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ABSTRACT

Attributed grammars can be used to specify ’;he context-sensitive syntax of
programming languages. We consider a subclass of attributed grammars known as
absolutely non-circular attributed grammars. These have been shown to be
equivalent to the class of non-circular attributed grammars. A very general on-
the-fly attribute evaluation algorithm is presented. The algorithm can be used to
parse any context free grammar augmented with an absolutely non-circular gram-

mar.

We then present a context free and context sensitive error correction stra-
tegy. We use context past the point of error in choosing a correction. We present
a two level error correction algorithm. The algorithm is automatic and table driven,
and can deal with any error situation. We discuss the generality of the algorithm

and its practicality using our implementation results.
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Chapter 1

INTRODUCTION

1.1. Review of the Previous Work

Error correction and recovery have always been an important aspect of com-
piler design, and accordingly there have been a large number of papers on this
subject in recent years [GHJ79, PK80, PD78, FMQ80, MA82, JR82]. Yet fesearch—
ers are not fully satisfied by these methods. Most of these methods have rather
serious drawbacks. Some [GHJ79, PK80, PD78, TA78] of the proposed methods
are completely ad hoc, and work well in some sitl;ations, but .not so well in others.
Others, when faced with certain syntax errors are forced to skip ahead, com-
pletely ignoring a portion of the input before restarting the parsing. The problem
with such methods is that if there are more errors in the skipped input, then those
errors will not be detected. Hence several compilations are required to detect and

correct all the errors.

Recently, automatic table-driven algorithms have been suggested [DI78,
FMD79, FMQ80, MA82] which are guaranteed to work on all the inputs. Yet these
methods too seem to have drawbacks. Some of these methods [FMD79, FMQ8O,
MA82] can deal with context free (or parsing) errors only. Hence they cannot
correct any context sensitive error (e.g. type mismatch or wrong qualifier with an
identifier). Further, the corrections made by these algorithms can contain
context-sensitive errors. Secondly, most of these error correctors work on one
symbol lookahead at a time. Hence a correction made by these algorithms is only

locally optimal and may not be the best correction. These drawbacks could be



rather serious, especially in strongly-typed modern programming languages. Lately,
an increasing amount of interest has been expressed in techniques for context-

sensitive error corrections [DI78, GHJ79, JR82].

For example, the use of context-sensitive information was investigateé by
Dion [DI78], but the algorithm proposed is rather expensive (although it is linear in
time and space complexity). Graham et. a/. [GHJ79] have proposed a context-
sensitive corrector, which works only in some limited situations (parsing errors
which can be corrected by a single insertion, deletion, or replacement. That is, the
author's algorithm can detect only syntax error and then tries one symbol correc-
tion which is semantically correct. Therefore, a construct which is syntactically

correct but semantically wrong will not be correct'by this algorithm).

One of the most powerful syntactic error correction methods is Aho and
Peterson's [AP72], which tries to transform a given input into a legal program
using a least number of repairs. It uses error productions to make insertions, dele-
tions, and replacements, and uses Earley's [EA70] parser to select the minimum
number of repairs. We will show that we can achieve the same results without
including the error productions (which can drastically increase the grammar size).
Our technique uses the parser suggested by Graham et. al. [GHR80]. Even with
these proposed improvements, the Aho and Peterson algorithm will be very expen-
sive to use in practice; but we will demonstrate that this idea of transforming the
given input into a legal string using minimum repairs is very useful and we can
apply it in some limited fashion (correcting a small region around the error token or
tokens), to make fairly good corrections. Mauney [MA82] has proposed one such

algorithm, but his algorithm can deal with syntax errors only.

Uy




We propose the following error correction strategy. When an error is
detected, we first try a single insertion, deletion, or replacement and validate the
correction over the next k input symbols (we term it as one-symbol correction with
k symbols validation). If we cannot pick a suitable single insertion, deletioﬁ, or
replacement, then we try to transform the next k input symbols (the value of k is
determined using criteria explained later) into a legal string that can foillow the
parsed left context, using a minimum correction cost. While selecting a correction
we use context-sensitive information also. We will use an attribute grammar for
representing context-sensitive information. For parsing a few symbols past the
error token (for both first level and second level corrector) we will use the parsing

method proposed by Graham et, al. .

In the next chapter we will present a technique for attribute evaluation in the
parsing method proposed by Graham et. al. (we shall refer to this algorithm as the
GHR parser in the rest of this thesis). We will present a fairly general attribute
evalluation technique applicable for any non-circular attributed grammar [KN68].
Then in the following chapter we will present the error correction algorithm outlined

above. Finally we will show that we can obtain the same result as the Aho and

Peterson algorithm if we parse the whole program using our error corrector.



Chapter 2

Attribute Evaluation

2.1. INTRODUCTION

Context-free grammars have been throughly studied by compiler writers
[AU72, BC78]. Efficient linear-time algorithms for recognizing many subclasses of
context-free grammars are well known [AU72], but these methods are too restric-
tive in certain applications. There are several general context-free recognizers
that can recognize any context-free grammar. It is well known that many seman-
tic aspects of the programming languages cannot be expressed with any
context-free grammar. A variety of techniques have been used to introduce the
idea of semantics into context-free grammars, such as two-level grammars, affix

grammars, and attributed grammars [PA8C].

Efficient attribute evaluation algorithms are now known for evaluating any
non-circular attributed grammar [JW75, KW76, KR7S, LRS74]. Most of these algo-
rithms are off-line, that is, to find the meaning of a string, they first find its parse
tree and then determine the values of all the attributes of the symbols in the tree.
This approach is not very attractive in those applications in which attributes of

symbols can control the shape of the parse tree.

In contrast, on-line attribute evaluators run in parallel with the parser and try
to evaluate as many attributes as possible at any given point in the parse. On-line
attribute evaluators are well known for certain restricted classes of attribute
grammars (L-attributed grammars with LL(k) parsers and S-attributed grammars

with LR(k) parsers [LRS74] ). Rowland [RO77] extended this work to combine




attribute evaluation for a general non-circular attribute grammar with GLC(k)
[RO77] parsers. We further extend this work and develop an on-line attribute

evaluator for a general context-free grammar.

We will develop an on-line attribute evaluator for the parsing method "pro—
posed by Graham et. al. [GRH80], which can be used to parse any context-free
grammar. Since this method is very similar to other parsing methods for general
context-free grammars (e.g. Early's [EA70] and Cocke, Kasami, and Younger's
(also known as the CYK parser) [AU72] parsing methods), it should be easy to

adapt this evaluator to other related parsing methods.

2.2. Attributed Grammars

In this section we review some basic definitions related to formal grammars,

attribute grammars, and parsers.

An alphabet or vocabulary is a finite set of symbols. A sentence over an alpha-
bet is a string of finite length composed of symbols of the alphabet. The empty
sentence, A, is the sentence consisting of no symbol. If 2, is the alphabet, 2*
denotes the set of all sentences composed of symbols of ¥, including the empty

sentence.

An attributed grammar is an ordinary context-free grammar augmented with

attributes and semantic functions as described below.

Definition : A context-free grammar G is a four tuple G = (Vn, Vi P, S). Where
Vn is a set of non-terminal symbols, Vt is a set of terminal symbols,
disjoint from Vn‘ We write V for Vn U Vt’ called the vocabulary. S is a

distinguished symbol of the grammar called the start symbol. P is a set



of production rules. A production p € P is written as

p: X0 => X1 an, where np.z o, X0 € Vn’ and
X €V for k>0

X0 is the left-hand side and each Xi for 1 =i < nis a member of the

right-hand side of the production.

Any production may have an empty right-hand side. Such productions

are writtenas A => A If o, §, y € V' and A = B € P, we say that

aAy directly derives o8y, and write aAy => af87y. The reflexive and

transitive closure of => is denoted by ="

We designate by SF(G) the set of sentential-froms derivable from S, that is
SF(G)=20(€V*|S=-:,>*cx§

The language generated by G = (V_, V,, P, S) is L(G) = SF(G) N V; .
n 't M t

To every sentential form there corresponds a derivation tree. The root of the
treeis S. IfA € Vn is rewritten using the production A => X1 Xm, then A has X‘l

Xm as the direct descendants.

A cfg is said to be reduced if V A € Vn
(1)s =" ..A.. and

@3we V: such that A =5 w.

Definition : An attributed grammar AG is a B-tuple AG = (Vn, Vt’ Q, P, S, FQ).
Where Vn is a set of nonterminal symbols, Vt is a set of terminal sym-
bols, disjoint from \!n, and Q is a set of primitive predicate symbols,
disjoint from V {J V,.

For each grammar symbol X € Vn U Vt U @, there are two finite dis-

joint sets I(X) and S(X) of inherited and synthesized attributes




respectively. For X € V, we require that 1(x) = $. We write A(X) for
I(X) U S(X). We assume that inherited attributes of the start symbol
S are supplied before we start evaluating the attributes and synthetic

attributes of a symbol from Vt are supplied with the terminal symbol.,
P is a finite set of productions of the form

0 0 a0
Xgbal .. J,aNO ") .. TB’MO =

1 | i 1 n n
Xqday . J,aN1 Y . ‘I‘bM1 v Xoball 4,aNn rd} M‘Mn

Where n =0, X5 €V, and X, € Vfork > 0.

The inherited attribute positions of the symbols are prefixed by "l"
and synthesized attribute positions by "1, Each ajk or Eik is either an
attribute variable or a constant attribute value.

Each production p € P has a set of attribute evaluation rules associ-
ated with it. A rule must be supplied for each inherited attribute
appeating on the right-hand side of a production as well as for each
synthetic attribute of the left-hand side. Attribute rules may only use
attributes associated with the symbols of the corresponding produc-
tion to compute values. These attribute evaluation rules are also
called semantic functions. We will denote the semantic func;,tion for
evaluating attribute v in production p by fp,v’ The value of attribute v
in production p depends on some other attribute occurrences in p. We
denote the set of these attributes occurrences by D D is called

P,V Tp,v
the dependency set of fp,v‘ If Dp,v = §v1 y eor ,vn§ then fp,v is a mapping

domain(v1) X ere X domain(vn) - domain{v)

-



Semantic functions which copy attribute values from one attribute position
into another attribute position will not be stated explicitly. Rather, the same attri-
bute name occurring in two or more attribute positions will indicate that the attri-
bute value must be copied from a defining attribute position into applied attribute

positions.

Definition : A defining attribute position is an inherited attribute position of
the left-hand side of a production or a synthetic attribute position of a
symbol on the right-hand side of a production. An applied attribute
position is a synthetic attribute position of the left-hand side of a
production or -an inherited attribute position of a symbol on the right-

<

hand side of a production.

FQ is a finite set of predicate functions. For each X € Q there exists fx € FQ

such that

f: l(x) - S(x) X {true, false]}

fx is total recursive over 1(x).

The role of a primitive predicate is twofold. Given the values for its inherited
attributes, it evaluates its synthetic attributes. It also performs checks on the
validity of the application of a production. Whenever it returns false, the pres-
ence of a context-sensitive error is detected. This corresponds to an "illegal”

application of a production under the rules of the AG.

A parser for an attributed grammar AG is a context-free parser augmented by
an evaluator which evaluates attributes as parsing progresses. The parser is con-

structed from the head grammar of AG defined as follows




Definition : The head grammar, HG, of an attributed gramnmar AG = (Vn, Vt’ Q, P,

S, FQ) is a context-free grammar (V', vy, P, S'") obtained as follows :

1. The terminals of HG are terminals of AG (V; = V)

2.  The set of nonterminals of HG includes nonterminals of AG and primi’zive
predicates of AG (V) =V, ) Q)

3. The set of productions P' of H is obtained from the productions of AG by
removing attributes. A production of the form g => A is added to P' for
each g € Q (primitive predicates)

4. The start symbol S' of H is the start symbol S of AG.

We illustrate the above definitions using a small example. This grammar
defines a skeleton language in which identifier may be "declared” and "used", in
which no identifier may be declared more than once and no identifier can be used

without being declared first.

AG = (Vn, Vt’ Q, <program>, P, FQ) where

\In = {<program>, <dec list>, <stmt list>, <var decl>, <var use>}
V; = fident, dcl, use, end, $]

Q = { <declare>, <check> }

FQ =1 1:<declare>’ 1"<check> 3

P includes the following productions

pl: <program> => $ BEGIN <dec list>{Ptsymtab

<stmt list>!symtab END $

p2: <dec list>~l,symtab11‘symtab3 => DCL
<var decl>tid <declare>{symtab, did

<dec list>-l,symtab21‘symtab 3
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<dec list>2.symtab2 1= <dec list> .sym‘tala1

U {<var decl>.id}

p3: <dec list>symtab, fsymtab, => A R

<dec list>.Isymtab, := <dec list>.Fsymtab
pd: <var deci>tid => ident?tid
p5:  <stmt list>lsymtab => A

p6: <stmtlist>{symtab => USE <var use>{symtab

<stmt list>!symtab
p7: <var use>!symtab => ident?id <check>lid{symtab

f = id € symtab

<check>

f =id £ symtab

<declare>

The head grammar, HG, (obtained automatically from the above) is given
below.
HG = (Vn, V;, <program>, P) where
Vn = {<program>, <dec list>, <stmt list>, <var del>, <var use>,
<declare>, <check>]
V, = lident, dcl, use, end, $}

P include the following productions

p1: <program> => $ BEGIN <dec list> <stmt list> END $
p2: <dec list> => DCL <var decl> <declare> <dec list>
p3: <declist> = A

pd: <var decl> = ident

[
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p5:  <stmtlist> => A

p6: <stmtlist> => USE <var use> <stmt list>

p7: <var use> => ident <check>

p8: <check> => A !

p9: <declare> => A

2.3. Problems With Attributed Grammars

There are several problems inherent in evaluating the attributes associated
with the symbols of a syntax tree. First, the resulting definitions must be non-
circular. A circular attributed grammar is one whc;se language contains a syntax-
tree with an attribute that depends functionally upon its own value. Knuth [KN68 ]
has given a circularity test for attributed grammars. Circular grammars are not of

interest and are eliminated from all evaluation schemes.

Another problem in attribute evaluation is finding an order in which to evaluate
the attributes of a sentence. One group of methods, known as tree-walk evalua-
tors, relies on the prior completion of the syntactic analysis of a sentence. Notable
among these methods are those proposed by Fang [FA72], Jazayeri [JW75], Boch-

man [BO76], and Kennedy and Warren [KW78].

A second class of attribute evaluators determines attribute values during
syntactic analysis. We will refer to these methods as on-line attribute evaluators.
Two such parse-time evaluators are described by Lewis et al [LRS74]. A left-to-
right bottom-up parsing method, LR(k) for instance, finds all offspring and their
subtrees before any parent. As a recognized production's right-hand side is

reduced to its left-hand side symbol, synthetic attributes can be evaluated for
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the left-hand side if all attributes in the offspring are evaluated, and no attribute
of the root depends on any inherited attribute of the root. Synthetic or S-

attributed grammars meet this restriction.

I's
Top-down parsing methods like LL(k) recognize nodes of a syntax tree in a

different manner. All parents are recognized before their offsprings, and each child
is found before its siblings to the right. The LL(k) parser performs a depth-first
left-to-right walk through a syntax tree. Any attributed grammar that is LL(k) and
that can be evaluated by a single depth first left-to-right walk for any sentence
in the language can be evaluated during an LL(k) parse. Details of the stack
machine that performs the evaluation are presented in the Lewis et. al. [LRS74].

The attributed grammars allowed by this method are termed L-attributed Grammars.

The definitions for L-attributed and S-attributed grammars are adopted from

Lewis et al [LRS74].

Definition : An attributed grammar is S-attributed if all attributes are syn-

thetic.

Definition : An attributed grammar is L-attributed if for each production pebP
of the form

XO =3> X1 Xn

1. The synthetic attributes of XO are only dependent upon the inherited

attributes of XO and arbitrary attributes of the symbols X1 through Xn.

2. The inherited attributes of ka are only dependent upon the inherited attri-

butes of X, and arbitrary attributes of X, ... Xk-1

These two classes of attributed grammars, S-attributed and L-attributed, do

not include many desirable properties of full attributed grammars. Forward
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references, for example, cannot be handled in either class without undue compli-

cation.

Rowland [RO77] extended this work of combining parsing and attribute
evaluation for a general attributed grammar. The parsing method he used ‘was
GLC(k) [RO77]. A subtree is retained until all the attributes of its root are
evaluated. Once all the attributes of a root are known, the subtree below it can be

discarded, as it will not be required any further for attribute evaluation.

