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ABSTRACT

This paper provides a taxonomy of parallel sorting. The
literature on parallel sorting is surveyed, and it is shown that
most existing algorithms belong to one of two broad categories:
the network sorting algorithms, or the shared memory model algo-
rithms. Then, implementation and feasibility issues are
addressed. Known parallel sorting algorithms (that typically
require n processors to sort n records) are extended to "block
sorting algorithms", that can sort n=M*p records with p proces-
sors. Finally, the notion of external parallel sorting is
defined, and the topic of parallel file sorting is proposed as a

new research direction.







1. INTRODUCTION o

Sorting is defined as the process of rearranging a sequence
of items into ascending or descending order. A basic sorting
operation deals with items which are all key (that is, the order
is defined on the items themseives). A more general sorting pro-
cedure deals with records, where one of the record fields or the
concatenation of several fields constitute the key according to
which the records are to be sorted.

The implications of dealing with record sorting and signifi-
cant in terms of storage and data movement, since typically, a
record contains several hundred bytes, while the key may only be
a few bytes long.

A high percentage of computer resources are utilized for
sorting. This is because sorting is often required, either to
deliver to a user a well-organized output, or as an intermediate
step in the execution of a complex algorithm. Another reason
that explains this consumption of computer resources, is the fact
that sorting is a time consuming operation, even when a very
efficient sorting algorithm is used.

It may seem that advances in computer technology could elim-
inate, or at least significantly reduce the use of sorting as a
tool for performing other operations. For example, when sorting
is used in order to facilitate searching, one may advocate that
the advent of associative memories will suppress the need of
sorting. However, associative stores remain too expensive for
widespread usage, especially when large volumes of data are

involved. Also in the case that sorting is required for the sole




purpose of ordering data, the only way to reduce sorting time is
to develop faster sorting algorithms.

Many serial sorting algorithms that perform in optimal time
(that 1is, sort n items in time O(n logn)) are known. However,
the introduction of parallel processing has added a new dimension
to research on sorting algorithms. With the use of multiple pro-
cessors, sorting time can be reduced, at least in theory, to
O(logn). During the past decade, numerous results on parallel
sorting have been published. 1In particular, Batcher”s sorting
networks [Batc68] exhibited a complexity of O(logzn); later,
several optimal parallel sorting algorithms, of complexity
O(logn) were developed for a theoretical parallel processor model
[Hirs78, Prep78]. The most striking property of all these algo-
rithms 1is perhaps, the very large number of processors that they
require: typically, n processors are required to sort n ele-
ments.

This paper proposes a taxonomy of parallel sorting. The
evolution of research on parallel sorting is analyzed - from the
earliest sorting networks until the shared memory model algo-
rithms. An attempt is made to classify all the existing parallel
sorting algorithms, according to various criteria that include
not only their efficiency, but also the architectural require-
ments that they rely upon. 1In addition, several directions for
future research in the area of parallel sorting are identified.
In particular, implementation issues are addressed, and the
storage efficiency of various algorithms is considered.

The paper is organized as follows. 1In Section 2, we show



that certain fast serial sorting algorithms can be parallelized
pbut this tact leads to simple and relatively slow parallel algo-
rithms. Section 3 is devoted to the network sorting algorithms.
In particular, we describe in detail several sorting networks
that perform Batcher”s bitonic sort.

Section 4 surveys a chain of results that 1led to the
development of very fast sorting algorithms: the shared memory
model parallel merging [Vali75, Gavr75], and the shared memory
sorting algorithms [Hirs78, Prep78].

Tn Section 5, we define "block-sorting" parallel élgorithms,
that sort Mp elements with p processors, and identify two methods
for deriving a block-sorting algorithm.

In Section 6, we briefly address the problem of sorting a
large file in parallel. We show that previous research has
mostly dealt with internal sorting algorithms, and propose exter-

nal parallel sorting as a new research direction.

2. PARALLELIZING SERIAL SORTING ALGORITHMS

Parallel processing makes it possible to perform more than a
single comparison during each time unit. Some models of parallel
computation (the sorting networks, in particular) assume that a
key is compared to only one other key during a time unit.
Another possibility is to compare a key to many other keys simul-
taneously. For example, in [Mull75], a key is compared to (n-1)
other keys in a single time unit, using (n-1l) processors.

Parallelism may also be exploited to move many keys simul-

taneously. After a parallel comparison step, processors condi-




tionally exchange data. The concurrency that can be achieved in
the exchange steps is 1limited either by the interconnection
scheme between the processors (if one exists), or by memory con-
flicts (if shared memory is used for communication).

With this parallel scheme, the analog to a comparison and
move step in a uniprocessor memory becomes a parallel
comparison-exchange of pairs of keys. Thus, it is natural ¢to
measure the performance of parallel sorting algorithms by the
number of comparison-exchanges they require. Then, the speedup
of a parallel sorting algorithm can be defined as the ratio
between the number of comparison-moves required by an optimal
serial sorting algorithm, and the number of comparison-exchanges
required by the parallel algorithm.

Since an optimal serial algorithm sorts n keys in time
O(nlogn), the optimal speedup would be achieved when, using n
processors, n keys are sorted in time O(logn). It does not, how-
ever, seem possible to achieve this bound by simply parallelizing
one of the well-known optimal serial sorting algorithms. These
algorithms appear to have several serial constraints that cannot
be relaxed. On the other hand, parallelization of straight sort-
ing methods (that is brute force methods requiring O(nz) com-
parisons) seems easier, but this approach does not lead to
optimal parallel algorithms. By performing n comparisons instead
of 1 in a single time unit, the execution time can be reduced
from O(nz) to O(n). An example for this kind of parallelization
is a well-known parallel version of the common bubble-sort,

called the odd-even transposition sort (Section 2.1).




Partial parallelization of a fast serial algorithm can also
lead to a parallel algorithm of order O(n). For example, the
serial tree selection sort can be modified so that all the com-
parisons at the same level of the tree are performed in parallel.
The result is a parallel tree sort that is described in Section
2.2. This simple algorithm is used in the database Tree Machine

[Bent79].

2.1. THE ODD-EVEN TRANSPOSITION SORT

The serial "bubble-sort" proceeds by comparing and exchang-
ing pairs of adjacent items. In order to sort an array
(xl,xz,...,xn), (n-1) comparison-exchanges (xl,x2),
(xz,x3),...,(xn_l,xn) are performed. This results in placing the
maximum at the righg end of the array. After this first step, X
is discarded, and the same "bubble" sequence of comparison-
exchanges is applied to the shorter array (Xl'XZ"“’xn—l)' By
iterating (n-1) times, the entire sequence is sorted.

