of a logical
consequence relation. The idea behind the notion of log-
ical consequence is that a given assertion  is a conse-
quence of a set of assertions just if it must hold when-
ever all members of the set hold. Yet this is clearly

not the case with a default assumpticn.
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If I believe that x is a bird and that it 1is con-
sistent to assume x can fly, I am not as a result con-
vinced that x can fly. I know that it might turn out
that =x cannot fly. What I do believe is that I can rea-
sonably treat "x can fly" as a working assumption. The
second form of the rule manifests this point of view.
The default assumption is treated as a statement that is

not derived but assumed because of the successful deriva-

tion of a statement about it. The relation between de-

fault assumptions and the reasoner”s knowledge appears
according to this interpretation as an 1indirect one,
depending on drawing a conclusion from that knowledge
about the assumption.

Thus, while informal default reasoning arguments do
Aindeed appear to be 1inferential in nature, we have at
least two ways of interpreting the apparent inference.
On the one hand, we can assume that the reasoner is actu-
ally inferring the default assumption. On the other, we
can suppose that what is being inferred is an assertion
about the reasonableness or plausibility of the default
assumption. The second of these hypotheses appears the

more intuitive.
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3.2 Consistency as a Criterion for the Introduction of

Default Assumptions

We would not wish to assume that x can fly if it
were possible for us, without receiving any new informa-
tion, to conclude that x cannot fly. That 1is, if the
adoption of a default assumption is to be correct, it is
necessary that the assumption be consistent with the
reasoner”s knowledge (both at the time of adoptiocn and
during any subsequent reasoning). This observation ap-
pears to be the basis for the hypothesis (accepted by
Reiter and by McDermott and Doyle) that the part of a de-
fault reasoning argument asserting that something is not
contrary to what the reasoner knows can be interpreted as
an assertion about consistency.

As we saw in the previous chapter, the general form
assumea for default reasoning by these authors stipulates
that default assumptions are to be justified because some
finite set of assertions 1is not contrary to the
reasoner”s knowledge. We consider this generalization in
the next section. Here we wish to examine the suitabili-
ty of consistency just in those informal default reason-
ing arguments where it is the default assumption itself
which must not conflict with what the reasoner knows.

The following example is essentially given 1in ([RC]
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although the conclusions drawn from it are our own. Con-

sider the following arguments:

If x is a high-school dropout and it is not contrary
to what is known to assume that x is an adult, then

it is reasonable to assume x is an adult.

If x is an adult and it is not contrary to what is
known to assume that x is employed, then it is rea-

sonable to assume x is emplovyed.

Both these arguments are intuitively correct.

Suppose we are told that Arnold is a dropout, but we
know nothing about his employment status so we can deduce
neither that Arnold is or is not employed. Suppose also
that we do not know Arnold”s age. We might conclude that
it is reasonable to assume that Arnold is an adult, but
we would not be willing to go on from there and conclude
that we can also reasonably assume that he is employed.
The reason seems clearly to be that we do indeed know
something "contrary" to the assumption that Arnold is em-
ployed. We know that he is a dropout. The assumption

that he is employed is logically consistent with what we

know. Nevertheless, his status as a dropout constitutes
sufficient evidence against the assumption to make us

feel that it should not be accepted.
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Thus, although it 1s necessary that a default as-
sumption be consistent with what we know in order to be
correct, logical consistency alone does not seem to be an
adequate interpretation of the phrase "not contrary to".
In fact, the examples of default reasoning considered in
the literature so far do not seem to point to any obvious
interpretation. An alternative approach is to define a
model in such a way as to allow a wide range of possible
definitions for the notion of "not contrary to".

The above discussion does suggest that the interpre-
tation of the assertion that a default assumption is not
contrary to what the reasoner knows might be based on
some notion of "evidence'against" a statement. The idea
is that if an assertion 1is inconsistent with the
reasoner”s knowledge, then this fact surely constitutes
evidence against the assertion. 1In addition, facts known
by the reasoner that do not contradict the assertion but
make its likelihood questionable also constitute such
evidence. It remains to be seen whether any well-defined
form of this concept of "evidence against" a statement
can be developed, but it might, for example, be dealt

with in terms of the notion of inductive reasoning.
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3.3 The Scope of "Not Contrary to"

In this section we consider whether or not it |is
desirable to postulate the existence of default assump-
tions that are justified because the members of some fin-
ite set of assertions are not contrary to the reasoner”’s
knowledge.

The examples of informal default reasoning arguments
that we have presented all are based on the requirement
that the default assumption itself not be contrary to
what is known. This seems to be natural and, as Reiter
péints out in [R], it is difficult to think of natural
examples of default reasoning that do not fit this pat-
tern.

In [RC], however, an argument 1s presented for the
existence of cases 1in which justification depends on a
finite set of assertions. The argument is based on exam-
ples similar to the one given above concerning the likel=-
ihood of a dropout being employed, but the analysis given
relies on the hypothesis that "not contrary to" means
consistent with. Thus, the two rules for default reason-

ing stated above are rendered as:

If x is a high-school dropout and it is consistent
with what 1s known to assume that x is an adult,

then infer that x is an adult.
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If x is an adult and it is consistent with what is
known to assume that x is emploved, then infer that

x 1ls employed.

Suppose as before that we know that Arnold is a dro-
pout and do not know anything about either his employment
status or his age. 1If human default reasoning follows
the pattern realized in the above two rules, one should
be able to use the rules to conclude that Arnold 1is an
adult and, from his adulthood, that he is employed.

It is stated in [RC] that the conclusion that Arnold
is employed (or, in our view, that his employment can
reasonably be assumed) should not occur. Howevef, the
problem is claimed to lie in the fact that in our "de-
fault inference rules" we are only requiring that the de-
fault assumption itself satisfy the condition of not be-
ing contrary to the reasoner”s knowledge. Accordingly,
the solution offered is to replace the second of the

above two rules with a rule that says something like:

If ¥ is an adult and it is consistent with what 1is
known to assume both that x is not a dropout and x

is employed, then infer that x is employed.

As was pointed out in the previous section, however, this

example can also be interpreted as indicating that the
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criterion of consistency may be inadequate.

Suppose the two rules are stated in the following

fashion:

If x is a high-school dropout and there is no evi-
dence against the assumption that x is an adult,

then it is reasonable to assume x is an adult.

If x is an adult and there is no evidence against
the assumption that x is employed, then it is rea-

sonable to assume x is employed.

Then, since the fact that Arnold is a dropout constitutes
evidence against the assumption that he is employed, we
do not find ourselves making an unwarranted assumption.
We conclude that there is no intuitive reason for
the hypothesis that a default assumption may need to be
justified on the basis of assertions other than itself
being deemed not contrary to the reasoner”s knowledge.
At the same time, natural examples of default reasoning
certainly do appear to require that the default assump-
tion not be contrary to the reasoner”s knowledge. It
therefore seems reasonable to postulate that in default
reasoning the object which must not be contrary to the
reasoner”s knowledge is just the default assumption it-

self.
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4. Definition of a Two-Level System

Our next task is to define the notion of a two-level
system. To motivate our definition and to provide evi-
dence for ité appropriateness, we first present what we
believe to be the most intuitive informal theory of de-
fault reasoning.

One must have some informal theory in mind in order
to define any formal model. Without the intermediate
step of making one”s informal theory explicit, it is dif-
ficult to understand whether any problems encountered in
the formal model are a result of an incorrect formaliza-
tion of an intuitively correct informal theory or a
result of the incorrectness of the informal theory it-
self. Also, it is the wunderlying informal view that
makes the model convincing, and it is therefore important
to clearly understand what that view is in order to judge
the reasonableness of the formal model. In the develop-
ment of both default and nonmonotonic theories, the
presentation of an explicit informal theory 1is omitted.
We will argue in later chapters that this obscures the

causes of a number of problems in the two models.
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4.1 An Informal Theory of Default Reasoning

The general idea behind default reasoning is the
concept of a reasoning process which depends on an asser-
tion being found not contrary to the reasoner”s
knowledge. We begin the development of our informal
theory by making this notion somewhat narrower and more
precise.

Consider the example concerning an automobile that

was presented earlier. We can state that example as:

Since my car ran properly yesterday and since I know
nothing contrary to the assumption that it will
start today, it is reasonable to assume that my car

will start.

We will treat this example as typical of the reasoning
process referred to as defaul£ reasoning, and develop our
theory by abstracting and generalizing it.

We first note that the above argument can be con-

sidered to consist of two premises and a conclusion:

My car ran properly yesterday. I know nothing con-
trary to the assumption that it will start today.
Therefore, it is reasonable to assume that my car

will start.
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The import of the first premise is that it provides evi-
dence or support for the assumption that the car will
start. The second premise tells us that there 1is no
known reason to suppose that the car will not start.
From these two facts it is concluded that one can reason-
ably assume that the car will start. (We state the con-
clusion in this way on the basis of the arguments given
in the previous chapter. Further arguments for this form
of conclusion will be discussed at a later point in our
development.)

We have already argued that the most reasonable
course is to suppose that the assertion which is taken
not to be contrary to the reasoner”s knowledge 1is just
the default assumption itself. Furthermore, it seems
clear that, as in the above example, one does not accept
an assumption as plausible unless there is some sort of
definite, positive evidence indicating that the assump-
tion is (or is likely to be) true. It is therefore na-
tural to view default reasoning as the process of con-
cluding that there is reason to suppose an assumption is
true and no known reason to suppose it is not true. We
take this view and postulate that default reasoning is

the process of generating arguments of the form:

There is evidence to support . Nothing contrary to
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d 1s known. Therefore, it is reasonable to assume

q.

We will call premises of the form:

Nothing contrary to ¢ is known

or

d is not contrary to what is known

default premises.

Several questions occur about this abstract form for
a default reasoning argument. First, is there some gen-
eral definition of "evidence to support” a default as-
sumption? Second, what does it mean to say that nothing
contrary to a default assumption is known? Finally, how
would such an argument be carried out?

The concept of evidence supporting an assertion 1is
basic to inductive logic. It is therefore natural to
look to that field for a definition of "evidence to sup-
port" a default assumption. However, the exact form the
definition would take is not clear. We will therefore
leave our notion of evidence supporting the default as-
sumption undefined. The notion of a two-level system as
defined 1in the next section will simply provide a frame-

work in which a wide range of definitions of this concept
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would be possible,

The problem of interpreting the notion of not know-
ing anything contrary to a default assumption has two
parts. First, what is meant by "what is known" ? Second,
what is meant by "not contfary to"?

The most natural definition of what is known by the
reasoner is the set of assertions accepted by him as
true. However, this set obviously changes during the
reasoning process. Suppose we think of the reasoner as
beginning the reasoning process with some initial set of
assumptions. We can think of them as representing what
he knows at that point. From the point of view of de-
fault reasoning this set <can be changed in two ways.
First, the reasoner may derive a new assertion from his
initial assumptions by conventional deductive inference.
Second, the reasoner might adopt a default assumption.
Thus, the set of assertions accepted by the reasoner
would change during the course of the reasoning process.
Therefore, we will interpret "what is known" to mean what

the reasoner knows at the current point in the reasoning

process. This interpretation will be refined below.

As already discussed in the previous chapter, the
problem of defining "not contrary to" , like that of de-
fining "evidence to support" does not have a ready solu-

tion. It seems clear that consistency is necessary but
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not sufficient as a correctness criterion. The notion of
inductive reasoning may also be applicable. vVarious
heuristic criteria are also possible, as will be dis-
cussed 1in a later chapter. We will therefore leave "not
contrary to" unspecified and attempt to define our model
in such a way as to allow a wide range of definitions.

We next consider the question of how a default. rea-
soning argument might be carried out.

Viewing default reasoning as a process of inferring
an assertion about a default assumption rather than as
one of inferring the default assumption was discussed 1in
the previous chapter. Similarly, a default premise is
naturally viewed as an assertion about the default as-
sumption. We will adopt these views here. However, a
question arises concerning the nature of any reasoning
process which could yield the conclusion of a default
reasoning argument.

The reasoner, in carrying out a default reasoning
argument, must be reasoning from some of his knowledge.
Yet, the default premise refers to the reasoner”s
knowledge, thus apparently leading to problems of self-
reference. Similarly, we wish to interpret the conclu~-
sion of a default reasoning argument as asserting that a
given default assumption is reasonable and so may be as-

sumed. If the reasoning that leads to such an assertion
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is itself based on the reasoner”s knowledge (taken to be
the reasoner”s assumptions), how can it lead to the con-
clusion that another assumption can be made? Qur solu-
tion to these difficulties is to employ the following ob-
servation.

Consider again the example of default reasoning con-
cerning a car. The default premise of this argument as-
serts that the reasoner does not know anything contrary
to the assertion that his car will start. In determining
the correctness of this default premise must the reasoner
consider everything he knows? It seems clear that he
need not. For example, the reasoner”s knowledge concern-
ing his own reasoning processes has nothing to do with
starting his car. This observation leads us to conclude
that "what the reasoner knows" need refer only to
kﬁéwledge that could affect the argument.

We hypothesize that the reasoner”s knowledge is di-
vided into components. The reasoning involved in adding
a default assumption to one component will be done, not
within that component, but in a second component in which
the reasoner can reason about the first one. 1In fact, we
will assume that there are only two components.

Examples of default reasoning generally involve in-
troducing a default assumption about the world exterior

to the reasoner (or at least exterior to his reasoning
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process). We will therefore view the reasoner”s
knowledge as consisting of two components or levels. The
knowledge at the first or object level concerns every-
thing exterior to the reasoning process. It is to this
level that the reasoner may introduce default assump-
tions. The knowledge at the second or meta level
represents the reasoner”s rules for introducing default
assumptions. It is at this 1level that the reasoning
leading to the adoption of a default assumption is done.
Here we use the terms "metalevel" and "object level", not
in the formal sense associated with the notion of a
metalanguage in which it is possible to talk about sen-
tences of an object language as objects, but in the in-
formal sense conveyed by the observation that, for exam-
ple, a default premise can"be seen as an assertion about
an assertion. We consider in a later chapter the possi-
bility of the rules for default reasoning being them-
selves the subject of default reasoning.

Given the above notion of default reasoning as a
process involving two levels, we next develop our notion
of "what the reasoner knows" and fit it into our overall
theory. We have already chosen to interpret "what the
reasoner knows" to mean what he currently knows. We now
make the interpretation more precise, taking into account

our assumption of two levels.
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The notion of what is known, as it applies to a de-
fault reasoning argument, is to be taken as what is known
at the object level. We therefore need to give some
specification of what 1s to constitute the reasoner’s
current object-level knowledge during the reasoning pro-
cess.

There are three types of assertion that can occur at
the object level. First, there are the reasoner”s ini-
tial object-level assumptions. Next, there are default
assumptions, and finally there are assertions derived by
conventional deductive inference. The reasoner”s current
object-level knowledge can therefore reasonably be taken
to consist of no more than the initial assumptions, any
default assumptions introduced prior to that point, and
any conventionally inferred assertions derived prior to
that point. We tentatively eliminate conventionally in-
ferred assertions.

Qur reason for counting only initial and default as-
sumptions as current knowledge stems from the difference
between the roles played by assumptions (whether initial
or default) and inferred assertions in our view of de-
fault reasoning. The reasoning done to introduce default
assumptions is hypothesized to occur at the metalevel so
that the only reasoning occurring at the object level

must be conventional inference. From the point of view
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of conventional deductive inference default and initial
assumptions appear as the same type of assertion. Nei-
ther can be inferred conventionally from other assertions
occurring at this level and therefore represent axioms.
It is therefore natural to think of just the reasoner”s
current object-level assumptions as his current object-
level knowledge. (In a later chapter we will see an
illustration of how one might incorporate the more gen-
eral definition of assumptions plus inferred assertions
into our model, as well as a possible reason for doing
S0O.)

So far, then, we are viewing default reasoning as a
process divided into two levels. Default assumptions are
introduced at the object level by reasoning done at the
metalevel. This metalevel reasoning determines that the
given default assumption is plausible, given the
reasoner”s current object level assumptions, and given
that these assumptions are not contrary to the default
assumption. Object-level reasoning, on the other hand,
consists of conventional deductive inference from the
reasoner”s current object-level assumptions.

A final consideration for our informal theory in-
volves the nature of the metalevel reasoning. It would
clearly be desirable to be able to postulate that the

reasoning done at the metalevel 1is also conventional
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deductive inference, and in fact, such a hypothesis seems
reasonable. The reasoning being carried out is about the
set of current object level assumptions and its relation
to a default assumption which is also an object level
assertion. It is not about any assertions from the
metalevel, We therefore do not encounter the difficul-
ties that occur if we try to view this reasoning as being
done from the same assumptions to which it is intended to
add. Thus, we add to our informal theory the hypothesis
that the metalevel reasoning which results in the adop-
tion of a default assumption 1is 1itself conventional
inference.

Before turning to the formal definition of our
model, we discuss one additional argument for the intui-
tive appeal of the_ two-level approach to default reason-
ing.