We would like to extend this work and develop an on-line attribute evaluator
for any context-free grammar with a general non-circular attributed grammar. Our
method is based on attribute evaluator proposed be Kennedy and Warren [KW78],
but it runs in parallel with the parser. The parsing method we have selected is the

one proposed by Graham et al [GHR80].

The rest of this chapter is organized as follows. In the next section we will
give a brief review of the GHR parsing algorithm. Then we will show how to combine
attribute evaluation with parsing (separate sections for the S-attributed, the L-
attributed and the absolutely non-circular (defined later) attributed grammars)
assuming that there are no predicates in the grammar. Finally we will show how to

include primitive predicates.

2.4. Brief Review of the GHR Parsing Method

The parsing method proposed by Graham et al can be used to parse any
context-free grammar. It is a ''dynamic programming” method in which derivations
matching longer portions of the input are build up by pasting together previously

computed derivations matching shorter portions. In order to handle arbitrary gram-
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mars, it uses the idea of matching only part of the right-hand side of a production
rule to the input, rather than the whole production rule. As a notation for dealing

with this situation it uses dotted rules as defined below.

¢

Definition : lLet G = (Vn, Vt’ S, P) be a context-free grammar and let "." be a
symbol not in V, (J V;. If A = af is in P, then A = o.f is a dotted

rule of G.

The idea is that a dotted rule A = o.f indicates that o has been matched
to the input, but it is not yet known whether ﬁ matches (dotted rules are similar to

items in LR parse states).

To parse an input string w = By - an,‘ the GHR parser constructs an
(n+1)X(n+1) upper triangular matrix t = (’ci j) 0 < i< j=n, whose entries are sets
3

matching substrings of the input. Elements of these sets are dotted rules.

If A=> a.f is a dotted rule, we say that A => o matches x if & =¥ x. B
€ Vn matches x if B = x. If A = «o.Bf matches x and B matches y, then we can
"paste” the derivations together to conclude that A = oB.§ matches xy. The

operations needed to paste two derivations are defined next.

Definition : Let G = (Vn, Vt’ S, P) be a context-free grammar. Let Q be a set
of dotted rules and R be a set of symbols (a subset of V U V).

Define
QxR = {A => 0By | A=> aBfy €Q, § =5 A and B <R}

QR = {A = aBf.y | A=> aBfycQ, =\ and

B = C for some C € R}




156

The possibility of both arguments for x and * product being dotted rules is

included in the following definitions.

Definition : Let G = (Vn, Vt’ S, P) be a context-free grammar. Let Q,R be sets

of dotted rules, then

QxR = {A => aBB.y | A=> aBfy €6, § =¥ A, and

B =>p.€R]

Q*R={A => aBB.y | A=> aBfy €Q, =5\ and

B = C for some C => p. € R}

Informally, the parsing algorithm works as follows. Let w = ay - By be the
input string we want to parse. Denote Bpq - aj by Wi,j and aq - g by Wi In ti,j

we include the dotted rule A = a.f iff o = Wi i Further if we have A => a.Bf§

in t; ; and we have B => 7. in t; ;| then we can include A => B.f in bk (we
have left out few details for handling chain rules and A productions). Instead of
finding all the dotted rules A => o.f8 which match some substring Wi,j of the input,
we need find only those dotted rules A => o.f which match Wi,j and may legally
follow the parsad left context wi. The GHR algorithm does this by using a PREDICT

function, which is defined as follows.

Definition : let G = (Vn’ Vt’ S, P) be a context-free grammar and let R be a

subset of V| U V. Then define

PREDICT(R) = {C => a.f | C => aff € P, aa =¥ A,

% x
B = C’)'forsomeBe:Rand'yE(VnUVt);

If R is a set of dotted rules then
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PREDICT(R) = PREDICT({B | A => atBS €R })

The complete GHR parsing algorithm is given below in a Pascal-like notation

(adopted from [GHR80]).

4

Algorithm 1
let G = (Vn, Vt’ S, P) be any context~free grammar. Let w = aq e s
where n = 0 and a € Vt for 1 = k =< n, be the string to be recognized.
Form an (n+1)X(n+1) matrix t = (ti,j) as follows
begin
t0,0 := PREDICT({S]); (* Match A %)
for j:= 1 ton do
begin (* Build column j, given columns O ... j=1 %)
o= Yo g1 §aj§ (* paste input symbol to A
derivations that precede it *)
for i := j-2 downto O do

begin

= (t, t, )
' (i<kL<%—1 l’kx K, U

(ti,j—1) x (tj-m’ U 2aji);
(* Paste non- derivations *)
‘ ti,j =ry ti,i * r; (* Paste matched suffix to
A derivations that precede it and
extend match to reflect chain rules*)

end;

. . := PREDICT( t )
ij ot j

end;
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if some S => . € tO n then accept
b
else reject

end.

For complete details and number of possible variations to this algorithm see

[GHR8O].

2.5. S-attributed Grammars

If the attributed grammar corresponding to the head grammar we are patsing
is S-attributed (as defined above), then attribute evaluation while parsing is very
easy. As a recognized production's right-hand side is reduced to its left-hand side
symbol, syrithetic attributes of the left-hand side symbol can be evaluated, as all
the attributes of the right-hand side symbols (which have been recognized) are
known (this follows directly from the definition of é—attributed grammar). There-
fore, before we "paste’" a newly recognized symbol into another dotted rule, we
compute its synthetic attributes and include them with the symbol. Therefore in
any dotted'rule A => «.f, all the symbols of «a will have their attributes

evaluated.

Now we shall redefine the x and * product so that the attributes of a symbol

are evaluated as it is recognized.

Note that for all the sets used in the following definitions we will treat a
grammar symbol with different attribute values as distinct set elements. There-
fore, aset S = iATaO, A‘I"a1 { has two elements if ag and aq are two attribute con-
stants with different values. Similarly a set containing two dotted rules with the

same grammar symbols and the dot in the same place are two distinct set ele-
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ments if there exists at least one attribute position where two dotted rules have

different attribute values.

Further, we require that for each symbol D such that D =" A, we evaluate
the attributes of D when we move the dot over D. These attributes can be
precomputed. But we can have a problem if the grammar is ambiguous. For example

consider the following attributed grammar.

BTaB = A1‘aA

BoaB = A.aA;
A‘l‘aA = A‘I‘aA

A[1]a, = Al2]a, + 1;
Ata, => A

Aay:=1;

Now B?aB = A, but we cannot determine a u:;ique value fér attribute ap, If
we include B a number of times with different attribute values, the number of dot-
ted rules can grow indefinitely. There are two alternatives to deal with situation.
We can either take the smallest derivation of B =¥ A and precompute the attri-
butes of B (this can be done for S-attributed grammars; in arbitrary attributed
grammars, the synthetic attributes of a symbol may depend on the inherited attri-
butes of that symbol). Our choice of smallest derivation is not arbitrary: If we use
the GHR parsing method and get a parse tree before evaluating the attributes, the
parse tree will have the smallest subtree for each B = A. Hence what we are

doing is what would be done by a tree-walk evaluator.

The other alternative to deal with the above mentioned problem is to have a

user defined semantic functions (or a predicates) which will compute the syn-
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thetic attributes of B of each B = A. These semantic functions will use the attri-
butes of the lookahead symbol (and the inherited attributes of B when we have
arbitrary attributed grammars) to decided the synthetic attributes of B. These
semantic functions will decide how many times we should loop in the derivation B
=3 \ for computing the synthetic attributes of B. We feel that using predicates
or semantic functions to decide how many times we should loop is very attractive
as this will require no modification in the GHR parsing algorithm and we can deal

with this rather uncommon situation.

We can get into the similar problem with chain rules. For example consider the

following attributed grammar.

BT‘aB =% ATaA

B.aB 1= A.aA;
A1‘aA = A?aA

A[1 ].aA 1= A[Z].aA + 1;
A‘I‘aA = C‘l‘aC

A.aA = C.ac;

Now BTaB =¥ CT‘aC, but we cannot determine a unique value for attribute ap
from the value of ac Here again we have two alternatives to deal with this situa-
tion. We can either choose the smallest possible derivation B‘I‘SB = CT’SC in
determining the attributes of B from the attributes of C. Or alternatively we can
have a user defined semantic functions (or a predicates) which will compute the
synthetic attributes of B of each B =¥ C. These semantic functions will use the
attributes of the symbol C and the attributes of the lookahead symbol (and the

inherited attributes of B when we have arbitrary attributed grammars) to decided
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the synthetic attributes of B. These semantic functions will decide how many
times we should loop in the derivation B = C for computing the synthetic attri-

butes of B.

&
in the definitions given below only some of the symbols in a dotted rule will
have their attributes fully evaluated (symbols appearing left of the dot). Attri-
butes unavailable for a symbol will not be shown. Further, note that E is obtained

from the § after evaluating the attributes of all the symbols in it.

Definition : lLet AG = (‘Jn, Vt’ Q, S, P, FQ) be a S-attributed grammar. Let Q be
a set of dotted rules and let R be a set of attributed symbols with a//

the attributes evaluated. Define

QxR = {A => oBS,B.y | A => aBBy € Q, f§ = A and BIS, € R. Attributes
of B are also included with the symbol. For each grammar symbol C
such that 8 = pCw the attributes of C are evaluated according to the

production rule C = \ }

Note that attributes of B are included with the symbol (as we are taking the x
product of a set of dotted rules with a set of attributed symbols). Further, if we
move the dot over a symbol because it derives A, then we compute its synthetic

attributes (as explained before) and include them with the symbol.

QR = {A = aB?S\f.7 | A=> aBBy € Q, f =5 A, and B = C1S, for some
(ZT‘SC € R. Also evaluate the attributes of B before pasting it into the
dotted rule and for each grammar symbol D such that ﬁ = pDw, evalu-

ate the attributes of D according to the production D = A }
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Note that from the attributes of C we can compute the synthetic attributes

of Bif B = C and we are parsing an S-attributed grammar.

Let Q,R be sets of dotted rules. Define x and * products as follows P

OXR = (A => aBS,B.y | A => aBBy €Q, f =5 A, and BtSg = 0. <R
Evaluate attributes of B and include them with the symbol, and for
each grammar symbol C such that f = pCw, evaluate the attributes of

C according to the production rule C =¥ A 5

If B =X §. € R then attributes of the symbols on the right-hand are known
(they were evaluated as we recognized $). Using these attributes we compute

the synthetic attributes of B before we move the dot over B.

e, X
Q*R = {A => aBTS,B.Y | A => a.Bfy € Q, f = A, and BTSg = C1§, for
some C’I‘SC => . € R. Also evaluate the attributes of B before past-
ing it into the dotted rule and for each grammar symbol D such that 8 =

pDw, evaluate the attributes of D according to the production D = A

5

The PREDICT function remains same. The parsing algorithm is same as given
above except that it will use the new definitions of x and * product. These modifi-
cations can be incorporated easily into the various implementations suggested by

Graham et al [GHR80] for x and * products.
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2.6, l-Attributed Grammars

If the attributed grammar corresponding to the head grammar we are parsing
is L-attributed (as defined above) then on-line attribute evaluation is also very

easy.

From the GHR algorithm it is clear that we predict a symbol when we have the
dot before it. That means all the symbols left of the dot have been recognized. If
the grammar is L-attributed, then all the inherited attributes of the symbol being
predicted can be computed (this follows directly from the definition of the L-
attributed grammar). Hence when Qve predict a symbol, we also include its inherited
attributes. Here again graﬁmar symbols with different attribute values will be con-
sidered distinct. Hence if we have two dotted rules predicting the same grammar
symbol with different inherited attribute values, then we include that symbol

twice.

Now we will redefine * and x products and PREDICT function for L-attributed

grammars.

Note that when we paste an attributed symbol BMBTSB into a dotted rule, we
require that the inherited attributes of B match the inherited attributes of B in the
dotted rule. This is due to the fact that if B has different inherited attributes then
it must have been predicted by some other dotted rule and therefore, cannot be

pasted with this dotted rule.

In the definitions given below only some of the symbols in a dotted rule will
have their attributes fully evaluated (symbols appearing left of the dot). Attri-
butes unavailable for a symbol will not be shown. For example, if only inherited

attributes are known for B, then we shall represent this fact by using BMB (1‘SB

A

(AR
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will not be shown). Further, we make following observations about attribute

evaluation while taking x or * product.

If we move the dot over a symbo! C because C = A, then we get its inher-
ited attributes from the symbols left of it (since those symbols will have all "their
attributes evaluated). Using these inherited attributes of C, we compute synthetic
attributes of C (If C = A then the synthetic attributes of C are a function of
only the inherited attributes of C). There are two alternatives for evaluating syn-
thetic attributes of C from its inherited attributes if C =3 A\. We can do a pre-
analysis and come up with the semantic functions for evaluating synthetic attri-
butes of C from the inherited attributes of the C {these functions will be similar to
plans defined in the next section); or we can implement the x and * products such
that the parsing algorithm does not have to know in advance which symbol can
derive A. This information can be computed at run time while parsing. (For more

detail on this see [GHR80]. From our implementation experience, we find the

second alternative to be more attractive.

Furthermore, if we move the dot over a sequence of symbols, because they
all derive A, then we must move the dot over one symbol at a time, compute its
attributes (inherited and synthetic), then move the dot over the next symbol, and
so0 on. Here again we can implement the x and * products such that the parsing
algorithm does not have to know in advance which symbol can derive A, but com-
putes it at run time. This technique can deal with predicates without any undue

complication (we will discuss the predicates in more detail in the section 2.9).

If BMB = CMC‘NC, then using inherited attributes of B and attributes of C
(both inherited and synthetic), we compute the synthetic attributes of B before

we move the dot past B. Again semantic functions for evaluating these attributes
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can be established in advance, or we can implement the * product such that the
parsing algorithm does not have to know in advance about the chain rules, but

computes them at run time while parsing.

Finally, when we have B\I,IB = 0, all the symbols on the right-hand side will
have their attributes evaluated (they were evaluated as we recognized J). From
these attributes and inherited attributes of B we compute the synthetic attributes

B before we include B into a dotted rule,

Definition : Let AG = (Vn’ Vt’ Q, S, P, FQ) be an L-attributed grammar. Let Q he
a set of dotted rules and let R be a set of attributed symbols with all

the attributes -evaluated. Define

*

GxR = iAMA = O(BMBTSBE.’}' ! Ally = a.BMBBy eq f8 = A, and B-LIBTSA
€ R. Attributes of B are also included with it. Let § = C4 ... C.. Go from
left to right computing the inherited attributes of Ci and using these
inherited attributes to compute the synthetic attributes of Ci before

considering C, 4 {

Q*R = ZAMA = O(BMBTSBE.’)! l Ally = cx.BMBE'y €Q, § =¥\, and BiIgTSy
= CMCT‘SC for some CMC?SC € R. Evaluate the attributes of B
before pasting it into the dotted rule and let 8 =Dy ... D,. Go from left
to right computing the inherited attributes of Di and using these inher-
ited attributes to compute the synthetic attributes of Di before con-

sidering D; 4 }
Let Q,R be sets of dotted rules then define x and * products as follows

QxR = {ALly => aBUtSEB.y | Ally => aBLpBY €Q, f =% A, and BURTSy
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=> §. € R. Attributes of B are evaluated before including it into the
dotted rule. Let [)’ = C1 Cn. Go from left to right computing the
inherited attributes of Ci and using these inherited attributes to com-

pute the synthetic attributes of C, before considering Ci+'1;

Q*R = {Adl, => aBUITSEBy | All, => aBUEByY €0, B =3 A, and BLI TS,

= CLI TS for some CYI TS, => 6. € R. Evaluate the attributes of
B before pasting it into the dotted rule. Let ﬁ = D1 Dn' Go from left
to right computing the inherited attributes of Di and using these inher-
ited attributes to compute the synthetic attributes of Di before con-

sidering D, 4 |

Now we will define the PREDICT function for an L-attributed grammar.

