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Abstract

Layered pyramids, cones and guad-trees have been developed
almost always with emphasis on only one of their several possi-
bilities. Either:

1) They are used to reduce information, usually by some simple
function like averaging or differencing, so that successively
less detailed representations of the original raw image are Ob-
tained.

2) They are used to converge, collect, organize and broadcast
information, as when building successively more global histograms
from which a threshold is computed and then broadcast back down
the pyramid.

3) They are used to effect step-by-step transformations that
interpret quantitatively encoded images into qualitative identi-
fying "features," "compound characteristics" and other types of
"labels," with sets of lower—-level "meaningless" labels succes-—
sively combining into higher-level "meaningful" "external labels"
1ike “vertical”’, “Langle”, “enclosure”, house”, “chair”, “Ein-
stein”.

This paper explores how these different uses can be com-
bined, with emphasis on the development of successively higher-
level descriptive labellings of the scene. It indicates how
"models" of objects to be recognized can be decomposed into over-—
lapping trees of relatively simple local transforms that are em-
bedded into the layers of a pyramid, and executed efficiently in
a hardware pyramid. It examines how the successive transforma-
tion from iconic-quantitative to symbolic-qualitative can be ef-
fected (as the programmer desires) in several small steps, SO
that there is a gradual transition, one where the very efficient-
ly represented jconic-structural-geometric information implicit
in the 2-dimensional retinal image is kept so long as it is use-
ful.

Index Terms: Pattern Recognition, Scene Description, Recognition
Cone, Pyramid, Quad-Tree, Icon, Symbol, Multi-Resolution,
Hierarchical Model-Tree




The Several Steps From Icon to Symbol, Using Structured Cone/Pyramids

Layered pyramids (e.g., Levine and Leemet, 1976, Levine,
1978; Tanimoto, 1976, 1978), cones (e.g., Hanson and Riseman,
1974, 1978a; Uhr, 1972, 1978) and quad-trees (e.g., Klinger and
Dyer, 1976; Rosenfeld, 1980) have, as this paper shows, the abil-
ity to transform from iconic raw image to symbolic representa-
tions in a gradual small-step manner that throws light on the
"jconic-symbolic" issue. [See also Hanson and Riseman, 1978b and
Tanimoto and Klinger, 1980, for additional related systems.]

The "raw" image input to the computer (e.g., via a TV cam~-
era) 1is the «classic example of an "iconic" representation. It
consists of a 2-dimensional array of integer numbers that
represent the intensity of the 1image at each picture element
("pixel") of the array.

This image is an "iconic" representation in several
respects:

a) It has the structure, the texture, the color, and the oth-
er qualities of the objects it represents; it "looks like" them.

b) It is spread out in the two spatial dimensions of a pic-
ture, with this geometric information stored implicitly in the
array structure used to store this image. Again, it "looks like"
the 2-dimensional projection of the 3-dimensional world that im-
pinges upon the sensing medium.

c) Each individual pixel cell contains numbers (usually in-
tegers) that guantitatively represent the intensity of the image
at that point.

The names and descriptions of objects, which are generated
at the relatively much higher levels of the perceptual system,

are, in contrast, symbolic. Thus an output 1like “house, tree,
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auto” or “2-story red brick house with green shingled eaves; tall
oak tree to the left of the front door; green convertible enter-
ing the garage” 1is usually considered to be "symbolic." [Note
that today”s vision programs are just beginning to reach the
point where they can achieve the unrelated symbols “house”,
“tree”, “auto” when input a TV picture of a real-world street
scene; they are far from achieving the symbolic representation
needed for a full description.]

The following examines simple examples of data structures
and operations (called "transforms") that process these data
structures in a "recognition cone" system for perceptual recogni-
tion, starting with the iconic information in the raw sensed im-
age as input by a TV camera and ending with the symbolic names
and descriptions of objects in that image.

There are several closely related issues of interest:

A) Is the information output by (sets of) transforms iconic,
symbolic, or one or another mixture of both?

B) Is the transformation from input to output iconic, symbolic,
or one or another mixture of both?