A default assumption appears to be treated 1in two
different ways by a human reasoner. When deciding wheth-
er the assumption is Jjustified or not, the reasoner
recognizes that he is indeed dealing with an assumption.
But once accepted, the default assumption is treated in
the same way as any other assertion that the reasoner be-
lieves. For example, if I ask myself whether or not my
car will start, I realize that the assertion that it will

start is an assumption and cannot be guaranteed by me.
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Yet, having concluded that I can assume the car will
start, in subsequent reasoning the assumption is treated
as a fact.

This behavior fits our two-level approach. By pos-
tulating that reasoning takes place on two levels we ac-
count for the two ways in which a human views a default
assumption. At the metalevel a potential default assump-
tion is recognized as indeed an assumption. When reason-
ing at the object level, however, the reasoner no longer
questions the assumption but accepts it on a par with all
. other object-level assumptions and uses it as a basis for

further reasoning.

4.2 The Definition of a Two-Level System

We now need to define a formal model. The approach
that we take is guided by the purpose that the model is
intended to serve. Our intention is to develop a model
that can serve as a basis for justifying the claims we
have made concerning the hypotheses on which default and
nonmonotonic theories are based. We therefore wish to
define a model based on formal concepts that are as sim-
ple and well understood as possible even if the internal
mechanisms of the model may not be exactly analogous to

human behavior. At the same time, the model should in
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some reasonable sense be a formalization of the informal
theory presented above. As we will see below, the model
resulting from our approach also displays potential as a
way of representing computer reasoning systems that do
default reasoning.

The basis of our informal theory 1is the postulate
that default reasoning is a process of reasoning about
assumptions. This view led to the conception of the
reasoner”’s knowledge being divided into levels in such a
way that the assumptions of one level could be reasoned
about at the other level. The simplest way to formally
represent reasoning about assumptions is as a process of
reasoning about representations of assumptions. In par-
ticular, we will employ the common notions of
metalanguage and object language. A default assumption
will be represented by an appropriate sentence in an ob-
ject language, and reasoning about the default assumption
will be represented by reasoning 1in the metalanguage
about the object language sentence corresponding to the
default assumption.

We have already hypothesized that the reasoning done
at the object level is conventional inference and noted
that the reasoner”s current object level assumptions sim-
ply appear as a set of axioms in the context of reasoning

at this level. A well known way of representing conven-



tional inference from a set of axioms is by way of a for-
mal theory defined as a set of inference rules and a set
of axioms in a formal language. It is reasonable to sup-
pose that the assertions dealt with by the reasoner can
be expressed in a formal language and that the inferences
he performs at the object level can be defined by some
set of inference rules. Further, although the reasoner
can add new object-level assumptions, it does not seem
plausible that his rules of inference change. We there-
fore conceive each set of assertions that might become
the reasoner”s current object-level assumptions at some
point during the reasoning process as being represented
by a formal theory. Also, the object-level reasoning
that can be done from any such set of current assumptions
is represented by deduction within the corresponding for-
mal theory.

The reasoner reaches a given set of current-object
level assumptions by default reasoning. If no default
assumptions are introduced, the current object-level as-
sumptions are just the initial assumptions. Thus, we can
think of default reasoning as a process of changing from
one set of assumptions to another. This observation sug-
gests the idea of representing the effects of default
reasoning in terms of the sets of current object level

assumptions it might produce. We can represent each such
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set of assumptions by a formal theory. Default reasoning
could then be represented as a process of changing from
one formal theory to another. Therefore, one component
of our model will be a collection of formal theories, de-
fined in some formal language, each of which represents
one of the sets of current object level assumptions that
might be arrived at during the reasoning process. One
such formal theory will contain only the initial object
level axioms and so will represent the starting point of
the process.

Object level reasoning is to be represented by rea-
soning in a formal theory whose axioms correspond to the
reasoner”s current object level assumptions. The adop-
tion of a new default assumption corresponds to replacing
one formal theory, whose axioms are the current object
level assumptions, by a second formal theory whose axioms
are those of the first plus the default assumption. We
represent the metalevel reasoning that leads to this
change in theories in yet another formal theory, one de-
fined in a language in which we can talk about the sen-
tences corresponding to the reasoner”s object level as-
sumptions.,

If the adoption of a default assumption is viewed in
the terms Jjust described, then we can think of default

reasoning as inferring at the metalevel that the set of
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assertions representing the current object-level assump-
tions along with the new default assumption can be ac-
cepted together as the new current assumptions. We would
expect the formal theory representing metalevel reasoning
to allow us to carry out such an inference. 1In particu-
lar, it is natural to expect the informal notion of a
rule for introducing a default assumption to be inter-
preted as an axiom giving the conditions under which the
default assumption along with a set of current assump-
tions constitute a new set of current assumptions. In
stating our formal definition we will actually impose a
weaker requirement. We will only insist that it be pos-
sible to conclude in the formal theory for metalevel rea-
soning that the axiom set of each of the formal theories
representing possible current object level assumptions is
an acceptable set of assum)tions and that this conclusion
be possible for no other set of object-level assertions.
Let us summarize the general idea for our model. 1t
will consist of a collection of formal theories
representing the various sets of current object-level as-
sumptions that the reasoner might arrive at if starting
with given initial object-level assumptions and certain
given rules about the introduction of new default assump-
tions. These theories will be expressed in some given

formal 1language. Rules for introducing default assump-
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tions will be contained in an additional formal theory.
This theory will be expressed in a language which can
serve as a metalanguage with respect to the one in which
the other theories are expressed. The reasoning done to
justify the introduction of a default assumption will be
represented by inference within this metatheory about the
sentence corresponding to the default assumption.

The theories representing the wvarious possible
current assumption sets can be any formal theories, but
the theory in which we are to do default reasoning must
behave 1in the way we intend and allow us to reason
correctly about those objects we wish to reason about,
i.e., sets of sentences representing sets of assumptions
and individual sentences representing individual assump-
tions. In other words, it is necessary that the theory
be capable of being given a formal interpretation that
accords with our intuitive interpretation. We insure
this by requiring that an interpretation always be given
for this theory and that the given interpretation meet
certain conditions.

Let us now turn to our definition. We first define
a concept to be employed in defining the notion of a
two-level system. The idea of a structure for, or model
of, the formulas of a formal language is well known (see

for example, [B]). A structure for the language L con-
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sists of a domain of objects and a collection of mappings
assigning suitable interpretations over the domain to the
constant, predicate, and function symbols of L.

As usual, given a term t from L and a structure for
L we think of each function s from the variables of L to
a subset of the domain of discourse as assigning a mean-
ing to the variables, each such function being called an
assignment. Also as usual, we can define for each term t
of L a function E which maps assignments to elements of
the domain. For a given t, E is defined as follows (see

[B]):

~

1. If t is a constant symbol ¢, then E(s) = ¢ for
all s where ; is the element of the domain which
¢ is interpreted as;

2. If ¢t is a variable v, then E(s) = s(v) for all s;

3. If t is the term f(tl""’tn) then, for all s,
define

B(s) = £(ty(8),...rt (8))

where £ is the interpretation of £.

The following lemma is obvious from the definition of the

mapping t.

Lemma 4.1

If t is a closed term of I, then the mapping t has
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value for all assignments,

any closed term t of L the element of the domain
the value of the mapping t is the same no matter

value of s. Let us also call this element ¢t.

then say that t denotes the element t.

A two-~level system consists of:

1.

2‘

3.
We requi
be such

A set 5 of sets of wffs in a language L called

the possible axiom sets. One possible axiom set

is distinguished as the initial axiom set. all

other possible axiom sets must be supersets of
the initial possible axiom set. The set of
theories generated by the possible axiom sets is

called the set of object theories.

A theory in a language L° called the metatheory.

A structure for L” called the intended interpre-

tation of L~.

re that the domain of the intended interpretation

that it includes the wffs of L and the possible

axiom sets. We also require that L” and the intended in-

terpretation be such that:

10

For each wff  of L, there is at least one closed

term t of L” such that t denotes d.
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2. For each possible axiom set S € S there 1is at
least one closed term t of L” such that t denotes

S.

3. There is a binary predicate symbol of L”“, say €,

which is interpreted as set membership.

4. There is a unary predicate symbol of L%, say A

PI
such that A, is interpreted as the set S. That
is, AP(t) will hold for some assignment s just if
t(s) € S.

Finally, we require that the axioms of the metatheory be

such that:

1. For each possible axiom set S there is a closed

term t denoting S such that A_(t) is provable,

P(

L

2. For each closed term t of L™ if Ap(t) is prov-

able, t denotes a possible axiom set.

3. If g € S, then there are tl’ t2 denoting ¢ and 8

such that tl e t2 and AP(tZ) are provable.

4, If tl e t2 is provable for closed terms tl, t2,

then t2 denotes a set and tl denotes a member of

that set.

The possible axiom sets are intended to represent
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the wvarious sets of current beliefs that the reasoner
might hold at some point during the reasoning process
given that he begins with the initial axiom set. Thus,
the object theories represent the sets of formulas that
the reasoner <c¢ould infer using conventional deductive
inference. The requirements given for the metatheory”’s
axioms are intended to insure that we can prove in the
metatheory that the possible axiom sets are 1indeed the

possible axiom sets using the predicate A_ (for "possible

P
axiom set").

Intuitively, the introduction of a default assump-
tion would be represented in a two-level system by prov-
ing that the set consisting of the possible axiom set
representing the current assumptions along with the given
default assumption is also a possible axiom set. A for-
mula would be inferred from the current assumptions by
'constructing a proof of the formula using only current
assumptions (this would be a proof in one of the object
theories). It would also be necessary to prove in the
metatheory that the current assumptions constituted a
possible axiom set and that the members used in the proof
of the formula belonged to that set. Our definition of a
two-level system includes systems satisfying this intui-

tive picture as well as some which do not. We choose the

form of definition given both because it is simple and
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for its generality.

4,3 The FOL System

In [We] Wevhrauch describes a computef reasoning
system which he calls FOL. This system makes use of cer-
tain ideas that are similar to those underlying the de-
finition of a two-level system. 1In particular FOL can be
used to represent a finite number of first order object
theories as well as a metatheory in which to reason about
the object theories. Each theory is represented by a
description of a language, an object called a simulation
structure, and a set of axioms in the language. The
simulation structure is essentially a fragment, which can
be implemented on a machine, of an interpretation for the
language. The axioms are to be true in the simulation
structure.

FOL and the notion of a two-level system were
developed independently. With respect to the problem of
modelling default reasoning there are several differ-
ences, First, although the general idea of treating de-
fault reasoning as a metalevel process has been indepen-
dently recognized by others including Weyhrauch, the con-
cept has not been developed by him (or anyone else).

Thus, although FOL presents a possible framework for
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treating default reasoning in the manner provided by the
notion of a two-level system, it does not contain any ex-
plicit definitions corresponding to those to be found
within the two-level system concept. ({In fact, no one,
to our knowledge, has gone so far as to work out an in-
formal theory of default reasoning such as the one we
presented above.)

A second point of difference concerns the handling of
the metatheory. In FOL the metatheory may be used as its
own metatheory. This arrangement appears to preclude the
extension of FOL in any fashion similar to the extension
of a two~level system to an n-level system as will be
done in Chapter 6.

Finally, FOL is a computer system rather than a gen-
eral mathematical model. It 1is therefore possible to
represent certain systems as two-level systems which
could not be represented in FOL even if definitions simi-
lar to those that make up the notion of a two-level sys-

tem were developed for FOL.
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5. The Relation of Default Theories to Two-Level Systems

In this chapter we show certain relationships
between default theories and two-level systems. On the
basis of these we argue that the nonmonotonicity of de-
fault theories as well as their lack of a notion of "de-
fault inference rule" are the result of certain hy-
potheses about default reasoning that need not be accept-
ed. We also argue that a two~level system is at least as
suitable as a default theory for a model of default rea-

soning.

5.1 Arbitrary Closed Default Theories

We begin by showing that the notion of a two-level
system subsumes that of a default theory in the sense
that for any closed default theory there is an equivalent
two=-level system.

Suppose that (D,W) is an arbitrary closed default
theory in the language L. Let E be an extension of (D,W)
and let

D(E) = {B| B € E and d:Md{y,..., ML, /B € D

for some q,dl,...,dk}.
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It is shown in [R] that E = Th(W || D(E)). We will wuse
this fact to define our two-level system. First we de-

fine a metalanguage L”. Let L° consist of:

1. A constant symbol, say q° for each wff  in L;

2. A constant symbol, say S°, for each set S of wffs
of L;

3. One unary predicate symbol AP and one binary

predicate symbol €.

Let AP be the unary relation over the sets of wffs of L

defined by:

1. W|| D(E) € AP for each extension E of (D,W);

2. Nothing else is in AP.

We can now define a structure for L” which will serve as
the intended interpretation of our two-level system”s

metatheory. The domain of the structure consists of:

1. The wffs of L;

2. The sets of wffs of L.

BEach constant d° of L° 1is interpreted as the
corresponding wff o of L. Each constant S8 is interpret-
ed as the corresponding set S. The predicate symbol € is
interpreted as set membership while Ap(x) is interpreted

to mean that x is in AP.
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The possible axiom sets of the two-level system are

the members of AP. The axioms of the metatheory are:

l. d° € s” for each ” and each S° such that q € S:

2. AP(S’) for each $° such that S € AP.

We must show that these definitions of a metatheory,
an interpretation for the metatheory, and a set of possi-
ble axiom sets satisfy the requirements for a two-level
system. The domain of the given structure certainly in-
cludes the wffs of the object language and the ©possible
axiom sets. We must also show that AP(t) is provable in
the metatheory if and only if t denotes a possible axiom
set. Finally,Aif B is provable from a possible axiom set
S, then for each member  of S occurring in the proof, we
must show that o € t is provable in the metatheory for
closed t such that t denotes S. Let us call the system

just defined £.

Lemma 5.1

If t is a closed term in L” and A_(t) is provable in

p

the metatheory of £, then t denotes a member of AP.

Proof:
Obviously, the axioms of £”s metatheory are satis-
fied by £°s structure. Therefore, if AP(t) is provable,

it must also be satisfied by the structure. Since AP is
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interpreted as AP, this can only be the case if t denotes

a member of aP. ][]

Lemma 5.2
If S € AP then there is a closed term t of L” such

that t denotes S and A_(S) is provable in £”s metatheory.

P(
Proof:

For every set S in AP the constant symbol S” denotes

3 and AP(S’) is an axiom.[]

Lemma 5.3
Suppose t is a closed term of L. Then ” € t is
provable iff t denotes a set and o is a member of the

set.

Proof:

If d° € t is provable, then ¢ € t must be satisfied
by the structure so t must denote a set of which o is a
member.

Since there are no function symbols, the only terms
denoting sets are constant symbols. If t = S° and € S,

then ” € 87 is an axiom.[]

Thus, € i1s indeed a two-level system. From the de-
finition of the intended interpretation we see that the

set of sentences provable from a possible axiom set is an



extension of (D,W) and that every extension can be gen-
erated from some possible axiom set. Thus, in an obvious
sense, £ is equivalent to (D,W).

Although we have shown that the extensions of a
closed default theory can be accounted for in terms of
the object theories of a two-level system, we did so by
introducing a two-level system with a metatheory which is
not especially illuminating. It allows us to conclude
that possible axiom sets are indeed possible axiom sets
but only because an axiom asserting AP for each such set
is included. This arrangement bears little resemblance
to the intuitive view of default reasoning expressed in
the previous chapter. There we took.default reasoning to
be a process of adding a default assumption to a set of
axioms representing the reasonef’s current beliefs and
pictured the proposed metatheory as containing rules by
which the reasoner would determine whether a given de-
fault assumption could be added to a given set of current
assumptions.

In fact, the problem with our first two-level system
seems to be the default theory which it represents, 1In
Chapter 2 it was noted that there appears to be no notion
of "default 1inference rule" that can be associated with
the definition of a default theory. One cannot speak of

inferring a default assumption in a given default theory
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but only of its membership in some extension. 1In effect,
although the definition of an extension supplies a
description of the result of having introduced a certain
set of default assumptions, for the general case there is
no notion of a process that does the introducing. Thus,
we have a notién (extension of a default theory)
corresponding to the result of default reasoning but no
notion of default reasoning itself.