Definition : Let AG = (Vn, Vt’ Q, S, P, FQ) be an L-attributed grammar and let R

be a set of attributed symbols with all the inherited attributes

evaluated. Define

PREDICT(R) = {Cll, = @.f | ¢ = aff € P, a =¥ A, and B =¥ Cp for some

Bilg € R and some p € V", Evaluate the inherited attributes of C from

the inherited attributes of B. Llet o = D1 Dn. Go from left to right

evaluating the inherited atiributes of Di and using these attributes to

compute the synthetic attributes of D, before considering D.
i i+1

If Ris a set of dotted rules then define

PREDICT(R) = PREDICT({BMB l AJ,IA => .BfS € R. Compute all the inherited

attributes of B})
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The rest of the parsing algorithm remains same.

2.7. Non-Circular Attributed Grammar

When we have a general non-circular attributed grammar, attributes can be

evaluated as follows.

In every attribute domain we can include a special value called 'unknown'. If
we have an attribute position whose value is not available when we move the dot
over a symbo! (and cannot be computed at this moment) then we put the value

'unknown' in that position.

Eventually we will put some legal value from the attribute domains in all the
attribute positions where we have put the ‘unknown'. One approach for doing this
would be to delay evaluations of those attribute positions where we had to put
the 'unknown' until the end of parsing. At the end we have the complete parse
tree. Therefore, we can evaluate all the attributes. This approach is not very

attractive for the following two reasons.

First, because of lack of information (or attributes), some dotted rules which
could be deleted by the predicate functions will not be deleted (the exact use of
predicates will be explained later). Further, we could end up with a parse tree that
is semantically wrong. Hence at the end we would have to modify the parse tree to

create the one which is correct for the given input.

Second, as we parse further to the right, there will tend to be more and more
attribute positions with the 'unknown' values (as we cannot evaluate an attribute
unless all the attributes on which it depends have some legal value from their

corresponding domalins). Hence towards the end we may well be parsing without
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any attributes.

An alternative approach would be to evaluate as many attributes as possible

at any given time as follows.
¢4

When we move the dot over a terminal or a non-terminal in a dotted rule, we
examine all the symbols left of it whose attributes could be affected by the new
symbol. Additional inherited attributes could become available for these symbols.

'We move these additional attributes to the symbols to the left of the dot. These
additional inherited attributes could make it possible to compute more synthetic
attributes. If so, we then reconsider the symbols which are used in forming this
dotted rule and get these additional synthetic attributes. Using attribute depen-
dency information we can avoid any unhecessary ‘reconsidera’cion of a symbol (see
[KW78]). There is one problem that needs to be considered in the above method.
Since a symbol could be predicted by more than one production, it is possible that
more than one dotted rule is using the same symbol (because two or more produc-
tions could predict the same symbol with the same subset of inherited attributes).
When we reconsider a symbol (because some additional inherited attributes are
available) with additional inherited attributes, we cannot attach these atiributes
to the symbol, as other dotted rules using this symbol could have different inher-
ited attribute values for it (because different productions can have different

attribute evaluation rules). This problem can be solved as follows.

When we reconsider a symbol, we do not change its attributes. When we
reconsider a symbol with more inherited attributes, it will return additional output
(synthetic) attributes without changing any of its existing attributes. This
approach could turnout to be bit expensive. We can make it more efficient by put-

ting a count with each symbol, which says how many dotted rules are pointing to
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it. If there is only one dotted rule pointing to it then we can change its attributes
from the ‘unknown' to some specific value freely. But keeping a proper reference
count could also be unacceptable due to additional links required. An alternative to
reference count would be to have multiple copies of the symbols which are used
by more than one dotted rule. We can easily incorporate this technique without
changing the basic algorithm. When a symbol is predicted by more than one dotted
rule, we currently include it a number of times with different inherited attributes.
Now we include a symbol a number of times with the same subset of inherited
attributes if it is predicted by different dotted rules. That is, since an attribute
position which contains 'unknown' can be expanded in many different ways, we
have a choice to delay the expansion (by keeping the attribute position 'unk-
nown') or follow multiple different expansions (by making multiple copies of the

symbols predicted by different dotted rules).

When we have a general attributed grammar (not S-attributed or L-
attributed) then we cannot evaluate all the attributes of a symbol as it is recog-
nized. Therefore, we will try to evaluate as many attributes as possible as we
recognize a symbol. As it becomes possible to evaluate additional attributes, we
revisit the symbol and evaluate these additional attributes. To see which attri-
butes can be evaluated at any given time, we use attribute dependency informa-
tion. This information can be extracted from the grammar definition. More specifi-
cally, supposé we h'ave a production p € P

p: XO = )(1 Xn
Then we must have a semantic function for each synthetic attribute of X0 and for
each inherited attributes of X1 through Xn. The relationship among attributes
occurrences of a given production can be represented by its dependency graph,

denoted by D{(p), defined as follows.

ot
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D(p) = (V,E)
The node set Vp is the set of all attribute occurrences of p and the edge set

is the set of dependency pairs for p. Formally

Vp = b | bis an attribute occurrence in p §
E
p

u

§ (b1,b2) I value of attribute b, is directly

dependent on the value of attribute by }

This graph is always acyclic for non-circular attributed grammar and hence

yields a partial order for attribute evaluation.

If we have a parse tree T of an attributed grammar, we can construct &
dependency graph D(T) that represents all data flow paths in the tree. This graph
is the result of "pasting together" copies of D(p)':s for productions occurring in the
tree. Let T be a derivation tree; P: XO => >(1 Xn is the production rule applied
at the root of T and Tk is the kth subtree of ‘T, D(T) is recursively constructed
from D(p), D(T1), ,D(Tn) by identifying the nodes f’or attribute occurrences of Xk
in D(p) with the corresponding nodes for the attribute occurrences of the root of

Tk in D(Tk), 1T<k=<n.

if a subtree is detached from the rest of the tree, some data flow paths
through the root of the subtree will be interrupted. Data flows into the subtree
through inherited attributes and out of the subtree through synthetic attributes.
Therefore, we will refer to inherited attributes of a symbol as /nput attributes and
synthetic attributes of a symbol as output attributes. The dependency graph of &
subtree may imply that certain input attributes must be made available before an
output attribute can be evaluated. These relationships are called input-output

dependencies of the subtree.



Similarly, we can associate input-output dependencies among attributes of a
nonterminal. With each nonterminal X of the grammar, we will associate an "t/O
graph" le, which will describe the input-output dependencies of subtrees with

4

root X.

Different subtrees with the same root symbol may exhibit different input-
output dependencies. So we cannot hope to characterize a nonterminal precisely
by means of single graph. Instead, IOX will present a worst-case picture of input-

output dependencies.

In order to computie IOx, we first show how to find input-output dependencies
of XO with respect to a production P: XO = X1 Xn. To find input-output depen-
dencies of XO with respect to a production, we \A;i” use 1/O graphs of the symbols
X1 Xn and D(p), the dependency graph for production p, as defined before. This

gives us a recursive definition of the 10,/'s.

Let D{(p) be the dependency graph associated with the )production P. Sup-
pose that for k = 1, ... ,n we have a directed graph Gk whose nodes are A(Xk).
Then let Dp[G1, ,Gn] be a directed graph obtained from D(p) by adding an arc
from attribute occurrence a to attribute occurrence b (both a and b are attributes

of the same symbol Xk’ 0 < k < n), whenever there is an arc fromato b in Gk'

Definition : The augmented dependency graph D*(p) for a production
p: X0 = X1 - X is a graph Dp[IO g ,IOXn], where IOXi is an

empty graph if )(i € Vt'

The graph D*(p) is the dependency graph for a production p extended to
X
include potential dependency chains through subtrees. Any path in D (p) from an

input attribute of X to an output attribute of X represents an apparent input-
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output dependency of X, and must be represented by an arc in |OX. We therefore,

have the following recursive definition (adopted from [KW78]).

Definition : The set of 1/0 graphs is a set gloxg of directed graphs indgxed
by Vn satisfying
(a) The nodes of the graph le are the attributes A(X) and
(b) There is an arc frem i to s in IOx iff there is a path from i to s in the

graph Dk(p) for some production p € P whose left-hand side is X.

Hence we can use following iterative algorithm to compute the set of 1/0

graphs.

Initially let each 10y have nodes A(X) and no arcs. Then repeat until no more

arcs are aaded to any IOX: If there is production p € P with left-hand side X such
X

that D (p) has a path from i to s but 10y has no arc from i to s, add the missing arc

to IOX.

The algorithm must terminate since there are only a finite number of arcs pos-

sible.

The arcs in IOX reflect all the actual input-output dependencies that could
exist in a subtree with root X. However, not every arc necessarily represents a
possible input-output dependency; the le's may be excessively pessimistic,
asserting 1/O dependencies that no subtree could actually exhibit. This
phenomenon occurs because we are merging all 1/0 relationship of a nonterminal
into a single graph. This information loss may prevent evaluator construction by
making it seem that an evaluator is deadlocked in certain situation when it is not.
For a wide class of attributed grammar we can be sure that the evaluator will not

be deadlocked. This subclass of attributed grammars, called "absolutely non-
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circular', is defined as follows.

b3
Definition : An attributed grammar is absolutely non-circular if no D (p) con-

tains a directed cycle.

#

Most of the practical attributed grammars are absolutely non-circular. Even if
an attributed grammar is not absolutely non-circular, it can be converted into an
equivalent absolutely non-circular grammar. An algorithm for coverting an arbitrary
non~circular attributed grammar into an absolutely non-circular attributed grammar
has been suggested by Katayama [KA8C]. Basically if we have a symbol X with
cycles in IOX, then we can replace X by a set of nonterminal symbols, one for each

production p € P having X on the left-hand side. For further details see [KA8O].

Since we can transform any non-circular attributed grammar into an
equivalent absolutely non-circular grammar, we shall consider only absolutely non-

circular grammars in the rest of this chapter.

Now we will first briefly review the tree-walk evaluator described by Kennedy
and Warren [KW78]. Then we will show how to extend it so that it can run in
parallel with the GHR parser. The purpose of performing dependency analysis in
advance is to avoid run-time analysis and blind searches through a tree. From the
IOX graph we can predict which synthetic attributes of X can be evaluated from a
given set of its inherited attributes. Therefore, if we visit a node labeled X with
inherited attributes TX {a subset of 1(X)), on return from node X we can be sure to
have all those synthetic attributes of X evaluated which are dependent only on
the attributes from TX' Hence for each possible input attribute set we could have
on visiting a node X, we can predetermine which synthetic attributes can be

evaluated. Further, if we know the production used at that node then we can write

A P
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down a sequence of instructions for evaluating these attributes (the production
used at the node is required to find out which semantic function to use in evaluat-

ing various attributes). We will refer to these sequence of instructions as "plans'.

&

Definition : A plan is a sequence of instructions. There are two kinds of
instructions in a plan.
1. Execute a semantic function of some production.
2. Visit a node.

The set of all plans is denoted by PLAN.

When we visit a node labeled X with certain input attributes 'X’ we would
have certain output attributes available on return from the node. On our next visit
to the same node with more input attributes, we would be able to evaluate some
additional output attributes. To make sure that we do not reevaluate a previously
evaluated attribute, we associate a flag with each node. The flag of a node tells
us what attributes have already been evaluated at the node. Hence if a node
labeled X is flagged with q and we visit this node with input attributes TX’ we can
predict in advance what additional attributes can be evaluated, and if we know
the production used at the node, then we can make a "plan" to evaluate only
these additional attributes. Therefore, to know which plan to execute at a node
on a visit we need three things: the flag at the node, the current input attributes,
and the production used at the node. This information can be stored into a table,
which we will call the "NEXTMOVE' table. In order to reduce the number of parame-
ters for table lookup we shall combine the flag of a node with the production used

at the node into one value and call it the state of the node. Formally :

Definition : A state of a node denoted by g is a pair (p,A) where p € P and A
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is a set of attribute occurrences of p.

The set of all states is denoted by Q.

"NEXTMOVE" can be defined as follows. .

Definition : NEXTMOVE is a partial function assigning a plan and next state to
a node for certain state/current-input attributes pair.
NEXTMOVE : @ X 1 - PLAN X Q, where | is a set of all current-input

attribute sets.
Now we are ready to define a tree-walk evaluator. It works as follows.

initially we flag each internal node of the parse tree with an initial state indi-
cating that the node has never been visited and-therefore, no attributes are avail-
able. Then we visit the root (of the complete parse tree) with the inherited attri-
butes of S (the start symbol). From the definition of attributed grammar we know
that inherited attributes of the start symbol are supplied before we start evaluat-

ing attributes of a parse tree. Formally :

Definition : A tree walk evaluator is a 5-tuple (Q, g I , NEXTMOVE, PLAN)
where

Q : is a finite set of states

dg : P - Q assigns an initial state qo(p) to each production p € P

I : is a finite set of current-input sets , containing an empty set as an ele-
ment

PLAN : is a finite set of "plans"” (as defined before)

NEXTMOVE : Q X1 - PLAN X Q is a partial function mapping state/current-
input set pair into a plan/state pair. The output plan is the plan we

want to execute at the node and assign the output state before




o
4]

returning from the node.
The complete tree-walk evaluator is
Procedure Evaluate(t,l); (*where tis a node and | is
a current-input-set *)
Let ¢ be the current state at the node t;
Let NEXTMOVE(q,!) be equal to <plan,q'>;
Execute plan;
Set current state at the node to g';
end; (* end evaluate *)
Evaluate(ROOT,lS); (* S is the start symbol and ROOT is
the root of the parse tree ¥)

end.

2.8, General Attributed Grammar and the GHR Parser

Now we will show how to combine the tree-walk attribute evaluator proposed
by Kennedy et. al. [KW78] (briefly described above) with the GRH parsing method
so that they can run in parallel. An important thing to observe in the GHR parser is
that if we predict a production with symbol X on the left hand side and certain
inherited attributes TX (a subset of 1(X)), then we can predict in advance the
sequence of events that will take place as we recognize the right-hand side of

the production. More specifically, suppose we predict

X :é X1 ‘e Xn
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With inherited attributes TX of X%, then we can tell which synthetic attributes
of X can be evaluated before we recognize any part of the right hand-side. (only
those attributes which are dependent only on the TX in Dx(p)). From these attri-
butes and TX we can tell which inherited attributes of X, can be evaluated; ‘call
these TX1‘ From TX1 we can tell which synthetic attributes of X1 will be available
once we recoghize X1 completely and move the dot over the symbol X1. We can
then tell which inherited attributes of X2 could be evaluated when we predict it,

and so on.

In the tree-walk evaluator described above there are two kinds of visits to a
node: an initial visit, when we visit a node for the first time, and revisits. When we
completely recognize a symbol X which was predicted with inherited attributes TX’
we would have those synthetic attributes of X evaluated which would have been
evaluated by an initial visit in the tree-walk evaluator with current input TX’ but
they will be done in a number of steps (not by a sinéle plan), as we recognize the
right-hand side of the production. Therefore, we will have to divide the plans asso-
ciated with the initial visits into a number of sub-plans; each will be executed as
we recognize one more symbol from the right-hand side. No modification is required

for the plans associated with revisits.

We now discuss briefly how to evaluate attributes while parsing with the GHR
parser. For each production p: XO = X1 Xn and a current input set 'X such

that NEXTMOVE(qO(p),Ix) is defined, we make following set of plans.

One plan will be executed when the production is predicted; this will compute
all those synthetic attributes of XO which are dependent only on IX. Further, this
plan will also compute all the possible inherited attributes of )(1 . We will also asso-

ciate one plan with each Xi from the right-hand side; this plan will be executed as




37

we move the dot over Xi' 1t will compute additional attributes of XO through Xi
which may become ready to evaluate. It will also compute all the possible inherited

attributes of XH_1 before predicting it.

To find out which plan is to be executed when we move the dot over a sym-
bol, we need to know three things: the production p used, the inherited attributes
of the left-hand side when the production was predicted, and the position of the
dot in the right-hand side. The plan to be executed when we move the dot over
Xk in a production p: X = X1 Xn’ which was predicted with the Inherited attri-

bute IX’ will be denoted by plan<p,lx,k> (0D<k=n)

Before we can describe how to modify plans associated with initial visits, we
will briefly describe how the plans are built. The complete planning algorithm is

given in appendix A,

A plan (as given in [KW78]) for a given state and current-input set is an
instruction sequence which will accomplish all attribute evaluations in the subtree

which are permitted by the dependencies constraints.

Definition : A semantic function fp a is ready to evaluate in the current evalua-
b

tion state {p,A)if a & Abut Dif is a subset of A.

(fp a is a semantic function associated with production p to evaluate
attribute occurrence a in p. Dap is the set of attributes occurrences

from p which are used in evaluating semantic function fp a).

