CHIP ASSEMBLERS: CONCEPTS AND CAPABILITIES

Randy H. Katz
Shlomo Weiss

Computer Sciences Technical Report #486

November 1982

Chip Assemblers: Concepts and Capabilities
Randy H. Katz and Shlomo Weiss
Computer Sciences Department

University of Wisconsin-Madison
Madison, Wi 53706

Abstract: A chip assembler is a tool for managing design information. It encourages a
structured design methodology, wherein a design is described by a collection of
hierarchical design decompositions, one for each of its representations. It assists in
the enforcement of consistency constraints up, down, and across the different
hierarchies. We argue that a chip assembler, as an integrated design environment,
requires an integrated approach for the management of design data. We describe
what a chip assembler is, how it is used for design management, and what are its
desirable features.

1. Introduction

It is widely recognized that the greatest impediment to the successful use of
VLS! technology is the lack of adequate tools to support VLS| circuit design
[LOSL8G]. A special need exists for tcols that organize the information describing a
design, including its many representations, equivalences existing between these, and
the constraints that need to be satisfied, thus helping to maintain the consistency
and correctness of a design. Once the design data is made machine readable, its
self-consistency can be improved dramatically if verification aids can be applied in a
controlled and economical way. This can be achieved if the interface specifications
between subsystems within a representation, and the equivalences of design sub-
parts across representations, are made explicit. An important objective is to struc-
ture the design data so ramifications of a design change can be identified. A tool pro-

viding such facilities is a chip assembler.

A chip assembler automates the bookkeeping associated with design activities.
Traditionally, the designer has coordinated the vast quantity of design data himself.
Information regarding the function, interfaces, and Implementation details of the
system's components are kept only in the designer's head (or perhaps in a not quite

up-to-date design notebook). Systems. of the complexity of a VLS! design can only

1=

be designed by teams. Design teams must confront the added problems of communi-
cation within the group, undocumented design assumptions, and interference among
designers. A chip assembler manages the documentation and implementation data
associated with the design of systems undertaken by a team of designers. It also
assists in the control of the configuration of a design. !t coordinates the update of
design data, maintains system releases, supports subsystem alternatives, and noti-

fies designers when important design changes have occurred.

"Chip assembler" is a somewhat deceptive term; we are not referring to a low-
level variant of a silicon compiler (e.g., [JOHA79]). A silicon compiler begins with a
high-level description of a digital system, perhaps expressed in a register~transfer
language, and transforms it into a circuit layout. On the other hand, a chip assembler
is primarily a data management tool. It provides an environment within which tradi-
tional synthesis and verification tools can be integrated, including layout editors,
placement and routing tools, design verification aids, and simulators. By maintaining
design data across hierarchical decompositions of a design in different representa-
tions, it also supports the development of multi-level and mixed-mode tools. Tools
that can conveniently access data across more than one design representations do

not exist today.

An early attempt at an integrated environment for circuit design is the SCALD
system [MCWI78a, MCWI78b]. It supports the hierarchical construction of systems
by allowing designers to define subsystems as macros, which can be included in
higher level subsystems. The logical representation of the design (e.g., gates and
signal wiring) is closely linked to the physical representation (e.g., the placement of
gates and assignment of signals to pins on packages). SCALD produces reports used
in constructing, debugging, and documenting the system (such as wire-wrap lists). A
variety of consistency checks are enforced by the system. While SCALD supports
the design of TTL SSI/MSI level systems, many of the ideas can be extended to VLSI

systems. A major shortcoming is its lack of technology and representation

-

independence.

