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ABSTRACT

Positive definite and semidefinite matrices induce well
known duality results in quadratic programming. The converse
is established here. Thus if certain duality results hold
for a pair of dual quadratic programs, then the underlying
matrix must be positive definite or semidefinite. For example
if a strict local minimum of a quadratic program exceeds or
equals a strict global maximum of the dual, then the underly-
ing symmetric matrix Q is positive definite. If a gquadratic
program has a local minimum then the underlying matrix Q is
positive semidefinite if and only if the primal minimum
exceeds or equals the dual global maximum and XTQX = 0 implies
Ox = 0. A significant implication of these results is that
the Wolfe dual may not be meaningful for nonconvex quadratic
programs and for nonlinear programs without locally positive
definite or semidefinite Hessians, even if the primal second

order sufficient optimality conditions are satisfied.

AMS (MOS) Subject Classifications: 90C20, 15463
Key Words: Positive definite matrices, quadratic programming,
duality

Sponsored by the United States Army under Contract No.
DAAG29-80~C-0041. This material is based on work supported by
the National Science Foundation under Grants ENG-7903881,
MCS-7901066 and MCS-8200632.



CHARACTERIZATION OF POSITIVE DEFINITE AND
SEMIDEFINITE MATRICES VIA QUADRATIC PROGRAMMING DUALITY

S.-P. Han & 0. L. Mangasarian

1. INTRODUCTION

It is well known [3,4,11,10] that the dual gquadratic
programs

(1a) Minimize % TQx + pTx
X
subject to Ax < b
Cx = d
(1b) Maximize -'%XTQX - bTu - dTv
subject to ox + aTu + CTv + p=20
u>20

where Q, A and C are given real matrices of order nxn,
mxn and kxXn respectively, with Q = QT, and p, b and 4d

are given vectors in the real finite dimensional Euclidean

n m

spaces R, R~ and Rk respectively, possess many important

relations when Q 1is positive semidefinite or positive defi-
nite. In this paper we are interested in the converse: What
sort of duality relations between (la) and (1lb) induce posi-
tive definiteness or semidefinitness in Q? A key role in
deriving these converse relations is played by the following
conjugate cone characterization of positive definite and semi-
definite matrices [8].

1.1 Theorgm‘[8] Let K be a nonempty convex polyvhedral cone

in R"™. The nxn real matrix P is positive semidefinite if

and only if P is positive semidefinite plus on the cone K

P

and positive semidefinite on the conjugate cone K , that is

X e K = xTPx > 0
(2)

XTPX = 0, xXeXK = (P+PT)X =0



(3) y e Ko i= {y|y(P+PT)x <0, ¥xe K} = y Py > 0

1.2 Theorem [8] Let K be a nonempty convex polyhedral cone
in R"™. The nxn real matrix P is positive definite if and

only if P 1is positive definite on K and KA that is:
T
0 # xeK=xPx >0
0# yek=ylpy > 0

With the help of these characterization theorems and the
second order optimality conditions of quadratic programming
[6,9,2,1] we show for example in Theorem 3.5 that if a unigue
local minimum of a quadratic program exceeds or equals a strict
global maximum of the dual, then the matrix Q must be posi-
tive definite. In Theorem 3.6 we show that if a quadratic
program has a local minimum then Q is positive semidefinite
if and only if the primal minimum exceeds or equals the dual
global maximum, and Ox = 0 whenever xTQx = 0. In Corollary
3.7 we show that if the primal feasible and dual feasible sets
are nonempty and if the weak duality relation holds, that is
the primal objective exceeds or equals the dual objective over
their respective feasible regions, and if Qx = 0 whenever
xTQx = 0, then Q is positive semidefinite. 1In [7] positive-
definiteness of the Hessian of the Lagrangian of nonlinear
programs was established under more restrictive assumptions.

