ABE

A QUERY LANGUAGE FOR CONSTRUCTING
AGGREGATES-BY-EXAMPLE

by
Anthony Klug
Computer Sciences Technical Report #475

May 1982

Abe

A Query Language for Constructing

Aggregates-by-~example

Anthony Klug

University of Wisconsin

1. Introduction

Many queries written today involve taking counts, sums,

averages, etc. We call these statistical queries. Although

this class of queries is very important, up to now it has

not been given adequate attention Dby guery language
designers. Syntax and semantics for statistical gueries are
often confusing and not well defined. Expressive power for

writing complicated statistical queries is generally poor.
What 1is needed is a gquery language that not only has clear
and simple syntax and semantics, but is also very powerful
for constructing statistical queries. In this paper, we

present such a language ~-~ Abe.

The following example is indicative of the kind of
query we have in mind. It refers to a database containing
information about company divisions, departments within
divisions, items sold by departments, and employees.

Consider divisions having budgets exceeding $500K.
Let DV be one of these. Consider a department in DV
to be "old" if it has more high seniority employees
than 1low seniority employees. For each old depart-
ment within DV, add up the salaries of the high
seniority employees. Compute the average of these
sums over all such departments within DV. Do this
same computation for all divisions with budgets over
$500K.
Clearly, this is a complicated query. No existing high-
level query ldnguage we are aware of could handle this

query without resort to temporary files and/or programming

language coding. Yet, using Abe, this query can Dbe

formulated easily.

Abe is a relational query language. It is similar in a
number of ways with Zloof's Query-by-Example (QBE) [Zloo].
Although Abe is more powerful than QBE, its definition is
actually simpler. Abe is also more powerful than QUEL, the
query language of Ingres [SWKH], and SQL, the query language
of System-R [ABCE] (at least as far as statistical queries
are concerned). It achieves this power, not through a maze
of ideas such as grouping, partitions, partition selectors,
and duplicates, but through the simple idea of a subquery

with parameters.

In the next section we outline the necessary underlying
data model definitions. Then in section 3, we give in just
a few paragraphs, the complete semantics of Abe. Section 4
contains a number of examples of Abe queries. Finally, in
section 5 we discuss how the user and the underlying data-

base system interface with Abe.

2. Data Model Definitions

In this section, we outline basic relational data model

and aggregate function concepts.

A relation is a finite two-dimensional table with

columns labeled by distinct attributes. Each attribute Ai
has a domain D(Ai), and entries in a column labeled by A

must be elements of the domain D(Ai). The relation scheme

(or format) for a relation R with attributes Al""’An is
R(Al,...,An). The order of the rows in a relation has no
significance, and we can view a relation R(Al,...,An) as a

finite subset of the cross product D(Al)x...><D(An). A data-

base is a finite set of relations. The relational schema

for a database is the set of relation schemes for the rela-
tions it contains. The following relational schema will be
used in our examples:

division (dvname, manager, budget)

department (dname, division, manager)

employee (ename, salary, dept, seniority, recruiter)

item (iname, color, price)
sells (dname, iname)

An aggregate function, is a function which takes a set

of tuples as input, and produces a single value (usually

numeric) as output. We do not associate, and we do not need
to associate, with aggregate functions the concept of
partition. 1In Abe, there is no concept grouping such as is

found in QUEL and SQL. Abe also does not use the concept of

duplicate tuplei.

The aggregate functions we will consider in this paper

are: count, min (minimum), max (maximum), sum, and ave

1 The problem is not that "duplicate tuple" cannot be
formally defined. The concept of bag [RoLe], a "set" with
duplicates, does this. One problem is that bags are usually
added as an afterthought +to the relation model. Another
problem is that the elegance of the relational model is
severely degraded by adding bags.

(average). All of these except count are given a column on
which to operate in addition to the actual input set of
tuples. Thus to sum a set of salaries, we do not say "sum
the Dbag of salaries", we say "sum the salary column of the

employee table."

In some cases, the value an aggregate function should

take on the empty set is c¢lear. 1In particular2:
count (@) = @
sum(@) = g
3. Specification of Abe
In this section, we specify the formation rules, and

the semantics of Abe. The presentation will be concise, and
the reader may wish to review this section as the examples

are presented in section 4.

(1) A query (or subquery) consists of an output 1list, a
condition box, and zero, one, or more relation tables.
Queries and subqueries are given names; the first one

the user sees is always called "top level."

