A STANDARD DESIGN FRAME FOR VLSI
CIRCUIT PROTOTYPING

R. H. Katz
S. Weiss

Computer Sciences Technical Report #4385

October 1982

A Standard Design Frame for VLSI Circuit Prototyping
R. H. Katz and S. Weiss
Computer Sciences Department

University of Wisconsin-Madison T~
Madison, Wl 63706

ABSTRACT: The VLSI Design Community needs a standard frame in which to design
circuits. The usefulness of custom designed prototype circuits is greatly enhanced if
they can be "plugged" directly into a frame providing system capabilities (memory,
/O ports, timers, standard industry bus, etc.). The testing and debugging of fabri-
cated chips at the systems level is also greatly improved. We describe the design
and implementation of a frame, based on an easily obtained microcomputer board and
a custom designed control circuit. We have validated that the control circuit works
by fabricating an interfaced test circuit and the controller on the same die, and plug-
ging the package into the board. The test circuit succeeded in accessing system
components (memory) through the controller circuit.

1. Introduction

The structured design method of Mead and Conway [MEAD80O] enables
designers with little previous experience in integrated circuit technology to under-
take the implementation of VLS| Systems. While many interesting projects have been
rapidly carried through to fabrication (e.g., RISC [FITZ81], SCHEME-79 [STEE8O],
Pixel-Planes [FUCH81], Geometry Engine [CLAR8O], RSA Cipher [RIVEBQ]), little has
yet been done to enable a designer to rapidly incorporate his prototype into a real

computer system.

There are several reasons for this. First, it is difficult to debug a VLS| chip,
especially in a university environment where equipment and expertise are limited.
Although excellent tools are available for design validation, e.g., the circuit simulators
and design rule checkers of [BRYA80, BAKE80], the designer is left on his own once
he receives his chip. Further, no amount of validation will insure that the processing
run completed successfully or that the chip itself has escaped from disabling
defects. Tools for debugging are needed if prototype chips are to be used in sys-
tems. The question is how to make debugging more tractable in the university

environment.

Secondly, although it sible to achieve quick turnaround of designs into
chips [CONW80, BROO81 1e chip is not the same as a prototype system. It
must first be surrounded ghips for memory and communications. The addi~
tional effort needed to crtem is substantial and time consuming, and is a

major stumbling block to uototypes in practical situations.

The VLSI! Design Conds a standard design frame for VLS| prototype
systems, i.e., an environmvides adequate memory and input/output capa-
bilities, comes in a readu)'package”, and is easy to interface to prototype
circuits. An appropriatelyser circuit becomes a prototype system by sim-

ply inserting it into the fr:

In the remainder of, We describe our approach for constructing a
design frame. The framelesigned, implemented, and tested, and the con-

cept has been demonstre successful test of a simple prototype circuit.

2. Requirements for a e

A design frame (1) ort a standard bus structure, so a variety of dev-
ices and processors caced with the prototype over the bus, (2) provide
adequate memory for pn and configuration information, and (3) have basic
elements that are easy ur design frame is based on the Intel iSBC 86/12A
Single Board Computerard board contains an 8086 microc&mputer, 32K
bytes of dynamic RAM 2 to 64K), an RS-232 interface, three programm-
able 1/0 ports, programh an interrupt controller, provision for 16K bytes of
ROM, and MULTIBUS intol logic. A feature of the iSBC 86/12A is that the
memory is dual portedie on-board processor and the MULTIBUS. Thus a
master 8086 on one peosit and examine the memory contents on a slave

board.