Definition : The yield of a symbol XK in the current evaluation state (p,A) is
the following set of attribute occurrences

{b l bg A,be S(Xk), and for every i with an arc fromi to b in 10, , icA)}
Kk
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Now we are ready to define an algorithm to construct a plan to be executed
when we visit a node with an entry state (p,A). (An entry state is (p,lx U AY

where (p,A') is the current state of the node and Ix is the curreni-input set).

Algorithm Make a Plan for Entry State (p,A);
1. Let S be an empty sequence of instructions and
let A' = A;
2. Let current evaluation state be (p,A');
3. If some semantic function ¥ is ready to

p,a
evaluate then append the instruction fp a to

S, add a to A', and go to step 2;
4, If kth subtree has a nonempty yielr:i y
(if we have more than one subtree with nonempty
yield, then choose the left-most subtree) then
append VISIT(k,!) to 8, where
I={a l a€l(X)andacA']
Let A' = A' | y; and go to step 2;
5. Let q be the evaluation state (p,A'). The

resulting plan is S and nextstate is q.

Now we are ready to describe how to modify plans associated with initial
visits. Let X5 => X, ... X, be a production. Let NEXTMOVE(qO,IX) be (plan1, q1)
for some 'X € l. Remove plan1 from the PLAN set and include the following set of

plans.

1. Let S be an empty set of instructions and A = Ix;

2. If some semantic function fp a is ready to evaluate then append the instruction
]




fp,a to S, add a to A, and goto step 2;
3. S is the resulting plan for plan<lx,p,0>
4, Fori:= 1 TonbDo

Begin

4.1 Let IXi be the set of inherited attributes
which have already been evaluated;

4.2 For gach Pj € P such that left-hand side
of p j is Xi Do
If NEXTMOVE(qO(pj), lxi) is undefined then
Begin

1. Add Ixi to |; (¥ include new current
input to current-set *)
2. Make_Plan(qo(pj), lxi);

End; (* else plan already exists *)

4.3 Lety be the yield of )(i with current-input lxi,
LetA'=A" Y Y;

4.4 Let S be an empty sequence of instructions.

4.5 1If some semantic function fp,a is ready to
evaluate then append the instruction fp,a to S,
add a to A", go to step 4.5

4.6 If the kth (only for k < i) subtree has a nonempty
yield y, then append VISIT(k,I) to S, where
l=fa|acl(X)andacA"]
Let A' = A' | y; goto step 4.5;

4.7 Associate resulting plan S with p|an<lx,p,i>;
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For each production p &€ P and each current-input set lx such that
NEXTMOVE(qO(p),lx) is defined, we have replaced the initial visit of the tree-walk

evaluator by n+1 plans if the production p is

X =2 X1 Xn

Now we will redefine * and x products and PREDICT function so that appropri-
ate plans are executed as we recognize part of the right-hand side of a produc-

tion.

One plan will be executed when the production is predicted. This plan will
compute all those synthetic atiributes of XO which are dependent only on ‘X' It
will also compute all the possible inherited attributes of X1. We will also associate
one plan with each Xi from the right-hand side. This plan will be executed as we
move the dot over Xi. It will compute additional at’;ributes of X0 through xi which
may become ready to evaluaté. it will also compute; all the possible inherited attri-
butes of Xi+1 before predicting it. Finally, if we move the dot over a sequence of
symbols because they all derive A, we shall move the dot over one symbol at a
time and execute the plan associated with that symbol before considering the

next symbol.

If we have an absolutely non-circular attributed grammar, we could predict a
symbol several times if it is predicted by different dotted rules. (Even if the sym-
bol has the same inherited attributes, we predict it more than once as explained
" before). Therefore when we paste an attributed symbol BMBTSB into a dotted rule,
we have to make sure that it was predicted by this dotted rule. One possible
method for checking would be to maintain a back pointer to the dotted rule which

predicted BMBTSB and paste only into that dotted rule. Even if we use the imple~
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mentation suggested by Graham at. e/. [GHR80], we can enforce this restriction
easily by checking the back pointer after pasting and remove it if the back pointer
does not match. Or we could use this back pointer in selecting the dotted rule to

paste the symbol B\HBTSB.

Finally, as we move the dot over a symbol, we execute some plan as
explained before, evaluating some additional attributes in the dotted rulz. In all
the definitions given below we shall use T to denote the attributes obtained from 1
after executing some plan as the dot was moved (similarly S is obtained from §

after executing some plan).

Now we will define the x and * products for absolutely non-circular attributed

grammars.

Definition : Let AG = (VN, VT’ qQ, S, P, FQ) be an absolutely non-circular attri-
buted grammar. Let Q be a set of dotted rules and let R be a set of

attributed symbols with some of its attributes evaluated. Define

QxR = (AT, => BBIT RSBy | AlpTS, = aBlpfy €0, § =5 A and
BITg?5 € R. Attributes of B are also included with the symbol. Let
|aB| be k (Jc] represents the length of &), A => B3y be production
pinP, and |f3] be i.

Execute plan<p, 'A’ k>
Forj:= 1 ToiDo

execute plan<p, IA, k+j>;

Q*R = (AUT,15, => GBITRSpB.y | ALIATS, => aBlIgBy € Q, § =5 A, and
B&TBT§B = Cil 1S for some Cil: TS € R. Evaluate the attributes

of B before pasting it. Let |&B| be k, A => aBf7y be production p in P,
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and Let || bel.
Execute plan<p, lA, k>
Forj:=1ToiDo

execute plan<p, |5, k+j>; }

Note that there are two alternatives for computing attributes of B from the
attributes of C if B = C, we can either make a plan during the planning phase
which gives a sequence of instruction to execute to get these attributes, or we
can implement x and * products such that the parsing algorithm does not have to
know about the chain rules and the symbols deriving A, computing them at parse
time while building the parse matrix. For more details and other variations for
implementing x and * products see [GHR80]. From our implementation experience,
we find the second alternative to be very easy to implement and the execution
speed to be quite satisfactory. Furtherrpore, this technique can deal with the
predicates without any undue complication (we will discuss predicates in more.

detail in the secticn 2.9).

Let Q,R be sets of dotted rules then define x and * products as follows

QxR = (AT 15, => TBITMS L.y | ALIATS, => aBligBy €O, 8 =\, and
BJ,TB‘I‘S'B => §. € R. Let B => & be production p4 in P and |8] be Ny, A
=> aBfy be production p in P, |aB| be k, and |B] be i.
Execute plan<p1, ‘B’ ny >3
For j:= 0 ToiDo

execute plan<p, I, k+j>; |

QR = (AT,T5 ) => ABITMSpB.y | AlipTS, => aBIpBy € Q, f =¥ A, and

BIT 15, = CLI TS for some CUILTS, = 8. € R. Evaluate the
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attributes of B before pasting it. Let C = O be production Py in P,
|6] be ng, A= oBf3y be production p in P, |&B| be k, and || be i.
Execute p!an<p1, IC, Nqg>s
For j:=0 ToiDo

execute plan<p, |, k+j>; }

Now we will define the PREDICT function so that it executes the appropriate

plans before predicting a production.

Definition : Let AG = (VN, VT’ Q, S8, P, FQ) be an absoclutely non-circular attri~
buted grammar and let R be a set of attributed symbols with some of

the inherited attributes evaluated. Define

PREDICT(R) = {CU TS, => aff | ¢ = aff € P, a =5 A, and B = Cp for
some Bllg € R and some p € V*,

1. If we predict BMB’I“SB = .CJAC'PSd) then we execute plan<pi,lB,0>
(where B => Cp is production p; in P) before we include any produc-
tion with C on the left-hand side (this way we shall get all the possible
inherited attributes of C before we predict it), and

2. I we predict a production C~HC‘T‘SC = (x.ﬁ, we execute plan<pj,lc,0>
(where C => o8 is production Pj in P), and

8. If we have predicted CMC?SC => a.f8, and |&] = k then,

Fori:=1 Tok Do

execute plan<pj,lc,k>;§

If Ris a set of dotted rules then define

PREDICT(R) = PREDICTQBJAB ! AMAT‘SA = (X.BJ,IB{? is in R}
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2.9, A Few Missing Details

We still have to workout some details. Normally the productions may contain
some action symbols. These action symbols can have side effects. Since we can-
not say for sure whether a production will be used or not in the final parse, such

side effects have to be disallowed.

2.9.1. Predicates in S-atiributed and L-atiributed Grammars

Attribute grammars also allow predicates that control production application.
These can be included in our method without much problem. Assume P is a predi-

cate symbol and fp is a predicate function associated with the P, further

P~La1 J,az w ba, => A iff
1‘p(a1 s 8o e ,an) -> True

then we insert dotted rule
P‘La‘l »Laz J,an = A.iff

1")(5311 ) 8o, o ,an) - True

This restrictions can be enforced if we treat predicate symbols differently
then the other nonterminals in the grammar. Since all the predicates symbols
derive A, we can include this modification easily in our parsing algorithm. When we
move the dot over a symbol because it drives a A, we check if the last symbol
used in the derivation was a predicate symbol, if so, then we call the correspond-
ing predicate function and move the dot over the symbol if and only if the predi-
cate is true. If a predicate is not true, that production will never be recognized by

the parser because the dot will never move past the predicate symbol PJ,a1




.Lan, which evaluates to false.

One advantage in the GHR parsing method over the CYK is that it tries to elim~
inate unnecessary dotted rules from the parsing matrix. It does this by using the

PREDICT function to delete all dotted rules except those that can fo!low.the

parsed left context.

We can further reduce the number of dotted rules from the parse matrix by
deleting a dotted rule when some of the predicates associated with it return fal/se.
This way we can eliminate unnecessary dotted rules when we realize that a pro-

duction cannot be used in the final derivation.

Suppose we have a dotted rule X = ()()(i_1 .Xiﬁ and suppose that Xi =¥ A If
the last symbo! used in the derivation is qj € Q (.set of predicate symbols), then
before we move the dot over Xi, we evaluate the primitive predicate qu. If qu
evaluates to false then we do not move the dot over the symbol Xi and eliminate

the dotted rule X = axi_1 .Xiﬁ from the parse matrix, as this will never be recog-

nized completely.

The amount of savings obtained by the above method will not be significant
unless we eliminate all the dotted rules used in recognizing 0X;_y- Al these dotted
rules can be deleted by making a depth-first left-to-right visit to all the symbols

used in recognizing this dotted rule.

But we need to consider one problem in this method. A symbo! could be used
by more than one dotted rule. We can solve this problem if we keep a reference
count with each symbol. We start with reference count equal to zero. Every time
we paste a symbol into a dotted rule we increment the reference count of that
symbol by one so that the reference count tells us how many dotted rules are

predicting a symbol. When we delete a dotted rule, we visit all subnodes
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immediately below it (in any order, say left-to-right) and decrement the reference
count by one. If it becomes zero then we delete this symbol and recursively visit
all the subnodes immediately below it. After subtracting one, if the reference
count is greater than zero then we just retuin. (We need not visit the subtree

below this symbol as this subtree is being used by some other dotted rule).

To achieve even greater saving we can wiite each contextual predicate in
conjunctive normal form and break it into subpredicates, which can be distributed
across the right-hand side of the production such that we evaluate a subpredi-
cate as soon as its inherited attributes become available. As we recognize part of
the right-hand side of a production, some attribute values will become available
allowing evaluation of some of the subpredicates. By distributing these subpredi-
cates across the right-hand side of the production we can insure that a subpredi-
cate will be evaluated as soon as possible: Useless dotted rules will be eliminated
as soon as possible from the parsing matrix. Context sensitive errors are also
detected as soon as possible, giving more flexibility to error corrector. We shall
see in the next chapter that it is very important to detect an error as soon as

possible if we hope to make good error correction.

For a context-free grammar G = (\In, Vt’ P, S), the standard LL(k) parsing
function is a mapping

M:(V, UV X V,: kK {predict i, pop, error, accept }
That is, the parser uses the top of the stack symbol A € Vn U Vt’ and the k-

symbol lookahead, u € V:k, to determine the next parse move.

Milton and Fischer [MF79] have suggested using evaluated attributes of A
(that is, all the inherited attributes of A for an L-attributed grammar) and attri-

butes of u in the parsing function. This is done by associating a predicate (termed
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as disambiguating predicate) with each production. More specifically, disambi-~
guating predicate is a mapping

DP : Xdly x ay ’1‘861 akﬁ‘sak - {true,falsel
Before predicting a production, the associated disambiguating predicaté is
evaluated and the production is predicted only if the associated disambiguating

predicate evaluates to true.

Our algorithm can support these predicates as mentioned before. If there are
some disambiguating predicates, then before we predict a production using the
PREDICT function, we evaluate the associated contextual predicate, and predict
only those productions whose associated predicates evaluate to true. This tech-
nique will work well when we have an L-attributed grammar and will further reduce
the number of unnecessary dotted rules. By including disambiguating predicates in
our implementation, we could save more than 30% of the execution time over the
implementation which did not use such predicates. We also saved about 30% of
the memory space requirement for storing the parse mattix (as we had to store
fewer dotted rules in each parse matrix element). In fact in our implementation we
went one step further and for each dotted rule we associated a follow set. This
follow set was computed using the head grammar (hence ignoring all the context
sensitive errors). While taking x or * product we check the lookahead symbol and
include a dotted only if the lookahead symbol is in the follow set of the dotted

rule.

2.,9.2. Predicates in Absolutely Non-Circular Attributed Grammars
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If we are parsing an absolutely non-circular attributed grammar, then we may
not have all the attributes available when we move the dot over a predicate sym-

bol, therefore, we will use following extended definition of predicates.

f(aT, ,an) -2 True if for each attribute position
which contains ‘unknown', there exist one value from

the corresponding attribute domain such that

f(:"i.] 3 62 g ese gy 5.n ) -> Tl“ue
Where ‘ﬁi = 8 if 8, # tunknown'
otherwise 'ai = some value from Di {Attribute domain)

s

(It may not always be possible to compute f with some values 'unknown’.
In such a case, we might have to say that if there is no conflict among the

values known then the function evaluates to true )

We will hot move the dot over a predicate symbol if the associated predicate
function evaluates to false but delete that dotted rule from the parse matrix. We
also delete all the symbols used by this dotted rule using the method described

above.

But we also have to consider the situation where predicate becomes false
some time after we move the dot over it. When more attributes become available
for a predicate symbol we reevaluate the predicate function and that time it could
evaluate to fa/se. In this situation unnecessary dotted rules can be detepted as

follows.

When we move the dot over a symbol we execute some plan to evaluate

additional attributes (as explained before). Before we start executing this plan

o U
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we set a global variable 'PREDICATE' to true. While executing the plan if we visit
a predicate symbol with additional at‘tri%autes, we reevaluate the associated predi-
cate function and if it evaluates to false; we set the global variable 'PREDICATE!
to false. This way after executing a plan, the global variable 'PREDICATE® will be
false iff some predicate in the subtree has become false and, can be deleted from
the parse matrix. The method described above can then be used to delete all the

symbols used by this dotted rule.

2,10, lmplementation Results

The above described planning and attribute evaluation algorithms were imple-
mented in pascal on a VAX/780 computer. Implementation results are quite
encouraging. Planning program is about 5000 lines of code and the execution
speed is quite acceptable. In our test cases we had several‘small grammars and
two grammars each having approximately 40 productions (one of these tow gram-
mars is given in the next chapter section 3.6). Our planning algorithm took about 9
seconds of cpu time for the grammar with 40 productions. In addition to creating
various table files, the program produces a formatted listing of the full grammar,

goto table, and complete plan set.

Attribute evaluation is also reasonably fast. In our test cases we had a gram-
mar with about 40 productions. Parsing time was about 80 msec for 5 symbols and
2.3 seconds for 50 symbol. We did not try to parse more than 50 symbols since
we feel that this algorithm will be most useful for parsing small inputs. Because of
the quadratic time of the parsing algorithm, it may not very useful to parse very

large inputs using the GHR parser. For some practical grammars if we use
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disambiguating predicates and lookahead sets, we may see very close to linear
behavior. Furthermore, as we shall see in the next section, there are several appli-
cations where we want to parse fairly small inputs (e.g. for parsing a small right
context past the error token in an error correction, or code generation where we
want to parse a number of small expression trees) and need the generality of the

above described algorithm.