(2) An output list is a table containing one row and

several possibly labeled columns. Items specifying
2 If A and B are disjoint sets, sum(A U B) = sum(A) +
sum(B) . We can also argue that min(@) = 400, and max(@) =

-®, since A C B implies min(A) > min(B) and max(A) < max(B).

(4)

(5)

(6)

(7)

(8)

(92)

query output are entered into the output list.

A condition box is a table containing one (wide) column

and several rows. Boolean conditions on items in the

relation tables are placed in the condition box.

A relation table for a relation R has a column for each

attribute of R and several rows.

Relation tables and the output 1list are filled with

elements. The condition box is filled with two ele-
ments connected by one of the operators =, #, <, <, >y,
> .

There are several kinds of g}ements: constants, vari-

ables, fixed variables, and aggregates.

An aggregate consists an aggregate function (count,
min, max, sum, oOr ave), an output list label (unless

the function is count), and the name of a subquery.

Variables and fixed variables are arbitrary identif-

iers. Fixed variables can appear only in subqueries,

and they correspond to some (regular) variable in some

higher-level query. Fixed variables are similar to
procedure parameters in a programming language. Con-

stants are numbers or strings.

Normally, variables, fixed variables, and constants

(but not aggregates) appear in relation tables, and

variables and aggregates appear in output lists.

(19) For conciseness, a relation table may contain a com-
parison operator (as 1in (3)) followed by an element,
e.g., "> 1@". This is an abbreviation for a unique
variable x at that point along with the condition

"X > 1¢" in the condition box.

The output of a query is a set of tuples. This output
is determined by the following rules: The entries in the
relation tables act as patterns, and the query is evaluated
by looking in the database for matches to the patterns.
Empty rows in relation tables are not considered. A variable
can match anything. A constant matches only itself. When a
subquery is evaluated, any fixed variables occurring in it
have been previously bound to particular values, and in this
evaluation, a fixed variable matches only the value to which
it has been bound. A row is matched when there is a match
for all of its (nonempty) entries in the corresponding rela-
tion in the database. A variable'may appear 1in
several places, but each occurrence must be matched to the
same value.

When a match is found for all rows in the relation
tables, the conditions in the condition box are examined.
If a condition contains a variable, a fixed variable, or a
constant, the corresponding value is used in evaluating the
condition. If an aggregate is present, its subquery is

evaluated (with all of its fixed variables bound to the

current values of the variables), and the aggregate function
is applied to the resulting set of tuples.

If all conditions are satisfied, the output list 1is
used to generate a row of output. If a variable appears in
the output list, the value it matched is used. If an aggre-
gate appears, 1t 1is evaluated as above, and its value is
used. The resulting tuple is added to the output if it is
not already present.

After a tuple has Dbeen output, more matches are
searched for. There is no particular order in which this is
done. When all matches have been found, the evaluation is

complete.

Note that although the user view of how an Abe query is
evaluated involves repeated evaluation of subqueries (akin
to tuple substitution of QUEL [WoYo]), repeated evaluation
does not happen in reality. Section 5 describes the trans-

lation of Abe to relational algebra.

4. Examples of Abe Queries

In this section we give Abe formulations of progres-
sively more complicated statistical queries. Note that the
structure of Abe naturally induces users to formulate
queries in a top-down fashion. The commands used to build
these queries are discussed in the next section. To distin-
guish between variables, fixed variables, constants, and

subquery names, we use the following key:

variables are underlined

fixed variables are underlined and in italics
constants have no typographic enhancements
subqueries are typed in block letters

oo e

Example 1. Get names of employee working in departments of
the research division.

TOP LEVEL output list

enmx
A ——

lemployee ename | salary | dept | seniority {recruiter

enmx depx

|department | dname | division | manager

depx research

This simple query does not have any aggregates. It illus-

trates how variables are used to correlate (join) informa-

tion in several tables.

Example 2. Print the average salary of all employees.

TOP LEVEL output list
ave(sl, ALLEMPS)

ALLEMPS output list
enmx |sl: salx

,employee ename §| salary | dept | seniority |recruiter
enmx salx
This query corresponds to a "simple aggregate" of QUEL,

whereas the next example would correspond to a QUEL "aggre-
gate function" (non-simple aggregate). In Abe, there is no

need for such distinctions.