The iSBC 86/12Ae basic "hardware” environment for the frame. The

nsoftware’ is a circuites the 8086's own bus interface unit. We have

-2

implemented this controller for inclusion on the same die as a user's prototype circuit.
When an |/O or memory access operation is requested by the prototybe cir_cuit, the
bus controller acknowledges the request and generates"bus control- signals that are
identical to those of the 8086. The other subsystems on the board (1/O ports,
memory chips, MULTIBUS controller, etc.) behave as though they are interfaced with
an 8086. Since the user circuit/bus controller combination chip must be pin compati-
ble with the 8086 package, only a few pins that are not needed by the board are
available to the user circuit. The package is inserted into the board in place of the
8086 to surround the user circuit with system components, thus creating the proto-
type system. Our design frame is a cannibalized iSBC 86/12A board and the CIF code

for the bus controller circuit (see figures 1 and 2).

In the following sections, we provide details on the interface to the design

frame, the design and implementation of the 8086 compatible bus controller, and

% USER CIRCUIT
R

-

1777

/1

DESIGN FRAME DIE

!
!
I ‘
1
|

MULTIBUS
BOARD

Figure1. The Design Frame

-3-

.Figure2. Photograph of Design Frame

describe how we tested the design frame with a simple test circuit. We discuss

future directions in the conclusions.

3. Frame Interface

The user circuit/bus controller interface obeys a simple four cycle signaling
scheme (see figure 3). A request is preceded by piacing a memory or 1/0 device
address in the interface's Address Register, data in the Data Register (if output),
and setting the operation bits in the Status Register (read or write to memory or 1/0
device, or interrupt acknowledge). A request is initiated by setting the Request bit.
When the bus controller recognizes the request, it initiates the operation, and shows

that the operation has completed by setting the Acknowledge bit. The handshake is

= SETUP J#W / +\L\
/

OPERATION) /[
[
DATA X7 N—> X
ACKNOWLEDGE KA;)

Figure3. User/Controller Handshake

completed when the user circuit resets Request, causing the bus controller to reset
Acknowledge. A new request can now be made. A register level description of the

interface is given in figure 4.

4, Busg Controller Design

Since address and data are multiplexed on the 8086 processor bus, the 8086
Bus Interface Unit, residing with the Execution Unit on the CPU chip, must generate
signals to latch addresses and to control the data bus transceivers. INTEL introduced
the 8288 Bus Controller Chip to offload the generation of these signals from the pro-
cessor (this frees some pins on the 8086 for other functions). A "m\aximum" mode
8086 is one that is configured for interface to the 8288. The latter generates all the
necessary bus control signals, based on its decoding of the 8086 processor state.
The state is encoded in the signais S2, S1, SO, which are available on pins of the
8086 connected to the 8288. An.8086 compatible bus controller need only generate
these signals and provide address and data on the processor bus at the appropriate
times. The 8288 generates the balance of the signals needed to control the bus,

thus simplifyﬂing the design of the on-chip bus controller.

NMI | INTR RST READY
l lRST lCLK

EMNiR]- ~ Bs)” ~ T T -:Status Register S
]
Request -] : REQ > 8086 —-é-—-)
Operation - MEM/IO > Compatible s,
INTACK 4 Bus Controller —=
Acknowledge - ACK «]
T
}
|3
W
o W
USER 1
(O
Qw
CIRCUIT = Y _&
MUX M >
L)
LDA---A I
|
&
ca V1
T \l
T
LDD-—J IL-LDD‘
............ — 8086

Processor Bus

Figure 4. Register Diagram of Circuit/Controller Interface

However, several aspects of the signal timing of the 8086 complicate the signal
generation. The detailed 8086 bus timing is as follows. The 8086 system clock is sin-
gle phase. A major CPU cycle is divided into at least four minor cycles, each
corresponding to a single period of the system clock. During cycle T1, the address is
placed on the processor bus. The state of the processor is also revealed in the S2,
S1, SO signals. During T2, output data is placed on the bus if in a write cycle, other-
wise the processor bus is floated. A T3 cycle is inserted to give memory and {/O dev-
ices time to satisfy a read/write request. If a request cannot be performed in a sin-
gle clock period, the 8086 Ready signal is held low by the addressed device, thus
inserting wait states Tw between the T3 to T4 transition until the operation is com-

plete. The 8086 alerts the 3288 bus controller to enter the T4 cycle by driving its