C) What is the most useful combination of iconic and symbolic
information, from the point of view of achieving fast and effi-
cient perceptual recognition?

The Structure of a Multi-Layered Converging Perceptual System

"Recognition cones" (Uhr, 1972, 1974, 1976, 1978; Uhr and
Douglass, 1979; Douglass, 1977, 1978; Schmitt, 198l1la, 1981b) are
parallel-serial structures of converging layers of transforms
sandwiched between input memories into which they look and output

memories into which they merge implications.




The Structure g£ an Individual Transform

A "transform" is a specification of:

a) a structured set of entities to search for;

b) along with a rule for determining whether this structure
has been found with sufficient assurance to consider that the
transform has succeeded on this image;

c) plus a set of actions to be effected contingent upon
success.

d) Weights can be associated with the entities to be looked
for and the actions to effect.

Figure 1. The General Structure of a "Transform"

A) Description of Entities to be Searched for:
Relation(Entityl,weightl;EntityZ,weightz;...EntityN,weightN)
B) Rule for Determining Success or Failure:
Combining-Rule; Threshold
C) Actions to be Effected Contingent Upon Success:
Action (Entity, Location-Result-Stored)

For example, an edge feature-detecting transform might Dbe
coded to look for a continuing gradient of intensity values, in a
3 by 7 window, outputting “SVE” (for "short vertical edge") when
successful.

A much higher-level compound characterizer transform might
look for “LEAF’s, “BRANCH es, “BARR” texture, GREEN patches and
one “VIT” (for "vertical tree trunk"), outputting “TREE” if “VTT~
and at least a few of the other features are found.

These are just two simple examples from the wide variety of
transforms that can be specified for a "recognition cone" or py-
ramid system of the sort being examined. To make this examina-
tion completely precise and concrete, we will give examples of
transforms built when using the interactive ICON system (Schmitt,
198la), a system that prompts and helps a relatively naive user
build recognition cone programs for object and scene description.

o



The Overall Structure of a Recognition Cone Perceptual System

A recognition cone starts with a "Retina" array, R, into
which the "sensed image" is input (e.g., by a TV camera). This
array forms the "base" of the cone (actually a pyramid when rec-
tangular arrays are used).

An array of transforms, Tl, is sandwiched between the Retina
array and an internal buffer array, Il (into which these
transforms output their implications, that 1is, the transformed
image) . The transform array might contain 1,2, or up to several
hundred transforms. Each transform is positioned at each and
every cell in the array (in a parallel-serial multi-computer
structure; alternately, such a system is simulated on the serial
computer by iterating each transform over the entire array). Re-
tinal transforms output their implications to array 11, which
contains the first internal image.

Figure 2. The Overall Structure of a Recognition Cone
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A second transform array, T2, looks at and interprets the
internal image in Il, and outputs to 12. Each buffer is (usual-
1y, but not necessarily) smaller than the previous buffer (so
that usually several outputs will be merged into the same cell).
This gives the overall cone/pyramid shape to the structure. The
converging process continues until an image buffer, IL, with only

one single cell is reached. This forms the "apex" of the L-Layer
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cone. Actions can also imply entities into a “LOOKFOR” list,
which results in the application of "dynamic" transforms [that
gather, in a top—down manner, additional information.]

Model-Trees of Transforms Embedded into Pyramid Structures

Individual transforms can be combined within the
cone/pyramid structure in any way that a user chooses. But a
simple and efficient approach is to build trees of transforms
that contain the "knowledge" about the different object-classes
that the system must recognize dispersed among the trees” nodes.

Consider a more traditional vision program, one that tries
to effect a serial match of a graph "model" of “house” or “auto”
with a sub-graph of the image-graph into which "lower-level"
processes have transformed the raw input image. Rather than try
to effect this potentially explosive match (sub-graph isomorphism
is NP-complete) one can decompose the single complex model-graph
into a tree whose root node represents the object-class (e.g.,
“house”, “chair”, “auto”, “Einstein”). Now each successively
lower ply of the tree contains nodes that are transforms ap-
propriate to that level of decomposition and detail. Thus, for
example, “house” might have “roof”, “wall”, “porch”, ... ; then
(moving down the leftmost branches of the tree) “eave”, “chimney”
... ; “shingle” ... “roofing”, ... ; “diagonal edge”, “pebbled”’,
... 3 ’gradient”, ... (continuing in this way to form the com-
plete tree).