The structure of the metatheory in the above two-
level system essentially mirrors the default theory’s
lack of rules. Given our intuitive view of default rea-
soning, we would expect the metatheory to allow us to
represent a procedure of sequentially adding one default
assumption at a time to build a series of sets of
"current" object-level assumptions. Instead, we simply
have an axiom asserting the predicate AP for each of the
axiom sets that generate a Reiter extension. Thus, we
have the same problem as with the corresponding default
theory. The possible axiom sets represent the result of
default reasoning but the proofs of the metatheory do not
represent the process of default reasoning. We will see
in the next section that the problem stems from the hy-

potheses underlying the definition of default theories.
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5.2 Closed Normal Default Theories

A normal default theory is one in which all defaults
are of the form d:M?/?. That is, the only wff that must
be consistent with "what is known" is the one to be as-
sumed. In the previous chapter we discussed the differ-
ence between supposing that the requirement in a default
reasoning argument of not being contrary to what the rea-
soner knows always refers only to the default assumption,
and supposing that such a requirement could refer to oth-
er assertions as well. We argued that the first of these
possibilities 1is more intuitive. 1In terms of the notion
of a default theory, our argument would call for allowing
only normal default theories. 1In this section we show
that Reiter”s "normal form" is not only more intuitive
but also allows a well-defined notion of rules for intro-
ducing default assumptions.

Let (D,W) be an arbitrary closed normal default
theory in the language L. The following results about
(D,W) will show that in the case of a closed normal de-
fault theory defaults c¢an be interpreted as inference
rules in a natural way. They will also be used in the
next section as a basis for defining a natural form of
two-level system that is equivalent to a closed normal

default theory.
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Let E be a fixed set of closed wffs in the language
LL of the closed normal default theory (D,W). Consider
the defaults of D to be given in some order. Suppose

that dj’ ?j are the wffs occurring in the jth default.

Let

Fo =W

Fiep = H {Fi+l'j | 0 <3 < i+1}
where

Fiv1,0 - Fi

Fi+l,j+l = Fi+l,j u {Pj} if Fl+l,j]_ dj,
and “?j ¢ E

otherwise.

= Fiv1,5
Let E* = || F, for i = 0 to ™,

F in effect represents the result of building a
(possibly infinite) set of assumptions starting with the
initial assumptions and adding default assumptions one at
a time. By showing that F generates E just if E is an
extension we can show that the set of default assumptions
contained in an extension may be built up in the natural
way.

Recall that Reiter”s notion of extension is defined
in terms of the operator F, In particular, the set of

wEfs E is an extension of the default theory (D,W) Jjust

if B =[Y(E). For our discussion of default theories we
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will use Th(S) to mean the set of sentences provable from

S.

Lemma 5.4
Th(E*) = [(E). Hence, E is an extension for (D,W)

iff E = Th(E*).

Proof:
Since E is an extension iff E = [(E), it suffices to
show that Th(E*) = N(E). First we will show that Th(E*)

satisfies the conditions which must be true of F(E):

Condition 1

W C Th(E*) by the definition of E*,

Condition 2

Obviously, Th(E*) = Th(Th(E*)).

Condition 3
Suppose for some member of D, say dk:Mpk/gk,

d, € Th(E*) and ”pk$ E. Since ( € Th(E*), there is a least

i, say i”, such that Fik q, . Suppose k < i”. Since

Fi-b dys Fi’+l,kk q, because F.. C F..

i“+1,k"
so by the definition of E¥, pke F. Now suppose k > 17,

Also, “pk$ E

Since Fi,k q, and F,. C F, for all i > i, F.jq, for all
i > i7. Therefore, Fkk q, and so Fk+l,kk dy - Also, “§k¢ E

so again er E*,
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Thus, Th(E*) satisfies the three conditions.

We can show Th(E*) C [T(E) by showing by induction

that E* C [M(E). Obviously, Fg = WC M(E). Suppose

F; C "(E) and consider B € F, ,. Either B € F,;, in which

1
case B € M(E) by assumption, or B = Pj where Fj is such
that Py 1 y41 = Fipp,9 U {Byls Fypq, 5F 940 and “Bye E.

Suppose B is such a Pj' Since F, C M(E) by assumption,
Fi+l,0 =F, C M(E). Suppose Fi+l,j C M(E). Then since

Fis1,50 A5/ A58 [(E) because [(E) = Th([(E)). also,

“§j$ E so by the definition of [7(E), pje T(E). It follows

that for j = 0.to i+l, Fi+l,j

Fioq & M(E). Thus, E* C [N(E) and so Th(E*) C [T(E).

C M(E) and therefore,

Thus, we have that Th(E*) satisfies the three cond-
itions on [N(E) and that Th(E*) C [Y(E). Therefore,
Th(E*) = [N(E).[] '

The point of Lemma 5.4 is that an extension of a
closed normal default theory could be constructed by
starting with W and adding one default assumption at a
time - a view of an extension that accords much better
with the natural picture of the default reasoning process
than does the definition of an extension as a fixed
point. Because of the way in which the set E* is defined

the particular ordering chosen for D has no importance.



70

The purpose served by the ordering is to allow us, at say
the ith stage 1in the «construction of E*, to try over
again all those defaults which have been tried in the
previous 1 - 1 stages. The reason for this is that a de-
fault which did not apply before may apply at the ith
stage. (Since we want to add default assumptions one at
a time, we have to try defaults one at a time.) For exam-
ple, if W = {q} and D = {q:mp/p,g:my/y}, then the second
of D”s two defaults could be applied but only after the
first had been applied. Since we have no way to tell
when a default will become applicable, we keep trying
them over again.

Consider the class of sets consisting of W and all
sets of the form W || {ql,...,qk}. We define a unary re-

lation AP over this class as follows:

l. W € apP.
2, For any set A in AP and any default q:Mg/F e D,
if Akd, and Af™B, then (A || {B}) € aPp.

3. No other members of the domain are members of AP.

Lemma 5.5
Suppose E is an extension of (D,W). Then for the
sequence of sets {Fi} defined above, Fie AP for

i =0 to®,
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Proof:

Clearly, Foe AP. Suppose er AP and consider F

k+1°
From the definition we can see that Fk+l= Fk+l,k+l‘ Since

Fk+1,0= Fk, Fk+l,oe AP. Suppose F .€ AP for 1 < k+1

k+1,1

and consider ¥ IfF then

k+l,i+1" k+l,i+17 Fra1, i’
Fk+l,i+1= Fk+1,iu {?j} where ?j$ E and Fk+1,ik dj'
Since “pj$ E, Bj is consistent with Fk+l,i by the prev-

jous lemma. Therefore, Fk+l' qj, and ?j satisfy the con-

ditions of the definition of AP and Fk+l,i+le AP,

It follows that Fk+l,ie AP for i = 0 to k+1l. Thus, er AP

and by induction Fie AP for all i.[]

Theorem 5.1

Let E be an extension of (D,W). Then there is a se-

quence of sets in AP, say AO,Al,..., such that for each
i, A,C A, 4, and if A = || A; for i = 0 to®, then

E = Th(Aa).

Proof:

By Lemma 5.4 E = Th(E*) where E* = |F, for i = 0 to @
and by the definition of the sequence {Fi} and Lemma 5.5,

the Fi’s satisfy the other conditions of the theorem. []

Actually, the above results would carry through for
any closed default theory. However, the following

results do not hold for other than the normal case.
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For any closed normal default theory (D,W) and any

ordering of the defaults of D let

B, = W
Bipp = H {Byyy 5 1 023 < iv1}
where
Eiv1,0 = B

Ei+l,j+1 = Ei+l,j L {§j} if Ei+1,jF dj'

and E, ) J¥ "B;

= E otherwise.

i+1,3

Here we again assume that qj and ?j are the wffs occur-
ring in the jth default for the given ordering. Let E =
Th(E”) where E” = || E;y i = 0 to®@ and let E* be defined
as above 1in terms of this set E. The construction of E
is based on interpreting a default as a rule. We do this
in the way that 1is natural according to our informal
theory of default reasoning. Given a default, say
q:mg/p, we add p to the set constructed so far if  is

provable from that set and B is consistent with that set.

We do not concern ourselves with whether B is going to be
consistent with the entire set that will eventually be
constructed, The interesting fact about the normal form
is that treating defaults in this manner leads to the
same sets as are generated by Reiter”s fixed point defin-

ition as will be seen below.
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Lemma 5.6

E is an extension for (D,W).

Proof:

If W is inconsistent; E = L the entire language. It
is easy to see from the definition of the set E* that if
W 1s inconsistent, it has the unique extension L. Thus, E
is an extension in this case.

Suppose W is consistent. Then by construction E® is
consistent and so is E. We already know that E is an ex-
tension iff B = Th(E*). Therefore, we will show that

E® = E*,

Obviously, EO = FO. Suppose E, = Fi. Then

Ei+l,0 = Fi+l,0 so assume that Ei+1,j = Fi+l,j

By is such that Ei+l,jkdj and ?j$ Eiv1, 3 (and hence,

Fi+l,jk d4 and pj$ Fivp,5/- If Ei+l,jy “Bss then “pj¢ By
or Biiq1,k’ i+l
also Ek for all k > i+l. Therefore, since E is consis-

and that

k = 0 to j and furthermore gje E and hence

tent, “pj¢ E. Thus, Fiel,9+1 = Fi+1,9 L {?j} =

Ei+1,j L {gj} = Ei+1,j+l in this case. If ~?j ¢ B, (so

that Fi+l,j+l

Ei+l,jy "By and S0 Ey,q 449 = Biyp LI{?j}. Thus,
j =0 to i+l and it follows that

= Fi+l,j L {gj}), then we also have

Firl,3 T Fisl,yr

E. = F

i+l Therefore, by induction, E° = E*, []

i+l”
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In the definition of the sets Ei given before Lemma
5.6 an ordering of the defaults of D is assumed as was
done in constructing the set E* for Lemma 5.4. WNote that
the lemma does not tell us that we could construct an ex-
tension by simply applying each default as a rule in the
order given by the ordering. That is, if we apply the
first rule to W, then apply the second rule to the set of
wffs which results from applying the first, and so on,
the resulting set of wffs need not be a complete exten-
sion. Lemma 5.6 does let us show that if we take the de-
faults in any order and attempt to apply each default
once, the resulting set will be a subset of some exten-
sion.

Also, the definition of the sets Ei induces another
ordering, possibly distinct £from the assumed ordering.
In this ordering, defaults actually applied in construct-
ing some Ei come beforé those which never apply, and ap-
plied defaults are ordered according to the order of
their application. Using this second ordering, we could
construct an extension simply by applying the defaults in
the order given by the ordering. Similarly, the defini-
tion of the sets Fi given before Lemma 5.4 induces an
ordering of the defaults for any given extension E such
that E can be constructed by applying the defaults ac-

cording to their position in the ordering.
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Theorem 5.2
Suppose A € AP. Then there is an extension E of

{(D,W) such that Th(A) C E.

Proof:

L}

Since A € AP, either A = W or A = A, L...l A where

A, = W and for each i A, ,= A; L {?i} for some B, such

that for some di di:M?i/?ie D and Ai’ di, and Fi satisfy
the conditions of the definition of AP. Order the de-
faults of D so that the first k defaults are those used

to form Al,...,A We will show that A C E® where E” is

k‘
the set defined prior to Lemma 5.6.

Clearly AO = EO' Suppose that Ai = Ei for i < k and
consider A; ; and E; ;. E, 4 = LEi+l,j’ j =0 to i+l.

Also, E, = A,.

Bie,0 = Bi T Aie Pianger T Fian,g HOIpl i

E ~ . .
i+1,jF qj and Ei+l’jy py- But for j < i pje A;.

Therefore, for j = 0 to 1 Ei+l,j = Ai' Hence, for j = i
Ei+l,jF d and Ei+l,jy By Therefore, By, ;.1 =

A, | {B;} = A, ;, and it follows that B, , = A;

Hence, A C E which is an extension by Lemma 5.5.([]

also.

Theorem 5.3
A sentence P is a member of some extension E of

(D,W) Liff ? € Th(A) for some A € AP.
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Proof:

If P € Th(A), then p € E for some extension E by the
previous theorem.

If ? € B for.some extension E, then ? € Th(E*) by
Lemma 5.4 (where E* is as in Lemma 5.4). Since the proof
of p from E* must be finite, there is an i such that

Fik B. By Lemma 5.5 F.€ AP. (]

The above results show that for the normal case we
can give a characterization of an extension which is dif-
ferent from that given by Reiter who defines an extension
to be a fixed point of the operator [°. The set of
theorems of an ordinary formal theory is in a sense a
fixed point too, but we can also think of this set as be-
ing produced incrementally by the inference process from
the axioms of the theory. Analogously, we would like to
think of an extension of a default theory (D,W) as being
produced from W by a process involving ordinary inference
rules and the defaults of D treated as rules for intro-
ducing default assumptions. As we have seen in Chapter 2,
this does not appear to be possible in general. In the
case of a closed normal default theory the situation is
different., The above results show that it is possible to
generate an extension incrementally in a way similar to

that in which one could generate the theorems of a formal
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thecry by constructing proofs. 1In fact, in the normal
case we can supply an interpretation of a default as a
rule for inﬁroducing default assumptions and a notion of
"proof",

In Chapter 2 we discussed the natural interpretation
of a default as a kind of inference rule, finding that it
would not work in general. Let us consider this in-
terpretation as it would apply to a normal default, say
d:M?/p. Recall that the idea was to interpret the con-
sistency requirement of the default with respect to the
set of assumptions, initial plus default, that were ac-
cepted by the reasoner at the time of the default”’s ap-
plication. The above results show that we can interpret
a normal default in this way. For example, if o is prov-
able (by the rules of the predicate calculus) from W and
g is consistent with W (again, in terms of the inference
rules of the predicate calculus), then P is a member of
some extension of (D,W). PFurthermore, one can begin with
the initial assumptions of a closed normal default theory
and derive any member of an extension by a sequence of
applications of defaults and conventional inference
rules. In the process a sequence of assertions is pro-
duced which can naturally be defined as a proof of that
member of an extension.

However, since the consistency requirement of a de-
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fault 1is 1interpreted in terms of the inference rules of
the predicate calculus, we are not treating defaults in
the same way as the other rules of the system. Thus,
this approach would require altering Reiter”s initial
postulate that default assumptions are themselves conse-
guences of a logic. Implicit in that view is a further
assumption by Reiter that consequences of the logic,
whether default assumptions or assertions derived by con-
ventional deductive inference, will have the same status.
Our interpretation of a default causes default assump-
tions to be distinct from assertions derived by conven-
tional inference. 1In determining whether a default as-
sumption is consistent with the set of current assump-
tions we do not consider other default assumptions which
might be "derived" from that set, only those assertions
that call be derived by conventional inference. Thus,
Reiter”s assumption is in effect altered by our interpre-
tation. The fact that we can make this alteration in the
case of a closed normal theory without changing the con-
tents of the sets called extensions is one reason for ar-
guing that Reiter”s original stronger assumption is un-
necessary.

Reiter comes near to discovering the possibility of
interpreting normal defaults as rules when he shows that

for closed normal default theories any member of an ex-
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tension has what he calls a default proof.

Given a normal default rule q:mg/g, call d the
prerequisite of the rule and B the conseguent. For any
set of normal default rules D let P(D) be the set of
prerequisites occurring in D and let C(D) be the set of
consequents. A default proof of Y from a closed normal
default theory (D,W) is a finite sequence of finite sub-

sets of D, say {Di} for i = 1 to k, such that

l. For each d € P(Dl), Wk oa;

2. PFor each i, i = 1 to k-1 and each € P (D
wllcmy Fa

3. WUC(Dk) FY:

4, W|| C is consistent where C = Lb(Di), i =1 to k.

i+1)

Reiter shows that Y is a member of some extension for
(D,W) if and only if Y has a default proof.

While it is easy to see that Reiter”s result follows
from our result, the notion of a default proof does not
seem as appealing as the notion of "proof" (i.e., deriva=-
tion of a member of an extension) presented above. A de-
fault proof still affords no interpretation of a rule for
introducing a default assumption, nor does it fit as well
with one”s intuitive idea of a proof as a sequence of

assertions, each one derived from those preceding it.
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5.3 A Natural Two-Level System for a Closed Normal

Default Theory

We noted in the previous section that our interpre-
tation of normal defaults as rules relied on treating
them as separate from the inference rules referred to in
the interpretation. The obvious role for rules of the
type that defaults become in this view is as metalevel
rules. Defaults could then be examples of the sort of
rules envisioned in our informal theory of default rea-
soning. In fact, we can define.a two-level system that
is equivalent to a given closed normal default theory and
is such that the meta-axioms for AP correspond directly
to the defaults. We now proceed to do this.

Suppose (D,W) is a closed normal default theory in
the language L. We first define a metalanguage, L°, con-

sisting of:

1. A constant symbol for each wff, q, of L, say d”;

2. A constant symbol for W, say W”;

3. One binary function symbol, say ad;

4. The usual connectives and quantifiers and an in-
finite supply of variables;

5. The binary predicate symbols € and Pr and the

unary predicate symbols S, and Ag.
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Next, we define a structure for L”. The domain of
discourse consists of A || B || {W} where A is the set of
wEfs of L and B is the set of sets of the form W |]
{dl,...,dk}. Thus, the domain consists of the wffs of L,
the set W, and all sets consisting of the union of W and
some finite set of wffs of L. Symbols of the form q”
from L” are interpreted as the corresponding wff o of L.
The symbol W* is interpreted as the set W. We interpret
€ as the standard membership relation. S (x) is inter-
preted to mean that x is a set while Pr(x,y) is inter-
preted to mean that the wff y is provable from the set of
wEfs x. AP is interpreted as the unary relation AP de-

fined in the previous section.

