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1. Introduction. The development of computers thirty years ago made
it praétical to calculate finite difference approximations of elliptic
partial differential equations. For these calculations the solution of

a linear system AU = F, which is the finite difference representation

————¥—the differentialequation;—is—fundamental—Hardware characteristics

of early computers, particularly memory limitations, spurred the

development of direct iterative methods for these linear systems. In

direct iterative schemes the matrix A splits into a difference A = M-N,

and one generates a sequence {U(v)} according to MU(v) = NU(U-1)+f.
Convergence of the method is governed by the spectral radius p of M-lN:
{U(v)} converges to the solution if p < 1, and smaller p implies faster
convergence.

The first iterative methods were point methods -- in any step of
the iteration they solved for one component of the unknown solution
vector at a time. Intuition suggests that iterative algorithms that
solve for several points at once will converge more rapidly than point
algorithms. The Gaussian elimination algorithm is seen in this light
to converge in one step. Frankel [14], Young [34], Arms, Gates, and

- Zondek [1], and Varga [32], using the algebraic structure of the limear
systems, and Parter [22], [23], by exploiting the nature of the systems
as finite difference approximations to elliptic partial diffe;ential
equations, determined the convergence rates of point and block
iterative methods. The results confirmed that iterative methods on
blocks comprising several lines of unknowns indeed converged faster
than point methods. Much of the work up to 1961 is collected in [33].

The usual finite difference approximations are accurate to second
order in the spatial mesh size h. In the middle 1960s atténtion turned
to higher order approximation methods -- finite element and other
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projection methods, which are still the subject of intensive study
([361, (71, [2], [30], [5], [10]). Because of their treatment of
boundary conditions, these methods are formally easier to obtain than

higher order finite difference approximations, and for a given accuracy

— their corresponding linear system of equations is smaller thanthe ===
finite difference system. Hence interest in direct factorization
methods for linear systems grew, and continues today; see [27], [28],
[15], and [16].

At about the same time it was seen that their regular structure
made separable finite difference elliptic systems amenable to special
fast direct factorization methods ([18], [9], [12], [31]). For a
limited class of nice elliptic problems, then, it became practical to
compensate for the second order accuracy of the usual finite difference
azpproximation by taking a sufficiently small h and exploiting the
regular structure of the linear system.

But not every problem is nice. Moreover, within the past few
years a growing desire to solve three~dimensional problems, together
with the development of novel computer architectures -- array
processors, vector machines, and multiprocessors -- has rekindled
interest in block iterative methods for elliptic systems. The effects
of special architectures are considered in [29], [17], and [19], while
an énalysis of the convergence rates of iterative methods for fairly
general elliptic problems already appears in [23].

But not evéry analysis is nice, and that of [23], partly because
of its generality, is somewhat opaque. A relatively direct discussion
of the basic ideas is given in [3] for the Poisson problem in a square.
That presentation uses the strong estimates of Nitsche and Nitsche [21]

and of Brandt [8].



Our purpose here is to reexamine the convergence rates of
iterative block methods for elliptic difference equations. A feature
of the present analysis is that we avoid the estimates of [21] and [8].

“wForwthEMPoissonwproblemﬂinmtw0~orwthreewdimensions this is of little

moment. But the Nitsche estimates have never been gxtendedtogenerak
regions, and must fail in dimensions greater than three. In contrast,
we will show that our new approach is easily extended to general
domains, to any number of dimensions, and to general elliptic
difference equations.

In addition, we can deal with certain kinds of singularly
perturbed elliptic difference equations. Such equations can arise when
solving paraboiic problems by discrete time methods. For instance, let
A= zizl 82/8x12 be the two-dimensional Laplacian; the backward Euler
method for the parabolic operator (coalat)—A leads, at each time slice

tn, to an elliptic operator
(1.1) ¢/t -A, T:=t -t

Let Ah be a finite difference approximation to A on a spatial mesh of
size h; we get a matrix A representing the elliptic difference

operator chz/t-thh. If chZ/t = Ehm, then A corresponds to
(1.2) cn® - thh. x

We distinguish four cases. Analysis of the first, in which o < 0,
is easy: p = O(h—u), and iterative methods converge very rapidly. In
the second, o = 0, and (1.2) is a singularly perturbed operator. We
have studied this operator in [26], where it arose from plane iterative

methods for the Poisson problem in the unit cube; the attack there,



though related to some of the ideas of this report, seems to be
particular to the model operator (1.1) and’rectangular domains.
In this paper we restrict our attention to the third and fourth

_cases, wherein 0 < ¢ £ 2. If a =2, then (1.2) is a regular elliptic

difference operator, to which both the gartier-and-our-new-analyses
apply. When 0 < o < 2, (1.2) is again a singularly perturbed operator;
but it too can be handled with our present methods, unlike the instance
o = 0. To justify considering this case, we point out that a = 1 for
the optimal choice of T in the Crank-Nicolson method for parabolic
problems.