The serial odd-even transposition sort [Knut73, p. 65] is a
variation of the basic bubble sort, with a total of n phases,
each requiring n/2 comparisons. 0dd and even phases alternate.
During an odd phase, odd elements are compared with their right
adjacent neighbor; thus the pairs (xl,xz), (x3,x4),... are com-

pared. During an even phase, even elements are compared with
their right adjacent neighbor; that is, the pairs compared are
(x2'X3)r (X4,x5),... . To completely sort the sequence, it has
been shown that a total of n phases (alternately odd and even),

is required [Knut78, p. 65).




This algorithm calls for a straightforward parallelization
[Baud78]. Consider n linearly connected processors and label
them Pl’ Pz,..., Pn' We assume that the links are bidirectional,
so that P, can communicate with both P, , and P.iqe Also assume
that initially, X resided in Pi for i=1,2,...,n. To sort (Xl'
xz,...,xn) in parallel, let Pl’ P3, P5, ... be active during the
odd time steps, and execute the odd phases of the serial odd-even
transposition sort in parallel. Similarly, let P2, P4, ... be
active during the even time steps, and perform the even phases in
parallel.

Note that a single comparison-exchange requires 2 transfers.
For example, during the first step, X, is transferred to Py and
compared to Xy by Pl' Then, if X1>Xo, Xy is transferred to Pz;
otherwise, X, is transferred back to P2. Thus the parallel odd-
even transposition algorithm sorts n numbers with n processors in

n comparisons and 2n transfers.

2.2. A PARALLEL TREE-SORT ALGORITHM

In a serial tree selection sort, n numbers are sorted using
a binary tree data structure. The tree has n leaves, and ini-
tially, one number is stored in each leaf. Sorting is performed
by selecting the minimum of the n numbers, then the minimum of
the remaining (n-1) numbers, etc.

The binary tree structure is used to find the minimum by
iteratively comparing the numbers in two sibling nodes, and mov-
ing the smaller number to the parent node (see Figure 1). By

simultaneously performing all the comparisons at the same level
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of the binary tree, a parallel tree-sort is obtained [Bent79].

Consider a set of (2n-1l) processors interconnected to form a
binary tree with a processor at each of the n leaf nodes in addi-
tion to every interior node of the tree. Starting with one
number at each leaf processor, the minimum can be transferred to
the root processor in logz(n) parallel comparison and transfer
steps. At each step, a parent receives an element from each of
its two children, performs a comparison, retains the smaller ele-
ment and returns the larger one. After the minimum has reached
the root, it is written out. From then on, empty processors are
instructed to accept data from non empty children and to select
the minimum if they receive 2 elements. At every other step, the
next element in increasing order reaches the root. Thus, sorting
is completed in time O(n).

The speedup achieved with these simple parallelization
schemes (log(n) for n processors) is not satisfactory, and many
efforts have been made to achieve a higher performance. The
first major improvement was reached with sorting networks, that
sort n numbers in time logz(n) and thus, achieve a speedup of
n/log(n) [Batc68]. Later, Preparata [Prep78] demonstrated that
the optimal bound (time: O(log(n), speedup : n) can be achieved
with a theoretical model of n processors accessing a large shared
memory.

Another important issue is the validity of the performance
criteria by which parallel sorting algorithms have been previ-
ously evaluated. Clearly, assuming that the number of processors

can be as large as the number of elements to be sorted, and



counting the number of comparisons required by a parallel algo-
rithm, is not satisfactory. Communication, I/O0O costs and
hardware complexity must be incorporated in a comprehensive cost
model, general enough to accommodate a wide range of parallel

pProcessors.

3. NETWORK SORTING ALGORITHMS

It is somehow surprising that a simple hardware problem,
namely designing a multiple-input multiple-output switching net-
work, has motivated the development and the proliferation of
parallel sorting algorithms. The earliest results in the paral-
lel sorting area are found in the literature on sorting networks
[Voor71, Batcé68]. 1In Section 3.1, two types of sorting networks
are described, that are respectively based on the odd-even and
bitonic merge rules. 1In Section 3.2, we show that parallel sort-
ing algorithms for SIMD (Single Instruction Multiple Data stream)
machines can be derived from the bitonic network sort. 1In par-
ticular, we describe two bitonic sort algorithms for a mesh-

connected processor [Thom77, Nass79].

3.1. SORTING NETWORKS

Sorting networks originated as fast and economical switching
networks. Since a sorting network with n input lines can order
any permutation of (1,2,...,n), it can be used as a multiple-
input multiple-output switching network [Batc68]. To design a
fast sorting network, it is necessary to exploit the potential
provided by a number of comparator modules of performing com-

parisons in parallel. Implementing a serial sorting algorithm on
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a network of comparators results in a serialization of the com-
parators, and consequently, increases the network delay.

One of the first results in parallel sorting is due to
Batcher [Batc68], who presented two methods to sort n keys with
O(nlogzn) comparators in time O(logzn). As shown in Figure 2, a
comparator is a module that receives two numbers on its two input
lines A, B and outputs the minimum on its higher output 1line L
and the maximum on its lower output line H. A serial comparator
receives A and B with their most significant bit first and can be
realized with a small number of NOR gates. Parallel comparators,
where several bits are compared in parallel at each step, are
faster but obviously more complex. Both of Batcher”s algorithms,
the "odd-even sort" and the "bitonic sort", are based on the
principle of iterated merging. Starting with an initial sequence

k

of 2" numbers, a specific iterative rule 1is applied to create

k

sorted runs of length 2, 4, 8, ..., 2 during successive stages

of the algorithm.

3.1.1. The odd-even merge rule

The iterative rule for the odd-even merge is illustrated in
Figure 3. Given two sorted sequences (al, Aor eeer an) and (bl’
b2' ooy bn)' two new sequences (the "odd" and "even" sequences)

are created: one consists of the odd numbered terms and the

other of the even numbered terms from both sequences. The odd
sequence (c,, Cyy ...) is obtained by merging the odd terms (ay,
azs ...) with the odd terms (bl, b3, .e+). Similarly, the even

sequence (d d ...) is obtained by merging (a2, Ay ...) with

1r 727



~-> MIN(A,B)

> MAX(A,B)

Figure 2. A comparison-exchange module
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(b2' b4, ...). Finally, the sequences (cl, Cor ...) and (dl, d2,
...) are merged into (el, €or eeer en) by applying the following

compar ison-exchanges:

€1 1
ey; = max(cy,y,4dy)
€441 = m1n(ci+1,di), for i=1,2,...