The import of these and our other results is that when
certain simple and desirable duality results are satisfied by
a pair of dual quadratic programs, then the underlying matrix
must be positive definite or semidefinite. This leads to the
conclusion that the Dennis-Dorn-Wolfe quadratic dual programs
[3,4,11] are meaningful only if the underlying matrix is
positive definite or semidefinite. For example even if the
primal quadratic problem (la) has a unique global minimum
solution (and thus satisfying the second order sufficient
optimality condition), and if the underlying matrix is not
positive semidefinite then the dual quadratic problem (1b) may
not have a solution. Thus the example



s e 2 2 . _
minimize Xy - X, subject to Xy = 0
has the unigque global solution Xy = X, = 0 but its dual
maximize x2 - x2 + vx subject to x, = 0, -2x, + v = 0
1 2 2 J 1 ’ 2

is unbounded above. Similarly the Wolfe dual for nonlinear
programs may not be meaningful unless the Hessian of the
Lagrangian is locally positive definite or semidefinite in the
neighborhood of a stationary point of the primal problem [7].
Thus even if the second order sufficient optimality conditions
are satisfied but the Hessian of the Lagrangian is not positive
definite or semidefinite in a neighborhood of a local minimum
solution, the dual problem may not have a solution.

We shall need second order optimality conditions for the
dual quadratic programs (la) and (lb) which have local and
strictly local solutions. These results can be found in
[9,2,1] which we summarize here in a convenient form. The

points (E,ﬁ,%)esRn+m+k and (x,u,v,w) ¢ gOTmHkn o Rarush-
Kuhn-Tucker points of (la) and (1lb) respectively if they

satisfy the following respective conditions [10]

(4a) O% + A'G + cTy + p =20 (4b) -0x + Qw = 0
Ax < b Aw - b < 0

Cx = d Cw - d =0

u >0 0% + ATa + CTv + p = 0

3T (ak-b) = 0 >0

il (aw-b) = 0

Note that if (x,u,v) is a Karush-Kuhn-Tucker point of (1la)
then (%x,u,v,%) 1is a Karush-Kuhn-Tucker point of (1lb). To
characterize local solutions we need to define the following
index sets associated with a Karush-Kuhn-Tucker point (%,u,Vv)
of (la):



The notation AJ will represent the rows Ai of A with

ieJ. We can now state the following.

1.3 Theorem [2,1] (Characterization of local solutions of
quadratic programs) A point % e R" is local minimum solution
of the quadratic program (la) if and only if x and some

(u,v) c VK satisfy the Karush-Kuhn-Tucker conditions (4a) and

(5a) A_x = 0, AKX <0, Cx=0= XTQX >0

The Karush-Kuhn-Tucker point (x,u,v) of (la) is a local

maximum solution of the dual quadratic program (lb) if and only
if

(5b) ox + ATu + CTv = 0, Uy >0, up = 0 = xTQx >0

1.4 Theorem [9,2,1] (Characterization of strict local solu-
tions of quadratic programs) A point Xx€ R" is a strict local
minimum solution of the quadratic program (la) if and only if

% and some (4,v) ¢ V'K satisfy the Karush-Kuhn-Tucker

conditions (4a) and
(6a) Ax=0,A,x<0,Cx=0, x#0= xTQx >0

The Karush-Kuhn-Tucker point (x,u,v) of (la) is a strict
local maximum solution of the dual quadratic program (1lb) if
and only if

(6b) QX+ATu+CTv=0, uK;o, uI=0, (x,u,v)#O@xTQx>O.

In the next two sections we characterize positive definite
and semidefinite problems in terms of equality-constrained
quadratic programs (Section 2) and inequality-constrained

quadratic programs (Section 3). This split into equality- and



inequality-constrained problems permits the statement of some-
what sharper results for the former. For simplicity we con-
fine the results of Section 3 to inequality constraints only.
Problems with both equality and inequality constraints can be
handled in a straightforward extension of the results of
Section 3.



2. EBQUALITY-CONSTRAINED QUADRATIC PROGRAMS
We specialize here the dual problems (la) and (1lb) to the

following equality-constrained dual guadratic programs

(7a) Minimize %—XTQX + pTx (7b) Maximize - %— XTQX - aty
b4 X,V
subject to Cx=4d subject to Qx + CTV +p=0

We say that a problem is feasible, if the set of points

satisfying its constraints is nonempty.

2.1 Theorem (Characterization of positive semidefinite and
definite matrices) ILet (7a) be feasible.
(i) Let (7b) be feasible. A necessary and sufficient
condition for Q to be positive semidefinite is
that (7a) has a local minimum, (7b) has a local

maximum solution and

(8) XTQX =0, Cx=0=0x =90

(ii) A sufficient condition for Q to be positive
definite is that (7a) has a strict local minimum
solution and (7b) has a strict local maximum solu-
tion. This condition is also necessary if C has

linearly independent rows.