The function adj is defined as follows:

If x = Wor x = W || {dl,...,qk} and v is a wff of L,
then let adj(x,y) = x || {v}

else let adj(x,y) = d.

Here, 4 is some fixed wff of L., Thus, if x is one of the
sets in the domain and y 1is one of the wffs, then
adj (x,y) is the union of x and {y}. Otherwise adj(x,v)
is a wff. The function symbol ad is interpreted as the

function adj. This completes our interpretation of L~”.

Qur metatheory must allow us to deal to a certain
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extent with sets of wffs of L. We must be able to handle
taking the union of a set of wffs and a singleton and we
must be able to show that members of these sets are
indeed members. However, we need not get bogged down in
the machinery of set theory since we do not need anything
so powerful. We thus introduce the function adj and 1its
corresponding symbol ad as well as the symbol S and its
interpretation. The axioms for ad and € given below al-
low us the necessary ability to manipulate sets. The ax-
ioms for S allow us to distinguish terms denoting sets
from those denoting wffs.

We also wish to keep our metatheory first order.
For many of the axioms below it would be most natural to
guantify over sets of wffs but this would result ‘in a
second order theory. We therefore use countably infinite
sets of axioms in these cases, one axiom for each finite
set of wffs. Finally, we introduce axioms asserting both
provability and unprovability statements for wffs in L.
In the case of provability our purpose is to keep the
metatheory simple. In the case of unprovability we of
course have no choice.

We can now state the axioms of the metatheory to be
employed in the two-level system we wish to define.

They are as follows:




In the following we write ad(W’,d‘l,...,d’k) for

ad(...ad(W’,d’l),...,d’k).

1. “éW” for each €EW.
2. “(q°ew”) for each q¢w.
3. S(W").
4., "s(q”) for all constants of L” other than W'.
5. ¥x¥y(S(x) & "S(y) « S(ad(x,y))).
6. ¥x¥y¥z (x € ad(y,z) <« (S(y) & “S(z))
& (RE y Vv =12)),

5

0° Pr (W’ ,q”) for each  such that W hd.

7n' Pr(ad(W‘,q’l,...,d’n),F’) for each d'l,...,d’

B” such that W || {ql,...,qn} FB.

L]

8.. “Pr(W’,d”) for each d such that W KJ.

0

©

n
?’ such that W || {ql,,,.,qn} Vge

©

9. AP(W ).

9

d:M?/? € D.

9 . ¥x

n 1@0,Vxn(AP(ad(W ,xl,..,,xn)) &
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rll

8 . “Pr(ad(W’,d‘l,..,,d’n),p’) for each d’l,...,d‘n,

. Pr(W*,d”) & ”Pr(W’,“p’) > AP(ad(W’,§‘)) for each
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Pr(ad(w‘,xl,...,xn),q’) &
~Pr(ad(W’,xl,...,xn),”P) >

AP(ad(W’,xl,...,xn,§))) for each q:Mp/g € D.

3

As we will see below, these axioms represent true state-
ments concerning the function and predicate symbols of L~
as we have interpreted them.

To define the desired two-level system we take the
above axioms as the axioms of the metatheory. The possi-
ble a#iom sets are just the members of AP. We take the
structure defined above as the intended interpretation of
the metatheory.

The metatheory we have defined would not be recur-
sively axiomatizable in general and we will discuss this
point below. However, the set of axioms we have defined
for the metatheory is countable. Let us call the system
just defined £. We must now show that £ meets the re-

quirements for a two-level system.

Lemma 5.7
Let t be a term of L” of the form
ad(W',d'lr---,d”k)-

Then t denotes W || {dl,...,dk}.
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Proof:

We use induction on k. If k = 1, then t =
ad(W’,d’l) and by our definition of "denotes" t denotes
adj (W,dy) = w ] {«;}.

Suppose the lemma is true for k = n and consider k =
n+l. By assumption ad(W‘,q‘l,...,d’k_l) denotes W ||
{dl""qk—l} so again by the definition of "denotes"

ad(W*,d”y,...,a",) denotes W || {ql,...,qk}.[]

Lemma 5.8
If S=Wor S =W]/[] {ql,,..,qk}, then there is a

closed term t of L” such that t denotes S.

Proof:
W is denoted by W’. By Lemma 5.7 W |] {dl,...,dk} is

denoted by ad(W’,d’l,...,d’k).[]

Lemma 5.9
Let t be a closed term in which ad occurs such that
£ is not of the form ad(W’,d’l,...,c(‘k)° Then t denotes

d, the arbitrary wff specified in the definition of adj.

Proof:

Since the only function symbol is ad, t must be of
the form ad(tl,tz).
Suppose t, and tz are constant symbols. Then either

1
tl# W° or t2= W” (otherwise t is of the wrong form). 1In
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either case, t denotes 4.

Suppose the claim is true for terms containing k
occurrences of ad and consider t containing k+1 occur-
rences of ad. If t1 denotes a set and t2 denotes a wff,

then t is of the wrong form. Thus, either t, does not

1
denote a set or t2 does not denote a wff so again, t

denotes 4. []

Lemma 5.10
A closed term t of L7 denotes a set iff t = W° or t

is of the form ad(W‘,d’l,...,d'k).

Proof:

Since the only function symbol is ad, t must either
be a constant symbol or a term of the form ad(tl,tz). By
the interpretation of the constant symbols, only W* de-
notes a set. By Lemma 5.9 if ad occurs in t, then t de-

notes a set iff t is of the form ad(W‘,d’l,...,d’k).[]

Lemma 5.11
The axioms of s metatheory are satisfied by the

given structure.

Proof:
Axioms of the form q” € W” and d” € W” are obviously
satisfied by the structure as are S(W") and axioms of the

form ~S(d).
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If x is a set in the domain of discourse, then x 1is
either W or the union of W and a finite set of wffs of L.
If vy is not a set, then y is a wff of L. Thus, by the
definition of adj, adj(x,y) is a set. Conversely, if
adj (x,y) is a set, then x must be a set and y a wff.
Hence, the axiom

¥RYY (S(x) & "S(y) < S(ad(x,y)))
is satisfied by the structure and similarly
FX¥y¥z(x € ad(y,z) < (S({y) & "S(z)) & (x €y v x = 2))
is also satisfied.

Axioms of the form"Pr(W‘,d’) and “Pr(W',q”) are ob-
viously satisfied by the structure. By Lemma 5.7 any term
of the form ad(W’,d’l,...,d’k) denotes the set W || |
{dl,;..,qk} so it is also clear that axioms of the form
Pr(ad(W’,q’l,..,,q’k),p’) and ”Pr(ad(w‘,d’l,...,d’k),F’)
are satisfied.

The axiom AP(W’) is also obviocusly satisfied. If for
any d:Mp/? € D Wkog and WV"?, then adj(W,?) € AP. There-
fore, axioms of the form

Pr (W’ ,q”) & ~Pr(W’,?') > AP(ad(W’,?')
are satisfied by the structure. Similarly, axioms of the
form

Fx

.Vxn(AP(ad(W”,xl,,..,x V) &

Pr(ad(W’,xl,...,xn),d‘) &

1°° n

~Pr(ad(W‘,xl,..c,xk),}B’) >
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Ap(ad (W™ %y ... r% ,B7)))
are satisfied. To see this we note that by Lemma 5.10

ad(W‘,al,...,an) denotes a set iff a ra, are con-

l]-qo
stants, say d’l,...,d’n, denoting wffs of L. But if

Ap(ad(W’,d’l,---,d'n)), Pr(ad(W',d'l,---,d'n),d'), and

”Pr(ad(W‘,d’l,...,d'n),?’) are satisfied by the struc-
ture, then adj(w | {ql""’dn}’?) belongs to AP and

AP(ad(W‘,d’l,...,d’n,?‘)) is also satisfied.[]

Theorem 5.4
If S € AP then there is a closed term t of L° de-

noting S such that AP(t) is provable in £”s metatheory.

Proof:

For S = W we have AP(W’) as an axiom.

For S a union of W and a finite set R of wffs it is
obvious that the members of R can be ordered, say as
Bys...sBys such that W || {p,} e ar, wil {B /Byl € ap,...,
WL {?1"°"Fk} € AP. For S # W we will show that if S =
W {?l""’?k} where B,,...,B, are ordered in the way
just described, then AP(ad(Wf,P’l,...,g’k)) is provable.
By Lemma 5.7 this will satisfy the theorem”s claim.

Suppose S = W |] {§l}' Then by the definition of AP
there is (;:MB,/B; € D where W - d, and W is consistent

with ?l' Thus, there is an instance ¢of axiom schema 9O in

which q‘l and P)l occur. Furthermore, Pr(W’,d’l) and
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~Pr(W’ﬁp'l) are instances of axiom schemas 7, and 8O re-

0

spectively. Thus, AP(ad(W’,g’ is provable.

l))
Suppose that for S = W |] {Pl""Fk} with By, ..., B,
ordered as above AP(ad(W’,g’l,...,P’k) is provable. Con-
sider S = W || {Pl""§k+l} where again we assume the Bys
are ordered as above. Then there must be
Ayp1MBys1/Prsp € D such that WL {py/ .. By} F o,y and
is consistent with ?k+l' Therefore, there is an instance
of axiom schema 9k in which ¢ K+l and ? k+1 occur. Fur-
thermore, there are instances of axiom schemas 7k and 8k
of the form Pr(ad(W ,P l,...,p k),d k+l) and
“Pr(ad(W’,g’l,...,§’k),”p'k+l). By hypothesis we have
Ap(ad(W ,? 1"“'? k)) SO AP(ad((W ,p l"“'? k+l)) is

also provable.[]

Theorem 5.5
If AP(t) is provable in £”s metatheory for a closed

term t, then t denotes a member of AP.

Proof:
By Lemma 5.11 the axioms of the metatheory are sat-
isfied by the structure defined for £. Therefore, we can

make the same argument as for Lemma 5.1.[]

Theorem 5.6

For any closed term t of L, ° € t is provable in
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£”s metatheory iff t denotes a set and d is a member of

the set.

Proof:

Suppose © € t is provable. Then ¢ € t must be
satisfied by £”s structure since the axioms are. There-
fore, t must denote a set and  must be a member of it.

Suppose t denotes a set and d is a member of the
set. By Lemma 5.10 t is either W” or of the form
ad(W’,q’l,...,d’k). If t is W” then ” € W* is an axiom.
Otherwise, d” € t is provable by repeated applications of

axiom 5.1[]

Thus, £ is a‘two—level system which is equivalent to
a closed normal default theory in the sense that the sen-
tences provable‘from each possible axiom set are con-
tained in an extension and every extension corresponds to
the set of sentences provable from an increasing sequence
of possible axiom sets. The set of axioms of the
metatheory is countable and the axioms for AP correspond
directly to the defaults of the default theory. As a
result, £ corresponds well with our intuitive view of de-
fault reasoning as a process of introducing a new assump-
tion because it is justified by our current assumptions.
We were able to define the meta-axioms for A, in a natur-

al way because, unlike the case for arbitrary closed de-
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fault theories, the extensions of a closed normal default
theory may be defined in terms of a sequence of increas-
ing sets of assumptions where each set contains only fin-

itely many more wffs than its predecessor.

5.4 The Effect of the Nonmonotonicity of a Default Theory

on the Equivalent Two-Level System

The relation between default theories and two-level
systems leads to two observations about the nonmonotoni-
city of default theories. In the following result we
consider nonmonotonically related closed normal default
theories to illustrate these two points.

Recall that it is possible to have two default
.theories, (D,W) and (C,V) such that D C C, W C V and vyet
have a formula o such that some extension B of (D,W) con-
tains d but no extension F of (C,V) contains . Both D
and W are viewed as representing the axioms of (D,W).
Thus, the default theories (D,W) and (C,V) are nonmono-
tonically related.

Suppose (D,W), (C,v) are closed normal default
theories such that D C C and W C V. Suppose also that
is a wff such that d € E where E is some extension of
(D,W) and d & F where F is any extension of (C,V). Let &

and £° be the two-level systems generated by (D,W) and
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(C,V). We first show in what sense the theories of S are
monotonically related to those of £° and then discuss the
apparent nonmonotonicity of (D,W) and (C,V). Recall that
the default assumptions of a default theory (D,W) are
those formulas B for which there is some default in D of
the form q:M§/§.

We say that formal theory A is a proper extension of
formal theory B if all theorems of B are also theorems of
A. Also, a model for theory B is a submodel of a model
for theory A if the domain of B“s model is contained in
the domain of A”s model, and all constant, function, and
relation symbols that have a given interpretation in B”s

model have the same interpretation in A”s model.

Theorem 5.7

Let £, £ be as above.

a) If ;he metatheory of £ is a proper extension of
2, then the intended interpretation of £ is not a sub-
model of the intended interpretation of £-°.

b) There exists a finite set {dl,...,dk} of default
assumptions such that for some possible axiom set, A, of

s {dl,...,dk} C A but {ql,...,dk} is not a subset of any

possible axiom set of £~.
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Proof:

Part a.

Since  is a member of an extension of (D,W) iff
is provable from some possible axiom set of £, the as-
sumption that ¢ € E but d € F is equivalent to assuming
that there is a possible axiom set of £, say A, such that
A b  but that o is not.provable from any possible axiom
set of £7.

Suppose W = V. Then A is a possible axiom set of £°
since we have the same initial object level axiom set as
for £ and we have among the'axioms of £“”s metatheory all
the axioms of the metatheory of £. Therefore, if W = V,
the possible axiom sets of £ are also possible axiom sets
of €. Thus, in this case  would be a member of some
extension of £° as well as of £. Hence, for d to exist we
must have that W # V. But then the metatheory of £° con-
tains the axiom AP(V’) instead of the axiom AP(W‘) con-
tained in the metatheory of £ where V® must be inter-
preted as V and W* as W. For the metatheory of £° to be
an extension of that of £ we would have to have W* = V7.
But then the intended interpretation of £ is not a sub-

model of £°°s interpretation.

Part b.

Since  is a member of an extension of (D,W), there



94

is a possible axiom set of £, say A, such that A } . If
there were a possible axiom set of £7, say B, such that

A C B, then we would have that B | o contradicting the
assumption that  is not a member of any extension of

£°. Therefore, there must be some finite subset of A,
say {dl,...qk}, such that d; occurs in the proof of  for
each i and {dl,...,dk} is not a subset of any possible
axiom set of £, Since W C V and V is a subset of every
possible axiom set of £, di must be a default assumption

for each i.[]

-

The above result states that £“”s metatheory cannot
be an extension of £°s metatheory in any meaningful way.

The meaning of the meta-axiom A_(W°) in £ 1is that W

P
represents the set of all initial assumptions about which
the reasoner may reflect. The point we wish to make about
this axiom 1is that it represents an assertion which in
effect must actually be emploved by a reasoner doing de-
fault reasoning. The reasoner must know what he knows if
he is going to apply rules of the form: If o 1is con-
sistent with what I know... The assertion describing
what the reasoner knows initially cannot be deduced in a
two-level system Eut must be assumed. If a new assump-

tion is added to the set about which the reasoner re-

flects, then the meta-level assumption has also changed.
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It now is made for a new, larger set of assumptions.

We argue that an assumption about what 1s initially
known is implicitly present in the informal interpreta-
tion of a default as stated by Reiter. 1If d:M?/F is to
mean: Infer B if  follows from what is known and B is
consistent with what is known, then the reasoner in ap-
plying such a rule must be taking cognizance of what he
knows. The fact that the reasoner initially knows the
contents of the set W cannot be deduced within the de-
fault theory.

We have shown that for a closed normal default
theory "what 1is known" can be identified initially with
the initial axiom set and subsequently with the union of
this set and the set of default assumptions introduced up
to the point when the rule is applied. Thus, the asser-

tions of the predicate A_ in the corresponding two-level

P
system are Jjust an explicit representation of the
reasoner”s assertions concerning what is known. Although
these assertions are made explicit by the meta-axioms of
£ and £°, we argue that they are implicit in (D,W) and
(C,V). Otherwise Reiter”s intended interpretation of a
system like (D,W) as a set of initial assumptions and
rules for introducing new assumptions does not make

sense.

The second part of the result shows the connection



96

between the nonmonotonicity of default theories and the
hypothesis that default assumptions are logical conse-
quences of the reasoner”s initial assumptions.

Consider the wff  which is assumed to belong to an
extension of (D,W) but not to any extension of (C,V) in
the above example. Recall that any extension of a de-
fault theory is just the (conventional) deductive closure
of the union of W and the set of default assumptions be~
longing to the extension. Because of this fact, ¢ must
either be a default assumption or its proof must depend
on a default assumption. Otherwise,  would be provable
from W and hence be a member of an extension of (C,V).

