A FORMAL APPROACH TO FORWARD
MOVE ALGORITHMS

by

J. Mauney
C. N. Fischer

Computer Sciences Technical Report #453

December 1981

A Formal Approach to Forward Move Algorithms

Jon Mauney

Charles N. Fischer

1. Introduction

Many algorithms have been proposed for repair of syntactic
errors 1in a program. A number of these [2,3,4,5,11], choose the
repair action by examining the next symbol in the input. In most
situations, examination of this symbol reveals that there is a
choice of repair actions. In such a case, the algorithm must
make the choice based on a secondary criterion, such as a cost
function. Given the same left context and error symbol, a one-
symbol algorithm will always make the same choice, even though
the remaining right context may be vastly different. Clearly,
the quality of the repairs could be improved by incorporating ad-
ditional right context information into the algorithm.

Several authors have proposed repair algorithms that perform
a "forward move" to gather additional context. Aho and Peter-
son [1] presented an algorithm to find the minimum distance
repair to an entire program. Their method is considered imprac-
tical since it uses Earley”s parser and a much expanded grammar.
Other technigues [6,8,9,10] have been more practical, but have
lacked a formal model of the repairs chosen. Also, these tech-
niques generally do not fare well when presented with a cluster

of errors,

We propose a formal model of multiple-symbol repair based on
the idea of a "regionally least-cost" repair, and give an algo-

rithm that finds such repairs.

2. Regionally Least-Cost Repair

We begin by defining regionally least-cost repair. As usu-
al, we will assume a context-free grammar, G=(Vt,Vn,S,P); L(G) is
the language generated by G, and Pr (G) is the set of prefixes of

sentences in L(G). The problem is to repair an arbitrary string,
*
t’

will wuse the three primitive edit operations insert, delete, and

X €V into a string, y € V*, that is a sentence in L(G). We
replace, and we will search for a repair of least cost, based on
cost vectors for the three operations:

IC(a) gives the cost of inserting terminal symbol a

DC(a) gives the cost of deleting terminal symbol a

RC(a,b) gives the cost of replacing a with b
We require that all costs be non-negative. We will also assume
that at most one replacement or deletion is made at each input
position. This assumption is equivalent to requiring that the
costs satisfy "triangle inequalities”:

For all a,b,c € Vt

RC(a,b)+RC(b,c) =2 RC(a,c)

RC (a,b)+DC (b) = DC(a)
IC(a)+RC(a,b) =2 IC(b)

It is convenient to assume that RC(a,a) = 0.

Based on the cost functions, we define two other functions

that extend costs to nonterminals, strings and derivations:

C(\) = 0; (\ denotes the empty string.)
C(al o an) = IC(a-L) "t IC(an)
CUAY = minmd Oy | e o 7 2 ____*]
UEYY ELLE I ¥ S I I s Ny AT Vt, [AT
C(Xy ... Xp) = C(X) + ... + C(Xp)

. . *
Derive (A,a) = min [{®} u{ c(xy)+RC(a,b) | A ==> xby }]
*
x,yevt, bGVt
We are now ready to define a regionally least cost repair.

Definition: A modification, M, is a series of edit opera-

tions, EE,...E,, where each E; is a insert, delete or replace

operation. The string resulting from the application of the

modification, M, to a string x, is written M(x). The cost of the

modification, C(M(x)), is the sum of the costs of the edit opera-

tions.

Definition: Given two strings x, y € V:, with x in Pr(G), a

repair of y following x, is a modification, M, such that xM(y) is

in Pr(G).

Definition: A regionally least-cost repair of y following =x

is a repair, M, of y following x such that for any other such

repair, N, of y following %, C(N(x)) = C(M(x)).

3. An algorithm for globally least-cost repair

We will develop the algorithm first as a globally least-cost

""""""""""""""""""""""""""""""""" repair —algorithm. Then in the next section, we will restrict it

to the more feasible regionally least-cost case.

Aho and Peterson perform their "least errors parse" by ad-
ding error productions to the grammar. We will take a complemen-
tary approach, and use a modified parser on the original grammar.
An insertion can be simulated by allowing the parse state to ad-
vance over symbols that are not present in the input, a deletion
by consuming a symbol of input without advancing the parse state,
and a replacement by consuming one symbol while advancing the
parse across a different symbol.

