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Abstract

Some simple estimation theorems for singular values of
a rectangular matrix A are given. They only use the
elements of A itself, and in some cases they yield better
results than does the Gerschgorin theorem applied to A*A.
A bound for the condition number of A may be obtained from
them. When A 1is square a bound is derived which explains
why scaling improves the performance of Gauss elimination
when row or column norms differ widely in magnitude., Their
application to perturbation theory of singular values is also

discussed.
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1. Introduction

For eigenvalues of a square matrix A = (aij

a widely used theorem, the Gerschgorin theorem [5].

} there is

Theorem 1. (Gerschgorin) Let A = (a.,.) € Cnxn, then each

1]
eigenvalue of A lies in one of the disks in the complex

plane

n
(1L.1) D; = {x:]x-aiil < rg:= j;l|aij|}, i=l,...,n.

J#L
Furthermore, if k disks constitute a connected region but
are disconnected from the other n - k disks, then exactly
k eigenvalues lie in this region.

For singular values [4] of a rectangular matrix
A, we can apply the Gerschgorin theorem to A*A to get
estimates. However, there are two disadvantages: (1) it is
a little complicated to use the elements of A*A; (2) the
smallest singular value will be very badly conditioned in
this process [1]. 1In many cases, we cannot use this process
to give a non-zero lower bound for the smallest singular
value.

In Section 2, we give an estimation theorem for the
singular values of a rectangular matrix A. This esti-
mation theorem only uses the elements of A itself. For a
square matrix A = (a;.), this theorem simply uses the n

1]
real intervals

(1.2) By = [(laiil—si)+, }aii]+si], i=l,...,n



-

to replace the n disks in Theorem 1, where

n n
(1.3) s, = max (jzllaijl, jzl]aji|), i=1,...,n
j#L j#L

and for a real member a, we denote

a,:= max (0,a).

A simple example shows that this theorem gives a sharper
bound for the smallest singular values of A than the Ger-
schgorin theorem applied to A*A, In fact, it gives an
upper bound for the condition number of A though the Ger-
schgorin theorem does not work for this example.

In Section 3, a sharper estimation theorem is given. A
few square root operations improve the results up to a fac-
tor of 2.

In Section 4, the scaling technique is discussed. In
Section 5, another simple estimate for the largest and the
smallest singular value is given. In Section 6, the diago-
nalization technique 1is discussed. They can be combined
with the theorem in Sections 2 and 3 to improve the results.

In Section 5, we also use the estimate to explain the
fact, observed in practice, that scaling improves the perfor-
mance of the Gaussian elimination method for linear eguations.

In Section 7, an application to perturbation theory of

singular values is given.
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2. A Gerschgorin-Type Theorem

Suppose A = (aij) e cC™N | ywrite

n m
2-1 .2 = . e =
( ) r j;llaljl, oy jzllajll,
j#i j#L
5, := max(ri,ci), a;:= laiil’
for i=1,2,...,min{m,n). For m # n, define
n
max { ) lajs1}, for m > n
n+l<i<m  j=1 *J
s1= |
m
max | ) las; |}, for m < n
m+l<i<n  j=1

We give the theorem for m > n. For m < n, the result 1is

similar.

Theorem 2. With the above notation, each singular value of

A lies in one of the real intervals

Bi = [ ay —si)+, ay +Si]’ i=l,...,n
(2.2)
Bn+l = [0,s].
If m=n or if m > n and ay > s; *+ s, i=l,...n then

Bn+l is not needed in the above statement. Furthermore,
every component interval of the union of Bi’ i=1,2,...,n+l
(n for m = n) contains exactly k singular values if it

contains k intervals of B1""'Bn'

Proof. Suppose ) 1is a singular value of A. Then there



-4

are two nonzero vectors x € Cn, vy € Cm, X = (xl,...,xn), vy

= (Yqr+.-r¥y) sSuch that
¢ = A%y, \y = Ax.

suppose |y;| = max {[xll,.,.,lxnl,}yll,...,lyml} (it is
similar if the maximum is attained by |[x,]). If m > n

and i > n, then

n
Ny o= L ag Xy

521 71373
n
N 2 jzllaijl < s
i,e,, >\ e [O,S]-
Suppose i i n. Then
— m -
(2.3) IS SRR PPS SRRV NS 21
=1
JFL
n
(2.4) AYy - oayxy = j§1 213%]
J#L
i
Write © = —, then
Yy
_ m
(2.5) lX6'311! < _Z |a 1‘ =Gy
j=1 )
j#i
6 n
(2.6) -Bagsl < T aggl = ey
j#L

If N\ > ai; then

IN-a; | < IN-18] ay | < INBayl <y

iil i



If X\ < a; , then
IN-a; | < [16IN-a; | < |\o-3a;
In any case, we have

-2y | <8y

Since )\ > 0, we know N € Bio This proves the first
part of the theorem.