This observation along with part b of Theorem 5.7 in
effect télls us that (D,W) and (C,V) are nonmonotonically
related only because we choose to consider default as-
sumptions to be logical consequences. It is the default
assumptions which can be made to disappear by adding in-
formation. 1In a default theory a default assumption is a
logical consequence. In a two~level system a default as-
sumption is a type of axiom, not a consequence., Thus,
the nonmonotonicity of default theories depends on the
hypothesis that default assumptions are logical conse-
quences rather than on any intrinsic property of default

reasoning.
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5.5 Conclusions

The results of this chapter show <certain important
connections between the properties of default theories
and the hypotheses about default reasoning on which their
definition 1is bhased. First, we found that the lack of a
notion of rule in a default theory depends on a combina-
tion of what we might call the "non-normal form" hy-
pothesis and the postulate that default assumptions are
logical consequences. Second, we found that nonmonotoni-
city also depends on the second of these two hypotheses.
Thus, we find two unusual properties of default theories
depending on hypotheses about default reasoning that are
not intuitively appealing.

The results of this chapter also provide evidence
for our «claim that the notion of a two-level system
serves at least as well for a model of default reasoning
as does the concept of a default theory. For any closed
default theory there is an equivalent two-level system.
Because of this fact we can claim that the definition of
two-level system subsumes that of default theory in a
formal sense. We also claim (and this point seems more
important) that the notion of two-level system does at
least as well in capturing the informal concept of de-

fault reasoning.
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For an arbitrary closed default theory the
equivalent two-level system turns out to be intuitively
unappealing. However, the two-level system”s lack of ap-
peal 1is just a reflection of a corresponding lack in the
default theory. The notion of an arbitrary default
theory 1is a generalization which has no basis in the in-
formal examples considered in [R]. The motivation for
the notion of a default theory 1s clearly the desire to

model arguments like:

If ¥ is a bird and nothing contrary to the assump-
tion that x can fly is known, then it is reasonable

to assume that x can fly.

Such arguments are better represented by the notion of a
normal default theory than by the more general notion of
arbitrary default theory. But in the case of a closed
normal default theory we find that there is an equivalent
two~-level system which is actually more appealing than
the default theory it <corresponds to. This two=-level
system not only generates the same sets of consequences
as Reiter expects to get through default reasoning argu-
ments like the above example, it also allows us actually
to represent the arguments - something that cannot be

done in a default theorv.
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6. A Comparison of Nonmonotonic Theories and Two-Level

Systems

Because of the nature of the definition of a non-
monotonic theory it 1s not appropriate to attempt the
same sort of comparison with two-~level systems as we made
between default theories and two-level systems. It is
possible to show that for any nonmonotonic theory there
is a two-level system such that the theorems of the non-
monotonic theory are just the theorems of the two-level
system”s only object-level theory. However, this result
is not useful for two reasons.

First, the wffs of the two-level system”s object
language must be those of LM’ the language of the non-
monotonic theory. Now it must be possible to give a
meaning to the object level theorems of a two-level sys-
tem if that system is to be of interest. As we have al-
ready pointed out, however, the question of interpreting
the symbol M occurring in the wffs of LM is problematic.
We could employ the interpretation defined in {M] which
relies on an underlying modal system, but this would be
begging the question.

In the case of a default theory, showing that there
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existed a two-level éystem which defined the same sets of
conseguences as the default theory constituted evidence
for our claim that a two-level system is as satisfactory
a model as a default theory. This is because the meaning
of the consequences does not depend on the gotion of a
default theory. 1Instead the consequences are ordinary
first order formulas which could be given an interpreta-
tion in the usual way. 1In the case of a nonmonotonic
theory we would instead have to rely on a notion of se-
mantics which is essential to the model we are consider-
ing. Thus, 1in effect we would not have a significantly
different explanation of default reasoning.

Another factor which makes the formal comparison of
nonmonotonic theories and two~level systems of little use
is the lack of a "normal" nonmonotonic theory. We be=-
lieve that our «claim of the comparability of default
theories and two-level systems is made much more convinc-
ing by the fact that in the case of a normal default
theory the equivalent two-level system can actually be
said to do better at capturing the informal concept of
default reasoning than the default theory does. Since
there is no "normal" nonmonotonic theory corresponding to
a normal default theory, the only sort of two-level sys-
tem we can define that is equivalent to a nonmonotonic

theory will share with it the problem of having no rules
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for the adoption of default assumptions.

We will thus take a different approach to the com-
parison of nonmonotonic theories and two-level systems.
We first study the notion of a nonmonotonic theory in
order to isolate the motivations for its form. We then
argue that the notion of a two-level system could be ex-
tended to 1include the concept which underlies the main
difference between the definitions of nonmonotonic theory
and default theory. To illustrate our claim we present

an example of such an extended system.

6.1 Distinctions Between Nonmonotonic and Default

Theories

We have argued that the notion of a two-level system
does at least as well in satisfying the motivation behind
the definition of a default theory as does the default
theory 1itself. The definition of a nonmonotonic theory
is intended to serve the same purpose as that of a de-
fault theory: to model informal default reasoning argu-
ments. However, there are differences between the points
of view of the two models.

First, the definition of a nonmonotonic theory does
not include an explicit notion of default. Second, while

a default theory may define any number of extensions
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there 1is only one set of theorems for a nonmonotoniq
theory. Third, the symbol M is a part of the language of
a nonmonotonic theory.

The absence of an explicitly defined class of syn-
tactic objects corresponding to defaults is not as great
a difference as it may seem to be, because both default
and nonmonotonic theories are intended to represent the
same intuitive concept. In both cases the basic idea 1is
that the reasoner accepts, say, ? because it is not con-
trary to what the reasoner knows (and because there 1is
some reason to think ? is likely to be true, of course).
In terms of the assumptions used by Reiter and by McDer-
mott and Doyle this is to say that B is inferred by the
reasoner because it is consistent with what is known and
because some known facts make ? likely. At the same
time, it is desired that the symbol M, introduced in LM’
should mean "is consistent with what is known" which is
just what the symbol M was intended to mean in a default.
Thus, any default has a corresponding wff in Ly

For example, the default d:M?/P corresponds in its
intended meaning to the intended meaning of the wff o &
M? > g of LM. Furthermore, the intended meaning of a de-
fault appears to characterize very well the form that one

would want a "default inference rule" to take if one be-

gan with the hypotheses about default reasoning shared by
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Reiter and McDermott and Doyle. Thus, although there oc-
cur in LM many wffs containing M that do not correspond
to a default, they do not fulfill any apparent role in
modelling default reasoning. Certainly, no such role is
demonstrated for these formulas by McDermott and Doyle.
A possible exception to this conclusion is the class of
wffs of LM which contain nested occurrences of M, for ex-
ample, MMd(. We will consider the significance of such
formulas below.

In any case, it seems clear that most if not all
wffs of LM that'contain M, but that do not contain nested
occurrences of M, could be naturally expressed as
metalevel formulas in a two-level system just as defaults
can be so expressed. Given the .intended meaning of a
formula such as o » (M? & Y)Y, a corresponding metalevel
formula in a two-level system c¢ould be something like
Pr{s,q) = ~Pr(S,"‘p) & Pr(sS,Y) in the notation of Chapter
5. The wff of LM is supposed to mean "d implies P is
consistent with what is known and Y". The metalevel wff
of the two-level system would mean "if  is provable from
S then ? is consistent with S and Y is provable from S".
Considering the differences between the wunderlying hy-
potheses of the two approaches, this seems to be the ap-

propriate translation.

The only apparent problem with rendering formulas of
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LM containing unnested occurrences of M into metalevel
formulas of a two-level system occurs with LM formulas of
the form vxMq. The counterpart of this formula in a
two-level system is not obvious. Although the meaning
intended for such a formula by McDermott and Doyle is un-
clear, if we assume what seems the most likely interpre-
tation there does appear to be a way to deal with such
formulas in a two-level system.

For example, consider ¥xMP(x). It seems most likely
that this formula is supposed to mean that for any term t
it is consistent to believe P(t). It should be possible
to express the same sort of thing in a two-level system
with an appropriate ﬁetatheory. In the two-level systems
considered in Chapter 5 object-level wffs can only be
treated as atomic objects in the metatheory. However,
instances of metatheories in which the wffs of the object
language can be treated as structured objects are well
known. It seems likely, therefore, that a two-level sys-
tem could be constructed in which object level formulas
can be manipulated so as to allow one to express the ap~-
parent intended meaning of ¥xMP(x).

Recall that given a set A of wffs of Ly

ASA(S)

{M? | ~p$s} - Th(a)

NM, (S) Th(A || As, (8))
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and that FP(A) 1s the class of all sets S such that 5§ =

NM_. (S} while TH(A) is the intersection of the members of

A(
FP{(A). Thus, the components of the definition of a non-
monotonic theory that correspond most closely to the ex-
tensions of a default theory are the members of FP(A).
However, instead of taking Reiter”s approach and viewing
each member of FP(A) as a "possible world" that the rea-
soner could accept if he began with the initial assump-
tions of A, only those formulas in the intersection of
the members of FP(A) are treated as consequences of A.
No argument is given in either [MD] or {M] as to why this
coursé 1s chosen instead of an approach similar to
Reiter”s.

Reiter”s allowance of multiple extensions appears to
stem from an informal conception of the default reasoning
process similar to the one presented in Chapter 4. There
we imagined the basic default reasoning step to be one of
adding to one”s current assumptions a new assertion which
does not follow from the current assumptions by conven-
tional deductive inference. Each time a new assertion is
added the possibility of adding certain other assumptions
at some later point in the process is ruled out., For ex-
ample, the addition of a given assertion precludes the

later addition of its negation. This view of default



106

reasoning leads naturally to the notion of various se-
quences of assertions. Each sequence represents one pos-
sible set of choices made in incrementally adding default
assumptions to a given initial set. Although two such
sequences might contain the same assertions in different
order, in general they would contain different assertions
and represent incompatible chains of default reasoning.
The (conventional) deductive closure of each such se-
guence 1is an extension. As we saw in Chapter 5, this
view can be formalized, though not in the way in which
Reiter attempted to do so.

The basis for multiple extensions, then, is the no-
tion that the reasoner”s acceptance of a given default
assumption could rule out others that might themselves be
accepted 1if the given assumption had not already been
adopted. One possible way for such a situation to occur
is when the reasoner is faced with a default assumption,
say d, such that there is evidence for the acceptance of
either d or ~d and both are consistent with what he
knows. The natural response to such a case is to accept
neither o or ~“d and wait for further evidence. However,
it might be the case that the reasoner is forced to ac-
cept one or the other. For example, we might be faced
with having to decide whether or not to continue funding

the search for extraterrestrial life. We can view our




107

decision as an implicit acceptance of either the ex-
istence or nonexistence of such life, a default assump-
tion in either case. However, other explanations of this
example seem possible.

In fact, this question, which apparently divides
Reiter”s approach from that of McDermott and Doyle, of
whether or not accepting a default assumption can rule
out other equally acceptable default assumptions remains
open. The approach taken in defining the notion of a
two-level system can' accommodate either possibility. We
saw in Chapter 5 that a two-level system can be defined
which generates multiple incompatible sequences of de-
fault assumptions, but it is equally possible to define a
two-level system whose rules never result in incompatible
default assumptions. That is, if more than one sequence
of default assumptions could be generated, they would
differ only in order. The set of default assumptions
that could be generated would always be the same. Furth-
ermore, such a system would have a more satisfying nature
than a set of assertions defined, in the manner of McDer-
mott and Doyle, as the intersection of a collection of
fixed points.

It is also interesting to note that when McDermott
considers in [M] the problem of doing default reasoning

he suggests that the reasoning agent must "be brave" and
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work within a single fixed point anyway instead of
éomehow trying to determine that a default assumption oc-
curs in all fixed points. However, the problem of an ef-
fective process for deriving the members of even one
fixed point remains unsolved.

Because the symbol M is part of the language L one

M’
can construct all sorts of wffs in this language which do
not resemble Reiter”s defaults. We have already noted
that such formulas, in the case that they do not contain
nested occurrences of M, could be represented in a natur-
al way as part of a two-level system. We now consider
the importance of nested occurrences of M.

The intended meaning of a formula such as MM would
be something like "It is consistent to believe that it is
consistent to believe ". What would the ability to con-
struct such assertions have to do with default reasoning?‘
The examples of informal default reasoning that we have
previocusly considered do not require such assertions.
They all took the form "If there is evidence for  and o
is not contrary to what is known, then it is reasonable
to assume ". Even if we interpret "not contrary to" as
consistent with, we only need to be able to assert that
is consistent with what is known. This would just be Mg

under the intended interpretation of M. Of course, if

itself turned out to be, say, Mﬁ’ then we would find our-
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selves wanting to assert MMp. However, in each of our
examples  in fact is a simple first-order assertion con-
taining no claims about consistency. Why might a default
assumption include M? 1Is the meaning of an informally
stated default assumption ever such that its translation
into a formula of LM would require the symbol M? No ex-
amples of such default assumptions are given in either
[MD] or [M], and indeed, it is difficult to conceive of
any.

Because we are assuming here that the phrase "not
contrary to" from informal default reasoning rules is to
be interpreted as consistent with, there are two possible
ways in which M could occur in the formalization of a de-
fault assumption. 1In particular, a given instance of a
default assumption contain%ng M might or might not be a
formula which its:.1lf could be viewed as a rule for infer-
ring a default assumption. For example, the formula d &
MB > B would constitute a rule for introducing the de-
fault assumption B under McDermott”s and Doyle”s intended
interpretation. On the other hand, a formula such as M,
which is merely supposed to mean that it is consistent to
believe g but does not allow the inference of g, would
not be such a rule.

Default reasoning involves what we may call a local

criterion and a global criterion., The local criterion
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can be expressed as "There is evidence for " while the
global criterion is "d is not contrary to what is known".
The use of consistency as the global criterion for ac-
cepting a default assumption hides the fact that the two
example formulas above reflect two possibly distinct
questions about default reasoning. In the case of d & Mp
> p, we are actually considering the possibility that
one can do default reasoning about default reasoning. To
do so would involve reasoning about an assertion that
refers to a global property of the reasoner”s knowledge,
that property being consistency according to the hy-
potheses of McDermott and Doyle. In the case of M, we
are considering the more general case of doing default
reasoning about an assertion stating some global property
of the reasoner”s knowledge. In general, this global
property need not have arything to do with default rea-
soning, and the assertion might just as well refer to
some other property than consistency. In both examples,
then, the real guestion concerns assertions about global
properties of the reasoner”s knowledge.

Although no explanation is given in either [MD] or
[M] as to why the symbol M is included in the language,
the main motivation is obviously the assumption that de-
fault reasoning may require the ability to reason about

assertions which themselves contain references to con-
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sistency. The focus on consistency, however, apparently
stems from the assumption that consistency is the cri-
terion for acceptance of a default assumption. We see
that when the consistency hypothesis is dropped the prob-
lem 1is really a more dgeneral one of dealing with default
reasoning about assertions that contain global reference
to the reasoner”s knowledge.

How default reasoning can involve reasoning about
assertions of such global propverties, 1f at all, is
another open problem. McDermott and Doyle do not give
any actual examples of such reasoning, nor do we know of
any. We can easily see that if such examples do exist,
they cannot be characterized either by a default theory
or a two-level system. However, we will see below that
the notion of a two-level system can be extended to han-
dle this problem as it appears in the context of our hy-
potheses about default reasoning.

We have noted three major distinctions between the
notions of default theory and nonmonotonic theory. Con-
cerning both the absence of an explicit notion of default
and the single set of theorems defined by a nonmonotonic
theory, we have argued that when each formalism is viewed
as an attempt to model default reasoning the distinction
in question is not of real interest. We have also argued

that, anyway, a two-level system can accommodate the way



112

in which each of these matters is handled in a nonmono-
tonic theory. 1In the third case, the distinction appears
to be potentially of greater importance. There would not
be any natural way to handle the nonmonotonic theory ap-
proach in this instance within a two-level systen. We

must therefore consider an extension of the notion of a

two=-level system.

6.2 The Notion of an N-Level System

Let us consider the effect of our view of default
reasoning on the problem of default reasoning about an
assertion that refers to global properties. The essen-
tial idea is that one might wish, for example, to justify
a default assumption that refers to some glcbal property
of the reasoner”s knowledge. We have taken the siew that
a reasoner, in deciding whether a default assumption is
contrary to his knowledge, does not in fact consider all
his knowledge but some part of it. We have further as-
sumed that that part of his knowledge can be represented
by an object theory while the default reasoning process
that concerns this knowledge «can be represented by an
inference process within a corresponding metatheory.
Thus, the particular global property of the reasoner”s

knowledge that must be asserted to hold in a default rea-
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soning argument becomes a property of an object theory.
A natural generalization 1is that any global property
should be treated as a property of an object theory.