Many different trees will have nodes in common, especially
at the levels nearer the raw input - the so-called "lower" lev-
els. For example, almost all nameable objects have edges; many
have horizontal or vertical edges, simple curves and identifying

angles, colors and textures. Higher-level parts, like legs, en-
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closures, assemblages of 1legs and supported horizontal planes,
are also held in common by many still-higher-level objects.

All the different model-trees can be superimposed into a
single tree of trees, and these embedded in a pyramid of arrays.
The object-model nodes will reside at higher layers in the pyram-
id, their successively more detailed and local parts, sub-parts,
characteristics and qualities at successively lower layers. Now
rather than make a potentially explosive serial search for a
match of each complex object-model stored in memory the system
need only apply the transforms at each layer/ply of the tree-of-
model-trees in turn.

Thus if each layer has T transforms, each with P parts (in
the sense that a "part" is something that takes one instruction
to examine, so that a P-part transform takes P instructions), and
the pyramid has L (= log(N)) layers, with an N by N array at its
base, then a recognition cone/pyramid will (when executed on a
parallel hardware pyramid) take PTL (PTlog(N)) instructions (that
is, time) to apply all models, plus a few more instructions to
choose the best match. This can be further speeded up by placing
T processors at each layer, rather than just one, to take only
Plog (N) time. And if each processor is given a parallel window
capability, so that it can examine all P parts in parallel, only
log (N) time.

In contrast, a serial model-matching program will, at least
in the worst cases, need extremely large amounts of time. Each
model can be assumed to have O(PTlog(N)) nodes. That 1is, the
number of nodes in the entire tree-of-model-trees is only a small
constant times the number of nodes in each single model-tree

(this is increasingly true to the extent that each node is shared
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among many model-trees). But even in the extremely bizarre case
where each node was used in only one model-tree each object-model
has only PTlog(N)/M nodes, where M is the number of different
object-models. Now M such PTlog(N) graphs must be matched as
sub-graphs of the larger image graph. A variety of heuristics
can be used that take advantage of facts about real-world objects
to try to cut down this explosively large search; but since sub-
graph isomorphism is NP-complete this is potentially an extremely
long process. The pyramid serves as a global heuristic that
makes use of the geometric structure of its arrays and the con-
verging tree structure that links and organizes them together.

Hardware Multi-Computer Embodiments of Cones and Pyramids

This suggests a multi-computer pyramid structure embodied in
hardware 1into which such a system can be embedded rather direct-
ly, one that will execute recognition cone programs with impor-
tant increases in speed. In a hardware pyramid each transform
node is executed in parallel by the entire array of processors in
the layer at which that transform is embedded. This imposes the
additional restriction that for efficiency each transform "look
at," that is, input as its arguments, only locally available in-
formation. But that fits closely with the spirit of the pyramid,
which decomposes very complex functions 1like “Einstein” or
“house” into a tree of cascading functions where the decomposi-
tion continues wuntil each function can be executed in minimal
time with minimal hardware.

A pyramid is, essentially, a 2-dimensional N by N array of
processors (like Duff”s 1978 CLIP4, Reddaway”s 1978 DAP and
Batcher”s 1980 MPP) each directly linked to its 4, 6 or 8 nearest

2

neighbors, and also to the N“ buds of a tree of processors. An
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alternate construction would build successively smaller arrays
(N/2, N/4, ... 1l; or N/3, N/9, ... 1) linking each cell in the
smaller array with the corresponding 4 or 9 cells in the larger
array. There are a number of interesting variants in terms of
details of linkages, convergence and overlap - e.g., processors
might be 1linked only to their offspring and parents, or to si-
blings as well; linkage might be to only one parent, or to
several parents (giving overlap). (See Dyer, 1982, Tanimoto and
Pfeiffer, 1981, Tanimoto, 1982 and Uhr, 1981, 1982 for proposals
and examinations of hardware pyramids.)