The resulting sequence will be sorted (for a proof, the reader is

referred to [Knut73, p. 224,225]). To sort 2k numbers using the

k-1

odd~even iterative merge rule, requires 2 - (1 by 1) merging

k-2

networks (i.e. comparison-exchange modules), followed by 2 (2

k-3

by 2) merging networks, followed by 2 (4 by 4) merging net-

i+l by 21+l

works, etc. Since a 2 merging network requires one
more step of comparison-exchange than a Zi by Zi merging network,
it follows that an input number goes through at most 1+2+3+...+k
= k(k+1l)/2 comparators. This means that 2k numbers are sorted by
performing k(k+1l)/2 parallel comparison-exchanges. However, the
number of comparators required by this type of sorting network is
(k2—k+4)2k_2—l [Batc68] . Several subsequent efforts have been
able to reduce this number of comparators [Knut73], but only for

particular cases (for example k<5).

3.1.2. The bitonic merge rule

For the bitonic sort, a different iterative rule is used
(Figure 4). A bitonic sequence is obtained by concatenating two
monotonic sequences, one ascending and the other descending. A
cyclic shift of this concatenated sequence is also a bitonic

sequence. The bitonic iterative rule is based on the observation
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that a bitonic sequence can be split into two bitonic seguences
by performing a single step of compar ison-exchanges. Let (a],

Aoy ey a,,) be a bitonic sequence such that a;<a,<...<a and

c..>a Then the sequences

2n*

m1n(al,an+l), mln(az,an+2),...

> >
an+1-—an+2-—

and
max(al,an+1), max(az,an+2),...

are both bitonic.

Furthermore, the first sequence contains the n lower elements of
the original sequence, while the second contains the n higher
ones. It follows that a bitonic sequence can be sorted by sort-
ing separately two bitonic sequences that are one half as long.
To sort Zk numbers using the bitonic iterative rule, we can
successively sort and merge sequences into larger sequences,
until a bitonic sequence of Zk is obtained. This bitonic
sequence can be split into "lower" and "higher" bitonic subse-
quences. Note that the iterative building procedure of a bitonic
sequence must use some comparators that invert their output lines

and output a pair of numbers in decreasing order (to produce the

decreasing part of a bitonic sequence). Figure 5 illustrates

that bitonic sort network for 8 input lines. In general, the
bitonic sort of Zk numbers requires k(k+l)/2 steps, each using
k=1 comparators.

Since the first version of the bitonic sort was presented,
the algorithm has been considerably improved by the introduction

of the perfect shuffle interconnection [Ston71]. Stone noticed
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that if the inputs were labelled by a binary index, then the
indices of every pair of keys that enter a comparator at any step
of the bitonic sort network, would differ by a single bit in
their binary representations. Stone also made the following
observations: The network has logn stages. The ith stage con-
sists of i steps, and at step i inputs that differ in their least
significant bit are compared. This regularity in the bitonic
sorter suggests that a similar interconnection scheme could be
used between the comparators of any two adjacent columns of the
network.

Stone concluded that the perfect shuffle interconnection

could be used throughout all the stages of the network. "Shuf-
f1ing" the input lines (in a manner similar to shuffling a deck
of cards) is equivalent to shifting their binary representation
to the left. Shuffling twice shifts the binary representation of
each index twice. Thus, the input lines can be ordered before
each step of comparison-exchanges by shuffling them as many times
as required by the bitonic sort algorithm. The network that
realizes this idea is illustrated in Figure 6 for 16 input lines.
In general, for n=2k input lines, this type of bitonic sorter
requires a total of (n/2) (Logn) 2 comparators, arranged in (logn)2
ranks of (n/2) comparators each. The network has logn stages,
with each stage consisting of logn steps. At each step, the out-
put 1lines are shuffled before they enter the next rank of com-
parators. The comparators in the first (logn)-i steps of the ith

stage do not exchange their inputs. Their only use is to shuffle

their input lines.
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Instead of a multistage network, the bitonic sort can also
be implemented as a recirculating network, which requires a much
smaller number of comparators. For example, an alternative
bitonic sorter can be built with a single rank of comparators
connected by a set of shift registers and shuffle links, as shown
in Figure 7. Since the ith stage of the bitonic sort algorithm
requires i comparison-exchanges, Batcher”s sort requires

1+2+3+...+logn = logn(logn+l)/2

parallel comparison-exchanges. Stone”s bitonic sorter, on the
other hand, requires a total of (1ogn)2 steps, because additional
steps are needed for shuffling the input lines (without perform-
ing a comparison). 1In both cases, the asymptotic complexity is
O(logzn) compar ison-exchanges. This provides a speedup of
O(logn/n) over the O(nlogn) complexity of serial sorting. There-
fore, it improves significantly the previous known bound of O(n)
for parallel speedup processors.

Siegel [Sieg77] has shown that the bitonic sort can be also
performed by other types of networks in time O(logzn). Among the
networks he considered, are the Cube and the Plus-Minus 2i net-
works. Essentially, these networks can sort because they are
able to simulate the perfect shuffle interconnection. Siegel
proves that the simulation takes O(logzn) time, and thus, that

sorting can also be performed within this time limit.

3.2. SORTING ON AN SIMD MACHINE

Sorting networks are characterized by their "non adaptivity"

property. They perform the same sequence of comparisons regard-
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less of the result of intermediate comparisons. 1In other words,
whenever two Kkeys Ri and Rj are compared, the subsequent com-
parison for Rj in the case that Ri < Rj are the same as the com-
parison that Rj would have entered in the case Rj < R;. The
non-adaptivity property makes the implementation of an algorithm
very convenient for an SIMD machine. 1In particular, the sequence
of comparisons and transfers to be executed by all the processors
is determined when the sorting operation is initialized. Thus, a
central controller can supervise the execution by broadcasting at
each time step the appropriate compare-exchange instruction to

the processors.