In other words, our view of default reasoning leads
us to consider the reasoner”s knowledge to be divided
into components which we represent by various object
theories and a metatheory. Once the reasoner”s knowledge
is so divided we no longer need refer to vague global
properties of some kind; instead we can refer to proper-
ties that apply to some component. However, if we have
only two levels, assertions referring to properties of
components can only refer to properties of the object
theories on the first level and can only exist themselves
in the metatheory on the second level. Therefore, in a
two-level system we cannot do default reasoning about
such assertions. We can at most employ them in the de-
fault reasoning process.

Thus, if we want to do default reasoning about
assertions referring to what correspond to global proper-
ties in our view, the obvious solution is to add another
level. If we have a third level, it is then possible to
reason in the theory of the third level about assertions
at the second level, including those that happen to as~
sert properties of the theories at the first level.

Furthermore, we can arrange to have more than one theory
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at the second level, thus allowing the possibility of de-
fault reasoning about assertions at the second level.
However, this does not mean that we must contemplate ad-
ding infinitely many levels.

Adding a third level would be intended to represent
the ability of the reasoner to reason about that part of
his knowledge represented at the second level. The
second level is 1itself intended to represent his
knowledge about that part of his knowledge represented by
the first level. Finally, the first level is intended to
represent the reasoner”s knowledge about matters other
than his own knowledge. There is no a priori reason for
us to suppose that the reasoner can somehow reason about
everything that he knows. It is just as plausible to
postulate that there is certain information that can be
employed by the reasoner but which he cannot reason
about. Also, if we are attempting to represent how a
machine might do default reasoning, having only a finite
number of levels seems more promising. We therefore pro-
pose to define a notion of n-level system, analogous to a
two-level system, that assumes only a finite number of
levels.

Let n be an integer greater than 1. An n-level sys-
Egﬁ is defined to be a collection S of formal theories

and a collection of interpretations S” such that:
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1. Each theory of S is assigned to some level
where 1 < j < n, and each level j is assigned at
least one member of S with level n being assigned

exactly one theory.

2. Each theory assigned to level j, Jj > 2 has a
unique interpretation in S”, and each interpretation

in 8 is an interpretation for a unique theory in S.

3. If T is a member of S assigned to level j, 2 < j
< n, then there is a two~level system £ such that T
is the metatheory of £, each of the object theories
of £ 1is a member of S assigned to level j - 1, and
T’s interpretation in 8 is the intended interpreta-

tion of the metatheory of £.

4., If T is a member of S assigned to level j, 1 < J
< n-1, then there is a two-level system £ such that
T is an object theory of £, all other object
theories of £ are among the members of S assigned to
level j, the metatheory of £ is a member of S, say
T, assigned to level j + 1, and the interpretation
of T in 8° is the intended interpretation of £’s

metatheory.

This definition, which depends on our previous de-

finition of a two-level system, simply collapses to the
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earlier definition if n is 2. If n is larger than 2 we
have a system in which each theory except for the one as-
signed to level n is an object theory of some theory as-
siéned to the next higher level. Similarly, each theory
except for those assigned to level 1 is a metatheory for
some collection of theories assigned to the next lower
level. In addition the relation between any given
metatheory and 1its object theories is the same as that
established in the definition of a two-level system.

We sketch an example of a three-level system based
on the two-level system £ defined in section 5.3. The
level~1l theories will be the object level theories of £.
(Recall that the object theories of a two-level system
are defined by the system”s possible axiom sets.) The
level-2 theories will be defined from the metatheory ax-
ioms of £. Let us call the level-2 theoriés Tj’ 0 <3 <
@, We define TO to be the metatheory axioms of £ la-
belled 1 through 9 (note that this is an infinite set).
For each j greater than 0 we define Tj to consist of the
axioms of Tj—l plus the metatheory axiom of £ labelled
j-1

A collection of two-level systems can be defined us-
ing the theories of level 2 as their metatheories in the
following way. Let £ be the two-level system whose

0
metatheory is TO and whose only possible axiom set is W,
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the initial possible axiom set of £. (An appropriate in-
terpretation of TO could be defined as the intended in-
terpretation.) For j greater than 0 let Zj be the two-
level system whose metatheory is Tj and whose possible
axiom sets are those of Zj_l along with those axiom sets

which would be generated by applying axiom 9j— to the

1

possible axiom sets of I, (Again, include an ap-

j-1°
propriate interpretation for the metatheory.) It is easy
to see from the definition of £ that each Zj is a two-
level system. Furthermore, the theories of levels 1 and
2 are seen to satisfy the above conditions for an n-level
system.

Finally, we can define a theory for 1level 3 which
would be similar to the metatheory of £ (though not in
the same language as £). This theory then serves as the
metatheory of a two-level system, say Z*, whose possible
axiom sets are defined bv the theories of 1level 2, the
initial possible axiom set being the axioms of TO'

The three-level system that we have sketched would
allow default reasoning about rules for doing default
reasoning. The system 1s an artificial one. There is no
reason to suppose that the rules for default reasoning
defined in the metatheory of £ in Section 5.3 are incom-

patible and cannot be accepted simultaneously. However,

our example does illustrate the possibility of going



118

beyond a two-level system to allow the representation of
default reasoning about assertions referring to global

properties of the reasoner”s knowledge.

6.3 Conclusions

Unlike the case of default theories, a formal com-
parison of nonmonotonic theories and two-level systems
does not provide useful evidence for our claim that the
notion of a two-level system makes as satisfactory a
model of default reasoning as does the notion of a non-
monotonic theory. Instead we have argued that a two-
level system can formally express, although in a dif-
ferent way than a nonmonotonic theory, the concepts
underlying the differences between the definitions of de-
fault theory and nonmonotonic theory. 1In fact, for the
concept underlying the most significant of these differ-
ences, the presence of the symbol M in the language of
nonmonotonic theories, we cannot give an adequate formal-
ization in terms of a two-level system. We can, however,
begin to formalize this concept by extending the notion
of two-level system to n-level system. The need for the
notion of an n-level system remains in doubt since no ac-
tual examples of default reasoning which would necessi-

tate such a system have as yet appeared.
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7. Heuristically Based Default Reasoning Systems

In [W] Winograd gives a survey of what he terms ex-
tended modes of 1inference. A number of computational
systems are described and an attempt is made to determine
their common characteristics. This leads him to hy-
pothesize that computer systems can be devised to perform
certain types of inference which he claims are not for-
malizable in standard logical terms. The various forms
of inference considered turn out to be esséntially de-
fault reasoning based on certain types of heuristic
rules. It is easy to see that the various sorts of rules
discussed cannot be modelled by either default or non-
monotonic theories, let alone ordinary formal theories.
However, we argue in this chapter that such rules can be
modelled by two-level systems, which is really to say
that they can be modelled in standard logical terms.

Four categories of procedures for performing heu-
ristically based inferences are given, each representing
a principle that forms the basis of a type of default

reasoning:

1. Procedures which infer a formula as the result of

the presence or absence of certain formulas in
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memory.

2. Procedures which infer a formula if a finite
deductive procedure fails to prove a certain for-

mula.

3. Procedures which attempt inferences in a certain

order.

4. Procedures which infer a formula if a resource-
limited procedure fails to prove a certain formu-

la.

Note that the fourth category is a special case of the
second since resource~limited procedures are a subclass
of the class of all finite procedures.

We first examine the definitions of Categories 1, 2,
and 3, to determine their relationship to the notion of
default reasoning and to isolate for each the reason for
the c¢laim that it represents a form of inference not
reducible to conventional inference. We then show how
the concept of default reasoning procedures underlying

each category can be modelled in a two-level system.

7.1 Category 1

We begin with an example discussed by Winograd. If
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we are asked whether the Mekong River is longer than the
Amazon, we might conclude that it 1is not, since the
Mekong being longer than the Amazon would be such a sig-
nificant fact that we would know it if it were true,.
Here the word. "know" clearly means something like "be
aware of the truth of". Letting  be an arbitrary asser-
tion, we can generalize this example to a rule of the
form: If we are not aware of the truth of  and ¢ is such
that if it were true we would likely be aware of it, then
it is reasonable tc assume that  is false. Such a rule
represents an intuitively valid Jjustification for the
assertion that an assumption is reasonable and 1is, in
fact, a form of default reasoning. For an assertion such
that we would be likely to be aware of its truth 1if it
were true, not being aware of its truth constitutes ab-
sence of evidence contrary to the negation of the asser-
tion.

There are two problems in constructing a computer
reasoning system employing the above form of default rea-
soning. One is how one should define the set of asser-
tions of whose truth the system will be "aware" at any
point in a computation. The second problem is how the
system is to decide for a given assertion whether it
would likely be aware of the assertion®s truth if it were

true.
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Suppose we wish to construct a reasoning system
which employs conventional inference along with the above
rule. One way, and the way suggested by Winograd”s char-
acterization of Category 1, to define the set of asser-
tions of whose truth the system is aware at any point
during a computation is to define it as those assertions
occurring explicitly in the system”™s memory at that
point. The set would therefore consist of those asser-
tions assumed true initially or through the default rule
along with those assertions that had previously been log-
ically inferred by the system from its assumptions. The
significant feature of this definition for our purposes
is that it makes a distinction between assertions which
are logical consequences of the system”s assumptions and
have already been explicitly inferred by the system and
those which are also logical consequences but have not
been explicitly inferred. Within a formal theory there
is no way to distinguish those theorems for which a proof
has been constructed from those for which we have no
proof. They are all equally theorems of the formal
theory. Therefore, any rule making use of the distinc-
tion between proved and unproved theorems cannot be part
of a formal theory, and we find here the basis for the
claim that a procedure belonging to the first category

defines a form of inference which cannot be explained in
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terms of inference in a formal theory. The definition of
the Category 1 is a generalization of the idea of defin-
ing the assertions that a reasoning system knows to be
those that occur in memory.

The notion of generating an assertion as the result
of the presence of certain formulas in memory need not
concern us. The procedure generating an assertion from
those in memory is effective since it is part of a com-
puter system. Thus, this case 1s Jjust conventional
inference, though the procedure may represent some non-
standard inference rule. Our task, therefore, will be to
demonstrate the possibility of modelling by a two-level
system the behavior of a system which asserﬁs formulas

from the absence of assertions in memory.

7.2 Category 2

The definition of the second category is motivated
by the observation that often after we have expended a
certain amount of effort to infer an assertion and have
failed, we decide that the assertion is probably false.
If, having arrived in this way at the conclusion that an
assertion 1is probably false, we then assume the negation
of the assertion, we have introduced a default assump-

tion. A general rule would be: If an attempt has been
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made to infer  and the attempt has failed, and if o 1is
such that 1f it were true the attempt would have been
likely to succeed, then it is reasonable to assume that
is false.

As in'the case of the first category, there are two
problems 1in constructing a computer reasoning system em-
ploying this form of default reasoning, one of which is
addressed by the definition of the second category. The
first problem is how to handle the notion of an attempt
to infer . The second is how to decide when o belongs
to the class of assertions which may be assumed false
after the failure of an attempt to prove them.

In a computer reasoning system, an attempt to infer
an assertion would Jjust be the execution of some pro-
cedure that would take as its input the assertion to bé
proved along with the assertions accepted as true by the
system. Here, we are considering an inference attempt
that ends at some point and so corresponds to a total
procedure, that is, one which halts for every input.
Thus, we have the notion of a computer reasoning system
which generates an assertion as the result of the failure
of a (total recursive) subprocedure to infer the negation
of the assertion. The definition of the second category
is a generalization of this notion.

In general we cannot express within a formal theory
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a procedure for inferring theorems of that theory. Hence
we cannot include a rule of the type described above. Of
course, such a rule introduces new assumptions and so
cannot be part of the theory formed by introducing those
assumptions in any case. 1In a subsequent section of this
chapter we show how such a rule can be represented in a

two~-level system.

7.3 Category 3

The third category is illustrated by the example of
default reasoning about the properties of birds. 1In that
example we considered the operatioﬁ of introducing a de-
fault assumption asserting that a tern can fly given that
the reasoner already held an assumption that most birds
can fly, along with assumptions stating that certain in-
dividual species of birds cannot fly. In this example we
have an assertion stating that a property is generally
true of the members of a class as well as several asser-
tions stating that the property is false for certain
specifically named members of that class. A general rule
expressing the type of default reasoning done in the ex-
ample would be: If property P is true of most members of
a class and nothing is known contrary to the assumption

_that P is true of a specific member of the class, then it
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is reasonable to assume that P is true of that individu-
al.

The problems in constructing a computer reasoning
system for the above form of default reasoning are making
precise the notion of a property holding for most members
of a class and handling the idea of not knowing anything
contrary to the assumption that that the property holds
for some individual. As before, only the first of these
problems is involved in the definition of the third
category.

To avoid the difficulty of giving a precise defini-
tion to a quantifier like "most" computer systems have
been constructed in which assertions of the form "Most
members of class C have property P" have been replaced by
"All members of class C have property P". These systems
also 1include assertions of the form, "I is a member of C
and does not have property P". It is left to the program
performing inference to deal with the existence of such
inconsistent assumptions in the system.

One method for dealing with the kind of inconsisten-
cy 1illustrated 1is to choose a subset of the assumptions
contained in the system and attempt to prove the asser-
tion from these. If the attempt fails after finitely
many steps, a new set of assumptions 1is chosen. The

program”s criteria for choosing sets of assumptions are
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such that no set 1including a universally gquantified
assertion 1s employed until all sets containing only
those assertions about individuals which the program con-
siders relevant have Dbeen tried., Thus, the program
chooses axioms from which to reason in a certain order.
In doing so it behaves according to the above rule with
"nothing known to the contrary" interpreted as "no proof
from a relevant set of assertions about individuals has
peen found". The intention is that the program be de~-
fined in such a way as to preclude any attempt to con-
struct a proof from an inconsistent set of assumptions.
It 1is not known whether such procedures exist for other
than trivial cases. However, it is often c¢laimed that
humans actually maintain inconsistent sets of beliefs of
the sort described above and somehow avoid getting into
trouble in their reasoning by using a procedure similar
to the one described.

In a later section we consider a hypothetical com-
puter reasoning system of the sort just described and
show how to define a two-level system in which certain of
the possible axiom sets represent the sets of assumptions

which could be chosen by the computer reasoning system.
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7.4 Two-Level Systems Based on Heuristic Rules: Some

Background Considerations

Before discussing the definition of a two-level sys-
tem modelling the concept motivating each of the three
categories, we first establish some necessary conven-
tions. We also explain the sense in which we will claim
to have captured these concepts.

We assume for our discussion that the assertions
treated by these systems are expressed in some formal
language L. This ignores the gquestion of whether the
languages used by some of the systems discussed by Wino-
grad can be considered formal languages, but the signifi-
cant characteristics of the heuristic default rules being
considered do not depend on the choice of language. We
also assume that, with the exception of some given de-
fault inference rule, all inference rules employed by a
system are conventional. This assumption also does not
effect the properties of default inference rules that we
wish to consider.

The notion of a two-level system relies on the abil-
ity to reason about sets of wffs in a language. Each
category defined by Winograd represents a heuristic prin-
ciple of default reasoning. For example, the first

category represents the principle of introducing an as-
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sumption because its negation 1is not in memory rather
than because it is consistent with current assumptions.
We will argue that the principle represented by each
category can be thought of as a principle for reasoning
about sets of wffs 1in a language and so can be incor-
porated in a two-level system.

First we relate the notion of reasoning about sets
of wffs to the sort of computations done by computer rea-
soning systems. Typically, a system of the sort con-
sidered by Winograd begins with an initial set of assump-
tions in memory. All wffs in memory at any time during a
computation are considered true. (Actually, the wffs to
be considered true might be explicitly marked or located
in a particular part of memory, the truth value of wffs
not so marked or located being left indeterminate, but
this refinement could easily be handled by slightly com-
plicating our argument, so we ignore it.) Thus a default
assumption is introduced simply by placing the formula in
memory. It is also usual for the system to add each new-
ly inferred formula to memory as it is inferred. At any
point during a computation, therefore, memory contains
the 1initial assumptions, any default assumptions which
have been introduced up to that point, and any formulas
which have so far been inferred from other formulas in

memory. (We will ignore here the possibility of deleting
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assumptions and of adding new assumptions which are not
default assumptions.) The computations of such a system
can thus be described by a finite or infinite sequence of

finite sets of wffs of L, say Sl,S that has the

2,-.-’
following properties:

1. Sl is the initial set of axioms (note that Sl is

finite);

2. If Sj and Sj+l

guence then Sj+l= Sj L {dj} where either qj is a

default assumption whose introduction is justi-

are consecutive members of the se-

fied by applying the system”s default inference
rule to the members of Sj or dj is the result of
applying a conventional deductive inference rule

to members of Sj’
3. For each i and j, Si # Sj if i # 3.