Such a system has the very good local interconnection topol-
ogy of a grid, one that reflects well the physical forces of na-
ture, where the closer together are several entities the more
likely it 1is that they will interact. In addition, the
tree/pyramid structure gives surprisingly good global intercon-
nections. Essentially, the diameter of the array, which is O(N),
is reduced to O(logN) in the corresponding pyramid. This is cru-
cially important for making a global assessment and interpreta-
tion of a large object, as when combining the several parts of a
transform into a larger whole. For example, when using an array
alone to recognize a house one must at some point shift the vari-
ous parts together in order to compute a transform like “step”,
“pane”, “window”, “wall” or “house”. A large house might cover a
region several hundred pixels in diameter; a small window might
cover a region at least 8 or 16 pixels in diameter. The array
would need the same number of instructions as a pyramid of arrays
to actually compute T transforms. But whereas in a pyramid this
need be multiplied only by log(N) (for the pyramid”s processes of

converging the parts together for the next-level computation) in
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an array it must be multiplied by N to shift the parts together.
With a 1,024 by 1,024 array the pyramid is 100 times faster.

The ICON System for Constructing Transforms and Recognition Cones

We will now look at a few transforms from a total set built
with ICON (Schmitt, 198la). The ICON program development system
builds a cone/pyramid perceptual system as follows:

It asks a user to specify the number of layers in the system
and the size (number of rows, number of columns) of each layer.

It also asks the user:

1) to name transforms to be placed at each layer (using names
of transforms that have previously been stored in files that can
be accessed by descriptors), and

2) to construct new transforms (when desired), file them away
under appropriate user-designated descriptor names, and assign
them to layers of the system presently being constructed.

The system helps the user construct a transform by specify-
ing the types of information needed, displaying a 2-dimensional
grid into which the transform can (to some extent iconically) be
drawn, and displaying the finished transform, for verification,
correction, and filing.

Thus a user can build a system of (potentially) any size, in
terms of image buffers, number of layers and number of transforms
at each layer.

The system can then be executed (in either interpreted or
compiled form) on images input to it (either stored on disk or
directly via a TV camera). The results of each layer of
transforms, and of each transform at each layer, can be displayed
for examination, so that transforms can be modified, discarded or

added, as appropriate.
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Examples of "Low Level" "Iconic" Transforms using the ICON System

One of the simplest and most iconic of operations 1is a
straightforward averaging of the intensity values of several
neighboring pixels, e.g., within a 2 by 2 window. This kind of
operation is frequently used to eliminate noise, smooth the im-
age, and/or reduce unnecessarily large images.

Figure 3 shows a 2 by 2 averaging transform, as displayed by

ICON after construction has been completed.

Figure 3. A Transform that Averages a 2 by 2 Sub-Array

kkkkkkkkkkkkkkxx* TRANSFORM average hhkkkkhhkhhkhkdhkk

THRESHOLD = 0
TYPE = numeric FUNCTION = averade

REF CELL 2

0 10 0 :10
3 4

0 <10 0 :10

TRANSFORM HAS NO IMPLIEDS

NOTE: The transform is displayed in a 2-dimensional grid. Each
cell of the grid contains (to the left of the colon) the object
being looked for (in this case an integer) at that relative loca-
tion, and (to the right of the colon) the weight of that object.
In the case of an averaging transform, the object being looked
for in each cell is a 0 (which means "don”"t care"). The weights,
being all equal, will cause each cell to contribute equally to
the transform function. This is an example of what is called, in
the ICON system, an "absolute, numeric transform."