Since singular values are the square roots of eigen-
values of A*A, therefore, they are also continuous func-
tions of the elements of A [4] [5]. Consider D + ¢€B,
where D = B for m=n, D= (g) e R™* for m > n, D =
diag(all,,,.,ann), B =A-D. Let ¢ change continuously
from 0 to 1; we get the whole conclusion of this theorem.
(o

We use the simple example A = %) to compare this

theorem and the Gerschgorin theorem applied to A*A.

(100 10)
10 10’-
Suppose the singular values of A are \1 and \2, \1 >

(1) Apply the Gerschgorin theorem to A*A =

kz. We know that

\2 e [90, 1101, \2 e [0 ,20],

i.e.,

N\ € {9.486, 10.489], N\, € [0, 4.473].

Since the condition number k(A) of A in the Euclidean
AL

norm 1is St we get a lower bound for k(A) but no upper
2

bound for k(A):



s Gy

9.487

k(B) € 177730

4®) = [2,120, +X).

(2) Apply Theorem 2 directly to A. We get

Ny € [9, 111, )\, € [2, 4],

k(B) € [%, %1 = [2.25, 5.5].

We see that Theorem 2 is not only simpler, especially

for a large matrix, but also better in the above situations.



3. A Sharper Theorem

Theorem 2 is simple enough. However, we can get a

sharper estimate by a few square root operations.

Theorem 3. Theorem 2 remains true if we replace B,/

i=l,...,n by

(3.1) Gi = [Qi ,ui], i=l,...,n
+
where
7// c? ¢
I 2 _ _i i
%, = min { aj a;r; *og 5
/ r2 x
2 i i
aj - ajey Y -l
/ 2 o
~ 2 i i
u; = max {v/aj + a;r; + 7~ + 5=,

N
N
+
W
+
-
[l \O]
+
IH
l—J
Nt

=
[
»bl_

for i=l,...,n, where if one of the numbers in the minimum

is not real, we omit it.

Proof. Following the same argument as in the proof of

Theorem 2, we get (2.3) and (2.4). Substitute (2.3) in

(2.4). We get

2 2 ’zl ‘i‘ -
Ny, - at v, =\ a..x. + a,. a..ya
i i i j=1 1379 i1 j=1 jid]
ipab! j#i
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lxz"ag | < Rri + a.c.

ivi
Suppose ) > a; i we have
2 _ .2
N aj < Xri + a;¢;
or
2 _ .2
N ri\ aj a;c, < 0

The necessary condition is

A 7
N < Yai + a;c. + +

-

i i"i 4T 2
Similarly, if \ < a; , we have
// r?2
2 i i
N2 YAy —age;t gt - gt
£ [x;]| = max {[xq|,... =2 05 lyglreerlyglls we get

// —i
foln C.
2 1 i
>\ z_ ai - airi + 4 - '2“”"'.
2
. . 2 I
(Notice that if ay - aj ¢y + o < 0, we have N>

a; , the same argument applies to above.) Combining them

together, we get the conclusion, The other part of the

proof of Theorem 2 is not changed, including the argument

about Bn+l‘



. , = O L. = . -, . = .
Remar k If L, Cjir then i aj Sir Uy aj +

. . . L. > . - . . < . .
Sy If r; # Cy then i ay Sjr Uy a; + sy

Therefore, we get a sharper result. Applying this theorem

to the example in Section 2, A = (lg %) we get

\l € [9.486, 10.513], RZ € [2.449, 3.542]

k(a) € [g:gzg, 13:223] = [2.678, 4.293].

This is better than the results in Section 2. For this

matrix, the true singular values are

\l = 10.05474, XZ = 2.98367

k(A) = 3.370.
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4. Scaling
In practice, Theorem 2 and 3 can be combined with scal-

ing techniques to improve the results.

Theorem 4. Theorem 2 and 3 remain true if we replace the

definition of ry and cy in (2.1), and s by

D Rlayl et
(4.1) r.:= —2la.. C. 1= — a..‘
i 321 ki ijtr o ovi j=1 L !
j#i j#i
for i=1,2,...,min(m,n), and
) n kj
max {‘g Eflaijl}, for m > n,
n+l<i<m j=1 "1
o
m kj
max | ) =la.;|}, for m < n,
m+l<i<n  j=1 i

where ki, i=l,2,...,max(m,n), are any positive numbers.