Mudge first introduced the 'chip assembler’ concept in his CHAS system
[MUDG80, MUDGS81]. CHAS is a data manager for the manual composition of three dif-
ferent circuit representations: layout (mask geometries), circuit (transistor net-
works), and logic (gates). The floorplan (structural hierarchy) is the '"gateway" to the
design, i.e., data in the three representations is interrelated by being associated with
the same cell in the floorplan. Cell interfaces are explicitly specified, and tools for
routing and stretching of layout cells are integrated into CHAS. Mudge's experience
is that even such a simple tool is an enormous aid in (1) making rapid changes to a
design, (2) exploiting hierarchy for verification tools, and {3) managing a design pro-
ject. CHAS is a simple tool (which may well be one of its virtues!) whose primary
objective is to aid in composing the elements of a design. The next step is to develop
chip assemblers that address the issues of design data management and design con-

sistency maintenance.

In the remainder of this paper we describe the features that should be incor-
porated into the next stage of sophistication in a chip assembly system. In the next
section, we describe our model of the design process. Then we state the require-
ments for a chip assembly system, describe the design representations and inter-
faces we must be able to support, and discuss the consistency constraints that can
be supported. We describe the structure of the design files themselves and ways to
implement design versions and alternatives. We end the paper with our conclusions

and plans for future work.

2. Model of the Design Process

In this section, we describe our view of VLSI system design. Any reasonable
approach will adopt a hierarchical design method. A design is specified as a forest of
cell hierarchies, one hierarchy per representation domain. While we consider trees for

simplicity, rooted directed acyclic graphs are easily accommodated (we will have

»

-3—

more to say about this when we describe the structure of the design files).

The root in each representation hierarchy ("'design hierarchy') describes the
same system. For example, if the object being designed is a microprocessor, then the
root of the geometry hierarchy represents the layout for the complete processor,
while the root of the electrical hierarchy represents its electrical description, i.e., the
distribution of control signals, data, power and ground. The chiidren of the root are
the system's decomposition into major subsystems. Examples include the data path
and control circuitry in the geometry tree, and the power, clock, and signal distribu-
tion in the electrical tree. These subsystems are further decomposed into more
detailed subsystems at the next lower ievel, and so on. Internal nodes of the design
hierarchy are composition cells. The most primitive cel}s are leaf cells, i.e., those that
cannot be further decomposed. Leaf cells are convenient collections of primitives
(e.g., an inverter), rather than primitive objects of the representation (e.g., a transis-

tor). The choice of what constitutes a leaf cell is determined by the designers.

A designer begins by either describing his system with a block diagram or by
providing a procedural description of its functions. Either description is usually in
terms of subsystems, which themselves need to be designed or taken from a library.
He then proceeds to describe each subsystem, and its interaction and interconnec-
tion with other subsystems, as he further refines the design. Normally, a design does
not proceed strictly top-down or within a single representation. A designer may piece
together a design from a library of building blocks, proceeding in a bottom-up fashion.
He will probably need to span representations, giving more breadth to the design as

he proceeds.

If he has provided enough data to describe the function and interfaces of all
cells, he may proceed with a simulation of the entire system, one of its subsystems,
or perhaps a single leaf cell. Most verification tools require that the complete details

of a design are specified before they can be used. It should be possible to verify and

P

simulate a design without providing all the details in any particular representation.
Perhaps the behavioral description has been specified for major subsystems, but
geometries are only associated with leaf cells. For example, the function of the sys-
tem has been specified, but its floorplan has not been attempted, even though its
primitive cells have been layed out (e.g., consider a gate array design before place-
ment and routing). In another scenario, stringent size constraints may require that
top-level floorplans be defined, but layouts of primitive subsystems are still to be
specified. The designer should be able to concern himself with the strategic issues of

design without needing to include details he is not yet prepared (or able) to finalize.

Design hierarchies support a more conceptual partitioning of the design, which is
crucial for supporting design teams. A designer is given responsibility for a subtree of
the design. He can proceed independently as long as his implementation does not
alter the specified interface and function. Alternative implementations can be

represented as subtrees in parallel with the root of the subsystem.

To summarize, a design is initially sketched out atta high level. Designers provide
interface and behavioral descriptions of their part of the design. They proceed
independently of each other as long as they stay within the interface and behavior
specified. Alternative implementations for a design part can be explored without

choosing among them until implementation time.