A second transformation that is often effected on the raw
image 1is one that detects gradients. Figure 4 shows a simple

(vertical) gradient detector that was constructed using ICON, as

displayed by ICON.
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Figure 4. A Simple Gradient-Detecting Transform

kkkkkkkkkkkkkkkkkx TRANSFORM vertgrade kkkkkkhhkkkkkk

THRESHOLD = 25
TYPE = numeric FUNCTION = ratio

1 ’ REF CELL 3
10 :10 20 :10 30 :10
IMPLIEDS
NAME WEIGHT TYPE
horgrad 25 attribute
NOTE: This is an example of a "ratio, numeric transform.”" The

Lookfor pattern describes a set of relative intensities to match
in this transform”s input image (in this case, the Retina).

Note that whereas the averaging transform shown in Figure 3
outputs an array of (averaged) numbers reflecting average inten-
sities, and that intensities are stored in the input array, the
gradient transform of Figure 4 outputs numbers reflecting a new
dimension, "gradient." Here is the first aspect in which we begin
to move away from the iconic:

The TV camera "transduces" the sensed image; if the trans-
ducer 1is of high enough quality it makes little or no change.
Its result is a "good picture" almost indistinguishable from the
image as directly viewed by the eye, and as "iconic¢" (in a common
sense of the word) as it can be.

Averaging reduces the image and summarizes hence loses in-
formation, but its output is still in the same intensity domain.
Since an "icon" is commonly thought of as a reduced, albeit often
stylized, representation of the original, the averaged result (at
least until it destroys most vestiges of the image) is usually
considered among the most iconic of icons.

But when we move from the intensity domain to an array of
gradient elements, things begin to change. To the extent that
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one defines and thinks of an icon as a stylized representation in

which the essential qualities of the object are heightened one

might assert that this new representation is actually more icon-

ic.

Examples of Simple Edge and Feature Detectors

Figures 5, 6, 7 and 8 give simple examples of the kinds of
lowish-level edge and feature detectors most vision programs use.
NOTE that these transforms use symbols to define their Lookfor
patterns. Such "symbolic" transforms should not be interpreted

as necessarily being non-iconic.

Figure 5. A Simple Vertical Edge Detector

kkkkkkkkkkkkkkkk*x PTRANSFORM vertedge khkkkkkkkkkkkhkk

THRESHOLD = 25
TYPE = symbolic

1
vertgrade :10

REF CELL
vertgrade :10

3
vertgrade :10

IMPLIEDS
NAME WEIGHT TYPE
vertedge 25 attribute
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Figure 6. A Simple (But Slightly More General and Robust) Edge Detector

kkkkkkkkkkkkkkkk* PRANSFORM vertedge2 xkkkkkkkidiik

THRESHOLD = 40
TYPE = symbolic

1
grad20deg :2
gradlOdeg :5
grad00deg :10

REF CELL
grad20deg :2
gradlOdeg :5
grad00deg :10

3
grad20deg :2
gradlQdeg :5
grad00deg :10

IMPLIEDS
NAME WEIGHT TYPE
edgel(00deg 15 attribute
edge80deg 15 attribute
edge90deg 40 attribute

Figure 7. A Very Simple Detector for a Near-Perfect ’E—Angle’

kkkkkkkkkkkkkkk%* TRANSFORM Langle kkkkkhkhhhkhkk

THRESHOLD = 40
TYPE = symbolic

1 2 3
edge90deg :10

4 REF CELL 6
edge90deg :10

7 8 9 T
edge00deg :10 edge00deg :10

IMPLIEDS
NAME WEIGHT TYPE
Langle 40 attribute
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Figure 8. A Slightly More Robust Detector for an 'Q—Anglg’

kkkkkkkkkkkkkkk¥* TRANSFORM Langle2 khkkkkkkhkkkkkkk

THRESHOLD = 40
TYPE = symbolic

1 2 3
edge90deg :10

3 REF CELL 6
edge90deg :10 edge00deg :5
edge90deg :5

7 8 9
edge90deg :10 edge00deg :10 edge00deg :5
edge00deg :10

IMPLIEDS
NAME WEIGHT TYPE
Langle 40 attribute

These are very simple examples of transforms. But they are
rather interesting in the way they suggest, and can help us begin
to tease out, some of the aspects of the icon-to-symbol sequence
of transformations.