2.11. Conclusion

The attribute evaluator described above tries to evaluate as many attributes
as possible at any diven time and avoids any;unnecessary visit to a subtree.
Therefore, the algorithm is linear in number of nodes, excluding attribute evaluation
time. Informally, we can prove this bound by observing that each symbol (hence
node) has a constant number of attributes. Each time we visit a node we evaluate
at least one more attribute. Hence time spent visiting a node is bounded by a con-
stant (the number of attributes of that symbol). The algorithm is quite general and

can be used with any absolutely non-circular attributed grammar.

Attributed grammars have been suggested for automating compiler construc-
tion. There are very few error correcting algorithms which can use attributes
effectively for finding a good context-sensitive error correction. Our principle
motivation was to develop an efficient attribute evaluation technique in the GHR
parser to apply it to contexi-sensitive error correction. Using the above described
attribute evaluation method we have developed a high quality error correcting
algorithm. We use the above described attribute evaluation algorithm to parse a

small context past the error token for making context sensitive error correction.




This error correction algorithm is’ desciibed in detall in the chapter 3.

Glanville [GG78] has suggested using context-free grammars for a machine
description in the development of universal compiler svstem. Ganapathi [GABC]
has suggested attributed context-free grammars Tor a machine descriptio'ﬁ for
generating a retargetable optimizer. Because the parsing method used in [GA80] is
LR-based, inherited attributes are not allowed. But by using the above algorithm,
we can include inherited attributes as well. Making it possible to describe some
fairly complex instructions. This methed can also yield hetter optimization, We can
fix some value n as the window size of a peephole optimizer. We can alter the win~-
dow of peephole optimizer by changing the value of n, the number of symbols to be
parsed by the GHR algorithm. While still preserving the linearity of the code gen-

eration algorithm.

This algorithm should be easier to use than the one given in [GA80]. The user
can simply associate a time and space cost with each machine instruction.
Currently a user has to put contextual predicates in the proper places such that
the predicates associated with the cheaper instruction are evaluated before the
predicates associated with more expen:sive instruction. As we parse and paste
instructions together we can add the time and space costs for these instructions.
At the end of the parsing we can pick the one which is optimum in time or space, or
any combination that may be desirable. This application will require some further

investigation but method seems promising.

Another significant use of this attribute evaluation algorithm could be in
experimental programming languages where the grammar is not fully known and
needs to be changed for experimentation. Even if we have the complete grammar,

it may not be in a suitable S-attributed or L-attributed form. The above described
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- algorithm can free the user from all concern about the form of the grammar and can

also allow the user to make modifications.
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Chapter 3

Error Correction

&.1. Programming Errors

As explained in the chapier 1, error correction is an important aspect of com-
piler design. A substantial portion of a programmer's time is spent in correcling
errors. Errors that can be detected at compile time can be divided into three
categories. 1) Lexical errors: those that are detected by the scanner; 2) Syntax
errors: those that are detected by the parser (syntax recognizer); 3) Semantic
errors: those that are detected by the "semantic" phase of the compiler. In this
chapter, the problem of automatic correction of latter two kinds of errors (syntax
and semantic) is discussed. Our error-correction algorithm was developed with the

following objectives in mind.

1: An Error free program should entail little or no error-correction overhead.

2: The algorithm should be able to handle all the possible error situations.

3: The correction selecied should be regionally optimal [MA82] based on some
cost function.

4: The correction made should not cause other error messages.

The first three objectives can be realized without much difficulty. To minimize
the cascading of error messages we need a global error correction algorithm. Our
algorithm could be used for global error correction, but it would be very expensive
to do so. Even without global error correction, however, using our error correction

algorithm we can realize the first three objectives and reduce the number of



54

cascaded error messages.

3.2, Assumptions

Before we present our error correction algorithm, we will state all the assump-
tions we make about the grammar and the parsing algorithm used for parsing pro-

grams.

We are assuming that we have an L-attributed grammar AG = (V‘c’ Vn’ P, Q, S,
FQ) (as defined in the chapter 2} and we are using the LL{1) parsing method. We

also put some restrictions on the LL{1) parsing algorithm.

Since our error-correction algorithm does not attempt to change the parsed
left context (we feel that changing already parsed left context unduly compli-
cates the corrector and does not appear nhecessary to obtain useful corrections),
we require that the parser has correct prefix property. That is, the sequence of
symbols to the left of the erroneous symbol is always a prefix of some © € L(G)
[FMQ80]. This restriction insures that symbols that have been accepted by the

parser can be considered correct.

Some LL(1) parsing methods do not detect an error upon first encounter of an
erroneous symbol, allowing several parse moves before the error is detected, and
leaving very little useful information on the parse stack to guide an error-
correction algorithm. We require a parsing algorithm which will never make a transi-
tion on an erroneous input symbol, thus detecting an error when the error symbol is
first encountered. This property is termed as the /mmediate Error Detection Pro-
perty (\EDP) [FMQ80]. It insures that all the parsing (syntax) errors are detected

when an error symbol appears in the lookahead for the first time.
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To make sure that we have the IEDP for semantic errors as well, we relax
rules for L-attributes grammars slightly. We let predicate functions use the attri-
butes of the symbol following it. That is, inherited attributes of a predicate symbaol
can be dependent on the attributes of the symbal following it. We also aséi;me
that the predicates are placed in the productions such that semantic errors are
detected as soon as possible. Informally, an attribute parser has the correct pre-
fix property if and only if any attributed symbol in AV that can ever be predicted
can derive an attributed terminal string. A procedure to decide if the coirect prefix
property holds for a given attributed grammar has beer: suggested by Dion [DI78].
We shall illustra:te below how to place predicates such that ’Ehe correct prefix pro~
perty is maintained. To insure that the final grammar does have the correct prefix
property, we have to run the grammar through the algorithm suggested by Dion

[DI79].

We also assume that all the attribute domai;\s are finite. lLater we shall
explain informally how to deal with infinite attribute domains in some limited situa-
tions (e.g. to deal with symbol tables). Finally, we assume three cost functions I1C
and DC, giving the cost of inserting and deleting, respectively, an attributed termi-
nal symbol, and a replacement function which gives the cost of replacing an attri-

buted terminal symbol by another attributed terminal symbol.

3.3. Error Correction Strategy

We propose the following error correction strategy. We use context past the
point of error in choosing an error correction. When an error is detected, we scan

ahead, suppressing any listing. We employ two levels of corrections. The most
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common changes termed as 'first level correction”, are one symbol corrections
(one symbol insertion before the errc;r' token, deletion of the erior token, or
replacement of the error token by any symbol a € Avt) validated over the next k
input symbols. We try first-level correction first. If we cannot find a suiteble one-
symbol correction (because there are additional errors around the point of error or
because we need more than a one-symbol correction to fix the current error), then

we try a more elaborate "'second level’ error correction.

Second level correction is very pewerful and elaborate; it tries to transform
the next k input symbols (where the value of k is determined using criteria
explained later) into a string w such that @ can legally (semantically as well as
syntactically) follow the parsed left context, and-such taht the cost of transform-
ing the next k input symbols into @ is minimal in the sense that there is no other
string @ that can legally follow the parsed left context with a transformation cost

less than the cost of w.

3.4, First Level Error Correction

in first level correction, we try all the possible one-symbol insertions before
the error symbol, replacing the error symbol by another attributed symbol, and
deletion of the error symbol. To see which one-symbol correction is most suitable
in this situation. we use context past the point of error. We scan ahead,
suppressing any listing, reading the next k symbols Ug e Uy from the input. We

validate each one-symboal correction over the next k input symbals.

When an error is detected, suppose the parsing stack contains Xn X1

(with Xn on the top). For simplicity, we will associate attributes of a symbol with
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the symbol. Therefore, the parsing stack contains
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If Xn is & nonterminal, we know the atiribute values for ‘4‘11 s e s QNn; c;’cher
values may not be known at this moment (If Xn is a terminal then, of course, it will
not have any inherited attributes). Let Uy be the error symbol, and let 2 be the
input alphabet (attributed terminal symbols of the grammar). Now we shall build a

(k+2)x{k+2) upper triangular matrix t as foliows.

In the element to o we shall put
)

— n nooa
PREDICT({S => X {aj .. m“‘n Y .

U s = X dall ol 8y oty e Xqlay e 4,a1N1 W 'rbgﬁ1g;
n n

(PREDICT is the same as defined in the GHR parsing algorithm except that
now it will pass along the inherited attributes of the symbol being predicted and
further, for all the A productions, it will make sure that the corresponding predi-

cate is true.)

The above PREDICT will put into t0,0 all the dotted ryles which can follow the
parsed left context. Now we shall try to parse the string ({X - ugd U AUy U
ADU, . U
({2 - u1§ U {AD) represents any attributed symbol from the input alphabet (AVt)
except uy (the error symbol), and A (the empty string). Since 2 represents any
attributed symbol, each terminal symbol will be included several times with all the

possible attribute values. (Since all the attribute domains are finite, this set will

be a finite set).
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(A in first and second columns give deletion of the error symbol, 2 in first
column and A in second column give replacement, and insertion is obtained by 2 in

first column and Uq in second column).

To parse the above string we shall change the GHR algorithm slightly. Instead
of parsing a sequence of symbals, we shall parse a sequence of sets. This modifi-
cation is very easy to make in the GHR algorithm without any significant increase
in the execution time. In the second leve! error correction we shall find it to be

very useful. Hence we shall be parsing 81 SI'H’ a sequence of sets where

S;= 0 -ud U LA

2=2u1§UU\§

S
Sj'-=§uj_1 ] for3 < j< kil

We have to modify the * product used by the GHR parser as follows :

Let Q be a set of dotted rules, thenQ* { A} =Q

The following algorithm will try all the possible one symbol insertions before
the error symbol, deletion of the error symbol, and replacement of the error symbol
by all the symbols from AVt acceptable in the parsed left context. We validate
each one-symbol correction over the next k input symbols by parsing the all the
corrections and the next k input symbols. After parsing the next k input symbols,
if we cannot select a unique insertion, deletion, or replacement, then we make the
choice using the user defined insertion, deletion, and replacement cost functions,

and select a correction which has least cost.




We therefore, get the following parsing algorithm.

begin

0,0

= PREDICT((S => . ; ;
! i i 4
Xodai . MNn B .. ’Pan D O L

I N

1 1
oy .. Th )
v, ™ M, $

59

s N R S 1 oA 1 i 1
U {8 = X tay o day  Thy . ’f‘th o Rydag &aN1 ™y .- ’f‘bM1 3

\
n n

(* Build column 1 thru k+1 *)
forj: =1 okttt do
(* Using column O...j-1 build column j %)

beg

in

o . . X .
o, 7 Y ot TS

fori:= j-2 downto 0 do
hegin
r=0 U (ti’kx tk’j)) U (ti,j—1 X (tj_1’j U Sj));

jcle<j-1

ti,j = ti,i *r

end;

L, e C A F
tJ;J PREDICT( 0«_L:.|J<jt'd)

end;

if

(* while taking the x or * product, we have to compute attri-
butes of the symbol over which the dot is being moved. Since all
the information is available to do so (because the grammar is L~
attributed), it will not be a problem. When we include a nonter-
minal as an argument to the PREDICT function, we include its
inherited attributes. Hence a nonterminal could be included more
than once with different inherited attributes. *)

i such that ti,k+1 # ¢ then

(* we have found at least one correction *)

else

Let CqsCp be all the possible legal corrections found. Using
the insertion, deletion, and replacement cost functions defined

by the user select the one that costs least.

Call Level-2 corrector

end;
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3.5. Second Level Errov Correclion

The second level error corrector is invoked when we cannot correct an error
by a single insertion, deletion, or replacement. (Even if it is not strictly needed, the
second level corrector might be called to find a cheaper correction). In this 'algo—
rithm we shall transform the next k input symbols intc a string w such that & can
legally (both semantically as well as syntactically) follow the parsed left-context.
For this transformation also we shall use the GHR parsing algorithm. This transfor-
mation is similar to the Aho and Peterson algorithm, but we shall not use error pro-
ductions for obtaining insertions, deletions, and replacements, as done by the Aho
and Peterson algorithm. Rather we shall simulate insertion by moving the dot over
the symbol we want to insert without consumiﬁg any input symbol, we simulate
deletion by consuming the input symbol without moving the dot, and replacement
by moving the dot over a symbol b (b € A\lt) when the actual input is a (a # b).
That is, our algorithm is very similar to the algorithlzn proposed by Mauney [MA82],
except that while parsing the right context we shall use the semantic information
and evaluate the attributes while parsing using the algorithm outlined in the previ-

ous chapter.

When we move the dot over a symbol, if some of its attributes cannot be
evaluated, we put the 'unknown' value in those attribute positions. For example,
we insert a nonterminal symbol by moving the dot over it. In such a situation we try
to get as many inherited attributes as possible from the left context. If some are
not available then we put the 'unknown' value in that position. Most of the syn-
thetic attributes will not be available and again we shall put the 'unknown' value in

those positions.
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Now we define various cost functions used by the second level error correc-

tor. Let S be insertion cost function defined as follows

S(a'{‘sa) = lC(é?Sa) if aTSa € AVt
(where IC is a user-defined insertion cost function.)
S(y) = IC(a11‘Sa1) + ..+ lC(anTSan)

ify €AV, and

y=a,?S, ..a 18
1 a, n'Ta,

S(ALATS ) = Min {1C(y) | AdlptS, =y
forsomey € AV,: !

if AMA‘T‘SA €AV,

(IWt is the set of attributed terminal symbols and

AVn is the set of attributed nonterminal symbols)

An algorithm for computing the S table for a given attribute grammar is given

in appendix B.

SM defines the minimum cost of insertion for a nonterminal symbol over all its

attribute combinations, as follows

SM(a) = Min {IC(atS )] ifa € Vi

S
S, €D

SM(A) = MiniS(AMATSA)E ifAc Vn '
|
'A € DA

S
Sp €Dy
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The SM table gives minimum cost of insertion of a nonterminal A over all possi-

ble attribute values.

Function C is defined over a string of symbols. It gives the minimum cost of

insertion of the given string over all possible attribute values, as follows

C(p) = C(B1 Bn) = SM(B.l) ot SM(Bn)

These cost functions (SM and C) are used to get an approximate cost of
correction. All the potential context sensitive etrors are checked by the parsing
algorithm. When we insert a symbol (terminal or nonterminal) we may not have all
its attributes available, so it is very difficult to find out actual cost of insertion.
We therefore use the above defined cost functions (SM and C) to get an approxi-
mate cost of correction. After parsing the next k input symbols we shall try to
fully evaluate each correction tree and use the S table to get the exact cost of

correction (These functions, SM and C, are used by the * and x products).

In FMQ [FMQ80] and other related error correction algorithms [DI79, FMD79,
FMM79] the E table is used to generate a valid prefix of a given terminal from a

given nonterminal. More specifically
E(A,a) = Min §{ S(a) | A =¥ aaf )

To achieve the same effect we modify the GHR's PREDICT function as fol-

lows.
Let B be a set of symbols then

PREDICT(R) = { C => a.B | C => af € P, and B =

wCy forsome BcRand w, 7y € V' }




G3
If Ris & set of dotted rules then

PREDICT(R) = PREDICT({(B | A => o.By € R])

(Which is same as definad in the GHR parsing algorithm)

That is, if we have a nonterminal symbol right of the dot, we predict all the
symbols which are reachable (directly or indirectly) from that symbol (B =3 wCy
forces that). This way if we have B = ... a ... for some nonterminal symbol B, the
nonterminal symbo! which directly derives 'a' wiil also be predicted. If we have B
= pa... and we want 1o match the 'a' from the input then we should insert p. The

above defined PRERICT does so by includihg C => . for all the possible velue of

o whenever we predict a nonterminal symbol C. Therefore, as much string as

required will be'inserted before matching a symbol from the input.

DC is the deletion cost function defined as follows.

DC(aTSa) = DELETE(a’l‘Sa) it afS, € AV

(where DELETE is a user defined deletion cost function.)