3. Regquirements for Chip Assembly

A chip assembler is not just a composition tool, but a data management and com-
munication tool. Furthermore, it aids the designer without constraining him. It is unac-
ceptable to only support a prescribed set of design representations, or to impose the
constraint that only completely parallel and conformable design decompositions
across all representation hierarchies be permitted. There will be many benefits in
having a common structure across representations (in fact, we know of no other rea-

sonable way to tackle the complexity of a VLSI design), but it need not be imposed

-5

on them by the chip assembler. Structure, where it exists, can be exploited. A chip
assembler should not force designers into any particular design method, other than
that the structure of the overall design be hierarchical. As was shown above, rarely is
a design carried forward completely in a top-down or bottom-up fashlon. Designers
have a good idea of what they want to build, and what primitives are available to
build their system. A design is completed by alternating between a top-down
approach of refining a subsystem into more detailed subsystems and a bottom-up

approach of composing primitives to form more useful building blocks.

While a design is in progress, there are many subsystems that are incomplete or
only partially specified, while others are described completely. The chip assembler
must facilitate this mode of use. Nodes at higher levels of the design hierarchy need
not have any leaf cells as their descendents. In the current state-of-the-art, one
frequently finds that to begin the simulation and characterization of an entire system,
it must be wholly described in some representation. The designer is forced to
describe his design in complete detail, either in a hardware description language or
perhaps as a geometrical layout, before the verification process can begin. There is
virtually no mixing of levels of detail in a system description. Multi-level simulation

tools are easier to build in the framework provided by a chip assembler.

Similarly, a design need not proceed in parallel across all of its representations.
The chip assembler should provide facilities to interconnect pieces of a design
across representations, but these do not have to be specified with the same level of
detail. For example, an ALU of a microprocessor design can be fully specified in its
electrical specification (for simulation purposes), but only partially specified in its
layout. The correspondence between the electrical view and layout view of the ALU

must be made known to the chip assembler by the designers.

One can proceed to describe components at whatever level is deemed appropri-

ate and still be able to perform a complete system simulation. There is no limit on the

.

kinds of representations supported, and no representation is the preferred gateway
to the design. The representations of the same design need not exhibit the same pro-

cess of refinement.

A chip assembler supporting these features is also a powerful tool for document-
ing a design. The design process can be reconstructed by simply descending the
design hierarchies. English-language descriptions of design components, with links to
the actual implementation details, can be made available to a browser. He may choose
which level of detail he wishes to view the design at a particular moment. An impor-

tant consequence is that completing a design also completes its documentation.

4. Representations and Interfaces

The most important facility of a chip assembler is its management of interfaces.
It stores specifications on how a subsystem interfaces to the rest of the design, and
provides mechanisms by which these can be checked for conformance. Since the
specification of an interface is highly dependent on the design representation, we
first describe some of the representations that are likely to be found in a chip design

database.

Each representation hierarchy of a design is refined functionally, but the decom-
position criteria can vary across representations. For example, while it is appropriate
to decompose a microprocessor into a data path and control section, a similar decom-
position may not be appropriate for the electrical view. It may be more convenient to
decompose the microprocessor into clock, power, control, and data signal distribu-
tions, especially if a signal delay analysis is desired. Undoubtedly, an electrical
representation that closely mirrors the layout decomposition will also be required. in
the following, we use "behavioral” instead of "functicnal" to describe the represen-

tation of how a system is to function.

Several representations have been proposed to describe various aspects of a

VLS| design. Verification tools exist for most representations to check their

-7~

correctness. We expect to find the following, although the list is by no means

exhaustive:

(1

(2)

(3)

(4

Block Diagram

Circuit subsystems are represented as named boxes, with input/output signals
to denote control and data flow. Signal busses, i.e., wires that connect more
than two subsystems together, are also specified. This representation is used

primarily as a documentation aid.