For our parser, we choose the algorithm of Graham, Harrison
and Ruzzo [7]. This parsing algorithm produces a triangular ma-

trix, each cell of which contains a set of "dotted productions",

A —-> q-g, representing the possible parses of a corresponding
substring of the input. The dot indicates that part of the pro-
duction, d, has been used to match input symbols, and that the
remainder has not, yet. New cells of the matrix are created
under the control of two "pasting" operators. Cells that match a
longer substring of the input are created by pasting together two
existing cells. The parse is advanced by pasting existing cells
to the next input symbol. We introduce error repair by extending
these pasting operations (and the "Predict" function), and at-
taching a running cost to each dotted production. When the parse

is completed, we extract the repair from the matrix in much the

same way as a parse is extracted in ordinary use. The remainder
of the algorithm is unchanged.
To illustrate these modifications, we will examine one of

the pasting operators. According to the original definition

of [71, if Q is a set of dotted rules, and a & Vt then
* *
o*a = { A-->aBB-Y | A-->dBBY, B ==>), and B ==> a }

In other words, we can paste a dotted production and an input
symbol together if the symbol immediately to the left of the dot
can generate the input symbol. The dot is also moved across sym-
bols that derive the null string, so that the next symbol can be
matched in all possible positions. We introduce simulated inser-
tions to this definition in two ways. First, the symbol to the
right of the dot need not generate a single symbol, but may gen-
erate a string containing the input symbol; the remainder of that
string is inserted. Second, the dot can continue to move across
all the remaining symbols in the production, as if they derived
the null string; the cheapest derivable terminal string is in-
serted. Deletions are simulated by including the original dotted
production in the new set; the input symbol is consumed without
advancing the parse. Replacements are made by moving the dot
across a symbol, B, even though B =\=>* a. This possibility is
handled by the Derive function, and doesn”t show explicitly in
the pasting operation. We will add a new component to each dot-
ted production: a running cost of the modifications made in the
parse so far. Our modified pasting operation for Q a set of dot-

ted productions and a € Ve is:

o*a = { A --> oBB-Yic | A --> (-BBY;c” € Q,

c =c” + C(B) + Derive(B,a) }
U{a--» o-BB;c | A -—> -BB;c” € Q, ¢ = ¢’ + DC(a) }

The cost component is represented by ";e",. . _

The effect of these extensions to the parsing algorithm 1is
the same as the effect of adding Aho and Peterson”s error produc-
tions; the sets in the parse matrix are isomorphic to those that
would be obtained using the modified grammar. Therefore, the
correctness and complexity of the parser should be unchanged by
the modifications. The only danger is the additional cost com-
ponent of the dotted productions: since the cost is potentially
unbounded, the presence of dotted productions that differ only in
the cost could cause the size of a set to be unbounded. However,
it is easy to show that if two dotted productions in a set differ
only in the cost component, then the one with higher «cost can
never participate in a least cost repair; any parse can be made
cheaper by using the other dotted production. Therefore, a
higher cost duplicate can always be discarded, and the size of

the cell is not affected by the presence of cost components.

4. An algorithm for regionally least-cost repair

We have presented an algorithm that £finds a least-cost
repair of an entire program, in time proportional to the length
of the program cubed. We do not propose that it be used as such.
Instead, we intend that the repair algorithm be called only when
needed, and then only to repair a reasonably sized region of the

program. A linear-time parser, such as LL(l) or LR(l), can be

used for the major portion of the program.
In order to find repairs that are legal following the prefix
already accepted by the parser, we will use the repair algorithm

on a grammar that describes the 1legal continuations. Such a

parser is used, this task is easy: the parse stack describes the

expected suffix, and we replace the starting production with the
production S --» stack. For an LR(1l) (or SLR or LALR) parser, we
can use the technique described in [3] to derive a regular ex-
pression that describes the legal suffixes. From this regular
expression we can easily derive an equivalent context free gram-
mar, which will be added to the original grammar for the purpose
of repair,

Once the parse/repair algorithm has started, it can stop at
any point; after each iteration of the main loop, the region of
least-cost repair has been extended over one more input symbol.
Thus, the algorithm can be used to find a least-cost repair over
a fixed-sized region, or the size of the region can be dynamical-
ly controlled. A repair over a region of fixed size has an ad-
vantage in that it requires a fixed amount of time to compute,
but the fixed size may be too small for some error situations and
unnecessarily large for others. Better repairs might be found if
the region size 1is dynamic, but in the worst case the region
might include all of the remainder of the string. In ©practice
this may not be a problem; in fact, if the expected size of a re-
gion is constant, the expected time to compute a repair may also

be constant, if the distribution is reasonable. For instance, if

the size of a region is some fixed minimum, k, plus a variable

Dm

part that follows an exponential distribution, P(m)=Ce -, then

the expected time to repair that region is less than

c1+C2/ (1-e PP"Dy hich is bounded by a constant as the size of

the—program, 1, grows., —Thus,; intheaverage case the total—time
to parse and repair a program is linear in the length of the pro-
gram. We are currently investigating a number of criteria for
dynamically choosing a region size, and the distribution of the
sizes.