We begin in section 2 with a description of the model elliptic and
parabolic probléms in the two-dimensional unit square. It is worth
remarking that our model problems need not be self-adjoint. Section 3
is devoted to proving the convergence rates of iterative schemes
satisfying certain basic assumptions.

In section & we describe block structures of particular interest
-- k-line and kxk blocks -- and the usual iterative séhemes: Jacobi,
Gauss-Seidel, and successive overrelaxation. In these schemes A splits
into a difference A = M-N. The key to our analysis is that it suffices
to consider only the block Jacobi scheme, for which N is essentially a
sum of one-dimensional weak multiplication operators N. We demonstrate
this decomposition of N in section 4, and discuss the action éf N in
section 5. In section 6 we use the theory of section 3 and properties
of N to derive the convergence rates of the block iterative methods of
section 4.

Next we take up more general problems: other operators in section
7, and other domains in section 8. We conclude in section 9 with some
comments about the general applicability of our method of analysis.
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2. The model problems. The basic ideas are clearest in this simple-

setting. We construct finite difference approximations of the partial

differential operators

il

Tu := -Au + du_ + eu_,
X Yy

(2.1)
fu :

+
cut Lu

on the open unit square

2

Q= {(x,y) €R" : 0<x, y<1}

in the usual way. Impose on Q a mesh with uniform spacing
(2.2) h := 1/(P + 1)

and let (xi,yj) := (ih,jh). Define the set of interior mesh points Qh

and the discrete boundary BQh by

Q = {(xi,vj) : 114, j P},
(2.3)
th = {(Xi’yj) . i=0 or = P+1, or j = 0 or = P+1}.
A mesh vector U = {U, < i, j £ P+1} is a function defined on the

i,

entire discrete mesh Qh = Qh ¥] th’

The discrete Laplace operator is defined at points in Qh by

¢

2

(U -2U, .+ U )/h

IOy e Wy 5 205 T Ty
(2.4)
2
U N W e

We suppose that c, d, and e are smooth functions on Q) and that

(2.5) c(x,y) 2 cy > 0 on Q.



The discrete operators that arise in approximating (2.1) are then

[LhU]i,j 1= [-AhU]i,j + di,j(ui+1,j - Ui—l,j)/(Zh)
(2.6)
+ ei,j(Ui.i+1 - Ui,i-l)/(Zh{
and
2.7 2.u]. . := (c. ./T)U, . + [L U], .
CRONNN AL P CRvio LA R L P
where T > 0 is given and, for instance, c., . := c(x.,y.).
1,] 1°7]

Note that, although the mesh vector U is defined on Qh’ the

vectors AhU, LhU, and £hU are defined only at the interior mesh points.

As usual, the forward difference operators are given by

= - < < < <
vai,j (Ui+1,j Ui,j)/h (0£isP,1£j<P),
(2.8)
o= - <4< < i g
vai,j : (Ui,j+1 Ui,j)/h (1£isP,0%5jsP).

Given mesh vectors F and G, the model elliptic problem is to find

a mesh vector U satisfying

(2.9) LhU = F in Qh, U=6Gon th

and the model parabolic problem requires U to solve

(2.10) RhU = F in Qh’ U=G on th. \

After choosing an ordering of the mesh points (xi,yj) -- or,
equivalently, of the components of U -- we let A be the matrix
representing thh or h22h. As indicated in (2.4), Ah’ Lh’ and Qh map

vectors with P2+4P components into vectors with P2 components. Hence A

is a matrix of order Pz; the known boundary values G are put on the



right hand sides of the difference equations (2.9) and (2.10). In

either case we arrive at a linear system

(2.11) AU =F

of order , where F indicate: i components of

hZF and of including the G terms.

Every vector U with P2 components may be viewed as a mesh vector

Praibuii SvemBRoRm RS L e e g

on ﬁh that also satisfies

(2.12) U=20on BQh.