Behavioral /Functional

The behavioral representation is similar to the block diagram representation,
except that the output signals are defined as functions of the input signals.
This description is most frequently used to partition the design among subsys-
tem designers. Functional simulators are used to verify the correctness of a

behavioral representation.

Geometrical /Physical

The physical representation describes how pieces of a design are physically
placed. For custom chip designs, it is often called the floorplan (at the root).
Tools include those for placement and routing (used in composition celis), cell
stretchers and compactors (used to modify leaf cells), and synthesis tools that
generate this design representation from the behavioral, geometrical, or sticks

representations. Design rule checkers check the validity of the geometries.

Electrical /Transistor

The electrical representation describes a design as an electrical circuit, usually
as a circuit schematic (i.e., interconnected transistors with associated resis-
tances and capacitances). The verification tools may be at the analog level

(transistors modeled as analog devices), or at the switch level (transistors

.

(8)

(&)

(7

modeled as perfect switches). The representation is appropriate for timing simu-

{ations. Electrical rules checkers validate the electrical representation.

Sticks

This representation combines the topological properties of geometries with
transistor switches. A sticks description is easy to stretch and compact, making
it a higher level description from which geometries or physical layout can be

synthesized. It Is validated by switch level simulation.

Clocked Primitive Switches/Logical

Since custom designed circuits rarely can be described completely in terms of
gates at the logical level, [BELL81, STEF82] proposes a new intermediate level
called Clocked Primitive Switches (CPSW). The representation combines con-
cepts from the electrical level and logical level fo insure that circuits behave
correctiy as logic devices. Electrical/logical checkers can verify the correct-

ness of this representation.

Clocked Begisters and Logic

This is another hybrid representation suggested in [BELL81, STEF82] that is
similar to the behavioral level, but explicitly includes knowledge about the clock-
ing of circuit elements. A variant of a functional simulator can be used to vali-

date this representation.

The kinds of information found in the interface specifications for several dif-

ferent representations are shown in figure 1. Some of these parameters have been

used to describe cells in the Stanford Cell Library [NEWK81].

Interfaces not only describe how a cell interacts with its neighbors, but are also

constraints on the cell. They should be specified even before the cell design begins.

When interfaces are explicitly supported, new kinds of tools are possible. For exam-

ple, tools to extract the interface specification from a fully specified cell, and tools

-0~

g g g g ey g g g g g P e g ey] e e g g g g Y S TS YT R TS T T T ST T TR T T TS Y e S T v vy

Representation Type

Block Diagram

Behavioral

Electrical

Geometrical

CPSW

interface Specifications

Signal Names
Busses

Signal Names and Types (Input, Output)

Output Signal = function(input Signals)

Inter-block Connection list of outputs
to inputs

Signal Names and Types:
restored input, restored output
switch input, switch output

Loading:
input capacitance, resistance
output currents

Power Consumption

Signal Names and Positions
connection coordinates
connection layers
connection width

Cell Area, Symmetry, Stackability

Signal Names and Types:
restored input, restored output
switched input, switched ouiput
clocked input, clocked output
control input
data input
qualified clock input

Figure 1 -- Some Representation Types and Interfaces

g g g s g gy g i g e e g g g Y S S S g Y T Y S S Y R S 7 Y TSR TR Y Y Y S T S S T T S S T S e ey

to verify that the cell meets its interface specification can be built. These can be

one in the same; such a tool could fill in unspecified or defaulted parameters of the

interface and check the specified ones.

A cell's interface also describes (1) the cells that interface to it within a given

representation, and (2) their designers. A modified cell may no longer meet its inter-

face specification. It is then inconsistent, and the design cannot be released in its

current state. This is likely to closely follow the design's behavioral/functional

-

-10-

decomposition. A chip assembler can support a process of negotiation between the
designer of the changed cell and the designers of cells that interface to it. The con-
flict must be resolved, which may involve abdicating the responsibility to a higher
authority for arbitration, i.e., the designers' managers. The "administration” hierarchy
of who is responsible for parts of a design, including their managers, is yet another
representation of a design. Either the interfaces are changed or the offending cell is

redesigned.