The edge and the gradient are closely related. The edge as-
serts a qualitative change at a certain point in the gradient.
Both “gradient” and “edge” are new attributes. But somehow edge
is farther away from the intensity domain. A gradient is a
change in intensities; an edge is a statement that such a change
makes something qualitatively different and new, the “edge”.

It is important to emphasize that these distinctions hold
only to the extent that they are subsequently made use of by the
transforms that examine these implied entities as part of their
input and interpret their significance. We might say that these
distinctions lie in the eyes of their beholders, and that their

beholders are just those transforms that interpret them.
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The Langle is (as in Figure 7) simply a compound of edges or
(as in Figure 8) a new label implied when enough of the expected
sub~-elements of an Langle are present. But the Langle label
(especially in the second case) appears to be taking on more of
the qualities of a symbol. There is an increasingly arbitrary
relation between the 1label implied by the transform and merged
into its output buffer and the information the transform examined
and assessed in deciding whether to output that label.
One might conjecture that the iconic transformation is one
where the output is computed as a function of the input, whereas

the symbolic transformation is one where a table is used to store

arbitrarily connected labels. But this does not seem nearly so
simple as the commonly suggested analogy to a code book that ar-
bitrarily associates and transforms between sets of symbols
(e.g., between letters in English and Morse code, or between
words in English and words in French). Whether the transform
computes or uses table information is an implementation detail,
of importance for reasons of efficiency in space for storage or
time for processing, but scarcely related to the iconic/symbolic
aspects of either transform or transformation.

Still, translation from English to Pig Latin suggests that
some transformations can be effected by a very simple transform
rule, whereas others need a code book or a dictionary. Transla-
tions from English to Pidgin English suggest that somegimes a
simple transform rule must be augmented by a more or less simple
mixture of code book plus additional rules. And of course from
English to French we must add very deep and complex contextual
syntactic and especially semantic rules to move beyond the very

poor word-by-word translation.
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Examples of "Higher-Level" More Symbolic Transforms

Figures 9 and 10 illustrate how transforms at deeper levels
of the cone/pyramid can work with symbolic labels, sometimes in
combination with numeric and more or less iconic information, to
produce new (often more, sometimes less) symbolic labels.

Figure 9. A Simple “Door” Built from Angles and Edges

kkkkkkkkkkkkkxk** TRANSFORM door kkkkkkkkkhkkkk

THRESHOLD = 60
TYPE = symbolic

1 2 3
gamma :10 edge00deg:7 revgamma :10
4 5 6
edge90deg:7 constarea:3 edge90deqg:7
gamma :6 bgamma :6
7 REF CELL 79
Langle 12 constarea:3 edge90deg:7
edge90deg:7 bgamma 22
10 11 12
Langle :6 constarea:3 edge90deg:7
edge90deg:7 revlLangle: 6
13 14 15 T
Langle :10 edge0Q0deg:7 revlangle:10

IMPLIEDS
NAME WEIGHT TYPE
window 20 attribute
doorframe 40 attribute
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The Implication of “House” By Sub-Sets of Symbols & Icons

Figure 10.

kkkkkkkkkkkkkkkk* TRANSFORM house hhkkhhkhhhrkhkxk

THRESHOLD = 60
TYPE = symbolic

1 2 3 4 5
roof :4 roof :8 roof :8 roof : 8 roof 14
chimney :8 chimney :8
6 7 8 9 | 10
roof : 4 roof 24 roof :4
11 12 REF CELL 14 15
vertedge window :6 window 16 window :6 ver tedge
vertedge :4 wall :5 vertedge :4
wall :5 wall :5
16 17 18 19 20
vertedge horedge :4 window :6 horedge :4 vertedge
vertedge :4 door :8 vertedge :4
wall :5 horedge :4 wall :5
wall :5
21 22 23 24 25
vertedge L.angle :8 door : 8 revLangle: 8 vertedge
horedge :4 horedge :4 horedge :4
vertedge :4 wall :5 vertedge :4
wall :5 wall :5
IMPLIEDS
NAME WEIGHT TYPE
building 35 attribute
house 25 attribute
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From Icon to Symbol; and Before, and Beyond

The transforms shown, plus all the additional transforms
specified in their Lookfors, were input using ICON and built into
a simple 4-layer pyramid (Figures 3 through 10 are the actual
transform displays ICON generates). These transforms succeeded
at finding edges, Langles, doors, roofs, houses, etc., in the
very simple line drawings used to check them out. A much larger
set of transforms, albeit of the same general types, must be used
to make tests on a larger variety of real world images.