3.2.1. Sorting on an array processor

A different problem is considered in [Thom75], where the
processors of an n by n mesh-connected multiprocessor are indexed
according to a prespecified rule. The indexing rules considered
are the row-major, the snake-like row-major, and the shuffled
row-major rules (shown in Figure 8). Assuming that nz keys with
arbitrary values are initially distributed so that exactly one
key resides in each processor, the sorting problem consists of
moving the ith smallest key to the processor indexed by i, for
i=l,...,n2. As with the sorting networks, parallelism is used to
simultaneously compare pairs of keys, and a key is compared to
only one other key at any given unit of time. Concurrent data
movement is allowed but only in the same direction, that is all

processors can simultaneously transfer the content of their

transfer register to their right, left, above or below neighbor.
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This computation model is SIMD since at each time unit a single
instruction (compare or move) can be broadcast for concurrent
execution by the set of processors specified in the instruction.
The complexity of a method which solves the sorting problem for
this model can be measured in terms of the number of comparison
and unit-distance routing steps. For the rest of this section we
refer to the unit-distance routing step as a move. Any algorithm
that is able to perform such a permutation will require at least
4 (n-1) moves, since it may have to interchange the elements from
two opposite corners of the array processor. This is true for
any indexing scheme. In this sense a sorting algorithm which
requires O(n) moves is optimal.

In [Thom75], two algorithms are presented that perform this
array sort in O0(n) comparisons and moves. The first algorithm
uses an odd-even merge of two dimensional arrays and orders the
keys with snake-like row-major indexing. The second uses a
bitonic sort and orders the keys with shuffled row-major index-
ing. Recently, a third algorithm that sorts with row-major index-
ing with similar performance has been published [Nass79]. This
algorithm is also an adaptation of the bitonic sort where the

jterative rule is a merge of two dimensional arrays.
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4., SHARED MEMORY PARALLEL SORTING ALGORITHMS

After the time bound of O(logzn) was achieved with the sort-
ing networks algorithms, attention was directed towards improving
this bound to the theoretical lower bound of O0(logn). In this
section, several parallel algorithms are described that sort n
elements with O(logn) comparisons. While the sorting network
algorithms are based on comparison-exchanges of pairs, the

shared-memory algorithms use enumeration to compute the rank of

each element. Sorting is performed by computing in parallel the
rank of each element, and routing the elements to the location
specified by their rank. The first enumeration type parallel
sorting is a modified sorting network scheme, that sorts n ele-
ments with O(nz) processing elements. By embedding this type of
network in a more general multiprocessor model in which the pro-
cessors have access to a large shared memory, algorithms that are

as fast, but require only O(n) processors, can be obtained.

4.1. A MODIFIED SORTING NETWORK

In [Mull75], a very fast sorting network is proposed, that
uses comparators as shown in Figure 9. This type of comparator
has 2 inputs and one output. The two numbers to compare are
received on the A and B lines. The output bit x is 0 if A < B
and 1 if A > B. To sort a sequence of n elements, each element
is simultaneously compared to all the others in one unit of time,
by using a total of n(n-1) comparators. The output bits from the
comparators are then fed into a parallel counter, that computes,

in logn steps, the rank of an element by counting the number of




al.._.._.__....._.>
az;______>
aj

a

Comparison Elements

5312
€i1
Parallel
Counter
c.
in,

n —_ > °m

Figure 9.

dim-1 [i0
i
| O
lo-_
| O
| 0~ -
lo\ \O—T—-
i \ .o——
b’ I
i
lq\ |
.l \\
~ | O
[ SR
| O

Muller’s sorting network

36



18

bits set to 1 as a result of comparing this element with all the
other (n-1). Finally, a switching network, consisting of a
binary tree with (logn)+l levels of single-pole, double-throw
switches, routes the element of rank to the ith terminal of the
tree. There is one such tree for each element, and each tree
uses (2n-1) switches. Routing an element through this tree
requires logn time units, and this determines the algorithm com-
plexity. A diagram for this type of network is presented in Fig-
ure 9.

At the cost of additional hardware complexity (the basic
modules are more complex than comparison-exchange modules, and
the network uses more of them), the above algorithm sorts n ele-
ments in O(logn) time, with O(nz) processing elements. This

algorithm was the first to use an enumeration scheme for parallel

sorting. The idea of sorting by enumeration was exploited to
develop other very fast parallel sorting algorithms [Hirs78,
Prep78], that improve Muller”s result by reducing the number of
processing elements. Even from a theoretical point of view, the
requirement of n2 processors for achieving a speed of O(logn) is
not satisfactory. An optimal sorting algorithm should achieve
the same speed with only O(n) processors (in order to exhibit a

parallel speedup of order n).

4.2. FASTER PARALLEL MERGE METHODS

In addition to the idea of using enumeration, optimal paral-
lel sorting algorithms may use fast merging procedures. 1In a

study of parallelism in comparison problems, Valiant [vali75]
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presents an inductive algorithm that merges two sorted sequences
of n and m elements (n<m) with mn processors in 2log(log n) +
O(l) comparison steps (compared to logn for the bitonic merge).
On the other hand, Gavril [Gavr75] proposes a fast merging algo-
rithm that solves the problem of merging two sbrted sequences of
length n and m with a smaller number of processors p<n<m. This
algorithm is based on binary insertion, and requires only
2log(n+l) + 4(n/p) comparisons when n=m.

Both Valiant”s and Gavril”s algorithms assume a shared
memory model. That is, all the processors utilized can simul-
taneously access elements of the initial data, or intermediate

computation results.

4.3. BUCKET SORTS

-

Hirschberg”s algorithm [Hirs78] is a "bucket sort" that
sorts n elements with n processors in time O(logn), provided that
the numbers to be sorted are in the range {0,1,...,m—1}. A side
effect of this algorithm is that duplicate numbers are elim-
inated. If memory conflicts were ignored, it would be sufficient
to have m buckets and to assign one number to each processor.
The processor that gets the ith number is labeled Pi' and it 1is
responsible for placing the value i in the appropriate bucket.
For example, if P3 had the number 5, it would place the value 3
in bucket 5. The problem with this simplistic solution, is that
a memory conflict may result when several processors simultane-
ously attempt to store different values of i in the same bucket.