5. Integrity Across Hierarchies

We have already argued that it is unacceptable to constrain a design to reflect
the same structure across all of its representations. However, the job of integrity

enforcement is much simpler if this common structure exists.

Suppose that there is no common structure across the electrical and layout
hierarchies of a microprocessor design. At least the roots of the two hierarchies are
constrained to describe the same object. The only way to enforce this is to reverify
the entire design after each design change! This takes place as follows. An electrical
description is extracted from the layout. Equivalent test vectors are simulated with
the extracted description and the description from the electrical representation.
These are "equivalent” if they respond with the same behavior. Integrity is main-
tained, but at a high price, since verification over the completely instantiated design

Is extremely expensive.

If it is possible to identify those parts of the layout and electrical views that
describe the same design subpart, e.g., the ALU, then a change only causes a reverif-
ication over the extracted description of its layout, not the entire design (see figure
2). A smaller part of the design is reverified if there are common ancestors in both
representations known to be equivalent and which cover the design change. in the
worst case, this is the root of both hierarchies. It is in the designers' interest to

Insure that there is much common structure in the hierarchies, to keep manageable

-11~

g g g oy g g g g g o g o S S g g Y R Y Y T R Y R Y R Y S Y R Y Y Y Y g Sy Y Y Y Y Y S Y

REPRESENTATTON REPRESENTATToH

TQUIVALENLE

L pESTeN 2 ‘
t CHANGE L_\,__,J
REVERIFIED REVERIFIED

Figure 2 -~ Equivalence Across Representations
g g ey orag g g Py e o g) g g ey g e S g g g) ey e S g W e o S)] Y Y T Y S A TR S Y Y Y R Y Y R R Y ST T T T Y L T T T
the job of reverification after a design change. Also, from the viewpoint of overall
project management, there is likely to be much common structure. It is too difficult to
control a project when a design's different representations are completed with total

independence.

In the example in section 2, the ALU was contained within the data path. Unfor-
tunately parts of the ALU involve both power and signal distribution. Thus, a change
in the ALU layout forces reverification to take place at the root level of the electrical
representation. It is necessary to maintain an alternative decomposition of the
electrical description that closely mirrors the iayout hierarchy. This is an aiternative
created by splitting the root. Thus we have one electrical description that mirrors the
behavioral/functional decomposition of the layout, and another that is based on a
more natural decomposition of the electrical representation. Obviously the verification

problem also exists for alternatives of a subtree within the same representation.

-12-

6. Structure of Design Files

7

Design files are highly interrelated collections of design data. At least five dif-
ferent kinds of data must be represented: 1) the design hierarchy for each design
representation, 2) equivalences across design hierarchies, 3) composition informa-
tion, i.e., how a subsystem is constructed from its constituent subsystems, 4)
representational data, i.e., instances of representational primitives (e.g., mask
geometries, transistors, gates, etc.) associated with individual design cells, and 5)
interface specifications of how a cell interacts with surrounding celis in its represen-

tation. Representation of alternatives will be described in the next section.

The design hierarchy is represented as a tree of instances of design celis of a
particular representation. Data that is identical across all instances of the cell are
stored once, while dynamic data, such as state, are stored separately for each
instance (see figure 3). Whether to choose a tree or a more space efficient directed

acyclic graph depends on the representation and the tools available for its verifica~

g g oy g) ey Sy g oy ey P Y) Y S Y S] g g g)) e Y S e S S g) g ey S e Y g g e] e g S g g g S S g e g gy ey g ey

STATIE DATA

Y

TASTANCE
TREE

DYNAMIC DATA
STORED WITH
TNSTANCES

Figure 3 -- Static vs. Dynamic Data Representation

g g g e g g Y g g g S Y Y Y Y R Y Y Y Y Y Y Y Y S g g S S S T S S Y Y YT T T Y ST) S Y ey

-13-

tion. For example, the validation aid for geometrical layout is a design rule checker,
and since each placement of a cell contains identical geometries, a DAG representa-
tion can be used effectively. An instance tree must be used if a representation is
verified through simulation, since cells with state must be represented individually.
The design hierarchy has a node for each cell, represented by a record with links to
the records of its immediately subordinate subsystems. It contains pointers to the

static data files and stores (or points to) dynamic data.