)

DC(y) = DC(&1 Tsa ) +..+DC(a 1S
1 n

n a
ity eAv: and

y = a,?s_, ..a. T8
1 a4 n“a,

DC(ALI,TS,) = Min { DC(y) | ALipts, =y
for some y € AV,: }

if A»LIATSA € AV,

R is a user-defined replacement cost function. That is R(a?Sa s bTSb) gives

the cost of replacing a?Sa by bTSb. In order to insure that we always select the
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cheapest correction, we require that directly. replacing a‘rS,ﬂ71 by b’l‘Sb is the
<

cheapest way to obtain b?‘Sb froim a'i‘Sa. That is
R(a’[‘Sa , b’PSb) = DC(a‘FSa) + lC(b’PSb) and

R(a’rsa,b?sb)sﬂ(a?sa,c?sc) +R(cTS,, bTS)) ¥ c1S, € AV,

If an error is detected and it cannot be corrected by a single insertion, dele-~
tion, or replacement then we create Kk seis S1 Sk from the next k input symbols
Uy oo Upe Elements of these sets are pairs <&,c>, where a € 2 |J { A ] and cis an
integer giving the cost associated with that symbol. S, .. Sl, are obiained as fol-

i S

lows

8;= {<ao> | Ry = ¢} U £<A, DCu)>

(* Assume that R(Ui’ui) = 0O for all i's ¥)

These sets will take care of deletion and replacements; insertions are
obtained by moving the dot over the symbol we want to insert. For example, if we
have a dotted rule A => (x.Bﬁ in column j and we want to insert a symbol B (B
could be a terminal or a nonterminal symbol) before the next input symbol aj+1 , we
can include the dotted rule A => oB.f in column j without consuming any input.
However when we insert a symbol, we may not be able to evaluate all of its attri-
butes. When we insert a symbol, we try go to evaluate as many attributes as pos-
sible and for all those attributes which cannot be evaluated we place the value

'unknown' in those attribute positions. After parsing the next k input symbols we

shall come back and fix all these attribute values as explained later.

Using these cost functions we now redefine the x and the * products used by

the GHR algorithm.

L

PR




In the definitions given below we are assuming that some attribute positions
will have the funknown' value if we could not determine a unique value for these
positions. Therefore, we use the extended definition of the predicate functions. To

be more specific: Y

When we call & predicate function with some attribute values 'unknown' then
it will return true if for each attribute place which contains the value ‘unknown',
there exist one value from the corresponding aitribute domain such that the predi-
cate is true. (This definition is the same as the one given in chapter 2). Moreover
if the predicate is true for exactly one value of an attribute position which con-
fains the value 'unknown', fthen we put that unique value there. For example

v

fp(q,s) - true iff q = s and the domain of s = {X, y, 2}

When we call the predicate f_ with g = x and s = ‘unknown'; the fp will

P
return true and assign value x to s.

It may not be possible to assign a unique value to an attribute position which
contains the value 'unknown', but we try to replace as many of the attribute
places as possible for efficiency. The algorithm will work correctly even if we do

not change any 'unknown' value at this stage.

As we parse some of the 'unknown' values will be replaced by some legal
value from the corresponding domains. T is obtained after evaluating some predi-
cates using input I. In case of synthetic atiributes, when we predict a symbol, its
synthetic attributes are not known. After matching a symbol from the input we
should be able to evaluate some of its synthetic attributes (We may not be able to
evaluate all the synthetic attributes because some inherited attributes could have

the 'unknown' value). Those attributes values are reflected in S. All the attribute
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places will be empty in S whereas in & we shall have most attribute values fixed.

Let O be a set of dotted rules and R be a set of pairs <a,c> where a € AV |
{ X} (we have pairs involving terminals as well as nonterminals) and c is an

integer, then ‘

BJ’TB?S-B ;cy €ERandc=cy +Cy Cc(f) ]
Where ¢, 8, and ¥ € I (attributed symbols).

QR = (AT 15, = OBATRIS By 5 ¢ | AI,TS, = aBlIgtSpBy 50y €0,

B‘LTBTgB = D\LTD’(‘§D, DJ,TD'PS'D ;Cp €Randc=cy oyt ()}
Let Q and R be two sets of dotted rules then

QxR = (AIT, 1S, => oBIT 158y 5 ¢ | AbIpDS, => aBligtSgBY s cq €Q,
BIT?Sg => 6.505 €R,andc = ¢y + ¢, + C(B) ]

QR = (AIT, 15, = aBUTptSB.y 5 ¢ | ALTS, = aBUgtSeBy ¢y €
BiTgtSy = DIT 1S, DITR S, = 0. ; ¢, €R,andc=cy +Cp +
c( 3

x
In the Aho and Peterson algorithm V. was partitioned into disjoint classes E,

E1 ... such that

X € Ei iff x can be transformed into a valid

string using exactly i error productions and




X EEq U UEpy

To find out which class the given input x belongs the Aho and Peterson algo-
rithm uses Earley's parsing algorithm and in ecach list ‘O through ln it keeps only
one copy of a dotied rule configuration. It keeps the copy that uses minimum
number of error productions. We can do a similar partitioning in our algorithm. In
each set we keep only one copy of a dotted rule, and we Keep the one that cost

least. Two dotted rutes having same symbols but different atiribute values will be

considered different dotted rules.

Now we are ready to define the second level error correction algorithm. Initial
steps in this algorithm are same as in Mauney's [MA82] algorithm (except that
while parsing we have to consider attribute values as described before). That is,
using the new definitions of * and x products we parse the sequence of sets S..i
Sk' After parsing these k sets we shall have all the possible corrections. With
each correction we shall also have minimum cost of correction (this cost will be
minimum because when we insert a nonterminal or terminal with some attributes
with unknown values, we add the minimum cost of insertion over all the possible
attribute combinations). We also maintain some links similar to the one used in
Earley's algorithm so that we can build parse tree for each correction. For com-

pleteness we shall give the complete GHR algorithm below.
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(* Build column 1 thru k+1 *)

for j:=11to k+1 do
(* Using column O...j-1 build column j *)

begin
(* the set S. is sam= as defined above *)
t.q )=t 17 xs,
J—1)J =1,)~ -1 J
for i:= -2 downio O do
begin
r= (5. x %, . t g X t. S,
(idgjd( ik k,J)) U ( i j- (J g, U ))
tu,j =r ti,i *r R
end;

tj’j := PREDICT( oy jti’j);

(* While taking the x or * product, we have to compute various
attributes of the symbols of the dotted rule. These attributes
are evaluated by executing the appropriate plan. When we
include a nonterminal as an argument to the PREDICT function,
we include its inherited attributes. Therefore, a nonterminal
could be included more than once with different inherited attri-
butes. %)

end;

After finding all the possible corrections we pick one correction with minimum
cost as follows. In all the corrections found so far, some of the attributes might
have the value 'unknown'. While parsing we try to replace as many attribute posi-
tions as possible from the value 'unknown' to some fixed value from the
corresponding attribute domain, as explained before. We hope that there will be
very few attribute positions with the value 'unknown'. Performance of the follow-

ing algorithm depends on the number of attribute positions with the value 'unk-
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nown' end the size of thelr attribute domains. Fixing as many attribute velues as
possible while parsing is very critical, especially for the attribute positions whose
domain is rather large. From our implementation experience we feel that could be
done in most cases. For example, the attribute domain of the attribute ‘id name'
(see the example in the section 3.6) is very large {(we can say it is finite, it we
put an upper limit on the number of characters allowed in an id name), but our
experience is that this attribute value can always be fixed while parsing as we

evaluate various predicate functions.

We now consider each correction tree in the increasing order of minimum cost
of correction and try to fully evaluate it. If we can fully evaluate a correction tree
without any semantic error then we chose that correction; otherwise we take the
next correction tree and try to fully evaluate that tree, and so on. Eventually we
will find one semantically correct parse tree (because we assume that the parser
has the correct prefix property, therefore, there will always be at least one
semantically correct correction). Let these correction trees be Tni Tn in the

- order of increasing minimum cost of correction. In this algorithm we shall use '?* to

represent an undefined string and we assume that the correction cost of '?' is 0.



(* Algorithm to pick the least cost correction *)
begin
CORRECTION := ? (* best correction found so far *)
for j:= 1 tondo
if cost(CORRECTION) = minimum_gost(Tj) then
return{ CORRECTION) (* no cheaper correction possible *)
else
begin

Let jth correction tree be
BjMBTSB

ooooo

Some attribute positions of Bj will have the value ‘unknown'; for
these we place the full attribute domain. Take all the possible
combinations of I and Sg and consider them in the order of
increasing insertion cost. Since all the attribute domains are fin-
ite, there are only finitely many combinations to consider. Sup-
pose there are m combinations <‘l13 R Sé>, ,<I'é‘ R S'é‘>
(* These combinations can be obtained
very efficiently by using the S table *)
fori:=1 tomdo
if cost(CORRECTION) < S(Bj»!,liBTSiB) then
exit loop (* no better correction
possible from this tree *)

else

begin

70
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Evaluate all the attributes of the tree

th . . e
combination for Bj‘s attributes

using i
(* All the subirees are also evaluated

in the order stated above. *) «
i cost_correction < cost(CORRECTION) then

CORRECTION := new_correction

@il

end;

&.6. Arn Exampie

We now illustrate various ideas using an example. This grammar is a part of a
Pascal grammar, where four types of scalar variables (Integer, Real, Boolean, and
Character) can be declared and used in various statements. No variable can be
declared more than once in the same scope and no variable can be used without

being declared.

The predicate <CHECK DUP> insures that a variable is not declared more
than once in the same scope. This predicate has been placed such that a dupli-
cate definition is detected as soon as the offending identifier appears in the loo-

kahead. The following production illustrates.

<DECL LIST>!symtabTsymtabout = DECL
<CHECK DUP>{symtab <ID>tname : <TYPE>Ttyp
<DECL LIST > }symboltab2 tsymtabout

<DECL LIST>[2].symboltab2 := <DECL LIST>[1].symtab )



T2
{(<ID>.name, <TYPE>.typ)};

The predicate <CHECK DEF> insures that a variable has been declared
before being used. It has been placed so that the correct prefix prbperty is main-

tained. The following production illustrates this idea.

<LEFT HAND>VsymtabTtype => <CHECK DEF>lsymtabltunknown' Mtype

<ID>%name

(Here the value 'unknown' for the atiribuie ltype of the predicate <CHECK DEF>
indicates that an id of any type is acceptable as long as it has been declared
before, in other contexts we shall be locking for an id of a specific type as we

shall see helow).

in this grammar we have only two kinds of statements, assignment and if. In
an assignment statement the type of right han.d side expression must match the
type of the variable on the left hand side (except when the left hand side is real;
then the right hand side may be an integer expression). This semantic rule is
enforced using inherited attribute "ltype" which passes down the type of the left
hand side variable. As the right hand side expression is recognized, the type is
checked at all stages to make sure that there is no conflict. For example consider

the following production.

<PRIMARY >l symtab {itypttyp =

<CHECK DEF>lsymtablitypTtyp <ID>Tnhame

Predicate <CHECK DEF> is true if and only if the lookahead identifier has
been declared before and its type is compatible to the inherited attribute "itype".

The value of the inherited attribute "ltype"” was obtained from the type of the left
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hand side variable and the partially parsed right hand side expression. For exam-
ple, if the left hand side is Boolean and we have already parsed an integer vari-
able and a relational operator then the inherited attribute 'Itype' of the nonterminal

<PRIMARY> will be integer (for details see the complete grammar given below).

The expression used in an if statement must of the type Boolean, and this
restriction is enforced by assigning the value Boolean to the inherited attribute
"ltype’"” of the nonterminal <EXPR>. For example, consider the following production

(we enclose the constant attribute values in single quotes).

<STMT>!symtab => IF <EXPR>{symtab!{'Boolean'Ttyp

THEN <STMT>/!symtab <ELSE CLAUSE>{symtab

As the nonterminal <EXPR> is recdgnized, the type is checked at all stages
to make sure that there is no conflict. The final type of the <EXPR> (given by the
attribute 'typ") is not important in this context. (The same nonterminal <EXPR> is
used In other context also, were the 'ltype' and the 'typ' could have different

values, e.q. in an assignment statement).

Finally, in this grammar we allow arithmetic operations +, -, *, and / only on
Integer and Real variables. This semantic rule in enforced by the predicate
<CHECK ARITH>. Here also this predicate is put before the +, -, *, and / operators
so that an error can be detected as soon as possible, leaving enough information

on the stack for error corrector.

We now give the complete grammar G = (Vn, Vt’ <prog>, Q, FQ, P) where

Vt = { <ID>, PROGRAM, BEGIN, END, IF, THEN, ELSE, DECL, :=, ",", 5, G

+, -, %, /, INTEGER, REAL, CHAR, BOOLEAN, <constant>}



"

n

T4

{<PROG>, <PROG HEAD>, <STMT PT>, <FILE ID LIST>, <EXPR>,
<LEFT HAND>, <TYPE>, <STMT LIST>, <STMTLTAIL>, <STMT>,
<ELSE CLAUSE>, <DECLLIST>, <CHECKDEF>, <CHECK DUP>,
<CHECK TYP>, <TERM>, <ETAIL>, <PRIMARY>, <T TAIL>,

<ADD OP>, <MULT OP>, <EX TYP>]

Q = {KCHECK DUP>, <CHECK TYP>, <CHECK DEF >, <CHECK DEF>, <CHECK

ARITH>}

P contains following productions

<PROG>*symtabout => <PROG HEAD> <STMT PT>{$symtabout .

<PROG HEAD> => PROGRAM <ID>Tname ;

<STMT PT>{symtabintsymtabout==> BEGIN

<DECL LIST>{symtabinfsymtabout <STMT LIST>{symtabout END

<DECL LIST>{symtabTsymtabout => DECL <CHECK DUP>{symtab

<ID>*tname : <TYPE>Ttyp <DECL LIST>{symboltab2tsymtabout

<DECL LIST>[2].symboltab2 := <DECL LIST>[1].symtab |

{(<ID>.name, <TYPE>.typ)};

<DECL LIST>!symtabfsymtab => A

<TYPE>Ttyp == INTEGER

<TYPE>.typ := Integer;

<TYPE>?Ttyp => REAL

<TYPE>.typ := Real;

L)
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<TYPE>Ttyp =2 CHAR

<TYPE>».typ = Character;

<TYPE>Ttyp => BOOLEAN

<TYPE>.typ := Boolearn;

<STMT LIST>leymiab = <STMT>!symtab <STMT L TALL>lsymtab

<STMT >dsymtabh =»> <LEFT HARD>{symtabfltyp :=

<EXPR>Lsymtablitypttyp2 <CHECK TYP>Ltypityp2

<LEFT HAND > {symtabttyp => <CHECK DEF>lsymtabl'unknown'ftyp
<ID>Tname
(The value ‘unknown' for the attribute ltype of the predicate <CHECK DEF> indi-

cates that id of any type is acceptable as long as it has been declared before).