-6~

state signals high during the /ast Tw cycle (defined as the T3 or Tw cycle during
which READY returns to the asserted state). On the transition to T4, input data is
valid and is latched. The 8288 has to synchronize%with the processor through
changes in the processor status signals because it does not contain logic to inter-
prete the READY signal. It enters T1 when at least one status signal goes low. It
enters T4 when these signals are all driven high. Proper synchronization can only
occur if the signals change within a critical timing window around the clock transi-

tions. A simplified bus timing diagram is given in figure 5.

Interrupts are handled by the user circuit. It acknowledges an interrupt by
requesting the bus controller to execute an interrupt acknowledge sequence. The
sequence consists of two consecutive bus cycles. The bus LOCK signal is generated
at the T1 to T2 transition during the first cycle, and is held through T1 of the second

cycle. The INTA signal is generated during T2 and T3 of both cycles. During the

TW
T4] T i T2 ' T3 v T4 '
]] 1 1 i
CLOCK 0 A /3 [1
STATE "'—"—'k] g!
\ 1\ / LATCH
1DATA
SBISDATA JXX ADDRESS | \>-———==mw= < / DATAIN ==
(Read Cycle) \ / I
QB/SDATA X~ ADDRESS X DATA OUT >
(Write Cycle)
READY — - l

Figure5. Simplified Timing Diagram for 8086 Compatible Bus Controller

second cycle, a byte of data from the interrupt controller is latched into the

interface's data register. The user circuit is responsible for interpreting this byte.

The bus timing is complicated by the fact that s;)me output ‘signals appeaf on
the falling edge of the clock, while others appear on the rising edge. We prefer to
use the non-overlapping/two phase clocking scheme of [MEAD80O], in which state
machines read their inputs during phase 1 (PHI1) while éll outputs become valid dur-

ing phase 2 (PHI2).

These problems are handled by (1) generating a two phase clock from the sys-
tem clock and (2) using a non-standard design for state machines. The timing
diagrams for a derived two phase clock are shown in figure 6, and are based on the
circuitry described in [MEAD80Q] and provided by the PadClockBar pad of the Stan-
ford nMOS Cell Library [NEWK81]. PHI1 is high while the system clock is low, and
PHI2 is high during the high time of the system clock. Signals appear at the rising or
falling edge of the system clock by building the bus controller finite state machine
with outputs thet can change during either PHI1 or PHI2 (since the bus controller
consists of a single finite state machine, there is no problem of reading outputs at
the wrong time). The block diagram of the controller is given in figure 7. Outputs not
conditioned by PHI1 will change close to the rising edge of the system clock, while

those that are will only change close to the falling edge.

System Clock
PHI X
PHI2

Figure6. Derived Two Phase Clock

AND - OR
PLANE PLANE
>
A
\
PHI —> REG REG - PHI2
) State
; - PHI1
Inputs Positive Negative
Edge Edge
Outputs ¥ Outputs

Figure7. Bus Controller Block Diagram

The state diagram for the controller is given in figure 8. Since state changes
occur at the positive edge of the system clock, signals appearing during cycle Ti are
specified on the Ti-1 to Ti state transition. An up arrow shows that the signal
appears on the rising edge, while a down arrow shows that it appears on the falling
edge. Tr is the reset state, Ti, and Ta are idle states. Detailed timing is given in figure

9.

5. Bus Controller Implementation

The bus controller is implemented as a PLA-based finite state machine. The data,
address, and control registers are conventional dynamic registers. The active area of
the bus controller chip is 3.5 mm by 3.5 mm, however most of this is committed to the
forty pads needed for 8086 pin compatibility. The area used by the bus controller
and interface registers is modest. Because of the additional complexity of interrupt

processing, it is not supported in the initial implementation of the bus controller. We

-g-

REQ A INTA

| [Status Active (1)
i OCK 4)
INTA ({)

/Status inactive (1)
INTA ()

l /Status Active (1)
i / LOCK (4)
INTA (L)

INTA ({)

Figure 8.