Each record in the design hierarchy also has pointers to equivalent records in
parallel hierarchies. If the same hierarchical decomposition is used across all
representations, then a single hierarchy of records can be used, which is a composi~
tion of the individual representations. The description of how a subsystem is con-
structed from lower level subsystems is associated with the non-ieaf design celis of
the hierarchy. The details of the composition data differ according to representation.
With geometries, the compositions are described by geometric transformations, i.e.,
translations, rotations, and mirrorings. This description is not appropriate for other
representations, where interconnection among cells is the predominant form of com-
position. input/output connection points are defined for each cell. The composition of
celis is described by specifying instances and the explicit connection between them.
Composition data is stored in a file associated with a cell's record in the design

hierarchy.

We assume that representational data can be associated with any cell of a
design (separated hierarchies may be desirable from a methodological standpoint, but
are immaterial from the viewpoint of data management). A design cell's representa-
tional data is placed in a file and associated with its record in the design hierarchy.
Its format is uninterpreted by the design data manager, but is chosen for confor-
mance with the kinds of design tools expected to manipulate the representation.
Typically, these files contain variable length records, with different representational

primitives mixed in the same file. For example, boxes, fiashes, and wires are stored in

-14-

the same file for the geometrical representation of a cell. The internal structure of
the éell is chosen to be the most economical for the design tools which use it. For
example, different geometries may be clustered within the file (e.g., all boxes, fol-
lowed by all flashes, followed by all wires), or may be clustered by another criterion
(e.g., all geometries on the polysilicon layer, followed by all the geometries on the dif-
fusion layer, followed by all the geometries in the metal layer, etc.). Since most
design tools accessing these files load the data into in-core data structures, more
complicated structuring on secondary storage is probably not necessary. In keeping
with a well-structured design approach, most cells will have few primitives associ~

ated with them. Thus, representation files are likely to be small.

The final piece of data stored with a node is the interface specification of its
cell. The design considerations related tc choosing the form of this data have already
been described. The interface is an integral part of the representation of a cell, and
could be associated with the cell's representation file (this is the approach used in
CIF files). However, once the interfaces are supported explicitly, there will be new
tools to manipulate the interface data. For example, it may be pdssible to derive the
interface of a system from the interfaces of its subsystems in conjunction with the
composition data. It will be more convenient to store the interface specification in its

own data file. The complete data structure is shown in figure 4.

The implications of the above are that a design's files are highly interconnected,
that there are a large number of separate files, and that individual files are small.
This could cause problems for the design data manager. However, because of the
functional decomposition of the design, designers will be working on subtrees that
represent functional subsystems, and not a random collection of files. This is
exploited by the data management component to limit the amount of control informa-~
tion it has to manipulate while design activity is in progress. A subtree is identified by
Its root, and accessing a root grants simultaneous access to all of its descendents.

Certain interference problems among designers can be avoided if each fcllows a

-{5-~

nﬂﬂqﬂﬂﬂﬂﬂﬂﬂﬁﬂﬂﬂﬂﬂﬁﬂﬂﬂﬂﬂHﬂﬂﬂﬂﬂﬂqﬂﬁﬂwﬂﬁﬂﬂﬁwﬂwﬂﬂﬁﬂﬂﬂﬂﬂﬂﬂwﬁwﬁﬂﬁﬂﬂnﬂﬂﬂﬂqnﬂq

DESTGH)
HIERAZLHY

INTERFALCE SPECIFTEATTIOA

ComPosTTION DATA

CROSS 'RE?RL&EMTﬁﬂﬂhbJAL "Tﬁ\fg

BEPRESSHTATION
EQUIVALEACE

Figure 4 -- Structure of Design Files
Y T S Y Y 1 Y 3 1) Y] Y 1 = 8 o o]])y) gy Yy g e ettt
protocol of traversing the design from its root to the root of the subtree of
interested, leaving an indication of their visit at each node along the path. A conse-
quence is that two designers can be updating the same design as long as they are in
parallel and not in contained subtrees. Unfortunately, the ability to traverse between
representations makes it necessary to associate this control information with avery
node in a subtree being updated, and not just its root {uniess all representations
have the same design hierarchy and accessing a subtree root implies accessing the