The memory contention problems may be solved by increasing sub-
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stantially the memory requirements. Suppose there is enough
memory available for m arrays, each of size n. Each processor
can then write in a bucket without any fear of memory conflict.
To complete the bucket sort, the m arrays must be merged. The
processors perform this merge operation by searching, in a binary
tree search method, for the marks of "buddy" active processors.
If P, and Pj discover each other”s mark and i<j, then P, contin-
ues and Pj deactivates (hence, dropping a duplicate value).
Hirschberg also generalizes this algorithm so that duplicate
numbers remain in the sorted array. But this generalization
degrades the performance of the sorting algorithm. The result 1is

1+1/k . .
processors in time

a method which sorts n numbers with n
O(klogn) (where k is an arbitrary integer).

A major drawback of the parallel bucket sort (in addition to
the lack of realism of the shared memory model) is its (m*n)
space requirement. Even when the range of values is not very
large, it would be desirable to reduce this requirement. 1In the
case of a wide range of values (for example, when the sort keys

are character strings rather than integer numbers), the algorithm

cannot be utilized.

4.4. SORTING BY ENUMERATION

Parallel enumeration sorting algorithms, that do not res-
trict the range of the sort values and yet achieve the optimal
time complexity O(logn), are described in [Prep78]. The keys are
partitioned into subsets, and a partial count is computed for

each key in its respective subset. Then, for each key, the sum
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of these partial counts is computed in parallel, giving the rank
of that key in the sorted sequence. Preparata’s first algorithm
use Valiant”’s merging procedure [Vali75], and sorts n numbers
with nlogn processors in time O(logn). The second algorithm uses
Batcher”s odd-even merge, and sorts n numbers with nlﬂ‘/k proces-
sors in time O(klogn). The performance of the 1latter algorithm
is similar to Hirschberg”s (Section 3.3), but it has the addi-
tional advantage of being free of memory contention. Recall that
Hirschberg”s model required simultaneous fetches from the shared
memory, while Preparata”s method does not (since each key parti-
cipates in only one comparison at any given unit of time).
Despite the improvement achieved by eliminating memory con-
flicts, these algorithms are still not very realistic. Any model
requiring at least as many processors as the number of keys to be
sorted, all sharing a very large common memory, is not feasible
with present or near term technology. In addition, these models
make no account for the overhead associated with the reallocation
of processors during the various stages of the sort algorithm.
However, the results achieved are of major theoretical
importance, and the methods used demonstrate the intrinsic paral-
lel nature of certain sorting procedures. Furthermore, basic
ideas 1in these algorithms can inspire the design and implementa-

tion of realistic sorting methods.

5. BLOCK SORTING ALGORITHMS

For all the parallel sorting algorithms described in previ-

ous sections, the problem size (that is, the number of records to
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be sorted) is limited by the number of processors available.
Thus, these algorithms implicitly assume that the number of pro-
cessors is very large. Typically, n processors are utilized to
sort n records.

This type of assumption was initially justified when paral-
lel sorting algorithms were developed for implementing fast
switching networks. 1In this context, there are two reasons that
explain and justify the n (or n/2) processors requirement to sort
n numbers. The first reason is that, in a switching network, the
processors are simple hardware boxes, which compare and exchange
their two inputs. The second is that, since the number of pro-
cessors is determined by the number of input lines to the net-
work, it can never be prohibitively expensive.

However, for a general purpose sorting algorithm, it is
desirable to set a limit on the number of processors available,
so that the number of records that can be sorted will not be
bounded by the number of processors. Furthermore, it must be
possible to sort a large array with a relatively small number of
pProcessors.

When p processors are available, and n records are to be
sorted, one possibility is to distribute the n records among the
p processors so that a block of M=[n/p] records is stored in each
processor”’s local memory (a few dummy records may have to be
added to constitute the last block). The processors are labeled
Pl’ P2, ooy PP, according to an indexing rule that is usually
dictated by the topology of the interconnecting network. Then,

the processors cooperate to redistribute the records so that
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(i) the block residing in each processor”s memory consti-
tutes a sorted sequence of length M, S..

(ii) the concatenation of these 15cal sequences, 51’82"'5 ’
constitutes a sorted sequence of length n. p

For example, for 3 processors, the distribution of the sort keys

before and after sorting could be the following:

before after
Py 2, 7, 3 1, 2, 3
P, 4, 9, 1 4, 5, 6
L 6, 5, 8 7, 8, 9

Thus, we now have a convention for ordering the total address
space of a multiprocessor, and we have defined parallel sorting
of an array of size n, where n>>p.

Algorithms to sort large arrays of files that are initially
distributed across the processors” local memories, can be con-

structed as a sequence of block merge-split steps. During a

merge-split step, a processor merges two sorted blocks of equal
length (that were produced by a previous step), and splits the
resulting block into a "higher" and a "lower" block, that are
sent to two destination processors (like the high and low outputs
in a comparison-exchange step).

A block sorting algorithm is obtained by replacing every

comparison-exchange step in a sorting algorithm that consists of
comparison-exchange step by a merge-split step. It 1is easy to
verify that this procedure produces a sequence which is sorted
according to the above definition.

There are two ways to perform a merge-split step. One is

based on a 2-way merge [Baud78]; the other on a bitonic merge
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[HsiaB80]. 1In Sections 5.1 and 5.2, we describe both methods, and
illustrate them by investigating the block sorting algorithms
that they generate, based on the odd-even transposition sort
(Section 2.1) and the bitonic sort (Section 3.1.2). An important
property of the parallel block sorting algorithms generated by
both methods 1is that, like the network sorting algorithms, they

can be executed in SIMD mode.

5.1. TWO-WAY MERGE-SPLIT

A two-way merge-split step is defined as a two-way merge of
2 sorted blocks of size M, followed by splitting the result block
of size 2M into two halves. Both operations are executed within
a processor’s local memory. Thus, a two-way merge-split step
requires a local memory of size at least 4M. The contents of a
processor”s memory before and after a two-way merge-split is
shown in Figure 10. As indicated by the following code for the
Procedure Merge, it can be executed in parallel, in SIMD mode, by
several processors. The procedure is initiated after 2 sorted
sequences of 1length M have been stored in a processor”s local

memory, in two input buffers I1[1..M] and I2[1..M].




Figure 10. Merge-split based on 2-way merge
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Procedure Merge;
begin
T1[M+1]:=I2[M+1]:=BIG; {add a large number at the end
of the source sequences, to stop the merge process
when one sequence is exhausted}
is=ji=1;
for k:=1 to 2M do
begin
if 1T1[i] < I2[3j] do
begin
Olk] := Il[i];
ie=i+l;
end
else
begin
O[k] -
Jei=j+1
end:
end;
end Merge;

= I2[j1;

After the processors have completed the parallel execution of the
Procedure Merge, they split their output buffer O0[l..2M], and
send each half to a destination processor. The destination pro-
cessors” addresses are determined by the comparison-exchange

algorithm on which the block-sorting algorithm is based.