REQAINTA
Status Active (1)
Gate Addr Reg (1)
Enable Bus (i)
J— Float Bus (I
WRI/Gate Data Reg) RD/Enable Da(ta) Reg (4)
REQ/ACK
READY A WR/
Status Inactive (1)
ACK (1)
REQ/ACK READY A RD/
Status Inactive (1)
ACK (1)
lL.atch Data (1)
READY
Ta
READY AWR/
Status Inactive (1)

Status Inactive (1)

ACK ()
Latch Vector (1)

ACK ()

READY A RD/
Status Inactive (1)
ACK ()

Latch Data ({)

READY

State Diagram for Bus Controller

-10-

Write Cycle
T, T, T, Ty

System Clock r—l r—l
Phit L_J
[]

Phi2

Read Cycle

Status

\ /)

Ad/D —
ata Bus ADDRESS X DATA OUT Y XADDRESS

Ready

Interrupt Acknowledge
Sequence

Inta (8288)

S

N \
)

Ad/Data Bus < l >—
VECTOR IN'
i
|

Lock

Figure9. Detailed Timing Diagram for Read/Write/Interrupt
Acknowledge Cycles

felt that the ability to read and write memory was a sufficient test. We have chosen
a simple test circuit that reads a word from a fixed memory location and writes it
back to another location. The bus controller was included on the die with the test cir-

cuit. A photomicrograph of the test circuit and bus controller is shown in figure 10.

AL

Y

PO PRSEPP

ooy

= -

It e s e,

[——

s+

PR TRPISEIGT | TIUNLAT § [HSRSRP TR PREPPILS

TR o

&

e :m,., T
R ELCLRLLE
Ll e o
HIHE ot
Fto g

S
g

3
Y
L

NS
=1
T
-]
s
=1
. N‘UL -
: &2
S
)]
: e
mome | 0 BZFSSR
mzom ! :
= :
== |
YNRAR 5 o o 9 3 .
InaaE H i
s:.__ Ky
BEB .
O WL | H
et el B !

e % =2
NP ARDRR e AR RAFAART RS = e Pty
B i e Unen BRI RS BN |
: .HW.BUH“” s20e
e [RiatRis

- - +h

TR S R SV MCOREREP S E LT

Figure 10.

Bus Controller Photomicrograph

We implemented two versions of the bus controller. The only difference between

them is the clock circuitry. In the first design, the standard clock pad from the cell

, instead of feeding back the opposite phase within the

library is used. In the second

pad (this is done in the pad design to insure that the two phases are non-

-12-

overlapping), the feedback path is taken from the furthest extent in the circuit that
the clock signal has to travel. Thus, the clock signal reaches all points in the circuit
before returning to the pad, where the feedback causes it to go'low, allowing the
opposite phase to come high. This guarantees that clock phases will never overlap
because of clock distribution delays. It is a standard technique used at Xerox PARC

and was suggested to us by them.

During implementation, the major unanswered question was whether the bus con-
troller circuit could operate fast enough to generate the state signals within the time
critical windows (SPICE simulations were not available to us at the time). We were
prepared to run the boards at slower speeds if necessary to lengthen the critical tim-

ing windows to eliminate the problem.

6. Design History and Testing of First Silicon

The concept of the design frame was formulated during late Fall of 1981. The
bus controller was designed during December and January, and impiementation was
completed during the Spring of 1982. Designs were submitted through Xerox at the
end of May, but an extensive simulation done after the submission revealed a bug in
the programming of the PLA. This was corrected, and the design was resubmitted dur-
ing the Summer. First silicon arrived at the beginning of September. Two chips with

the standard clock pad and four chips with the modified pad were delivered.