The members of such a sequence represent the contents of
the system”s memory at successive stages of the computa-

tion. Let us call such a sequence a memory-state se-

guence. The collection of all memory-state sequences
determined by a particular set of rules and initial as-
sumption set can be thought of as representing the set of
all computations which might be performed by a system us-

ing these rules and initial assumptions.
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Given the notion of a memorv-state sequence 1t is
reasonable to say that the set of wffs which can be ac~
cepted as true by the system at any point during a compu-
tation is just the deductive <closure of the set
representing the contents of memory at that point. We
can also reascnably say that a two-level system accounts
for the type of reasoning done by our hypothetical com~
puter system 1f it is the case that each object theory
corresponds to the closure of some member of a memory-
state sequence, and the closure of each member of a
memory-state sequence corresponds to some object theory.
Thus, our approach will be to define two-level systems
meeting these conditions. The system defined will also
be such that the meta-axioms for A_ bear a natural rela-

P
tion to the heuristic default reascning rule being con-

!

sidered.

7.5 Systems Based on "Memory Contents Rules”

The basis of the definition of the first category is
the notion of asserting that an assumption is reasonable
because of the absence of some formula from memory. The
most natural example of this form of justification is the
case of asserting the reasonableness of an assertion be-

cause of the absence of the assertion”s negation.
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Consider a computer reasoning system which employs a
rule of the form: If  is such that if it were true then
it would already be in memory and, if ¢ is not in memory,
then it is reasonable to assume “q. Since it is the com-
puter system which determines whether a wff is already in
memory, the set of potential default assumptions, those
wffs which can be assumed if their negations do not occur
in memory, must be recursively enumerable., Let us call
this set of wffs PA. Thus, the memory-state sequences of
this system would be all finite or infinite sequences of
sets S

.15 such that:

l[-o k’-oo

1. Sl = I where I is the initial set of assumptions;
2. For each j, Si+1 = Sy L {qj} where either dy € PA
and “d. S. or S. .}
qJ ¢ J J 3 d]

3. Si # Sj for distinct i and j.

We can think of PA as defining a predicate, say P,
where P(q) is true just if € PA. 1In the two-level sys-
tem defined below we will simply include all true in-
stances of P(g) as axioms. Of course, the problem of
which formulas should actually belong to PA is likely to
be difficult and is an important issue in its own right.
However, it is the notion of introducing an assumption
because of the absence of some formula from memory that

Winograd contends is outside the concepts of conventional




133

deductive logic, and this contention makes no reference
to a realistic approach to handling PA.

In considering the general idea of handling at a
metalevel any rule which requires the assertion of the
absence of a wff from memory, it is natural to think of
defining a predicate which is true of those sets of wffs
that could be the contents of the system”s memory at some
point during execution. One would then be inclined to
attempt to use such a predicate directly 1in expressing
the required rule. However, our definition of a two-
level system was made in terms of possible axiom sets.
While we would expect the system”s memory always to in-
clude the current axioms, we would not expect it to con-
tain only axioms. Thus, we are faced with the problem of
handling the notion of the current contents of memory
within a system that is defined in terms of the current
axioms, usually just a subset of total current memory
contents, We will see below that this can in fact be
done,

By defining two-level systems in terms of axiom sets
(actually, formal theories) we arrive at a model that is
based on conventional concepts of logié. If we tried to
replace object-level theories in our notion of a two-
level system with, say, object-level memory sets, we

would cause the difference between default reasoning
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based on memory contents and conventional inference to
appear to be greater than it is.

Let us suppose that the language used by the comput-
er system is L and that the initial set of assumptions is
I. Consider the class W of sets consisting of I and all

sets of the form I || {dl,...,dk} where each o, is a wff

. of L. We define two relations by simultaneous recursion

over this class. The first, M (for "memory set"), is
unary; the second, MA (for "memory set axioms") 1is

binary.

1. I € M;

2. For all sets S and R belonging to W, if 5§ € M,
(S,R) € MA, S F o, and & s, then s || {a} € M;

3. Por all sets S and R belonging to W, if S € M,
(S,R) € MA, d € PA, d ¢ S, and " ¢ S, then
s || {«} e m;

4, Nothing else is in M.
In the definition of M,  is any wff of L.

1. (I,I) € MA;

2. For all sets S and R belonging to W, if S € M,
(S,R) € MA, S } d, and d ¢ S, then
(s U {a}l,r) € ma;

3., For all sets S and R belonging to W, if S € M,
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(S,R) € MA, € PA, d ¢ S, and "q € S, then
(s U {a},r | {a}) & ma;

4. Nothing else is in MA.

A third relation, AP, will serve the same purpose as

those previously defined with this name:

1. AP is the range of MA. That is, R € AP if there
is a set S belonging to the class such that (S,R)
€ MA.

2, Nothing else is in AP.

Each member of M represents a set of wffs that could
be the contents of memory at some point during a computa-
tion, as we will see Dbelow,. MA associates with each
member of M a set of axioms thét generates the same
theorems as M. We will also see below that if (S,R) be-
longs to MA then Th(S) = Th(R). Tﬂe result of these ob-
servations will be that the memory-state sequences can be
characterized by sequences of members of AP while every
member of AP is a subset of some member of a memory-state
sequence, This correspondence will allow us to define

the desired two-level system.

Lemma 7.1

S € M 1ff there is R such that (S,R) € MA.
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Proof:

Only if:

We use induction on the cardinality of S - I. Sup-
pose S = I. Then (I,I) € MA by definitién.

Assume that if the cardinality of S - I is n, then
there is R such that (S,R) € MA. Consider S such that the
cardinality of S - I is n+l. We are assuming S € M, which
must be as a result of either condition two or three of
the definition. Thus, there are g and  such that
5 = g Ho{a}, a ¢ é, and g €M. By the induction hyp-
othesis there is ﬁ such that (g,i) € Ma.

If S € M by condition two, then g  «, and thus
(S,%) € MA., If S € M by condition three, then € PA and

“q ¢ 8 so (S,R|] {a}) e Ma.

If:

Given 8, suppose there is R such that (S,R) € MA.
If s =1, then s € M. If S # I, then (S,R) € MA by con-
dition two or three. Therefore, there is  such that ei-
ther s - {dq}, «, and R satisfy the prerequisites of con-
dition two or s - {d}, «, R - {q} satisfy the prereg-
uisites of condition three. 1In either case the prereqg-
uisites of the corresponding condition of the definition

of M are satisfied and 8 € M. []
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Lemma 7.2

If (S,R) € MA, then R C S and Th(S) = Th(R).

Proof:

We use induction on the cardinality of S - I. Sup-
pose S = I. Since (S,R) € MA by condition two or three
requires that § = S L] {a} where o ¢& S and S € M,

(I,R) € MA only if R = I.

Assume the c¢laim is true for (S,R) € MA where the
cardinality of S - I is n and consider (S,R) € MA such
that the cardinali;y of S - I is n + 1. (S,R) must be in
MA by condition two or three. Thus, there must be é and
*a such that S = é Ll {«}, and g ¢ §, If (S,R) € MA by

condition two, then (S,R) € MA and S | . By the in-

duction hypothesis R C S8 and Th(S) Th(R). Thus,

Th(S)

1

Th(R) and R C S. A similar argument applies if

(S,R) € MA by condition three, []

Lemma 7.3

S €M iff S is a member of a memory-state sequence.

Proof:

Only if:

We use induction on the cardinality of S - I. Sup-
pose S = I. I is a member of every memory-state sequence.

Assume that if S € M and the cardinality of S - I is
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n, then S is a member of a memory-state sequence. Con-
sider 8 € M such that the cardinality of S - I is n + 1.
We know that there are S and d such that S = S Ll {¢} and
é and q satisfy either condition two or three of the def-
inition of M. By the induction hypothesis there is a

memory-state sequence, say Sl"“’s such that

A

S =S

k,---

ke Define a new finite sequence, say Ql""’Qk+l

where Qi = Si for i = 1 to k and Qk+l = S. Then
Ql""’Qk+1 is a memory-state sequence with S as a

member.

If:
Let Sl"“'sk"“ be a memory-state sequence. Since

s, =1, Sl € M. Suppose Sk € M and consider Sk+l' By

1
Lemma 5.15, there is R such that (Sk,R) € MA. Fur-

thermore, S, , = S, || {¢} where either S } o or ¢ € PA
and “q, d € Sy - Therefore, Sgi
condition two or three of the definition of M and

R, and  satisfy either

S € M. []

k+1

Theorem 7.1
If 8 is a member of a memory-state sequence, then

there is R € AP such that Th(S) = Th(R) and R C S.

Proof

Suppose S is a member of a memory-state sequence.
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Then by Lemma 7.3, S € M, By Lemma 7.1 there is R such

that (S,R) € MA. By Lemma 7.2 Th(S) = Th(R).[]

Theorem 7.2
If R € AP, then there is S such that S is a member

of a memory-state sequence, Th(S8) = Th(R), and R C S.

Proof:

Suppose R € AP. Then there is S such that
(S,R) € MA. By Lemma 7.1, S € M. By Lemma 7.3, S is a
member of a memory-state sequence. By Lemma 7.2,

Th(R) = Th(S) and R C S.[]

The above results show that the members of AP as
determined by the relations M and MA are just the sets of
assumptions (initial and default) which generate the
deductive closures of the members of the memory-state se-
guences, We will next define a two-level system whose
intended interpretation includes M and MA. The axioms of
the system”s metatheory will be such that they allow
deduction of assertions corresponding to the true in-
stances of S € M and (S,R) € MA. This will result in the
system”s object theories being just the deductive clo-
sures of the members of all memory-state sequences as
desired.

We now define a two-level system £. L”, the
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metalanguage of £, consists of:

1. A constant symbol g for each q € L;

2. A constant symbol I”;

3. Four unary predicate symbols: S, M, P, and AP;
4, Three binary predicate symbols: €, Pr, Ma;

5. One binary function symbol, ad;

6. An infinite supply of variables and the usual

quantifiers and connectives.

For the intended interpretation we define a struc-
ture whose domain consists of A || B || {1} where A is the
set of wffs of L and B is the set of all sets of the form
1 {dl,...dk}. The symbols S, Pr, €, and ad are inter-
preted over this domain in the same manner as for the
two-level system defined for «c¢losed normal default
theories. The symbols P, M, MA, and A are interpreted

P
as the relations PA, M, MA, and AP respectively.

The axioms of the metatheory are as follows:

1. M(I7).

2. Pr(I’,d”) &« ¢ € I > M(ad(1”,a4%)).

3. P(°) s € I” & " & I°> M(ad(I”,d)).

4, For each n > 1 and each k < n,
Vxl...Vanyl...Vk(M(ad(I',xl,...,xn))&
MA(ad(I’,xl,...,xn),ad(I’,yl,...,yk)) &
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oq° € ad(I’,xl,...,xn) &
Pr(ad(I’,xl,...,xn),d’) >
M(ad(I’,xl,...,xn,d’)).
5. For each n > 1 and each k < n,
Vxl..,Vanyl..,Vk(M(ad(I’,xl,...,x V) &
MA(ad(I’,xl,...,xn),ad(I’,yl,e..,yk)) &
o & ad(I’,xl,...,x

“q & ad(I” &y, eeerX]) & P(a”) >

n) &
M(ad(I',xl,..‘,xn,d’)).

6. MA(I”,17).

7. Pr(1°,d”) s q° € I” » MA(ad(I”,d"),17).

8. P(d”) s &I &¢I’ >
MA (ad(1”,d”),ad(1”,d7)).

9, For each n > 1 and each k < n,
Vxl...Vanyl...kaM(ad(I’,xl,...,xn))&
MA(ad(I’,xl,...,xn),ad(I’,yl,...,yk)) &
q° € ad(I’,xl,...,x

Pr(ad(I’,xl,...,xn) A7) >

n) &
MA (ad(I% %y e, ,d7),24(17 ¥ reeerY)) e

10. For each n > 1 and each k < n,
Vxl,..Vanyl..,vk(M(ad(I ’X1’°'°'xn))&

MA(ad(I‘,xl,,.,,xn),ad(I’,yl,,..,yk)) &

q° & ad(I” %y reeerXy) &

o7 & ad(IT,x ... ) & P(d”) »

MA(ad(I’,xl,...,xn,c(‘),ad(yl,..,,yk))°
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11. © € I” for each g € I.

12. ° € I” for each o ¢ I.

13. q” # ?‘ for each distinct pair of constants a,B.

14, P(d”) for each € PA.

15. Axioms for S, Pr, and ad as in the system for a

closed normal default theory.

16. AP(I’).

17. For each n > 1 and each k < n,
VXl...ka(AP(ad(I”,xl,...,xk)) <
yyre Iy MA(AA(I7 Y ey

ad(I’,xl,...,xk))).

Finally, the possible axiom sets of 'Z are just the
members of AP. This completes our definition of £. We
must now show that I satisfies the requirements for a
two-level system. We do this in the same way,as for the
system defined for closed normal default theories. The
following lemmas are analogous to lemmas already stated

in Chapter 5.

Lemma 7.4
Let t be a term of L” of the form
ad(I‘rd)lr e e Iq’k) .
Then t denotes I || {dl,...,dk}.
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Lemma 7.5
If S =1Ior S =1]|] {dl,...,dk}, then there is a

closed term t of L” such that t denotes S.

Lemma 7.6
Let t be a closed term in which ad occurs such that
t is not of the form ad(I’,d’l,...,q’k). Then t denotes

d, the arbitrary wff specified in the definition of adj.

Lemma 7.7
A closed term t of L” denotes a set iff ¢t = I” or t

is of the form ad(I’,d’l,...,d’k).

Lemma 7.8
The axioms of £°s metatheory are satisfied by the

given structure.

Proof:

Axiom one is obvious.

By the definitions of the relations M and MA axioms
of type two or three are satisfied.

FPor an axiom of type four suppose that

M(ad(I”,al,...,an)) and MA(ad(I‘,al,.,.,a ),

n
ad(I’,bl,...,bk)) are satisfied by some assignment. Then
by Lemma 5.21, for each i a; and bi must be constant sym-
bols, say d‘i and p‘i respectively, denoting wffs of L.

Thus, I | {ql,...,qn} € M and
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(T U {ey,eeena b L By, .o B b)) € MAL  If the wifs

q & ad(1”,q%;,...,a” ) and Pr(ad(I”,d";,...,q,),4") are

n
also satisfied, then by definition of the relation M
Il {ql,...,qn,q} € M. Thus, M(ad(I”, " ,...,a" ,q")) is
also satisfied.

For axioms of type five the argument is similar to
that for axioms of type four.

Axiom six is obvious.

Axioms of types seven and eight are similar to ax-
ioms of type two.

Axioms of types nine and ten are similar to those of
type four.

Types eleven, twelve, thirteen, and fourteen are
obvious,

The axioms for 8, Pr, and ad are similar to those
given above.

Axiom sixteen is obvious.

For axioms of type seventeen the argument is similar

to that for axioms of type four.][]

Lemma 7.9
Let t be a closed term of L.” of the form
ad(I',d”l,---,d’k)-

Then ” ¢ t is provable in z”s metatheory iff

¢ I {ap,..d ],




Proof:

Only if:

If 9 ¢ t is provable, it must be satisfied by the
intended interpretation. Since t denotes I |] {dl,...,dk}

it must be that o ¢ I || {dy,....}.

If:
By applying the axioms for ¢, #, and ad we can prove
in the metatheory:

a’ & 17, & ad(I7, 7)., d” & ad(T7, AT, at ) L ]

Lemma 7.10

If S € M, then there is a closed term s of L” de-
noting S such that M(s) is provable in £°s metatheory and
for every R such that (S8,R) € MA there is a closed term r

such that MA(s,r) is provable.

Proof:

If 8§ = I, then M(I°) is an axiom. PFurthermore, I is
the only set such that (I,I) € MA and MA(I”,I”) is also
an axiom.,

Suppose the claim is true for all S such that the
cardinality of S - I is n., Consider S € M such that the
cardinality of S = I is n + 1. S must be in M by con-
dition two or three., In either case there are g, {«}, and

A

R such that S € M, (S,R) € MA, and S = s || {q}. By hyp-
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~ ~

othesis there are closed terms s and r denoting S and R
such that M(;) and MA(;,r) are provable. Since $ S,

q € ; is provable, by Lemmas 7.7 and 7.9 If S € M by con-
dition two, then g F o so Pr(;,q’) is also provable. It
follows that M(ad(;,q’)) is provable and since ; denotes
s - {a}, ad(;,d‘) denotes S. A similar argument applies
in the case that 8 € M by condition three,

Let R be any set such that (S,R) € MA. Then since
(S,R) € MA by condition two or three there are g and ¢
such that 8§ = g || {«} and either (g,R) € MA or (§,§) € MA
where R = R | {¢}. By an argument similar to that given
above we have that either MA(ad(;,q‘),r) is provable
where r denotes R or MA(ad(;,d’),ad(;,d’)) is provable

~

where ad(r,q”) denotes r.[]

Lemma 7.11
If M(s) or M(s,r) are provable in £“s metatheory for
s and r closed terms of L”°, then s denotes S and r de-

notes R such that S € M and (S,R) € MA,

Proof:

Similar to Theorem 5.5.1[]

The previous two lemmas along with Lemma 7.1 tell us
also that M(s) 1is provable for closed s if and only if

there is closed r such that MA(s,r) is provable. Thus, £
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correctly characterizes the relations M and Ma.