5.1.1. Block odd-even sort based on 2-way merge-split

Initially, each of the p processors” local memory contains a
sequence of length M. The algorithm consists of a preprocessing
step (step 0), during which each processor independently sorts
the sequence residing in its local memory, and p additional steps
(steps 1 to p), during which the processors cooperate to merge
the p sequences generated by step 0. During step 0, the proces-
sors perform a local sort using any fast serial sorting algo-
rithm. For example, a local 2-way merge can be used. Steps 1 to

p are similar to steps 1 to p of the odd-even transposition sort
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(see Section 2.1). During the odd (even) steps, the odd (even)
numbered processors receive from their right neighbor a sorted
block, perform a 2-way merge, and send back the higher M records.
The algorithm can be executed synchronously by p processors, by

odd and even processors alternately, as follows:

Procedure Step(i); {as executed by odd (respectively even) processor}
Begin
if i is odd (respectively even) then
begin
for j:=1 to M do Il[j] := OI[jl;
receive M records from right neighbor;
merge;
send higher M records to right neighbor;
end;
end Step;

5.1.2. Block bitonic sort based on 2-way merge-split

Using Batcher’s bitonic, p records can be sorted with p/2
processors in logz(p) shuffle steps and 1/2((logp)+l) (logp)
comparison-exchange steps. Suppose that each processor has a
local memory, large enough to store 4M records. 1In this case, a
processor can perform a 2-way merge split on 2 blocks of size M.
By replacing each comparison-exchange step by a 2-way merge-split
step, we obtain a block bitonic sort algorithm, that can sort M*p
records with p/2 processors 1in 1ogz(p) shuffle steps, and
1/2((logp)+1) (logp) merge-split steps. During a shuffle step,
each processor sends to each of its neighbors a sorted sequence
of length M. During a merge-split step, each processor performs
a 2-way merge of the 2 sequences of length M (that it has
received during the previous shuffle step, and splits the result-

ing sequence into two sequences of length M. The algorithm is
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illustrated in Figure 11, for 2 processors and M=2,
In the general case, the algorithm requires p/2 processors,
where p is a power of 2, each with a local memory of size 4*M*p,

to sort M*p records.

5.1.3. Processor synchronization

When M is large, or when the individual records are long,
transferring blocks of M*p records between the processors intro-
duce time delays that are by several order of magnitudes higher
than the instruction rate of the individual processors. Thus,
for the execution of block sorting algorithms based on 2-way
merge-split, a coarser granularity for processor synchronization
might be more adequate than the SIMD mode of execution based on
2-way merge. Thus a multiprocessor model for these algorithms is
one where processors operate independently of each other, but can
be synchronized by exchanging messages among themselves or with a
controlling processor, at intervals of several thousand instruc-
tions. At initiation time of a block sorting algorithm, the con-
troller assigns a number of processors to its execution. Because
other operations may be already in the process of being executed,
the controller maintains a free list and assigns processors from
this 1list. In addition to the availability of processors, the
size of the sorting problem is also taken into consideration by

the controller to determine the optimal processor allocation.
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5.2. BITONIC MERGE-EXCHANGE

Consider the situation where 2 processors P, and Pj each

contain a sorted block of length M, and we want to compare and
exchange records between the processors so that the Ilower M
records reside 1in Pi and the higher M in Pj. One way to obtain

this result is to execute the following three steps:

P. sends its block to P,
Pg performs a 2-way merge-split
Pi sends high half block to Pj

However, as indicated in the previous section the 2-way merge-
split requires a processor’s local memory of size 4M. Another
alternative is that Pj send one of its records at a time, and
wait for a return record from P, before sending the next record.
Suppose that M records (Xl' Ror oo xM) are stored in increasing
order in Pi’s memory, andvthe M records (yl, Yor «eer yM) are
stored in decreasing order in Pj’s memory. Let Pj send Yq to Pi‘

Pi then compares x, and Yy keeps the lower of the 2 and sends

1
back to Pj the higher record. This procedure is then repeated
for (XZ'YZ)""'(XM'YM)' It 1is known that this sequence of
compar ison-exchanges constitutes the "bitonic merge" and results
in having the highest M records in Pj’ and the lowest M in P
[Alek69, Knut73]. Thus, the merge-split operation can now be
completed by having P, and Pj each perform a local sort of their
M records. Figure 12 illustrates the bitonic merge-exchange
operation. In general, let R[i,1..M] and R[j,1..M] respectively

denote a sorted sequence in processors Pi and Pj memories. Then,

Pi and Pj perform a bitonic merge-exchange by executing con-




Figure 12. A bitonic merge-exchange step
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currently the following Send() and Receive() procedures:

procedure Send(j); [as executed by P.}
begin 1
count:=1;
while count<M
begin
send R[i,count] to P.;
wait for return recotd from P.:
count:=count+1; J
end;
end;
procedure Receive(i); {as executed by P.}
begin ]
count:=1;
while count<M do
begin
wait for record R[i,count] from Pi7
compare with own R[],count];
if R[j,count]<R[i,count] then
interchange R[i,count] and R[],count];
send R[i,count] to Pi;
count:=count+1;
end;
end Receive;

The bitonic merge-exchange requires substantially less
buffer space than the 2-way merge-split. Because the 2-way
merge-split merges 2 blocks of size M within a processor”s local
memory, it requires 4*M space. The bitonic merge-exchange
requires space for only M+l records. Another advantage of this
method is that the comparisons (of pairs of records) and the
transfers are interleaved. While for the 2-way merge-split, an
entire block of data must be transferred to a processor”s memory
before the merge operation is initiated, for the bitonic merge-
exchange, it is possible to overlap each record”s transfer time
with processing time. However, a major disadvantage 1is the
necessity to perform a local sort of M records in each processor,

after the exchange step is completed. To perform the local sort,
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a serial sorting algorithm that permutes the records in place
should be used (otherwise, the local sort might require more
memory than the exchange). Note that the sequences generated by
the bitonic exchange are bitonic, so that sorting them requires

at most (M/2)*log (M) comparisons and local moves.