Henceforth we assume every mesh vector U satisfies (2.12).

An iterative method for solving (2.11) is determined by a

splitting
(2.13) A=M-N
Rewrite (2.11) as
MU = NU + F.
After choosing a first guess U(O), we obtain a sequence {U(v)} from

2.16) 1w = D+ F

(v)}

Tt is well known that when A is nonsingular the iterates {u

(0)

converge to the unique solution of (2.11) independently of U if and

only if the spectral radius
p := max {|A] : det (AM-N) = 03}

of M_lN satisfies p < 1. So the first thing we require of a splitting



is that p < 1. Evidently the iterates {U(U)} of (2.14) converge more
rapidly for smaller p. Hence our task is ‘to determine the asymptotic
behavior of p as h > 0.

For future reference we note that corresponding to every A for

___—____—___‘“_Whifﬁ“ﬂétfﬁﬁ=ﬁ%—=—0—there—is—a—veete;—v—i—ﬂ_saLisfying_AMY_ELABLL_j@;_________________
also record two lemmas regarding VX, Vy’ and Ah. Let X and Y be mesh

vectors; define an inner product and associated norm

o= 3 = 1/2
Y =5 X Y X1, = (X,X)°77

An operator B on mesh vectors is normed in the customary way by

“B“h_:= sup {HBXHh : “X“h = 1}.

As usual, |d| denotes the sup norm of d over Q.

Lemma 2.1. If U is a mesh vector satisfying (2.12), then
(VXU,VXU) + (VyU,VyU) = (—AhU,U).

Proof. Summation by parts; see [11] or [20]. D

Lemma 2.2. 1If U is a mesh vector satisfying (2.12), then

1/2
(19,01, 10 + AT1, 10D < 101 (2CAD01HE
Proof. By the Schwarz inequality,

<
(v, i, 1o + (v, 10D = 1ui, (19,00, + 1V U1, T

2

But the inequality 2ab £ a2+b and Lemma 2.1 show that

2 4 v 2] = 2(-00,0). O

[HVXUH + IV_Ul h W

2<
" U A



3.

A general approach. To begin the analysis of the splitting (2.13),

we make four assumptions.

Al.—p-< 1,Msowthewiteratiyeﬁmethodw(2.14) is convergent.
A2. p is an eigenvalue of M-lN: there is a mesh vector U # 0 such
that pMU = NU.
A3. There is a positive constant NO’ independent of h, such that
<
ﬂNHh £ NO'
AL,

There are a smooth function q and constant 4, with
q(x,y) 2 q > 0 on Q

and a constant D > O, independent of h, so that whenever U and V

are mesh vectors satisfying (2.12) we have
(wu,v) = (qU,V) + E,

where

IE] = hD[(lVXUI+lVYUI,IVl) + (lUI,leVI+!V§VI) + (1ul,1vD]

*

+ 2D[(-A,0,0) + (-4,V,V)].

Assumptions Al - A3 are in effect more or less common; this will

become clear in section 6. Our main new concept is A4. As might be

expected, verification of A4 and the determination of q are the

important technical steps when applying our analysis to any particular

splitting. But we shall see that these steps are not difficult.
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When a splitting (2.13) satisfies these assumptions, the
asymptotic behavior of p as a function of h is readily discovered. We

begin with the elliptic case.

2 C
Theorem 3.1. Let A correspond to h lL,. LUpPpPOSE thesplitting

(2.13) satisfies Al - A4. Let A be the smallest eigenvalue of the

0
problem
(3.1) Lv = Aqv in Q, v = 0 on 3Q.
Then
(3.2) p=1-Ah"+o?).

0
Proof. Let U be the eigenvector associated with p in A2, so that
pMU = NU.

Subtract pNU from both sides and use (2.13) to see that

(3.3) AU = ((1 - p)/p)NU.
By Al,
(3.4)  p= Q- p)/(phd)

is positive. Because A represents thh’ (3.3) corresponds to

*

(3.5) LhU = pNU in Qh’ U=0 on BQh.

Indeed, whenever A # 0 satisfies

(3.6) AMX = NX

for some nonzero X, then

11



b= p) := (1 - A/ (D)

is an eigenvalue of (3.5). Conversely, if U is an eigenvalue of (3.5)

and 1+ph® # 0, then

A=A =)

is an eigenvalue of (3.6).