10

Example 3. List each department name and the number of its
employees (a count of employees by department).

TOP LEVEL output list
depx | count (DEPEMP)

]department dname {division {manager

depx

DEPEMP output list

enmx

]employee ename | salary | dept |seniority |recruiter

enmx depzx

This query illustrates an important difference between the
concept of aggregates as used in Abe and those in other

qguery languages. Using SQL, most users would write the fol-

lowing:

SELECT DEPT, AVG(SALARY)

FROM EMPLOYEE

GROUP BY DEPT
It is possible that some departments have no employees
(e.g., a ski shop during the summer), and these departments

will not appear in the above SQL query. In fact, there is

no natural way to get such departments to appear in the

11
result of a query expressed by partitioning-type aggregates.

In Abe, this example is simple to formulate.

Example 4. List names of employees who earn more than the
maximum salary of employees with greater seniorities.

TOP LEVEL output list conditions
enmx salx > max(sl,SENIORS)

[employee ename | salary |dept | seniority | recruiter

enmx salx senx,

SENIORS output list

sl: sensal

rémployee ename | salary | dept | seniority repruiter

>
sensal, senx

Not only does Abe avoid introducing the concept of ‘'parti-
tion", 1t also can express queries which would need a gen-
eralization of the partition concept (or an artificial ine-
quality join). In this case, for each seniority value, we
need to form the set of employees having a greater senior-
ity. This 1is not a partition but rather a nested grouping

of employees.

12

Example 5. For each department in which at least 50 employ-

ees work, print the sum of the salaries of the employees in
that department.

TOP LEVEL output list conditions

depx |sum(sl,DEPEMP) count (DEPEMP) = 50

department | dname | division | manager

depx
DEPEMP output list
enmx sl: salx

[employee ename | salary | dept |seniority |recruiter

enmx salx depx

To formulate this query in SQL, both a GROUP BY and a HAVING

clause would be needed.

13

Example 6. For every division DV, for every department DP
in DV, compute the sum S of salaries of employees in DP;
then average all the S's over all departments in DV. Print
the name of DV and this average.

TOP LEVEL output list
divx lave(sm,DEPSAL)

division| dvname | manager | budget

divx

DEPSAL output list
depx |sm: sum(sl,DEPEMP)

| department | dname }division | manager,

depx dive

DEPEMP output list

enmx [sl: salx
——h 0 esmmene——

employeé | ename | salary | dept lseniority |recruiter

enmx salx degm

In previous query languages,

expressed without the

writing of code.

Example 7.
S500K .

use

of

this query could

not even

temporary relations or the

7 Let DV be a division with a budget greater
For each department DP managed by an employee with a

seniority greater than 10, compute the sum S of salaries

employees 1in

DP who were hired by the manager of DV; then

print the name of DV and the maximum of these sums.

TOP LEVEL output list
divx | max(sm,DEPSAL)
[division dvname | manager | budget
divx dvmgr >500K
DEPSAL output list
depx |sm: sum(sl,DVEMP)
department | dname | division | manager
depx div dpmgr
]employee ename | salary | dept | seniority |recruiter
dpmgr >10
DVEMP output list
emnx | sl: salx
employee | ename | salary | dept |seniority | recruiter
enmx salx depx dvmgr

15

Increasing the complexity of the query by adding of a number
of qualifications on ‘"partitions" and "members of parti-
tions" does not materially increase the complexity of the
Abe query. Note that the manager of DV is not used in an
immediate subquery of the top-level query, but in a second

level subquery.

The next three examples do not deal with aggregate

functions, but they illustrate a simple but powerful exten-

sion of the language defined so far. This extension allows
queries to be expressed which involve "all", "only", or "no"
qualifiers. In relational algebra, these are usually
expressed using various combinations of division, set

difference, and projection. To express these queries, Abe
allows conditions in the condition box to be set-comparisons
(set equality, set containment) between subqueries. The
semantics are simple: If a set-condition appears in the
condition box, evaluate both subqueries as for aggregates,
and see if the specified relationship (equality or contain-

ment) holds.

1o

Example 8. List managers of departments which sell all red
items.

TOPLEVEL output list conditions
mgr REDITEMS & DITEMS

Son——

department | dname | division | manager

depx mgr
REDITEMS output list DITEMS output list
inmx inmx
item| iname | color | price sells | dname | iname

inmx red depwx inmx
————r NamCT———

17

Example 9. List managers of departments selling only red
items.