5.2.1. Block odd-even sort based on bitonic merge-exchange

As with the block odd-even merge based on two-way merge
(Section 5.1.1), we start with M records in each processor”’s
memory, and perform an initial phase where each processor
independently sorts the sequence in its memory. However, Steps
1...p are different. During odd (even) steps, odd (respectively
even) numbered processors perform a bitonic merge-exchange with
their right neighbor. Thus, the algorithm executed by P. is the

following:
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Odd-Even Sort; {as executed by all processor}
begin

for step:=1 to p do Exchange(step);
end Odd-Even-Sort,

Procedure Exchange (step); {as executed by P.}
begin 1
if step is even and i=0 then stop;
if step is even and p is odd and i=p-1 then stop;
if step is odd and p is odd and i=p-1 then stop;
if step is odd then
if 1 is even then j:=i+l
else j:=i-1;
if step is even then
if i is even then j:=i-1
else j:=i+l;
if j:=i+l1 then
begin
local sort in increasing order;
send (]j) ;
end
else
begin
local sort in decreasing order;
receive(j);
end
end Exchange.

The algorithm is illustrated in Figure 13 for p=4 and M=5.

5.2.2. Block bitonic sort based on bitonic merge-exchange

A fast and space-efficient block sorting algorithm can be
derived from Stone”s version of the bitonic sort, that was
described in Section 3.1.2. Consider a network of p identical
processors, where p is a power of 2, interconnected by two types

of links (Figure 14):
(1) 2-way 1links, between pairs of adjacent processors:

POPl, P2P3,. oo

(ii) one-way shuffle links, connecting each Pi to its shuf-
fle processor.

1f each processor has a local memory of size M+1l, then M*p

records can be sorted using the following algorithm:
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Bitonic-Sort;
begin
stage := 1;
while stage < log(p) do
begin
step:=1;
while (step < log(p))do
begin
shuffle;
if step > (log(p) - stage) then
exchange (stage,step);
step:=step+l;
end;
stage:=stage+l;
end;
local-sort in increasing order;
end.

Processor P, executes the "B-Exchange" procedure as follows:

Procedure B-Exchange (stage,step);
begin
g := step - log(p) + stage;
r := 1 mod(zqgi);
if r is even and r < 29 then
begin
local-sort in increasing order;
Send(i-1);

end

else

if r is even

begin
local-sort in decreasing order;
Receive (i+l);

end

else

begin
local-sort in decreasing order;
Receive (i-1);

end

end {Procedure B-exchange}

In procedure "Shuffle", each processor sends the records
that were 1in its memory, in order, to the corresponding
location of the shuffle processor’s memory and receives the
records that were in the memory of the reverse shuffle pro-

cessor. The procedures Send() and Receive () have been
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defined earlier (Section 5.2.1). Figure 15 illustrates this

algorithm for p=4 and M=5.

6. EXTERNAL PARALLEL SORTING

In this section, we address the problem of sorting a large
file in parallel. Serial file sorting algorithms are often
referred to as "external sorting algorithms", as opposed to array
sorting algorithms that are "internal". For a conventional com-
puter system, the need for an external sorting algorithm arises
when the file to be sorted is too large to fit in main memory.

Thus, for a single processor, the distinction between inter-
nal sorting and external sorting methods is well-known, and there
are well accepted criteria for measuring their respective perfor-
mance. However, the topic of external parallel sorting has not
yet received adequate consideration.

In Section 5, we presented a number of parallel algorithms
that can sort an array initially distributed across the proces-
sors” memories. The size of the array was limited only by the
total memory of the system (considered as the concatenation of
the processors” local memories). By analogy with the definition
of serial internal sorting, these algorithms may be called
"parallel internal sorting algorithms".

A parallel sorting algorithm is defined as a parallel exter-

nal sorting algorithm if it can sort a collection of elements

that is too large to fit in the total memory available in the
multiprocessor. This definition 1is general enough to apply to

both categories of parallel architectures: the shared memory
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multiprocessors and the loosely coupled multiprocessors (also

called "multicomputers").

For shared memory multiprocessors, an external sorting algo-
rithm is required when the shared memory is not large enough to
hold all the elements (and some work space to execute the sort
program) . On the other hand, for loosely coupled multiproces-
sors, the assumption is that the source records cannot be distri-
buted across the processors” local memories. That is, the multi-
computer has p identical processors, and each processor”’s memory
is 1large enough to hold k records, but the source file has more
than p*k records. In both cases, the processor can access a mass
storage device on which the file resides. At termination of the
algorithm, the file must be written back to the mass storage dev-
ice in sorted order.

An early result on tape parallel sorting appeared in
[Eve74] . Recently in [Frie8l], several parallel sorting algo-
rithms have been proposed for files residing on a modified

moving-head diskl.

6.1. PARALLEL TAPE SORTING

The sorting problem addressed in [Even74] is to sort a file
of n records with p processors (where p<<n) and 4p magnetic
tapes. The only internal memory requirement is that three

records could fit simultaneously in each processor”s local

1 Physical order, on the mass storage device, must be defined,
according to the physical characteristics of the storage device.
For example, for a magnetic disk, a track numbering convention
must be agreed upon.
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memory. Under those assumptions, Even proposes 2 methods for
parallelizing the serial 2-way external merge sort algorithm. 1In
the first method, all the processors start together and work
independently of each other on separate partitions of the file.
In the second, processors are added one at a time to perform
sorting in a pipelined-like algorithm.

Both methods can be shortly described as follows:
Method 1: each processor is assigned n/p records and 4 tapes,
and performs a (serial) external merge sort on this subset.
After p sorted runs have been produced by this parallel phase,
during a second phase a single processor merge sorts these seri-
ally.
Method 2: the basic idea is that each processor performs a dif-
ferent phase of the serial meyge procedure. The i%h processor
merges pairs of runs of size 2 into runs of size 2~. 1Ideally,
n is a power of 2 and log(n) processors are available. A high
degree of parallelism is achieved by using the output tapes of a
processor as input tapes for the next processor, so that, as soon
as a processor has written 2 runs, these runs can be read and
merged by another processor. In order to overlap the output time
of a processor with the input time of its successor, each proces-
sor write alternately on 4 tapes (one output run on each tape).