data across all representations).

7. Design Versions and Alternatives

Design data is a precious resource that evolves over time. Old data is not dis-
carded immediately, since it is needed for documentation and legal purposes, and
because it provides valuable insights into the design procedures employed in creating

the design. A design version is a collection of design files that represent a

~-16-

consistent specification of a design at a point in time. A design typically evolves
through several versions before it reaches a point where it can be released as a 'fin-
ished" product. New features and other refinements are continually being incor-
porated into the design, resulting in new versions and releases. A design alternative
is a hypothetical version, i.e., one that is not the official design. Alternatives are
used to explore experimental solutions to a design prablem. Recent old versions of a
design are usually kept on-line, while very old versions are archived. A version
mechanism can be made space-efficient by only recording data about design objects

when they change across versions [KATZ82b, BOBR82].

We adopt the terminology of [BOBR82] to describe how design versions and
alternatives can be implemented on top of design files. Although their concern is for
artificial intelligence knowledge bases, the techniques apply equally well to design

data files.

A design file is readable by all members of the design team. However, it is owned
by a single designer (the "administrator") who is responsible for its contents and who
is the only individual allowed to update it. Other designers can create private copies
of the file, to which they can make changes, but these are not reflected in the public
copy until explicitly incorporated by the administrator. Changes do not overwrite
design data, but are appended to the end of the file instead. Private copies of public

files provide a simple way to construct alternatives.

Versions and alternatives are implemented by dividing files into Jayers. The initial
layer contains the original version of the file, the second layer contains new objects
added to the file and new copies of old objects that have changed in creating the
next version, etc. Each object is uniquely identified, making It possible to reference
different copies of the same object across layers. For conventional design files, an

object is a record.

-17-

Layers provide a very flexible mechanism for organizing design versions. They
need not be searched from newest to oldest when looking for an object. Layers can
be reordered or omitted from the search order. The first definition of an object found
in the specified order is its version within that environment. An environment, existing
for each designer on each design file of interest, is an index structure that maps
unique identifiers into objects, taking account of a designer's desired layer ordering.
An environment can also cohtain layers from the designer's private copy of the file,

thus supporting multiple aiternative of a design file.

For more efficient usage of storage, a design file's administrator can summarize
a design file, replacing the file with the most up-to-date versions of all objects in the
file. Since this could disrupt the views of designers who have formed alternatives
over the file, they have the option of freezing it, whose effect is to make their own
copy of the layers they need. Old copies can be discarded by thawing the file.
Before summarization takes place, presumably at a consistent point in a design file's

evolution, its administrator snapshots the file into an archive.

We have described the versions of a design file, but a design version is actually
a collection of design file versions. It is specified by a set of environments over the
constituent design files, including the design hierarchy file, composition files,
representation files, and interface files. Thus it is possible to have a version of a

microprocessor with a new ALU and an old barrel shifter.

Certain versions of a design are designated as releases, and these correspond
to designs committed to implementation. A version cannot become a release unless all

interface violations have been resalved.

8. Conclusions

A chip assembler is the data management system for a VLSI circuit design, pro-
viding an environment in which other design tools can be integrated. By storing infor-

mation about versions, representations, design decompositions, and the constraints

~18-

across all of these, new verification aids for maintaining the integrity of a design are
possible. The explicit representation of the design hierarchy simplifies the support
for multi-level tools, while the integration of multiple design representations makes it
possible to support mixed mode tools for the first time. A chip assembler also dramati-

cally improves the documentation of a design.