TOP LEVEL output list conditions
mgr DITEMS € REDITEMS

department | dname | division | manager

depx mgr
REDITEMS output list DITEMS output list
inmx inmx
‘Litem iname | color | price | | sells | dname | iname

inmx | red depx inmx

18

Example 1. List managers of departments selling no red
items.

TOP LEVEL output list conditions
mgr] DITEMS & NONREDITEMS

department | dname { division | manager

depx mgxr
NONREDITEMS output list DITEMS output list
inmx linmx ‘1
[item iname | color | price |sells | dname [iname
inmx #red depx inmx

In QBE, this query would be formulated using a negation
operator applied to an entire row of a relation table. This

kind of negation is not needed in Abe.

5. User and System Interfaces

The current implementation of Abe runs from a number of
intelligent terminals. The terminals are required to have
cursor addressability and several display enhancements.
Each type of element is assigned a different display type
using color, type font, etc. At any time, the top level

query or some subquery is the current query, and its tables

are displayed on the screen. The cursor position determines

19

where the next element is entered, and is controlled by sin-
gle key-stroke commands similar to full-screen editors.
Other single key-stroke commands cause the various elements
to be entered. Movement down the “query tree" 1is achieved
by moving the cursor to a subquery name and using the "open"
command. Movement up the tree is achieved with the "exit"

command.

Abe is interfaced to System DM¥*, a DBMS supporting mul-
tiple views and multiple data models [Klug]. The interface
language is relational algebra. The relational algebra
operator for aggregate functions uses partitioningB, and we
denote it f<X,e> (partition input e on X and apply £ to each
partition). The basic idea in translating an Abe query into
a relational algebra expression is as follows: Suppose a
query Q has a subquery Q' which is translated to a rela-
tional algebra expression e', and suppose the fixed vari-

ables occurring in Q' are X = Xl,...,X

xe IfQ contains an
aggregate f(h,Q') in its condition box, and if the relation
tables of Q correspond to a relational algebra expression e
(which 1is just a Jjoin), then the expression for Q itself
consists of e joined with e'<X,fh> on X. To illustrate,

Example 3 of the previous section will be translated to the

following join (the necessary projection is omitted):

3 Note that we have only claimed that the idea of parti-
tioning is not user-friendly. It is still an important im-
plementation device.

20

department [dname = dept] (count<dept, employee>)

Future enhancements to Abe will include query optimiza-
tion. Since no temporary relations or programming code is
needed to express a complicated statistical query, the
structure of the entire query is available at once to the
system. This makes global optimization in the styleA of

[AhSU] and [ChMe] possible.

6. References

[ABCE] Astrahan M.M., Blasgen M.W., Chamberlin D.D.,
Eswaran K.P., Gray J.N., Griffiths P.P., King W.F., Lorie
R.A., McJones P.R., Mehl J.W., Putzolu G.R., Traiger
I.L., Wade B.W. and Watson V. "System R: Relational
Approach to Database Management" ACM-TODS 1, 2, pp.97-137
(1976)

[AhSU] Aho A.V., Sagiv Y. and Ullman J.D. "Efficient

Optimization of a Class of Relational Expressions", ACM
TODS, 4, 435-454 (1979)

[ChMe] Chandra A.K. and Merlin P.M. "Optimal Implementa-
tion of Conjunctive Queries in Relational Databases",
Proc. 9-th Annual Symp. on Theory of Computing, May,
1976, 77-9¢

[Klug] Klug A. "Multiple View, Multiple Data Model Support
in System DM*" University of Wisconsin Technical Report.

[RoLe] Robinson L. and Levitt K.N. "Proof Techniques for
Hierarchically Structured Programs" CACM 2@, pp. 271-283

[SWKH] Stonebraker M., Wong E., Kreps P. and Held G. "The
Design and Implementation of INGRES", ACM-TODS 1, #3,
1976, pp.189-222 -

[WoYo] Wong E. and Youssefi K. "Decomposition -- A Stra-
tegy for Query Processing"” ACM Trans. Database Sys., 1,
pp.223-241 (1976)

[Zloo] Zloof M.M. '"Query-by-Example; a data base language"
IBM Sys. J. No. 4, 1977, pp.324-343