Proof (i) ©Necessity follows from existence and duality theory
of convex quadratic programming [5,10]. We establish suffi-
ciency now by means of Theorem 1.1. Define
(9) K:= {x|Cx=0}

Then
(10) K9:= {ylyTQxi 0, ¥x e K}

= {ylyTQX>>0, Cx =0 has no solution x}

i

{yloy + clv =0}

Since (7a) has a local minimum solution it follows by
Theorem 1.3 (5a) and (9) that



(11) xT0x >0 for xekK

Since (7b) has a local maximum solution, it follows also by
Theorem 1.3, (5b) and (10) that

(12) yToy > 0 for yeK2
Hence by (11), (8), (12) and Theorem 1.1, Q is positive
semidefinite.

(ii) (Necessity) That both (7a) and (7b) have solutions
follows from the feasibility of (7a) and the positive definite-
ness of Q. The uniqueness of solution for (7a) follows from
the positive definitness of Q. The uniqueness of solution for
(7b) follows from the positive definiteness of Q, the linear

independence of the rows of C and Theorem 1.4 (6b).

(Sufficiency) We establish sufficiency by means of
Theorem 1.2. Since (7a) has a strict local minimum solution
it follows by Theorem 1.4 (6a) and (9) that

(13) xTox > 0 for 0 # xeK

Since (7b) has a strict local maximum solution, it follows also
by Theorem 1.4 (6a) that

xT0x > 0 for Ox + Clv = 0, (x,v) # O
and hence by (10)
(14) yTQy >0 for 0 #ye g2

Hence by (13), (14) and Theorem 1.2, Q 1is positive
definite. 0



3. INEQUALITY-CONSTRAINED QUADRATIC PROGRAMS

We turn our attention now to the following inequality

constrained dual guadratic programs

(15a) Minimize %—XTQX + pTx (15b) Maximize = %-XTQX - bTu
X ®,u
subject to Ax<b subject to QOx + alu+ p=20
u>20

3.1 Theorem (Characterization of positive semidefinite and
definite matrices) Let (l5a) be feasible.

(i) Let (15b) be feasible. A necessary and sufficient
condition for Q to be positive semidefinite is
that (15a) has a local minimum solution x with
multiplier u, that (%,u) is a local maximum
solution of (15b) and

(16) xTQx = 0, AJX = 0, AKX <0=0x=20

(ii) A sufficient condition for Q to be positive
definite is that (15a) have a strict local minimum
solution =X with multiplier u, and (%,u) is a
strict local maximum solution of (15b). If in
addition the rows of AJ are linearly independent,
Ax =0, A_x > 0 has a solution, then this condi~-

J K
tion is also necessary.

Proof (i) Necessity follows from existence and duality theory
of convex quadratic programs. We establish sufficiency now by
means of Theorem 1l.1. Define

(17) K:= {xlAJx=:O, A, x<0}

K
Then
Q_ T _ T = s
K ={y|y 0x<0,¥xekR}={y|y 0x>0,A x=0,A,x<0, has no solution x}
T T
={y|Qy-Aju ~Agup=0, u,>0}

Therefore

(18) k9 ={x|ox+aTu=0, up>0, u =0}



Since X is a local minimum solution of (15a) with multiplier

4 it follows from Theorem 1.3 (5a) and (17) that

(19) xT0x

v

0 for xeK

Since (X,u) is also a local maximum solution of (15b) it
follows from Theorem 1.3 (5b) and (18) that XTQX > 0 for

for xe¢-K which is equivalent to
(20) xTox > 0 for x K2

Conditions (19), (16), (20) and Theorem 1.1 imply that Q is

positive semidefinite.

(ii) (Necessity) That both (15a) and (15b) have solutions
follows from the feasibility of (15a) and the positive definite-
ness of Q. The uniqueness of solution of (15a) follows from
the positive definitness of Q. The uniqueness of solution of
(15b) follows from the positive definiteness of Q, the linear
independence of the rows of AJ, the existence of a solution

to AJx = 0, AKX > 0 and Theorem 1.4 (6b).