For fixed h, let ﬁ be an eigenvalue of (3.5) minimal in magnitude.
The basic result of [24] shows that T Ay 28 h > 0 -- that is, § =
A0+o(1). It follows by positivity of A that Re(1+ﬂh2) > 0 for small

h, whence A= 1/(1+Qh2) is a well defined eigenvalue of (3.6). Hence
S 1% = -2 _ 2
p2z Al =1/]1+ph"] =1~ [/\0 + o(1)}n".

But p given by (3.4) is an eigenvalue of (3.5) by construction, and so

(1-p)/ (ph?)

(A%

gl = Ao+o(1), by the minimality of H. We deduce that

<1/(1+ [Ay + o()1n?) = 1 - [Ay + 0(1)]h%.

©
IA

Comparison of this and the previous inequality proves (3.2). O

Parabolic equations lead to discrete singular perturbation
eigenvalue problems, so in the general nonself-adjoint case we can
establish only an inequality analogous to (3.2). We arrive as before

at (3.3), where A represents hzﬂh; hence

(3.7)  B%(c/T + LU = ((1 - p)/pINU.

We make a basic assumption about the ratio of the time step T to the

spatial mesh size.

12



P1. There are constants q >0 and 0 < o < 2 such that h2/t = c.h .

Now define

(3.8) TRENCREE VA (O F

we deduce from (3.7), (3.8), and P1 that in the parabolic case (3.3)

corresponds to

2-0p y = UNU in Q

(3.9) cU + h 0 s

U=20on th,

where

(3.10) c(x,y) := clc(x,y).

Theorem 3.2. Let A correspond to h22h. Suppose P1 holds and the
splitting (2.13) satisfies Al - A4, Let
A, := min folx,yv)/q(x,y) : (x,y) € Q}.

Then
(3.11) pS1- Alha + o(hY).

Proof. Because p is positive, (3.11) is equivalent to (l-p)/(pha)

= e A1+o(1). Suppose this inequality is false. We may then assume

+

(3.12) 0 5 p < 2A.

Let U be the eigenvector of (3.9) associated with p. Normalize “U“h to

be 1. By A4,

(3.13) p(NU,U) = p(qU,U) + E

where, using Lemma 2.2,

13



[E.| € 2unD[2(-2,0,0)1%/2 + 2pnD(-,U,U) + phD.
1 h b

Use (3.12) and the inequality 2ab £ a26‘2+b282 to get

2

IE,| S 167, “0°h" + B/2 + 4/ Dh®B + 2A Dh,

where we have defined
-0
B := h°7%(-0,U,0).
Lemma 2.1 shows that B > 0. It follows from (3.9) and (3.13) that

(cU,U) + B = p(qU,U) + E; + E,,
with

IE,| hz'”K[z(—AhU,U)]l/2 < 2n2 %2572 4 g

and K := Idlmjlelm. Choose 6 so small that the coefficients of B in

the estimates of E. and E, sum to less than 1 for small h. Then

1 2
(3U,U) < p(qu,U) + 20° %2072 + 16A12D2h“ + 2A,Dh.
The theorem follows at once. [
When the splitting is self-adjoint -- a frequent occurrence -- we

can use the variational principle to establish equality imn (3.11).

Theorem 3.3. Under the assumptions of Theorem 3.2, suppose also

that we have

S1. A and M are Hermitian and positive definite.
Then

(3.14) p=1- Alh“ + o(h%).

14



Proof. Fix &€ > 0 and choose Vg(X,Y) € CA(@) to vanish on 9Q and

to satisfy

fQ Evgz dx dy
(3.15)

IA
>
+
8]

fQ Qv dx—dy

Now A2 and Sl imply that p = sup {(NX,X)/(MX,X) : X # 0}. Choosing X

as the mesh vector V8 determined by point evaluation of Ve yields
> =
(3.16)  p 2 (W,,V)/(MV,,V,) = (NV,,V.)/[(AV,,V,) + (W ,V)l.
Observe that
o O = 2-0
(AVS,Vg) =h [(CVE,VE) +h (LhV