The structure of design data files are highly interconnected. Design hierarchy,
interface, representational, and composition data must all be represented in the
design database. The proliferation of files and the sheer quantity of data will greatly
stress the data management component of a chip assembler. Techniques are needed
to limit the amount of control information that has to be handled for data management.

Versions and alternatives can be supported on top of the design data files.

We are planning to build an experimental prototype chip assembler, providing
many of the facilities described in this paper. We have already completed the imple-
mentation of a flexible database component for storing design data, as described in

[KATZ82a].

9. Acknowiedgements

This paper evolved frcm a series of discussions between the authors and our
colleagues at Xerox PARC. Gaetano Borriello was substantially involved in all aspects
of this paper, contributing key ideas and many editorial improvements. Alan Bell was
Involved in the discussions and made many suggestions. Danny Bobrow and Mark
Stefik explained to us the mechanisms used for versions in their LOOPS system. The
work was carried on within the VLSI Design Group at Xerox PARC, under the direction
of Lynn Conway, where the second author spent a summer as a research intern. We

were partially supported by NSF Grant MCS-8201860.

=19-

10. References

[BELL81] Bell, A., Stefik, M., Conway, L., “The Deliberate Engineering of Methodologies
for Integrated System Design," Knowledge-Based VLSI Design Group Memo
KB-VLSI-81-3, Xerox Palo Research Center, (Apr. 1981).

[BOBR82] Bobrow, D. G., Stefik, M., “The LOOPS Manual: A Data and Object Oriented
Programming System for Interlisp," Knowledge-Based VLSI Design Group Memo
KB-VLSI1-81-18, Xerox Palo Alto Research Center, (Aug. 1982).

[EAST81] Eastman, C., "Database Facilities for Engineering Design," Proc. of the
IEEE, V. 69, N. 10, (Oct. 1981).

[KATZ82a] Katz, R. H., "A Database Approach for Managing VLS! Design Data,” Proc.
19th ACM/IEEE Design Automation Conference, Las Vegas, Nv., (June 1982).

[KATZ82b] Katz, R. H., T. J. Lehman, "Storage Structures for Versions and Alterna-
tives,” Computer Sciences Technical Report #479, University of Wisconsin-
Madison, (July 1882).

[JOHA79] Johannsen, D., "'Bristle Blocks: A Silicon Compiler,”" Proc. 16th Design Auto-
mation Conference, San Diego, CA., 1979.

[LOSL8O] Losleben, P., "Computer Aided Design for VLSI," in Very Large Scale Integra-
tion: VLS, D. F. Barbe, ed., Springer-Verlag, Berlin, 1980.

[MCWI78a] McWilliams, T. M., L. C. Widdoes, "SCALD: Structured Computer-Aided
Logic Design," Proc. 15th ACM/IEEE Design Automation Conference, (1878).

[MCWI78b] McWilliams, T. M., L. C. Widdoes, "The SCALD Physical Design Subsystem,”
Proc. 15th ACM/IEEE Design Automation Conference, (1978).

[MUDGE&0] Mudge, J. C., Peters, C., Tarolli, G. M., "A VLS| Chip Assembler,” in Design
Methodologies for Very Large Scale Integrated Circuits, Nato Advanced Sum-
mer Institute, Belgium, 1980.

[MUDG81] Mudge, J. C., "VLSI Chip Design at the Crossroads," in VLS! 87: Very Large
Scale Integration, J. P. Gray, ed., Academic Press, London, 1981.

[NEWK81] Newkirk, J., et. al., "The Stanford nMOS Cell Library,” Stanford information
Systems Laboratory Report No. 001, (July, 1981).

[STEF82] Stefik, M, et. al., "The Partitioning of Concerns in Digital Systems Design,"
Proc. Conf. on Advanced Research in VLSI, Cambridge, MA, (Jan. 1982).

-20-