Proof. Let X, = kyxy, i=1,...,n0, yi = kyvyr i=l,...,m.

Then our fundamental equations become

7 k
)\Xi = 2 aji J }/;., i=l,,..,n,
j=1 k ]
1
N 2 k
>\yi = .X b= P j {{\., i=l,-eoymo

Considering the maximum of {]ﬁl},...,iﬁn[,]§l|,,,.,|§m|},

and using the same technique of the proofs of Theorem 2 and



-11-

Theorem 3, we get the conclusion.
Applying this idea to our simple example A = (lg %),
we get a fairly good result. We get from Theorem 2 and

Theorem 4 that two singular values lie in

k k k k
2 2 1 1
B, = [10-=, 10+=], B, = [3-y—, 3+—].
1 kl’ kl re2 k2' k2
ki
Let d = T Then
2
B, = ~1, 10+a71 =
1= [10-4 —, 1 1, B2 = [3-~d, 3+d].
The best lower bound for \1 is
-1 _ _ -1 _
21 = 10 -~ d = u2 =3+ d=9.854, for 4 = 0.146,
The best upper bound for \1 is
u; =10 + a7t =u, =3 +d=10.140, for da ' = 0.140.
The best lower bound for \2 is
Qz = 3 -d = Rl = 10 - d-l = 2,860, for d = 0.140.
The best upper bound for \2 is
uy =3+d=1~% =10 -4t =3.146, for 4= 0.146.

Therefore, we have

kl € [9.854, 10.140], Xz € [2.860, 3.46],

k(A) € [3.132, 3.545].
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If we use Theorem 3 and Theorem 4, we get even better results:

L= 9.944, u, = 9.940, for d = 9.035
u; = 10.05475, u, = 10.05415, for d = 9.159
b, = 3.0577, wu, = 3.0557 for a = = 9.065
b, = 2.9496, &, = 2.9447 for d ' = 9.130.

Therefore, we have

kl € [9.944, 10.05475], X2 € [2.9447, 3.0557]
k(a) € [3.254, 3.415].

Varga and Levinger have discussed the minimal Gerschgo-
rin set of a square matrix in [6], [3]1, [2], [7]. One can
hope that there may be a similar theory for the singular

values.
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5. An Estimate for the Largest and the Smallest Singular

Values
In practice, the most important estimates are for the
largest and the smallest singular values. The following
simple theorem is useful as a supplement to the above
theorems.
Let a,  denote the ith row of A, a‘j denote the jth

1

column of A. All the norm used here is the Euclidean norm.

Theorem 5. With the same notation, a lower bound for the

largest singular value is

(5.1) % = max { max {[|a;,

max 1<i<m By lmgx {lla.jll}}

<j<n

and an upper bound for the smallest singular value when m=n is

(5.2)  wpyyo=min { min {|fa;. [}, min {]]a]I}}
1<i<m 1<j<n
Proof. The largest singular value is ||A]|]|, and
[1al] > 12?§n [l1aeyl1} = 12?§n tlas 1y
Hall = 12 || > max {||a*e{||} = max {[]a;.[]},
1<i<m 1<i<m

. ! . .
where ej e Cn, i=l,...,n, e. & Cm, i=l,...,m are unit vec-

i
tors. This proves (5.1). For (5.2), if A 1is singular, the smallest
singular value is zero and (5.2) holds. If A 1is nonsingu-

lar, the smallest singular value is (IIA_lI‘)_l, We have
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L A
I L AL
and
-1 w -1 [eil| -1
el = @™ ] > max { —te )= max {]lay. 1177
1<i<m | |a%e. || 1<i<m

which leads to (5.2). This proves the theorem.
. . 10 1
Applying this theorem to A = ( 0 3), we get zmin =
10.04987. Combining this with the results we obtained from

Theorem 3 and Theorem 4, we have

\l € [10.04987, 10.05475], XZ € [2.9447, 3.0557]
k(A) € [3.289, 3.415]

This is a sharp result.

Notice that (5.2) is not true in general when m # n.

On page 46 of [9], there is a footnote which says that in
Gaussian elimination for Ax = f, "experience indicates that we
usually achieve greater accuracy in the single precision solu-
tion, if we first scale the matrix A. That is, if with

B = DlADZ, we solve

for y, and then determine x from D,y = X. Here Dl and D, are
some diagonal matrices chosen so that the n columns and the n
rows of the matrix B have approximately equal norms. A complete
mathematical explanation of this phenomenon is not available."
Theorem 5 tells us that if the norms of the n columns and n YOwS
differ greatly in magnitude, the condition number cannot be small.