A

It follows from the smoothness of Ve that

2 a -2 AT N
h (AVS,VS) h [fQ cv, " dx dy + 0(h" )1;
moreover, by A4

hz(NV V) =[,qv 2 dx dy + o(1)
£''e Q *'e s

Combining these equalities with (3.15) and (3.16) yields

pz1- (A + e)n? + o(nY),

which together with (3.11) establishes the theorem. O

Note that hypothesis S1 requires d = e = 0 for the operators (2.1)

of the model problems.
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4. Some block iterative methods. We take up now a description of

specific block iterative methods corresponding to (2.13). The block

structure of an iterative scheme for the linear system

AX = ¥,

where A is an nXn matrix, is completely determined by a block partition
of the n-vectors. Suppose every n-vector X is decomposed into

subvectors

t
X = (X,%y, - o)

and each Xj is itself an nj-vector. This partition of X induces a
block partition A = [A, .] in which each A. . is an n.*xn. matrix. The
1,] 1,] 1]

corresponding block Jacobi iterative scheme is

w1y oA x®=-s, A x Oy,
i,i7i s#i "i,8 s i

In terms of (2.14), M is the block diagonal matrix M= diag[Ai i]. The

y

corresponding Gauss-Seidel scheme is

(4.2) Ao x ™o s A x5 A X v-1) 4y,
1,11 s<i 1,8 8 s>i "i,s' s i

while the successive overrelaxation (SOR) method with relaxation

parameter w is

A, x, M =-uws_ A X ) _uy A, X (v-1)
(4.3) i,i%i s<i Ti,s"s s>i “i,s’s

+ Yy, + (1 - wA, x, -1
i i,ifi

We are interested in specific block structures that arise in a

natural geometric way. Recall that a mesh vector U is defined on the
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rectangular set of mesh points Qh. We will decompose U into blocks of
components corresponding to lines or subsquares of mesh points.

Formally, let k be a fixed integer factor of P, so that

(4.4) P = kQ for some integer Q.

In the k-line block structure (see [22] or [23] for a detailed

description), each block of U comprises the unknowns Ui i associated
y
with the points on k consecutive horizontal (or vertical) grid lines.

Index the blocks by s; we have

(4.5) U = {0 ps-1y4g °

The kxk block structure is described in [3], [25], and [26]. Each

block comprises the unknowns associated with a kXk square of mesh

points. We distinguish these blocks with a double index (r,s):

<i, j £k}

(4.6) U o= U qyeq k(s-1)+j C L

T,

To write down the matrices A, M, and N of the Jacobi iterative
method for each of these block structures is straightforward but
tiresome. We shall give a unified analysis of the Jacobi method for
these structures. But for illustrative purposes we first sketch a
development of the (horizontal) k-line scheme for the elliptic problem

(2.9).

For 1 £ 0 £ P define the PxP matrices

Dy = [-1-hd; /2, 4, -1+hd; /2]
= dji £4i =
4.7) S0 d1ag[1+hei’0/2] (1 £igP)
TG = diag[l-hei,o/Z].

17



The notation indicates that D0 is tridiagonal while S0 and T0 are

diagonal. For example,

F0 if 14 - 3] >1
-1-hd, /2 =1 =1
[D} ‘~ﬂ 1)0/ 1] t :
g 1,] 4 if j=1
\-1+hdi,0/2 if j=1i+1

With this ordering of the mesh points into horizontal lines, A is the

2,02

P“xP° block tridiagonal matrix

(4.8) A= [-SG, D,-T.] (1<£0sP).

g’ o

Now collect the lines of unknowns k at a time. For 1 £s £Q let

Ms be the kPXkP block tridiagonal matrix
= [- - <gg<
M = [Sy(s-1)400 Pk(s-1)t0? Th(s-1)+o) (1502 H)

and define the kPXkP block matrices

0 0 0 S
R, = { e { k(s 1)+1] .
Tk 0 0 0
S

Observe that A is then the block tridiagonal matrix
A= [-WS, MS, —RS] (1 £s£0Q). ’
In the k-line Jacobi scheme, A splits into the block matrices
M= diag[MS], N:=[w, 0, R_].
We now seek a simple quantitative description of N for both the

k-line and the kxk block partitions when k 2 2. If B and C are

18



matrices, we mean by B = ¢c+0(h) that there is some constant K so that
| (BX,Y) - (CX,¥)] £ Kh|(X,Y)] for every X and Y.

Because 5 and T0 are 0(h) perturbations of the PXP identity matrix,

let us for the moment ignore the small terms. We define a

one-dimensional operator N on vectors ¢ := (¢1, ¢2, .. ,¢P)t.as
follows:
¢ks+1 1£€s5Q-1,0=0
[N¢]ks+0 =
(4.9) Oks 1€£s£Q1,0=1,
[ﬁ¢]j‘ 1= 0 for any other subscript j.