LSTMT >dsymtab = IF <EXPR>!symtabl'Boolean' Ttyp

THEN <STMT>{symtab <ELSE CLAUSE>{symtab

<STMT >!symtab =2 BEGIN <DECL LIST>lsymtab2Tsymtabout
<STMT LIST>symtabout END

<DECL LIST>.symtab2 := <STMT>.symtab |) {empty new scope}

<STMT>dsymtab => A

<ELSE CLAUSE>!symtab => ELSE <STMT>!symtab

<ELSE CLAUSE>!symtab => A

<STMT L TAIL> tsymtab => ; <STMT>I!symtab

<STMT L TAIL>dsymtab



<STMT L TAIL> bsyimtab => A

<EXPR>{symtablitypttyp => <TERM>lsymtablitypTtyp1
<E TAIL>bsymiablltyp2 ttyp2 <EX TYP> Ltyp1ltyp2Ttyp
<E TAIL>Itype2 := Compute_ltype_of Tail(<TERM>.typ1,

<EXPR>.1typ);

<E TAIL>lsymtabllitypTtyp =p <CHECK ARITH> typ
<ADD OP>Top <TERM>IsymtabbitypTtyp1
<E TAIL> symtablltype2ttyp2 <EX TYP> liyptltyp2tivp
<E TAIL>[2]itype2 := Compute_ltype_of_Tail( <TERM>.typ1,

<EXPR>1typ);
<E TAIL>!symtablltyptitype => A

<TERM>lsymtablitypTtyp => <PRIMARY>!symtablltypttyp1
<T TAIL> Lsymtablltyp2ttyp2 <EX TYP>Ltyp1ityp2Ttyp
<T TAIL>.Itype2 := Compute_ltype_of Tail(<PRIMARY>.typ1,

<TERM>.Ityp);

<T TAIL> Usymtabdltypfiyp => <CHECK ARITH> ityp
<MULT OP>Top <PRIMARY>.lsymtablitypTtyp1
<T TAIL> symtabdlityp2ttyp2 <EX TYP>{typ1ltyp2Ttyp
<T TAIL>[2].itype2 := Compute_ltype_of_Tail(<PRIMARY>.typ1,

<TERM> .ltyp);
<T TAIL>dsymtabdltypTityp => A

<PRIMARY >{symtablltyp ttyp => <CHECK ARITH>LItyp -

76
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<PRIMARY>{symtab Ttyp

<PRIMARY > {symtablityp ttyp => <CHECK DEF>lsymtablitypTtyp

<ID>fthame

<PRIMARY >{symtablltyp Ttyp => <CHECK TYP>litypityp

constantftyp

<MULT OP>Top => *

<MULT OP>.op := Mult;

<MULT OP>Top = /

<MULT OP>.op := Divd;

<ADD OP>%top => +

<ADD OP>.op := Add;

<ADD OP>Top => -

<ADD OP>.op := Sub;
<CHECK DUP>4symtab => A
<CHECK TYP>Ltyplityp2 => A

<CHECK DEF>lsymtablltypttyp => A
<CHECK DEF>.typ := If lookahead.name € <CHECK DEF>.symtab
and typeof(lookahead) is assighable
to <CHECK DEF >.ltype
then typeof(lookahead)

else Predicate := false ;
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Where typeof(lookahead) gives the type of the lookahead variable as recorded in
the symbol table.
SEXTYP>Ityplityp2Tttyp => A

<EX TYP>.typ := Compute_expr_type(<EX TYP>.typ1, <EX TYP>.typ2); -

In this example, all the attribute domains are finite except for the attribute
‘name' and 'symbol table'. Qur error correction algorithm treats them differently
than the rest of the attributes. When we want to insert an id, we set its attribute
‘name' to some special pattern 'UNKNOWN'. When the table lookup is called by the
predicate <CHECK DEF>, it knows that we are not looking for an id named 'UNK-
NOWN'., Rather any id wi'th the correct type will be acceptable (we recall that
when the table lookup is called it uses the inherited attribute itype to match the
type). Therefore, it will match this id with any other id as long as it is of the
correct type and change the attribute 'name' *;o the proper value. Spelling correc-
tion can be incorporated easily. When we have an undefined identifier, we can call
the table lookup with an option which says that any identifier whose spelling is
very close the attribute 'name' is acceptable. It will match this identifier to the
closest matching identifier of the correct type which has been defined. The table

lookup will change the attribute 'name' accordingly.

Similarly when the table lookup is called by the predicate <CHECK DUP> with
an id named '"UNKNOWN!, it will change the id name to some pattern such that it will

not cause duplicate definition in the same scope.
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8.7. Determining the value of k

The performance of the above described algorithm depends on the value of
the k (the amount of lookahead used). If we make the k very small then !the
corrector may not find the best corrections, causing spurious errors. If we make
the value of k very large then the corrector might become unreasonably expen-
sive. Mauney [MA82] has proposed several methods for selecting the value of k.
His implementation results (reported in [MA82]) should be applicable for our algo-

rithm and could be used as guidelines for our algorithm. Briefly, we can use the

following approaches for selecting the value of k.

We can use some constant value of k and élways examine k input symbols
past the error token. A constant k has been used by several other error correcting
algorithms [GHJ79, PK80]. In practice a small value of k will give fairly good
results. For example, the algorithm proposed by Graham et. a/. [GHJ79] uses 5
symbols past the error token and the authors have reported satisfactory results.
It is, of course, always possible to come up with an error such that for best
correction we need to examine the whole program. Moreover, if there are more

errors in the examined k symbols, the later errors may not be corrected very well.

Since the value of the k can be changed dynamically in our algorithm, we can
solve abovementioned problem if we always examine some constant number of
symbols after the last error symbol. Tai [TA78] first suggested this method. The
only problem with this approach is that if there are too many errors in the program
then we might have to examine a large part of the remaining program, which could
be very expensive. As pointed out by Mauney [MA82], simply counting the number

of the symbols after the last error symbol is not likely to be a very good approxi-
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mation, as some of the symbols could just be "syntactic sugar” (such as UOR

Rather then just counting symbols after the error symbol, we might look for
special symbols such as ''fiducial symbols" as defined by Pai and Kieburtz [PK8O].
These symbols have 'phrase-level uniqueness' property; that is, all the senter:tial
suffixes starting with a fiducial symbol can be derived from a single sentential

suffix. If we correct all the errors until we encounter a fiducial symbol, we should

be able to parse rest of the program if there are no further errors in the program.

A problem with this method is that the fiducial symbols are grammar-
dependent and therefore, determining fiducial symbols requires a priori analysis of
the grammar. Very few symbols in any grammar for a practical programming
language are fiducial symbols. Therefore, we might‘ have to examine a large part of

the program before we encounter a fiducial symbol.

The last suggestion made in [MA82] is' to keep expanding the error correction
region dn;cil all the corrections are equivalent (this is explained in detail in
[MA82]). Informally, two corrections are equivalent if they accept the same suf-
fixes. Equivalencq was first suggested by Levy [LE75]. The problem with this
approach is that test for equivalence isrundecidable in general. But we can still
find sufficient conditions for equivalence, which are decidable in practice. Levy
[LE75] has given one such condition, but it is rather difficult to test in practice.
Mauney has given a slightly weaker test for equivalence (for details on this test

for equivalence see [MA82]).

All these approaches can be used to limit the number of symbols to be exam-
ined. In practice no one criterion will serve well. Rather we should use some combi-
nation of these ideas. For example, we can have a constant upper bound, p, over

the number of symbols we examine. We stop reading extra input symbols if we find

8L
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a fiducial symbol before p. We stop reading extra input symbols if we have exam-

ined m (m<p) correct symbols after the last error symbol.

8.8. Comparison with other algorithms

One-symbol error cotrection has been proposed by several authors [GHJ79,
PK80], but no elegant implementation has been suggested. Both methods take all
possible one-symbal corrections and try one correction at a time by parsing some
right context past the error token. If the correction tried is not successful they
reset the parse stack to original state and try the next correction. We feel that
our algorithm is quite clean and should be time-efficient. (Although true com-
parison is not possible as comparing cpu times of different computers is almost

impossible, if not meaningless).

Most of these methods detect parsing (syntax) errors and then try a one
symbol correction that is semantically correct. They fail to correct semantic errors
(that is, a construct which is syntactically correct but semantically wrong wi.H not
be corrected by these algorithms). For example, type incompatibility in an assign-
ment statement, use of an undefined variable, duplicate definitions of a variable in
the same scope, wrong field selectors in a record variable (e.g. '~ instead of '." in
pascal), or wrong field selectors in a pointer variable (e.g. ! instead of '~."in pas-
cal) will not be corrected by most of these methods. Since our algorithm Will

detect and correct these fairly common errors we feel that a larger percentage of

errors will be corrected by our first-level error corrector.

Any high quality error corrector must have some means to deal with spelling

mistakes. It has been reported that more than 20 percent errors in the COBOL.
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programs are spelling errors [HD80]. Including these corrections is very easy in our
algorithm. Once we find out all the possible tokens which could have been
misspelled by the error symbol, we can include all these tokens in the set S1 (or in

the sets 31 thru Sk in second level error correction). ’

The above algorithm is fairly general and user can tune it according to his
need. The user can change the cost of insertion and deletion to fine-tune the

algorithm. The value of k can be increased dynamically at run time.

We also note that above algorithm is very similar to the Aho and Peterson
[AP72] algorithm. If we put PREDICT(S) in the element t0,0 and set the value of k
to n (the size of the input) then the algorithm will transform the given input string
x into a legal string using least cost of correction: (To obtain exactly same results
as the Aho and Peterson algorithm we must have insertion, deletion, and replace-

ment cost 1 for all symbols).

Our algorithm has same flavor as Dion's [DI%Q] error correction algorithm
except that it uses the next k input symbols to find a best possible correction
whereas Dion's algorithm works on one symbol Iookat{ead at a time. Therefore, we
expect our algorithm to make better corrections than the co;rections made by
[DI79]. The E table used in Dion's algorithm could be very large and therefore
could be expensive to access from the disk. The need for the E table has been
eliminated in this algorithm by a slight modifica}tion to the PREDICT function. This
modification will not have any significant effect on the execution time the GHR
algorithm or memory requirement for storing the parse matrix. Elimination of E table
should make our algorithm more practical as we do not have to store a large E
table in the memory. Even the time complexity of our algorithm should be compar-

able to the time complexity of [DI79] provided we put a constant upper bound on
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the value of k, otherwise linearity for the algorithm cannot be established.

The above algorithm can also be extended to handle infinite attribute domains
in some limited cases. We put the value ‘unknown' for those attribute positions
where we cannot put a unique value and continue to parse the right coni'ext.
While parsing we let the predicates choose a specific value for these attribute
positions where we have put ‘unknown'. This cannot be done in general, but for
some practical cases we were able to do this. For example, when we insert an
identifier, we do not know what value we should have for the attribute 'id name' so
we put the value ‘*unknown' for the attribute ‘id name' and let the predicate
<CHECK DEF> or <CHECK DUP> (depending on the context, we shall call one of
these two predicates) change this value to some specific identifier name such
that it does not cause undefined identifier or duplicate definition errors (as

explained in the section 3.7).

By putting a constant upper bound on the value of k and assuming bounded
length parse stack (parse stack used for parsing the whole program), we can
retain the linear time and space complexity of the parser with the worst case con-
stant of linearity equal to k3]G| (excluding the attribute evaluation time). This fol-
lows from the fact that all the attribute domains are finite, therefore there are
only finite many dotted rules (including in the parse matrix element t0,0’ where we
put $ = .Xn ... Since the parse stack is of bounded length, in t0,0 also we shall
have only finite many dotted rules). If the value of k is constant, then we can

have only finite many dotted rules in the whole parse matrix.

Therefore, the number of correction trees in the parse matrix is bounded by a
constant. Each correction tree is of bounded height (because of constant k and

n). Hence each error correction takes a constant amount of time, and the linearity
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follows from that. Even if we donot assume a bounded parse stack, we can say
that our algorithm is linear in the size of parse stack and the size of the input.
Though in practice time will be much less than the worst case performance as
first-level corrector will correct a large precent of errors. Our algorithm will not
degrade the performance of the parser on error-free programs, as the parser does

not have to do any thing extra for the error corrector.

3.9. Possible Improvements To The Algorithm

The above algorithm is very general and can be used with any non-circular
attributed grammar with finite attribute domains. This generality may not be
required ir; practice. Some of the attribute place‘s used in the grammar }rxay not be
important from semantic error correction point of view (e.g. if the value of a con-
stant is one of‘the attributes of a constant, then the attribute domain is finite but
very large. If we try all the possible attribute values tc; see which v.alue is semant-
ically correct, we coulduvery well spend a lallfge amount of cpu time. Further, we
cannot even decide at the compile tirﬁe if a value of a cons;tant can ca:use divide
by zero or overflow. For example, consider the following integer expression A/(B +
constant), here if we put O for the integer cdnstant, we can get divide by zero if
the value of B is zero. If we put 1 for the integer constant, we can get overflow if
B has the largest possible integer value or divide by zero if the value of B is -1.
Such attribute positions should be excluded from the error corrector). Therefore,
to make above algorithm efficient we can divide all the attributes into two disjoint

sets 82\ and Si . The set Sl‘ contains only those attributes which are important

for semantic correctness and the set Sﬁ contains attributes which are important




85

for program execution but not important for semantic correctness (attribute posi-
tion value of a constant is one example of such attributes). We also assume that
all the predicates used by the error corrector are dependent only on the attributes
from the set SA . Once we have a correction tree with attribute values fixed for
all the attributes from the set Sl , we can decorate the tree with attributes from
the set Slz\ without causing any attribute conflict (or semantic error).

If all the attribute domains for attributes from the set S}\ are fairly small then

we can trade space for time and instead of using the 'unknown' value we use the
full attribute domains for those places where we cannot put a unique value. We
can include the same symbol a nuﬁber of times with different attribute values. At
the end of parsing the néxt k input symbols we_can just pick a correction which
has the least cost of correction. Since all the attribute values are fixed, no
further action will be required (except selecting some attribute values for attri-

butes from the set Si ).

3.10. Implementation Results

The error correction algorithm described above was implemented in pascal on a
VAX/780 computer and was tested on the subset of Pascal grammar given in the
section 3.6. Execution time of the first level error correction is acceptably small.
in our test cases we tried to parse 5 token past the error token (total 6 tokens)
and the execution time varied from 80 to 200 msecs. This execution time included
time to repair the input source line and print error message. Given the quality of
the correction made by the first level error corrector, execution time does seem

acceptable. Some of the programs we tested are listed in appendix C to show the
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kind of corrections made by our algorithm.

The second level error correction is much more elaborate and expensive. In
our test cases we tried to parse 4 to 7 tokens past the error token and the exe-
cution time varied from 1.4 (for four symbols) to 8.0 seconds (for 7 symbols). This
high execution time indicates that the number of symbols parsed after the error
token is very critical. As insertions, deletions, and replacements are included, the
effective grammar as seen by the parser (even though underlying grammar is still
the same, but the parser sees slight different picture as we simulate insertions,
deletions, and replacements) becomes highly ambiguous (in the sense that each
dotted rule can be included a number of times in the same parse matrix element)
and we start to see the ;:ubic parsing time. For example, in test cases when we
counted the number of dotted rules in éach element of the parse matrix, we found
that the average number of doited rulés in eéch parse matrix element was very
small (it varied from 12 to 20). From these s;nall number of dotted rules in each
parse matrix element and the execution trace we could conclude that that the
execution time was high because each dotted rule was introduced several timeg
with different corrections in the same parse matrix element. In conclusion, high
executjon time for the second level error corrector is due to the ambiguity in the

effective grammar as seen by the parser.

Since we feel that a large percentage of errors will be corrected by the first
level error corrector (which is much faster ‘than the second level corrector),
overall error correction strategy seems to be reasonably efficient and we should
be able to use it in practice. Even if we use the full pascal grammar, the execu-
tion time of the first level error corrector should not change by any significantly

amount. In test cases we found that the execution time of the first level error
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corrector depends on the context in which the error occurs. Productions which
are not applicable in the current context have no effect on the execution time.
For example, in a pascal program if we have an error in the declaration part and we
try a one-symbol error correction, all the productions used in the expressions &tc.

will have no effect at all.

But the execution time of the second level error corrector will increase when
we use the full pascal grammar. Here the execution time is directly proportional to

the size of the grammar (because of the |G| factor in |G|k3 as explained before).
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Chapter 4

Conclusions

4.,1. Conclusions

One of the goals of this research was to develop an efficient and very gen-
eral on-the-fly attribute evaluator. The attribute evaluator described in this thesis
runs in parallel with the parser and tries to evaluate attributes as soon as possi-
ble, without any run time analysis of attribute dependencies. It also avoids
unnecessary visits to a subtree if no additional a‘ttributes can be evaluated from

that subtree.

The evaluator we have presented is very general and can be used with any
context-free grammar augmented with an absolutely non-circular attributed gram-
mar. This generality should make it very useful in several applications as men-

tioned in the section 2.11.

The attribute dependency analysis and attribute evaluation planning algorithm
presented in this thesis is very efficient, based on some very simple data struc-
tures. It can be used for other applications as well. For example, it can be used for

attribute evaluation planning in a tree walk evaluator [KW78].

The second goal of this research was to develop a good context-sensitive
error correction strategy. The two level error correction algorithm presented in this
thesis seems a reasonable approach. It is an automatic table-driven algorithm, and
will work in all the error situations. Although the problem of error correction has
previously received much attention, most of the other techniques suffer rather

serious drawbacks. Very often, they fail when faced with certain syntax errors

Jo
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and are forced to skip ahead, completely ignoring portions of the input. Most of the
error correctors can deal with syntax error only. Hence corrections made by most
of these correctors can be rejected immediately when the semantic phase of the

compiler is started after an error correction. /

Some of the previously proposed context sensitive error correctors have
rather serious drawbacks. For example, the algorithm proposed by Graham at el
[GHJ79] and other one-symbol context-sensitive error correctors can detect con-
text free (parsing) errors only and then try a one-symbol correction that is
semantically correct. They fail to correct semantic errors (that is, a construct
which is syntéctically correct but semantically wrong will not be corrected by
these algorithms). For example, type incompatibility in an assignment statement,
use of an undefined variable, duplicate definitions of a variable in the same scope,
wrong field selectors in a record variable (e.g. '~' instead of "' in pascal), or wrong
field selectors in a pointer variable (e.g. '.! instead of '~.! in pascal) will not be
corrected by most of these methods. Since our algorithm will detect (because our
error corrector can be invoked by semantic errors also) and correct these fairly
common errors we feel that a larger percentage of errors will be corrected by our

first-level error corrector.