These examples suggest two important points:

I. There are several aspects or dimensions on which "icons"
differ from “symbols."

IT. It is fruitful to move gradually from the iconic raw sensed
retinal image to the fully symbolic naming and description of the
objects in a scene,

Indeed it appears to be preferable to consider five major
stepping-stones in the transition from raw input image to com-
pleted perceptual recognition:

1) picture,

2) icon,

3) sign,

4) symbol,

5) semantic understanding.

The many-layered structure of a cone or pyramid appears to
be a convenient system for controlling this gradual movement, so
that the various kinds of information needed to achieve recogni-
tion are assessed, efficiently.

The original input is a (minimal) transduction; it is maxi-

mally iconic, or pictorial. It might best be called a "picture."
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It reflects the 2-dimensional aspect of the array of energy being
sensed, and also the quantitative amount of energy at each region
in that array.

Some transformations, like simple averages, output similarly
guantitative information in the same 2-dimensional intensity
domain. These are usually thought of as the most iconic, or pic-
torial. But as averaging becomes increasingly global, so that it
destroys the details needed to resolve and recognize the object,
it gives less iconic results from the point of view of reflecting
the objects rather than the raw image. [Note that the conver-
gence to smaller output arrays is itself a type of averaging, as
is the coarsening of the range of values over which intensity, or
any other quantitative attribute, can vary.]

I1f a picture is input in color, even the raw sensed image is
to some extent symbolic. For the primary red, green, blue colors
must be labeled. This gives three arrays of intensity, instead
of the single grey-scale intensity array for black-grey-white
pictures. But note what this reveals: Even the raw grey-scale
intensity array 1is to some extent symbolic, with the labelling-
attribute “grey-scale” implicit as the name of the single array.
It is only because there is but one possibility, that is, only
one attribute, that this need not be made explicit.

From the very beginning, images are transformed into new
symbols/labels. Some of these symbols seem more iconic, e.g.,
“gradient”, “purple” (the result of a transform that combines
primary colors), “hair-textured” (the result of a texture detect-
ing transform), or even “short-vertical-edge”. Some seem more
symbolic. But can we draw a sharp line between e.g., “S-curve”

and “Langle” and the symbols “s”, “L”, “{7, “+°?
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Between icons and symbols we should consider still another
distinction, a "sign." And there appear to be several dimensions,
each with several steps, along which entities can be placed,
rather than a single path from icon to symbol.

To the extent that the symbol is more arbitrarily related to
the region of information assessed by the transforms that implied
it we tend to think of it as more symbolic. Thus we can consider
the implied label from the point of view of the raw input image,
or of the abstracted image in the layer at which it is implied,
where it will be relatively more iconic.

To the extent that the symbol is "higher-level" it tends to
take on a richer association of meanings, and therefore to appear
more symbolic. For example, “‘Langle”, “board”, “window”, “house”
seem successively more symbolic. But this is simply a function
of their symbolic/semantic import to us, that is, of the richness
of associations and meanings they invoke in the "cognitive net-
works" of our minds. For the computer program they are all sim-
ply labels, or pointers. Those generated at a deeper level of
the pyramid/cone will be the function of a deeper, probably
larger, structure of transforms, and we might for this reason say
they are indeed more "symbolic" and/or "semantic."

Toward Integrating Perceptual and Cognitive Sub-Systems

Alternately, we might consider that only after we have in-
tegrated the perceptual recognition program into a larger
perceptual/cognitive system, where labels take on much richer
meanings because they point to larger associated structures, can
we begin to achieve the full "meaningful" "semantic" "gymbol."