Our curiosity got the better of us, and we tested the chips immediately by plug-
ging one into an 8086 board configured as a slave. We used the monitor on a master
8086 board to load the slave input memory location with data. Fortunately for us, the
first chip worked and the data value was transferred to the slave output memory

location, which we were able to examine with the monitor.

After more thorough testing, we determined that of the six chips received, only
one approximated correct behavior (the first one we tried!). The working chip had one

data bit stuck at zero. We subsequently discovered a missing metal-polysilicon

13~

contact that had eluded our simulations and connectivity checks (since these were
uitimately connected to a tri-state pad, we had thought the problem was due to the
simulator's inability to handle the high impedance state). Since this was connected to
the data bit stuck at zero, the chip would have worked except for the missing con-
tact. Running the remaining chips at a slower clock rate did not improve their

behavior.

From these initial tests, we have verified that our design is able to run at the
standard 5 Mhz clock rate of an 8086, while generating the bus control signals in the
required time windows to read from and write to memory. Since the interrupt cycle is
nothing more than two consecutive bus cycles, it should not be difficult to add this to
the design. We believe the feedback clock technique to be instrumental in our suc-

cess.

7. Conclusions and Future Directions

in this report, we have described the design, implementation, and testing of a
"design frame"” for VLS| System prototyping. The frame is based on a readily available

microcomputer board and a custom designed bus controller circuit.

The idea of a standard frame is an important one. The frame provides many sys-
tem capabilities needed by prototype circuits. System prototyping is completed more
rapidly because these capabilities do not have to be "lashed up’' from scratch for
each design. Debugging at the systems level is also improved dramatically, since the
behavior of the frame is well-understood. Since the frame includes a standard indus-
try bus, working prototypes can be quickly surrounded with even more capabilities
(more memory, secondary storage, etc.). Once shown to work, a prototype in its
design frame can be used as a system immediately. A design frame also simplifies the
task of interfacing a circuit subsystem to the rest of the system, since that inter-
face is defined by the MULTIBUS specification. Obviously, not every VLSI prototype

circuit can make use of our design frame. However, we believe that design frames

=14~

can be developed for generic classes of circuits. Ours is most appropriate for circuits
- that need memory and input/output operations, like conventional Von Neumann pro-
cessors. High performance, bit-serial circuits for signal prbces"sing mdy require a very

different design frame.

The iSBC 86/12A's dual ported memory provides the basis for a powerful VLSI
prototype testing facility. A prototype board can be configured as a slave to another
board with a standard 8086 processor. The master board, communicating through the
MULTIBUS, can download data into the slave's memory and read data placed in the
memory by the slave. This makes it possible to configure the prototype circuit with
parameters, input data, microcode, instructions, and to examine diagnostic data pro-
duced by it. We intend to further explore the possibility of implementing a develop-
ment system for the 8086 that will monitor the operation of circuits within our design

frame.

We have completed the design and implementation of an initial bus controiler cir-
cuit and have verified that it works. The next step is to interface more complicated
prototype circuits to the bus controller, such as a simple microprocessor for image
processing applica}tions currently being designed at the University of Wisconsin. We
are also interested in enhancing the design frame with testability features, such as
scan in/scan out logic for the input/output pads and the interface's registers. The
incorporation of such facilities is a good example of how a design frame can help to
simplify the job of debugging prototype circuits. Another project underway is to build
a design frame for direct interface to the MULTIBUS. While the bus protocol is simpler
than the 8086 processor bus, the design is more complicated because a system on
the bus can either be a slave or a master or both (the 8086 bus controller is the only
master of the 8086 processor bus). A design frame that directly interfaces to the
MULTIBUS will make it easier to create special purpose subsystems whose primary
need is to communicate on a standard bus, but which do not need the other facilities

of the 8086 board.

-15-