Therefore, it explains the phenomenon to some extent.
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6. Diagonalization

Usually, A 1is not a diagonally dominant matrix. We
can multiply A by several simple orthogonal matrices to
reduce the sum of the squares of its off-diagonal elements,

since such multiplications preserve the singular values.

To simplify the discussion, in this section, we restrict

A to be a real matrix.

Suppose m > n (the argument is similar if m < n),

Consider
(6.1) max {aij + a?i},
i#]
where we let a.. = a.. for i > n, j < n.

Jji 1]

(a) If the maximum is attained by (r,s), r > n, then the

treatment is relatively simple. Let

(6.2) B = PA,
- mxm 3
where P (pij) € R, Pyy 6ij except
a a
= - 58 - - rs

(6.3) Pry = Pgg = _—r Pgy T TPrg T

A2 4 a2 Az 4 a2

rs ss rs ss

It is easy to see that P is an orthogonal matrix, B =

(bij) e RN has the same set of singular values as A, Z
i,]
2 _ 2 _ . _ 2
bij = in aij' b.lj = aij for i, j #r or s, brs = 0, bSs
7
_ .2 2 .
= a + aggr 1i.e.,
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(6.4) L b2, = ) a%, -a’ < (-2 ) L a2,
i#3 ij i#5 ij rs (m-1)n i#9 1]

(b) If the maximum is attained by (r,s), r, s < n,
let
(6.5) B = PAQ
_ mxm _
where P = (pij) € R, Pyy = 6ij except
(6.6) P, = Pgg = COS e, Py = “Pyg = sin 8,
2(a..a + a..d.a)
tan 26 = rr°sr rs“ss - T cg <™
a? + a’_ - a2 - a2 1-"-1
Sr Ss rr rs
= nxn _
and Q= (d4;4) € R, dj4 = 6ij except
(6.7) d., = dgg = COS o, dgy = ~d,g = Sin 0,
2(a__.a + a_.a..)
tan 20 = rr°rs srss _T b < T
a2 + a2 - a2 - a2 ’ -7 =17
rr sr rs ss

then

It is also not difficult to verify that P and 0 are

orthogonal matrices, B = (bij) e Rmxn’ bij = aij for i, j

#r or s, .Z. b?j = .Z. a?j’ brs = bsr = 0, and bgr * bgs
1,] 1,]

= a2 +al+al +al..

Therefore,

(6.8) igj b%j = igj aij - a?s - agr < (l_TE%TTﬁ) i;j afj.
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We can repeat this process to diagonalize A, until we
can apply Theorem 2, 3, 4 and 5 to get a satisfactory esti-
mate for singular values of A. Notice that this process

reduces the sum of the squares of off-diagonal elements

_ 1
m-1n °

geometrically by a factor less than (1
Another way to treat the singular wvalue problem is
first to transform A into an upper triangular matrix by

Householder transformations:

3 nxn

B
B =P,...P;A, B = (5), BeR,

1
where Pl,...,Ph are Householder matrices [3], B is upper

triangular. Then we use the above technique to diagonalize

~

B.
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7. Application to Perturbation Theory

Like the Gerschgorin theorem, our theorems can be
applied to the perturbation theory of singular values.
(Compare the discussion of [8, p. 72-81]).

y € men’ and A

= mxn
Suppose A = (aij) e C , B (bij

PDQ*, where

has the singular decomposition A

P = (PerZruo-er) e memr p*p = Imr
Q = (ql’qZ’”"qn) e Cnxnr Q*Q = Il’l'
—s\ -
1
Ao 0
D = 0 . e cMxn
0 Mn

(Here, we suppose m > n. The argument is similar if m <

nj.

Theorem 6. If ) is a simple singular value of A, then

A + €B has a singular value

*
p:Bg.
N= N+ E i e o(ez).
Pidy
Proof,
Pquj
P* (A+eB)Q = D + €P*BQ = D + €(—=)
p¥q.
Pidy
Applying Theorem 2 and Theorem 4 with k. = €, for j # i,

J
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1 . *
k., = min (|N\:-N\;|) where b = max |B;.|, (B;s):= P"BQ,
i~ 2b 344 j i 1<i<m ijtr ij
1<j<n
p3Bd;
we can construct an interval around ). + €- with

1
pia;

2

length o(e®). This interval is separated from other inter-

vals. Thus, we prove the theorem.
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