The typical current conception appears to be that of the

"jconic" vision system and the "symbolic" semantic memory net.
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This leads to the misconception that information stored in ar-
rays, with their implicit 2-dimensional structure, and in quanti-
tative attribute dimensions, like grey-scale-intensity or
gradient-strength, 1is wholly iconic, whereas labels like “dog”,
“mammal’, “above” and “is-a” are wholly symbolic. But these
kinds of symbolic labels are necessary for perception programs,
and are often found stored in arrays of symbols. And structural,
quantitative, relational information, although rarely stored and
used in today”s semantic networks, would be very useful if not
essential information in many situations.

It seems best, and simplest, to think of the array of spa-
tial and other quantitative dimensions simply as a structure that
can often be used in very powerful ways to access and handle
guantitative information. Whereas graphs (list structures) are
often convenient, e.g., when there are no simple orderings that
can be computed, or when the non-zero entries in large arrays are
rare (as they will be in "higher-levels" of perceptual systems
that do not, as do the cones and pyramids, push them together to-
ward the center).

Symbols like “bright”, “very bright”, “above” and “slightly
above” might best be thought of as very coarse quantitative hence
to some extent iconic intervals. A semantic memory graph might
store, in addition to such symbols, little pieces of more precise
guantitative information, including computational procedures,
that define, explain and replace such coarse and vague concepts,
as needed.

Thus it seems of interest to consider combining the more
iconic aspects of the pictorial arrays used in perception pro-

grams with the more symbolic aspects of the networks of symbols
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used in semantic memory systems. The perceptual array-oriented
structure and the memorial graph-represented structure are each
chosen (or evolved) because of their efficiencies in storage
space and processing time (to transform and to access).

symbols, and structures of symbols, can usefully be implied
and stored in the perceptual system. Arrays and icons can be
stored and used as nodes in the semantic memory network. The
perceptual and the semantic/cognitive system must, of course, be
connected. But they can both, potentially, gain greatly in power
if they are intimately interconnected so that each can make use
of the other, as needed.

Summary

Layered converging cones and pyramids allow a user to build
pattern recognition and scene description systems whose
"knowledge" of the object-classes they must identify is embedded
into a hardware pyramid of arrays as follows: Each object is
represented as a "model" in the form of a tree, starting with the
root node that represents that object (e.g., “house”), with the
successive plies of offspring nodes representing successively
lower—-level parts, gqualities and other characteristics (e.g.,
“roof”, “wall” ... ; then “window”, “door” ... ; then “pane”,
“panel” ... ; then “vertical edge” ... ; “Langle” ... ; then
“gradient” ..., and so on).

All such model-trees are combined into a tree-of-trees,
where each node (e.g., “window” or “Langle”) need be computed
only once, even though it may be a part of many different model—
trees (e.g., “house”, “auto”, “store”) .

This tree-of-model-trees is then embedded into a pyramid of

arrays, with the root model-nodes embedded into the higher layers
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of the pyramid and the nodes that compute lowest-level features
like gradients, short edges and local textures toward the base of
the pyramid.

The pyramid architecture essentially superimposes the rela-
tively good (diameter=0(logN)) interconnection topology of a tree
over the near-neighbor topology of an array (which is especially
useful for computing local interactions in images). An NxN array
can speed up processing of an individual transform from O(NxN) to
0(1l), and a pyramid of such arrays, by eliminating the need to do
O(N) shifts to move information together into the 1local window
where successively higher-level transforms can be effected, can
reduce the time needed to compute the transforms used by an en-
tire model-tree from O(N) to O(logN).

Each transform node in this structure can look at and inter-
pret any type of information, and output any type of information
(which will then be input by the next-higher-level transform
nodes) . The raw input image 1is 1iconic, and therefore the
lowest-level transforms must input and deal with iconic informa-
tion. The identifying, descriptive information the system must
output is symbolic. The movement from "icon" to "symbol" can
usefully and naturally be effected (as the user chooses) in a
gradual small-step manner. This paper gives examples of
transforms taken from several different levels in one model-tree
of a program with many model-trees that illustrate a variety of

different steps in this process.
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