(Sufficiency) We establish sufficiency by means of
Theorem 1.2. Since (15a) has a strict local minimum solution
X it follows by Theorem 1.4 (6a) and (17) that

(21) x'0x > 0 for 0 # xeK

Since (%x,u) is a strict local maximum solution of (15b) it
follows from Theorem 1.4 (6b) and (18) that

(22) %xTox > 0 for 0 # xe K2

Hence by (21), (22) and Theorem 1.2, Q 1is positive
definite. I

3.2 Corollary (Globalization of local dual solutions)

(i) Let X be a local minimum solution of (15a) with
multiplier u, let (X,u) be a local maximum
solution of (15b) and let (16) hold. Then Q is

positive semidefinite and hence x 1is a global
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minimum solution of (l5a) and (x,u) is a global

maximum solution of (15b).

(ii) Let X be a strict local minimum solution of (15a)
with multiplier u, 1let (x,u) be a strict local
maximum solution of (15b) then Q is positive
definite and hence x is a unique global minimum
solution of (15a) and (x,u) is a global maximum
solution of (15b).

We note that condition (16) of Theorem 3.1 cannot be

dispensed as shown by the following pair of dual programs:

Minimize Xlxz Maximize -xlx2
subject to X4 >0 subject to Xy -u, = 0
X, > 0 Xy~ Uq = 0
(ul,uz) >0
Clearly (xl,xz) = (0,0) 4is a global solution to the primal

problem, (xl,xz,ul,uz) = (0,0,0,0) is a Karush-Kuhn-Tucker
point for the primal problem as well as a global solution to

the dual problem. However the underlying matrix Q = [g 3J

is not positive semidefinite because condition (16) is
violated.

We establish now other duality results which induce posi-
tive definiteness or semidefiniteness. We begin by a few

preliminary results.

3.3 Lemma Let (x,u) satisfy the Karush-Kuhn-Tucker condi-
tions of (15a). Then

(23) 2570% + p'R 2 3% 0x - b'u
implies that
(24) -2%0% - b 2 -3x0x - blu
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Proof From the Karush-Kuhn-Tucker conditions of (15a) we have
that

~%T0% - pTx - b'u = 0
which when added to (23) yields (24). 0

3.4 Lemma Let (X,u) satisfy the Karush-Kuhn-Tucker condi-
tions of (15a) such that for all (x,u) feasible for the dual
qgquadratic program (15b)

(25) X% + p

X > —%-XTQX - bTu
Then (x,u) solves (15b).

Proof Since (x,U) 1is feasible for the dual quadratic program
(15b) and since by (25) and Lemma 3.3

-13Tox - bTa > -1 xTox - plu
2 = 2
for all dual feasible (x,u), it follows that (x,u) solves
(15b) . 0

3.5 Theorem (Sufficient condition for positive definiteness)
If a strict local minimum of the quadratic program (1l5a)
exceeds or equals a unique global maximum of the dual quadratic

program (15b) then Q 1is positive definite.

Proof Let u be a multiplier associated with the strict local
minimum solution of (l15a). By Lemma 3.4, (x,u) is a global
maximum solution of (15b). By assumption this global maximum
is unique Hence by Theorem 3.1 (ii) Q is positive

definite. {

3.6 Theorem (Characterization of positive semidefinite
matrices) Let X be a local minimum solution of (15a). The
matrix Q is positive semidefinite if and only if (16) holds

and for any dual feasible (x,u)

(26) ~%§TQ§ + pT xTox - blu

N

x> -
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Proof Necessity follows from the duality theory of quadratic

programming and the fact that xTQx = 0 implies Qx = 0 for
any symmetric positive semidefinite matrix. To prove suffi-
ciency we note that there exists a u such that (%X,u) is a
Karush-Kuhn-Tucker point of (15a) and by (26) and Lemma 3.4,
(x,u) 1is a global maximum solution to (16b). Hence by
Theorem 3.1 (i) Q 1is positive semidefinite.

A direct consequence of Theorem 3.6 is the following
characterization of positive semidefinite matrices in terms of

the weak duality [10] relation of quadratic programs.

3.7 Corollary (Positive semidefiniteness via weak duality)
Let the quadratic programs (15a) and (15b) be feasible. The
matrix Q 1is positive semidefinite if and only if for all

primal feasible x and all dual feasible (y,u)

(27) ~%XTQX + pTx:;-%yTQy - bTu

and

(28) 20z = 0 = 0z = 0
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Errata to MRC TSR #2386
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