Theorem 7.3
If S € AP, then there is a closed term t of L” de-

noting S such that A_(t) 1is provable in £“s metatheory.

P

Proof:

If S € AP, then there is R such that (R,S) € MA. By
Lemma 7.1, R € M., Therefore, by Lemma 7.10 there are
closed r and s denoting R and S such that MA(r,s) is

provable. It follows that AP(s) is also provable.[]

The last two results needed are the same as results
stated for the case of a closed normal default theory

considered in Chapter 5.

Theorem 7.4
If AP(t) is provable in £°s metatheory for a closed

term t, then t denotes a member of AP.

Theorem 7.5
For any closed term t of L”, d© € t is provable in
$”’s metatheory iff t denotes a set and  is a member of

the set.

Thus, we see that £ is indeed a two=level system,

Furthermore, the definition of £ directly translates a
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heuristic default inference rule relying on the notion of
the current contents of a system”s memory into a (recur-
sive) set of meta-level axioms. This fact provides evi-
dence to support the <c¢laim that a heuristic default
inference employing the principle of testing memory for
the absence of a formula can be modelled within a two-
level system.

It is important to note that we can make the same
observations about nonmonotonicity as we did in Chapter 5
for default theories. Our definition of a memory-state
sequence 1s such that we can obviously define the prov-
able formulas of the system to be just those that occur
as members of some member of a memory-state seguence.
For such a system it 1s possible that if we replace the
initial axiom set I by J where I C J there will be a for-
mula ¢ such that d was provable starting with I Dbut 1is
not provable starting with J. Here we again appear to
have nonmonotonic behavior, but, as with default
theories, we argue that in addition to the assumptions
represented by I and J there are implicit assumptions
which must be made explicit before comparing the two sys-
tems.

Let us suppose we have two two-level systems £ and
£” as defined in the previous section with initial axiom

sets I and J where I C J. Suppose also that there 1is a
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wEf o such that g is provable in £ and not in £°. We can

then show a result similar to that stated in Theorem 5.7.

Theorem 7.6

a) If the metatheory of £ is an extension of g,
then the intended interpretation of £ is not a submodel
of £7.

b) There exists a finite set {dl,...,dk} of default
assumptions such that for some possible axiom set, A, of
s {dl,...,dk} C A but {dl,...,dk} is not a subset of any

possible axiom set of £7.

Proof:

Similar to Theorem 5.7.[]

Thus, we have a result analogous to the one shown for de-

fault theories and can make similar arguments.

7.6 Systems Based on Recursive Deductive Procedures

The definition of Winograd”s second category relies
on the notion of a total recursive procedure which, given
a set of assumptions and an assertion as input, attempts
to find a proof of the assertion from the given assump-
tions and returns "yes" or "no" depending on whether a

proof 1s found. An obvious example of a default reason-
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ing rule emploving such a procedure is: If procedure £
fails to find a proof of  from the current assumptions
and  is such that if it were true £ would have been
likely to succeed, then it is reasonable to assume “d.

As in the case of the first category, we can consid-
er a computer reasoning system based on the above rule in
combination with conventional inference. The class of
potential default assumptions would be recursively enu-
merable just as the corresponding class was for the first
category, and, as we did for the first category, we can
treat this class in terms of a predicate, say P. The
procedure f which we are postulating is just a realiza-
tion of a recursive function which we may also call £,
Thus, the above rule as it would be implemented in a hy-
pothetical computer system can be thought of as stating
that 1if ©P(q) is provable and £(,A) is "no" (where A is
the system”s current set of assumptions), then "q can be
introduced as an assumption.

In the case of this system we could provide axioms
for P as we did in the previous example. We could also
introduce axioms of the form f£(d,A) = "yes" for each in-
stance of d and A such that f would return "yes" and of
the form £(d,A) = "no" for each instance of ¢ and B such
that f would return "no". Since f is recursive the set

of such axioms would be recursive. Thus, it is obvious
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that the approach to be taken in defining a two-level
system to account for the type of default reasoning
represented by the second category is to employ P and f

in the definition of the axiom set predicate A It is

p*
easy to see how such a system could be defined in a form
similar to the two-level system defined for the first

category.

7.7 Systems Based on Inconsistent Sets of Assumptions

Finally, the third category is concerned with the
notion of asserting that some property holds for all in-
dividuals of a class while also asserting the negation of
that property £for some members of the class. As men-
tioned in section 7.3, it is sometimes claimed that hu-
mans actually maintain such contradictory assertions. It
seems questionable that humans actually believe, for ex-
ample, that all birds fly. However, it might be useful
in a computer reasoning system to use such assertions
rather than deal with quantifiers like "most". (But note
that this same problem could apparently be dealt with as
an 1instance of default reasoning in other ways that we
have already discussed.) If such contradictory assertions
are to be employed, an alternative, and to us more rea-

sonable, view of such an arrangement would be to consider
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the machine as accepting at any one time only a subset of
the set of all possible axioms available to it. Thus,
the machine might accept either, "All birds can fly" or,
"A penguin is a flightless bird", but not both at the
same time,

To illustrate this notion let us suppose we have a
computer reasoning system employing contradictory assump-
tions and relying on an algorithm which handles these
assertions 1in the manner described in Section 7.3. (Re-
call that such algorithms are not known to exist for oth-
er than trivial cases.) We can divide the assumptions of
the system into currently accepted assumptions and poten-
tial assumptions. The currently accepted assumptions are
those from which the system 1is <currently attempting a
proof. Corresponding to this view, we would say that the
set of formulas accepted as true by the system at any
time 1is the deductive closure of the set of current as-
sumptions.

We can define a trivial two-level system which can
be employed by the computer system”s algorithm in exactly
the same way we suppose the algorithm to manipulate the
given axioms of the system. X

We let the axiom set of the initial object theory of
the two-level system be empty. The other object theories

are defined to be the deductive closures of all subsets
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of the computer system”s axiom set. The metatheory sim-

ply defines the predicate A_ to be provable for a term

P
denoting the empty set and also specifies that if Ap(s)
is provable for a term s denoting some set of wffs S and
if o is a member of the computer system”s axiom set, then
Ap(ad(s,d’)) can be inferred. Thus, AP will be provable
for every subset of the computer system”s axiom set. It
is easy to see that such a two-level system can be de-
fined and that  is provable from a consistent subset of
the computer system”s axioms just if it is a theorem of
the object theory whose axioms are that same subset.
Since we assume that the given system”s algorithm never
constructs an 1inconsistent set of current assumptions,
the sets of formulas which could be accepted as true by
the system would be just the deductive closures of the
consistent possible axiom sets. Here, we have simply
made use of the algorithm”s assumed ability to always
choose a consistent subset of the system”s axioms and
noted that since the algorithm is assumed to employ at
any time only a proper subset of the given set of axioms,
we can treat each such subset as the axioms of a separate
theory.

The important point here is not the particular two-

level system whose definition we have just sketched.

After all, it relies on an algorithm which may not exist.
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Rather, it is the idea that the presence of contradictory
assertions in a computer reasoning system need not mean
that the system reptesents some unusual form of infer-
ence., It is perfectly possible to define a two level
system including object theories whose axioms, if taken
together, would be inconsistent. If it is useful to con-
struct such computer systems, then it seems much more

reasonable to view them in terms of a two-level system.
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8. Summary and Conclusions

We have seen that the definitions of both default
and nonmonotonic theories are based on three hypotheses
about the nature of default reasoning. Let us call these
the nonstandard inference hypothesis, the consistency hy-
pothesis, and the nonnormality hypothesis. Examination
of these hypotheses and comparison to alternatives showed
that they were not intuitively compelling. The defini-
tion of a two-level system is, on the other hand, based
on the more intuitive, alternative hypotheses that we
have considered. 1In subsequent chapters we compared the
notion of a two-level system to the notions of a default
theory and a nonmonotonic theory, prasenting evidence
that a two-level system constitutes as good a model of
default reasoning as does either a default or a nonmono-
tonic theory. Thus, one conclusion that we draw is that
the unintuitive hypotheses about default reasoning in the
definitions of default and nonmonotonic theories do not
result in a more suitable formal model.

Default and nonmonotonic theories can also be non-
monotonic whereas a two-level system is not. Again,

since a two-level system serves at least as well to for-



malize default reasoning as the other two models, we con-
clude that there is no reason to suppose that default
reasoning is inherently nonmonotonic.

A third conclusion is related to the notion of rules
for default reasoning. Examples of informal default rea-
soning, as well as our observations in developing an in-
formal theory of the process, show that it is natural to
view default reasoning in terms of some sort of rules for
justifying the default assumptions. In [R], [MD], and
[D], the authors continually speak in terms of such rules
and discuss their models as though they actually included
such rules. However, neither model can represent a well
defined notion of a rule, but a two-level system can.
Thus, there is no reason to think that the lack of rules
in éefault or nonmonotonic theories indicates anything
about default reasoning itself. In fact, in the case of
default theories, we were able to see that dropping the
nonstandard inference and nonnormality hypotheses in
favor of the alternatives suggested by us allowed the de-
finition of rules as well as removing nonmonotonicity.
This result suggests that both nonmonotonicity and the
absence of rules are directly related to these two par-
ticular hypotheses.

Both default and nonmonotonic theories involve con-

sistency as a condition on default assumptions. The in-
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formal notion of rule discussed by the authors of both
these models involves consistency as well. Thus, even if
one of these models could represent rules, the rules that
the authors have 1in mind are not effective. 1Indeed we
saw that although a two-level system equivalent to a
closed normal default theory contained well defined rules
at the metalevel, those rules were not effective. We
also observed that although consistency does not seem to
be a sufficient condition for introducing a default as-
sumption, it does appear to be necessary. Thus, the
question arises as to whether there can be effective
rules for justifying default assumptions. 1In fact, it is
easy to see that there are two-level systems based on
consistency which are such that the axioms of their
metatheories represent effective rules. 1In such a system
there will be an effective procedure tor enumerating the
theorems of the object theories. To demonstrate this
fact we <can use the two-level system that is equivalent
to a particular closed normal default theory.

The decision problem for classes of first-order for-
mulas can be stated as: Given a class of formulas, is
there a procedure for deciding whether or not a formula
in the <class 1is satisfiable? The fact that there are
classes of formulas for which a decision procedure exists

allows us to give an example of the desired type of two-



level system,

Consider the two-level svstem generated by a closed
normal default theory (D,W). Recall that each default of
D leads to a corresponding set of axiom schemas 1in the
metatheory, each set containing a schema for each natural
number n. Let us assume these sets are given some order
and call the jth set dj. Also, let us call the wff names
q” and p‘, which occur in each member of dj and are
determined by the corresponding default, d‘j and p’j.
Given a metalanguage term t that denotes a possible axiom
set, 1if we wish to show that ad(t,%’j) also denotes a
possible axiom set, we must have ”Pr(t,“?‘j) as a meta-
axiom. Suppose that W is finite. Then ~Pr(t,"P’j) has
the interpretation yl,...,yky "B where yl,...,yk are the
members of the set denoted by t. This is equivalent to
Vyl&...&YK>"§j and this last formula is not provable just
if (yl&...&yk) & Pj is satisfiable since the language L
over which (D,W) is defined is chosen by Reiter to be
first order. Thus, each default and each possible axiom
set lead to a formula which must be satisfiable in order
for the meta-axiom corresponding to the default to be ap-
plied to a term denoting the possible axiom set. Let us
suppose that there is a decision procedure for the set S
of all such formulas for the two-level system generated

by (D,W). Under these conditions we can give a procedure
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for enumerating the members of all extensions of (D,W).

Theorem 8.1

Suppose (D,W) and S satisfy the above conditions.
Suppose also that £ is the two-level system corresponding
to (D,W). Then there is a procedure for enumerating the

theorems of the object theories of £.

Proof:

Let us call the possible axiom sets determined by
(D,W) the A~-sets. Let us call the jth theorem in an enum-
eration of the theorems of a set of axioms, A, tg. We
define a procedure as follows:

Maintain the following lists:
L, a list of the A-sets enumerated so far:
For each Aj on L, Lj' a list of the theorems of Aj

Al

enumerated so far.

= Y
Al N
put A1 on L
1
put tAl on Ll

for k = 1 to @ do
for each (dj,pj) : 3 2 k do
for each i such that Ai is on L do
if dj is on Li then

if ?j is consistent with Ai then
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let Am be the last element of L
Am+l = Ai U {?j}
put Am+l on L
end
end
end
end
for each 1 such that Ay is on L do

Let tn be the last element of Li

A,
i
n+1
put tA. - on Li
i
end -

end

By our assumptions we can test the consistency of g
3

and Ai by determining whether the appropriate wff is sat-
isfiable or not. It is easy to show by induction on the
length of L that if A is on L, then A is an A-set.
Suppose A is an A-set. Then A = A, ... A, where
A, =Wand A, ; = A |] {B} for i = 1 to h-1 where A, is

consistent with p and for some Aik d and for some m
q = dm and P = Pm‘
W is on L. Suppose A is on I, for 1 < i < h-1, Then

: . n
since Aik q, eventually o is added to A;, say as £y
i

Also, eventually k becomes such that k > m and k > n.

Thus, A, would be added to L. []

i+l
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The above procedure enumerates the theorems of £7s
object theories. It does so by employing the rules of
£”s metatheory that correspond to the defaults of the
original default theory. Thus, it is possible to define
rules based on consistency that are effective,. Systems
employing such rules might prove suitable for the con-
struction of computer reasoning systems for particular
applications. However, there is no reason to think that
such systems would be sufficient to model default reason-
ing in general.

Since it seems unlikely in any case that humans

check the logical consistency of default assumptions with

their current knowledge, one is led to consider the pos=-
sibility of heuristic rules. In Chapter 7 we have pro-
vided evidence that the notion of a two-level system can
serve as a framework for modelling heuristic rules as
well as serving to model definitions of correctness.

An important part of the study of default reasoning
is the problem of techniques for the performance of de-
fault reasoning in mechanical systems. The notion of a
two-level system appears to offer potential as a model of
computer reasoning systems that do default reasoning. A
syntactic approach to a model of mechanical systems seems

appropriate since machines are syntactic in nature. Our
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particular model offers the advantage of allowing the de-
finition of effective rules, especially heuristic rules.
The following simple result illustrates the sort of in-
formation one might hope to gain from a model of computer

default reasoning systems.

Theorem 8.2
There is a two-level system £ such that the problem
of deciding whether a given wff is a theorem of some ob-

ject theory of £ is NP complete.

Proof:

We let £ be the two-level system equivalent to a
certain closed normal default theory (D,W). The language
of the wffs of (D,W) is the language of the propositional
calculus. W is the empty set, and D is the set of all de-
faults of the form Md/d where  is any proposition.

Suppose ¢ is satisfiable. Then since g, the empty
set, is the initial possible axiom set of the correspond-
ing two-level system, {q} is a possible axiom set. Thus,
every satisfiable proposition is a member of a possible
axiom set and hence, a member of some extension.

Suppose that ¢ is provable from some possible axiom
set. Since each possible axiom set is consistent, g must
be satisfiable also. Thus, every member of every exten-

sion is satisfiable. The union of the object theories of
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£ is thus the set of all satisfiable propositions. Hence,
the problem of deciding whether  is a theorem of an ob-
ject theory of £ is just the problem of deciding whether

q is satisfiable, which is an NP complete problem. {]

Throughout this study we have discussed only the in-
troduction of assumptions. What about a reasoning pro-
cess that involves deleting assumptions? From our point
of view there are two types of assumptions: the initial
assumptions of the system and the default assumptions in-
troduced during the reasoning process. Deleting an ini-
tial assumption, like introducing a new 1initial assump-
tion, simply changes the definition of the system. The
other possibility would be to delete a default assumption
after it has been introduced while maintaining the same
initial assumptions.

For a case like the two-~level system generated by a
closed normal default theory (where the consistency hy-
pothesis is retained), once a default assumption 1is in-
troduced there can never be any reason to delete it. 1In
such systems no default assumption can be introduced un-
less it 1s consistent with the assumptions made so far.
Thus, the assumptions remain consistent throughout., This
fact constitutes one of the reasons that mechanical sys-

tems based on rules requiring consistency would be desir-
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able. On the other hand, for a system like the one used
to model Winograd”s memory contents rule, it would be
possible to arrive at a set of inconsistent assumptions.
There does not seem to be any good solution to this prob-
lem, It seems to be the price paid for an effectively
computable default inference rule.

In summary, we have presented a formal model that is
based on quite different hypotheses about default reason-
ing from those underlying the two established models.
Comparisons show our model to be at least as promising as
the other two. 1In fact, our notion of a two-level system
has several advantages. It is based on a more intuitive
view of default reasoning. It allows the representation
of well defined rules for justifying default assumptions.
Finally, it allows the modelling of heuristic rules for

default reasoning as well as definitions of correctness.
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