After the repair has been found, control is returned to the
linear-time parser. Repairs to the program can be effected in
two ways. The repaired string can be physically placed into the
input buffer and reparsed, or the state of the parser can be

reset, using information from the parse matrix.
5. Implementation results

To illustrate the improved repairs possible with this algo-

rithm, consider these four fragments of a Pascal program:

(1) ... i =73 .
(2) ve. 1L t=3 a4+ b ...
]

J

'—h
°
il

(3) .o
(4) ... 1 ==
Assume that all insert costs are 1, all delete costs are 4 and
all replacement costs are infinite. A l-symbol least-cost repair
algorithm would make the same initial repair in (1) and (2),
presumably getting the "best" repair in one of the examples, and

cascaded errors in the other. A two-symbol regionally least-cost

repair would find the "best" repair in both cases, inserting a
semicolon between “j° and “a” in (1), and inserting an operator

in (2). Example (3) illustrates the problem with fixed region

S size., The subscript expression could be made arbitrarily long,

foiling any fixed lookahead; yet to a humam, the situationr—is
almost the same as in (l1). An ideal forward-move algorithm would
look ahead to the “:=", but not bother to go much farther. (4)
shows a cluster of errors that requires insertions in two places.
Our algorithm would repair it to ... i := J; ali]l := b;...

The repair algorithm requires careful implementation if rea-
sonable speed is expected. The effect of region size on computa-
tion time is overshadowed by the effect of grammar size, for
moderate regions. Our original implementation (intentionally a
"quick and dirty" approach) was not linear in the size of the
grammar, and required many tens of seconds for a five symbol re-
gion on a Pascal grammar. A second version, linear in the gram-
mar, computes a five symbol repair for Pascal in approximately
three seconds (on a VAX-11/780). By using techniques similar to
those suggested in [7], we can expect a more efficient implemen-

tation.

10

6. Conclusion

We have presented a model of error-repair using a forward

e -move. —This model -provides-a formal, -language-level -definition of — —

how repairs are chosen, using the idea of regional 1least-cost.
The algorithm to compute such corrections is linear in the size
of the grammar, and cubic in the size of the region. Even if re-
gion size is variable, in the average case the total complexity

of the parse/repair package is essentially linear.
7. References
[11 Aho, Alfred V. and Thomas G. Peterson , "A minimum distance

error correcting parser for context-free languages," SIAM

Journal of Computing 1, 4, pp. 305-312 (1972).

[2] Backhouse, Roland C., Syntax of Programming Languages,

Theory and Practice, Prentice-Hall (1979).

[3] Fischer, Charles N., Bernard A. Dion, and Jon Mauney, "A Lo-
cally Least-Cost LR Error-Corrector," Tech. Report 363, to
appear in ACM TOPLAS, University of Wisconsin-Madison (Au-

gust 1979).

[4] Fischer, Charles N., Donn R. Milton, and Jon Mauney, "A lo-
cally least-cost LL(l) error corrector," Tech. Report %371,

University of Wisconsin (August 1979).

[5]1 Fischer, Charles N,, Donn R, Milton, and Sam B. Quiring,

[6]

11

"Efficient LL(l) error correction and recovery using only

insertions," Acta Informatica 13, 2, pp. 141-154 (1980).

Graham, Susan L., Charles B. Haley, and William N. Joy,

"Practical LR error recovery," Sigplan Notices 14, 8, pp.

[7]

[81]

[91]

[10]

[11]

168-175 (1979).

Graham, Susan L., Michael A. Harrison, and Walter L. Ruzzo,

"An Improved Context-Free Recognizer," ACM Transactions on

Programming Languages and Systems 2, 3, pp. 415-462 (July

1980).

Graham, Susan L. and Steven P, Rhodes, "Practical syntactic

error recovery," Communications of the ACM 18, pp. 639-650

(1975).

Pai, Ajit B, and Richard B. Kieburtz, "Global Context
Recovery: A New Strategy for Parser Recovery From Syntax Er-

rors," ACM Transactions on Programming Languages and Systems

2, 1, pp. 18-41 (January 1980).

Pennello, Thomas J. and Frank L. DeRemer, "A forward move

algorithm for LR error recovery," 5th ACM Symposium on Prin-

ciples of Programming Languages, pp. 241-254 (1978).

Roehrich, Johannes, "Methods for the Automatic Construction

of Error Correcting Parsers," Acta Informatica 13, 2, pp.

115-139 (1980).