The work presented in this thesis has both theoretical and practical signifi~
cance: The two level error correction strategy makes it rather practical. But the
basic error correction algorithm is very general and can even be used as a global

error correction algorithm.

The error correction technique developed here has the fundamental advan-
tage that the introduction of error correction in the translation process has very

little impact on the overall structure of a compiler. This noninterference is a direct



e0

consequence of the locality of our correction model.

.

4.2. Directions for Future Research

This research presents a structured approach to context-free (parsing) and
context-sensitive (semantic) error correction. We should be able to integrate this
technique with a lexical error corrector (e.g. spelling corrector) to obtain a truly
high quality error correction algorithm. For example, in our current implementation, .
when we encounter an undefined identifier we replace it with any identifier from
the symbol table as long as it is of right type. An identifier selected this way may
not be what the user wants. On the other hand, if we use a spelling corrector and
replace an undefined identifier with another identifier whose spelling is very close
to the offending identifier, it is more likely to be correct. We feel that integrating
our error correction algorithm with a spelling corrector can greatly enhance‘the

overall quality of the error corrector.

We have presented an automati¢ error correction algorithm which can deal
with an é’ttributed grammars whose domains are'finite. We have also shown infor-
mally how to deal with infinite attribute domains in some limited situations. Here we
find that the predicate functions play an important role. The predicates replace
the 'unknown' values by some specific values from the corresponding attribute
domains. More research is required to define a precise set of predicate functions
such that given the 'unknown' values to some attribute positions, predicates will

always select specific attribute values from the corresponding attribute domains.
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Appendix A

Planning Algorithm

When a VISIT(k,l) is executed, the recursive call to EVALUATE will resd'lt in
the look-up NEXTMOVE(q,l) = (plan,q'), where q is the state found on the kth son.
The process of constructing an evaluator involves finding all (qg,l) pairs that will
ever be used to access the NEXTMOVE table and making all the relevant entries in

the NEXTMOVE table and PLAN set.

To see which (g,1) pairs will be used in a plan, let us consider the plan associ-
ated with the start symbaol (VISIT to the root). Without loss of generality, let us
assume that we have exactly one production with the S (the start symbol) on the
jeft-hand side, and let

S = XX,

Suppose that the plan for VlSIT(root,!S) is P = '1"‘|m‘ Where lk is either a

semantic function or VISIT(j,l) (for 1 = j=n) for 1 <k <m.

To find out which NEXTMOVE(qg,l) look-up might be required by the VISIT(j,1),
lwe mL;st know what state >(j could be left in by the most recent visit to it. To
keep track of the states a offspring could be left in, we associate a set with each
symbol )(j from the right hand-side. Initially each offspring could be in one of its

initial states. Therefore, the set of states X j could initially be is S i where

sj = {ag (p) | p; € P and the left-hand side of p; is in

Now suppose Ij = VISIT(k,D) is the first VISIT instruction in the plan p, then we

may need to look-up one of the following entries from the NEXTMOVE table :

LA A B
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NEXTMOVE(q,1), Where q € Sk

.

Therefore, we should make a plan fog each (g,l) pairs such that q € Sk. And

we should also update the set Sk’ because the next visit to the same offspring
¥

will find this node in some other state. A new set of states Sk the symbol Xk

could be in, can be computed as follows

S'k = {qg' I NEXTMOVE(q,!) = (plan‘,q') for some q € 5}

Thls way we can find all the panrs for which NEXTMOVE lookup mlght be
required by the plan associated W|th the visit the root instruction. Now suppose
we visit a node X, which is in state g, with input I. And suppose that the produc-

tion used at that node is

X =-‘;>X1 Xm

From the state q of the node X, we can find a set of states each offspring
could be flagged. This is due to the fact that the state of a node can tell us which
attributes of a node are available. If we know which attrii)utes of X are available,
we also know which inherited attributes of Xk are available, and therefore, we

‘know which synthetic attributes of Xk are available, for each Xk from the right-

hand side.

Since the state of a node is a pair (p,A), where p is a production number and
A is a set of attribute occurrences of the symbol, if we know the attribute
occurrences which are available, we know the set of states that node could be in
(there will be one state in this set for each production into which the node symbol
can be expanded). Hence the set of states each offspring could be flagged can

be uniquely determined from the state of the parent node ( we will see that we do
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not have to recompute these sets if we associate some bookkeeping variables

with each state).

Now reconsider the previous example, and suppose we visit a node X, which

Fs
is in state q, with input |. Suppose that the production used at the node is

X =‘—‘?X1 Xm

We also have a state set Sk associated with each Xk for 1 = k < m, which
says that Xk could be in one of the states from Sk' Suppose the plan correspond-

ing to VISIT(g,) isp = Iy - 'n‘

Now consider each instruction Ij from the plan p. If |j is a semantic function

then no further action is required. If I. is VISIT(k,]), then we must include

J
NEXTMOVE(qg,l) for each q € Sk’ if it is not already present. We must update the

set Sk (as explained before).
Now we are ready to define the complete planning algorithm.

With each state g € Q we shall associate a number of sets of states (one for
each symbol from the right-hand side of the production). Suppose we have a

state g € Q such that the node X can be flagged with state g, and
X => X1 - Xy

then we shall associate n sets of states 81 S Sk’ 1 < k < n, indicates that

n
when X is in state g, then the Kth offspring could be in any state ¢' € Sk‘ (Note

that we have a number of states possible for Kth

offspring because the symbol Xk
can be expanded by a number of different productions. We shall have one state

corresponding to each production XK can be expanded into in Sk)‘
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Initially we shall have the following states in Q

[y

We shall denote the set of states associated with state q by $(q). If pro-
" N 4
duction pj is X = X1 Xm then

$(q0(pj)) =8, ... S where

Si = § qo(pi) I p; € P and the left-hand side

of P; is X !

As we add new states q to Q, we shall also include the sets of states associ-
ated with g (as described above) to $(q). For completeness we shall include the
"Make_plan' algorithm here again.

Algorithm Make_Plan(p,A);
1. Let S be an empty sequence of instruction and
let Af = A;
2. Let current evaluation state be (p,A');

8. If some semantic function fp is ready to

a

evaluate then append the instruction fp-a to

S, add a to A', and go to step 2;

4. If Kth subtree hés nonempty yield y then
append VISIT(k,I) to S, where
I=fa]aci(X)andach]

Let A' = A' | y; and go to step 2;

6. Let q be the evaluation state (p,A"). The

resulting plan is S§ and nextstate is q.

6. return (S,q) (* Return the resulting plan and

the next state *)
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end. .

function Construct_plans(q,!) : state;
(* This function adds an entry to the NEXTMOVE table for the pair {a,b).
It also calls Make_plan to make a plan for pair (g,1) and add it to the
PLAN set, and finally it will update the $ array *)
begin
Let g be the state associated with node X => X1 "‘Xm‘
var S[1..m] : set of states; (* work space to keep track
of running sets of states for each ’offspring x)
S$4,8" : set of statc;zs;
plan',plan” : sequence of instructions;
qg',q'" : states;
for i = 1 tomdo
S[i] := $(q)[i]; (* start with set of states
associated with the state q *)
(plan',q") := Make_plan(q,});
(* make plan for pair (q,l) *)
NEXTMOVE(q,l) := (plan',q");
(* Make entry in NEXTMOVE table *)
Let plan® be l1“"n
fori:=1tondo
begin (* look for visits *)
it li is VISIT(k,!') then do
begin
S' = §;



for each gq"" € S[k] do
if NEXTMOVE(q'",I') is unde‘ﬁned then do
§':= 8' | Construct_plan(Q",l');
(*new pair (g,1) found*)
else
begin
(plan',q) := NEXTMOVE(q",1');
S':=8"0Ua

end;

h

S[k] := 8'; (*update set of state of kt son*)

end;
fori:= 1 to mdo
$(qOIi] == s[i];
return(q');
end

end. (* end of Construct_plan *)

(* initialize *)
Q:=tagle) | pjePy;
$(q0(pj)) := 84 ... S, where
Pj is X => Xy . X, and
8, = { ag(Py | p; € P and the left-hand
side of p; is Xy }
NEXTMOVE := &;

ConstruchIans(qO(S),IS);
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We can make following observations about the plan construction algorithm

presented above.

Above algorithm is based on very simple data structures (sets, arrays, etc).
Therefore, efficient implementation in any PASCAL like language can be obtai,ned
very easily. Our implementation of this algorithm in pascal is about 6000 lines long.
Execution speed is also quite acceptable. In our test cases we had a number of
small grammars and two grammars each having approximately 40 productions. Our
planning algorithm took about 9 second of CPU time on VAX /780 computer. In addi-
tion to creating various table files, the program produced a formatted listing of the

full grammar, goto table, and complete plan set.

The algorithm will terminate. Since on every ‘call we include a new (q,)) pair
into the NEXTMOVE table and there are only finite number of pairs possible at all.
Further, before we call the function Construct_plan recursively we include the pair
(q,]) into the NEXTMOVE table, and therefore, possibility of loop is also not

present.

Correctness of the algorithm can be established very easily using inductive
hypothesis. We can establish correctness by proving following two hypothesis.
a. Each pair (g,1) which could ever occur in attribute evaluation will be
included by the algorithm.
b. And each pair (q,1) included has a possibility of occurring in some
attribute evaluation (provided that the predicates functions do not

block some production combination from occurring).

30 L
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Appendix B

Attributed S Table Computation

The following procedure STable computes the attributed S table as definea in
the section 8.5. This procedure (adopted from [DI79]) computes the S table for an
L-attributed grammar whose attribute domains are finite. We shall use the symbol
121 to denote an undefined string and we assume that the insertion cost of the
undefined string is . This is an iterative algorithm whqre the main procedure
keeps reevaluating S table for each grammar symbol until there is no change, then
we know that we done. Correctness and efficiency of the algorithm are discussed

in [DI79]. .

We shall use the symbol LHSi to represent the left hand side of the produc-
tion p;. An instance of a symbol X together -with its attribute values will be
denoted by X!I1S where | is an Mx-tuple of values, 'each value in the correspond-
ing domain of 1(X), and S is an Nx—tuple of values, each value in the corresponding
domain of S(X). The notation! € I(X) means | = (a1, . aMX), 1(X) = (d1 s ey dMX)

and a € dk fork=1,.., My (S € S(X) is similarly defined).

Procedure ReEvalS(pi) considers the reevaluation of S(LHSi.Lu‘Pv) for allu €
I(LHSi) and v € S(LHSi), using production i. SearchProdS is a recursive procedure
which assigns values to attribute positions of the symbol in RHSi by doing a
depth-first search of the tree which can be build by considering all the possible

combinations of attribute values.

The attribute values of a prefix of a production p; are kept in the array Vi

and Wi which are used as stacks in the depth-first search.

w A




procedure STable(AG);
AG : An Attributed Grammar;

function ReEvalS; forward;

begin (* STable *)

1 (* Initialization *)

for all ALITS € AVn do
S(ALITS) := 12

for all atS € AVt do
S(at8) := atS;

for all gJ11S € Q do
if fq(l) = (S,true) then

S(qdItS) := A

© 0 N O ;o h N

else

10 S(qlits) =17

11 {(* Main loop *)

12 repeat

13 Nochange := true;

14 for all P € P do

15 Nochange := Nochange and not ReEvalS(Pi)
16 until Nochange;

end STable.
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function ReEvalS(Pi) : boolean;
Pi = (Al-ao‘l‘bo => B4 ~La1 Bm‘l’amﬂ)m) ;
(* Note ay = (a1k, ’§Mk) and ,
by = (b, .. ,é‘Nk) fork=0,..,m%)
var .

change : boolean;
Vit domains(ak), k = 0,...,m;

wy domains(bk), k =0,..m;

("_ where domains(ak) is a tuple of domains defined as follows. If a}< is an attribute
variable then the jth component of domains(ak) is I(a}<), otherwise it is §a}<§ )

domains(bj) is defined in a similar manner *)

procedure SearchProdS; forward;
begin (* ReEvalS *)
1 change := false;
for all Vo € domains(ao) do
if m = 0 then (* A production *)

begin 5 copy wy, from defining position;

change := true

2

3

4

6 S(Advytwg) = A
7

8 end

9

else

-
(=]

begin

11 compute v 13
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12 SearchProdS(1, A)
13 end;
14 return(change)

end ReEvalS; ’
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procedure SearchProdS(j,LC);
j: 1.m; (* level in the tree *)

LC: Av:; (* least cost string derivable from B ... B, 4 x)

j-

T: AV | %
begin

1 for all w;j € domains(bj) do

2 begin

3 T := S(BjJ,va‘wj);

4 if T #'? then

5 LC:=LCcatT;

6 if j < mthen

7 begin

8 Compute vj+1; (* inherited attributes *)

9 SearchProdS(j+1, LC)

10 end

1 else

12 Compute Wo; (* synthetic attributes *)

13 if IC(LC) < IC(S(AJ,VOTWO)) then

14 begin

156 S(AJNOT‘WO) = LC;

16 change := true

17 end

18 end

end SearchProdS;




Appendix C

Here are some of the test programs we run through the first level and the
second level error corrector. For the first level error corrector, the corrections
made are indicated by the symbol I, D, and R, indicating insertion, deletion, and
replacement, respectively. We have shown only some of the examples which

shows the difference between our error corrector and the other error correctors.

Examples 1 and 2 show common one-symbol context free corrections, like
Inserting missing ':=' or deleting extra 'DECL' and so on. In example 3 we see a
context sensitive correction where an undefined identifier Y has been replaced by
a defined identifier X. Example 4 shows two context free errors (missing '(* and
extra ':') and a context-sensitive error (using an undefined identifier Y). Example
6 shows in more details, how to deal with duplicate definitions and undefined iden~-
tifiers. Finally, 6 gives an example of type incompatibility in an assignment state-

ment.

All the errors in the last example were corrected by the second level error
corrector (readers can see that the first-level error corrector cannot correct any
error). We see that the second level error corrector can deal with cluster of errors
and make context-free (missing '(filename);', missing ':=', and missing ':') as well

as context-sensitive (replacing undefined identifier).

PROGRAM foo(f1); PROGRAM foo(f1);
BEGIN BEGIN
DECL X : INTEGER DECL X : INTEGER
X X-X*X X:=X-X*X
END. —e=~[1]
END.
PROGRAM foo(f1); PROGRAM foo(f1);

BEGIN BEGIN



DECL DECL X : INTEGER
Xi=X=-X*X
END.

PROGRAM foo(f1);

BEGIN

DECL X : INTEGER
Yi=X=-X*X
END.

PROGRAM foo f1);

BEGIN
DECL X : : INTEGER
X=X-Y*X
END.

PROGRAM foo(f1);
BEGIN

DECL X : INTEGER
DECL X : INTEGER
Xi=X=-Y*X
END.

PROGRAM foo(f1);
BEGIN
DECL X : INTEGER
DECL Y : REAL
Xe=yY*X
END.

PROGRA foo(f1);
BEGIN
DECL Y : REAL
EN.
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DECL X :INTEGER

PROGRAM foo(f1); i
BEGIN
DECL X : INTEGER
Xi=X-X*X

--A[R]
END.

PROGRAM foo(f1);

-------------- ~[1]
BEGIN
DECL X : INTEGER
------------ ~[D]
Xi=X-1%X
----------- ~IR]
END.

PROGRAM foo(f1);
BEGIN
DECL X :INTEGER
DECL UnknownX : INTEGER

PROGRAM foo(f1);
BEGIN
DECL X : INTEGER
DECL Y : REAL
X:i=1*X

PROGRAM foo(f1);
~[R]
BEGIN
DECL Y : REAL
END.

--~[R]




PROGRAM foo
BEGIN
DECL X INTEGER
X1
XX*X~-10;
Yi=X+Y
END END.
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PROGRAM foo(unknownid);
BEGIN
DECL X : INTEGER
X:=1;
o~ r'4
X:=X*X-10;
X:i=X4+1

o~

END .

o~
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