These methods show that, from the algorithmic point of view,
it is possible to introduce a high degree of parallelism in the
conventional 2-way external merge-sort. However, the assumptions
about the mass storage device do not take into consideration con-
straints imposed by technology. Like the shared memory model for
array sorting, a parallel file sorting model that assumes a
shared mass storage device with unlimited I/0O bandwidth (e.g. a

model with p processors and 4p magnetic tape drives) provides

very limited insight into implementation aspects.
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6.2. PARALLEL DISK SORTING

An alternative way to model the mass storage device 1is to
consider a modified moving-head disk, that provides for parallel
read/write of tracks on the same cylinder (Figure 17). Disks

that provide this capability have been proposed [Bane78], and, in

some cases, already built [Leil78].2 They appear to constitute a
good compromise between the cost-effective, conventional moving-
head disk and the obsolete fixed-head disk.

In order to minimize seek time, two disk drives can be c¢on-
currently used. During execution of a single phase of a sorting
algorithm, one drive can be utilized for reading and the other
for writing.

In [Frie8l] a number of parallel external sorting algorithms
and architectures are examined and analyzed. The mass storage
device is modelled as a parallel read/write disk. The algorithm
that displays the best performance is a parallel 2-way external
merge-sort, termed the parallel binary merge algorithm, improving
Method 1 of Section 6.1. The improvement is achieved by paral-
lelizing the second phase of this method.

When the number of output runs is 2k, and k>1, 2k'1 proces-
sors can be used to perform concurrently the next step of the
merge sort. Thus, execution of the parallel binary merge algo-

rithm can be divided into three stages as shown in Figure 16.

The algorithm begins execution in a suboptimal stage (similar to

2 A 600-Mbyte drive with a 4-track parallel readout capability
and a data transfer rate of 4.84 Mbytes/second is available for
the Cray-1 for approximately $80,000 without controller.
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Figure 17. Architecture for the parallel binary merge-sort
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phase 1 in Method 1), in which sorting is done by successively
merging pairs of longer runs until the number of runs is equal to
twice the number of processors. During the suboptimal stage, the
processors operate in parallel, but on separate data. Parallel
1/0 is made possible by associating each processor with a surface
of the read disk and a surface of the write disk.

When the number of runs equals 2*p, each processor will
merge exactly 2 runs of length N/2p. We term this stage the
optimal stage. During the postoptimal stage, parallelism is

k-1 processors are utilized to

employed in two ways. First, 2
concurrently merge 2k-l pairs of runs (this occurs after log(m/k)
merge steps). Second, pipelining is used between merge steps.
That is, the ith merge step starts as soon as the (i-1) step has
produced one unit of each of two output runs (where a unit can be
a single record or an entire disk page).

The ideal architecture for the execution of this algorithm
is a binary tree of processors, as shown in Figure 17. The mass
storage device consists of two drives, and each leaf processor is
associated with a surface on both drives. 1In addition to the
leaf processors, the disk is also accessed by the root processor,
to write the output file. This organization permits the leaf

processor to do I/0 in parallel, while reducing almost in half

the number of processors that must actually do input/output).

6.3. ANALYSIS OF PARALLEL EXTERNAL SORTING ALGORITHMS

For serial external sorting, numerous empirical studies have

been done on real computers and real data in order to evaluate




38

the performance of external sorting algorithms. The results of
these studies have complemented analytical results, when model-
ling analytically the effect of access time and the impact of
data distribution was too complex. 1In a parallel environment,
the analytical performance evaluation of an external sorting
scheme 1is made even more difficult because of the complexity of
the I/0 device.

Some indication of the parallel speedup that can be achieved
by performing an external sort in parallel may be derived by
assuming that the available I/O bandwidth is limited only by the
number of processors. However, a more satisfactory analysis of
parallel external sorting algorithms must take into consideration
the constraints imposed by mass—-storage technology. For example,
for the parallel binary merge algorithm if the modified disk
described in Section 6.2 is used for storage the suboptimal stage
can either be highly parallel, or almost sequential, depending
whether or not the processors request data from several tracks on

the same cylinder.

7. CONCLUSION

One conclusion emerges clearly from this survey of parallel
sorting algorithms: Most research in the area of parallel sort-
ing has concentrated on finding new ways to speedup the
algorithm”s theoretical computation time, while other aspects.
(such as technology constraints or data dependency) have received
little consideration. Typically, algorithms have been developed

that use a very large number of processors (e.g. n processors to
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sort n elements). Figure 18 summarizes the number of processors
and the computation time required by this type of algorithms.

We have shown that most parallel sorting algorithms belong
to one of two categories: the network sorting, or the shared
memory model algorithms.

The shared memory model algorithms have the best asymptotic
complexity. However, it is most unlikely that future technology
will supply the tools for implementing any of these algorithms.

On the other hand, the network sorting algorithms can be
extended to block sorting algorithms, that can sort (M*p) ele-
ments with p processors if each processor has a local memory of
size O(M).

Another aspect that has been largely ignored by previous
research efforts on parallel sorting is the initial cost of read-
ing the source data into the processors” memories. While it is
justified to ignore this issue when considering a serial, inter-
nal sorting algorithm, the situation is quite different with
parallel processing. On a single processor, the source data is
read sequentially into memory. But for a parallel processor,
there 1is the possibility that several processors can simultane-
ously read or write. On the Illiac-IV, for example, a fixed-head
moving disk was used for concurrent I/0 by all 64 processors.
However, when a significantly larger number of processors is
involved, only part of them will be able to perform I/0 opera-
tions concurrently. Thus, for parallel internal sorting, the
cost of reading and writing the data should be incorporated when

an algorithm is evaluated. 1In particular, there would be no




Algorithm Number Execution Other charac~
Processors Time teristics

0dd-Even Trans-

position n 0(n)
Batcher's Bitonic nlogzn/z O(logzn) sorting network
Stone's Bitonic n/2 O(logzn) "
Mesh-Bitonic n2 0 (n) sorts n2 records
Muller-Preparata n2 0O(logn)
Hirschberg (1) n O (logn) duplicates problem
Hirschberg (2) nlﬂ“/k O (klogn) memory conflicts
Preparata (1) nlogn 0 (logn)
Preparata (2) nl_l"l/k O (klogn) no memory conflicts

Figure 18. Processors required and computation time
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point in wusing a parallel sorting algorithm that requires only
O(log n) time, if the startup cost to get the data in memory was
O(n).

Modelling the cost of I/0 is even more crucial when the
problem of sorting a large data file in parallel is addressed.
Preliminary results in this direction were presented in Section

6.
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Figure 3. The iterative rule for the odd-even merge.