N is a weak multiplication operator, as we shall see in the next
section. Now let Nx be that operator on mesh vectors U that acts on U
only in the x-direction, and in that direction acts as N. Define Ny in

a similar way. For instance, with 1 £1i £ P we have

< ¢ € 0O- -
Ui,ks+1 1£s5£Q1,0=0
[NyU]i,ks+0 =
< ¢ € 0O- -
(4.10) U ks 1$s£Q1,0=1,
[NUl. . := 0 for any other subscript j.
Yy "1,] \

Observe for each block structure that the Jacobi splitting (4.1)
yields the same N for both the elliptic and parabolic operators (2.6)
and (2.7). This is so because the matrix representing the operator
Rh—Lh is a diagonal matrix. A straightforward computation proves the

next theorem, which summarizes the essential nature of N.
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Theorem 4.1. Let k 2 2. In the k-line Jacobi scheme (4.1)/(4.5),
(4.11) = N, + 0(h),

and for the kxk block Jacobi scheme (4.1)/(4.6) N is given by

(4.12)  N=N + N + 0(h). O

5. The operator ¥. We now show that NU converges weakly to (2/k)U, so

that N is a weak multiplication operator. In this section U and V are

real vectors with P components. For each such vector X it is useful to
define XO .= 0. It is clear from (4.9) that N samples U twice in each

block of k points {Uks+0 : 0<0 < k-1}, where 0 £ s € Q-1 -- except in
the first and last blocks. Roughly, but perhaps vividly, N sees U

about 2/k of the time; precisely, from (4.9) we have

~ _ Q—l
5-1) F0,v) = 252y (U Vigar * Ugor1Viks) -

1f U and V arise from the evaluation of smooth functions u(x) and

v(x) on the points {xi := ih : 0 £ i £ P+1} , then

~ o~ < 3 < k~
Uks+j = Uks and Vks+j = Vks+1 (0 £j s k-1),

whence

~ < 3 < k-
U Viot1 = Uks+jvks+j (0 £j £ k-1).

Summing this approximate equality over j and dividing by k gives

y k-1
UpsViessr = (/00250 Vo Vg™

which looks like a Riemann sum over the interval [xks’ st+k] for

(1/hk) [ u(x)v(x) dx. Consequently,

20



112

Fu,v) = (2/hK) fg q) uG)v() dx (2/k) (U,V).

Now we make this argument precise. Let V be the forward

difference operator, as in (2.8). Fix j for the moment. Obviously

) '..'] . . T -
U =0 =RV i =¥ AR

ks ks+j 0=0 " “ksto’ “kstl ks+j

(as usual, a vacuous sum has value 0). Hence

V. .. +h (zJ 1 VU

Uksvks+1 = Uks+j ks+tj

j-1
ks+0)(zc=1 Vvks+o)

(5.2)

B hzc‘l ks+3vvks+0 th“O ks+JVUks+0'

Replace Uks+j and Vks+j in the last two terms of (5.2), using the

identity

X - pydt

st+0 = kstj n=0 vst+n'

This substitution gives
2
U Vv =U, ,.V. ..+ h%G, .(U)G, .(V
,J( ) 1,J( )

ks ks+1 kst+j kst] 0

(5.3)

hzo—l ks+ovvks+o hzo-o Vks+oVUks+0

’hZ]I

2,51
"1 86,5 D Wisto =0 8,35V Wks+o?

where for 0 £ 0 £ j-1 £ k-1 we define

k-1

-1
) =337 L 6(%,s) := 5o

3Y >
G’J n=g ks+n IVXkS+D‘ = IGG,j (X) I .

Sum (5.3) over 0 £ j £ k-1 and divide by k to get

(5.4) Uksts+1 - (l/k)z]‘ﬂ ks+JVks+J (1/k)ES’

with
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k-1

k-1 -
< )
(5‘5) 5
+ 302K6(U,5)6(V,s).

2

By.-the Schwarz inequality and the inequality 2ab £ az+b ,

a

6U,9)6(7,5) § (/D [Eg 1T, 15+ (Filg W51

Estimate the last term of (5.5) in this way, and sum (5.4) over s to

deduce that

. Q_l _ ~
(5.6) ez VksVks+1 = (1/k) (U,V) + E/2,
where

[¥] € 2n[(1Ul, W) + (IVO], VD]
(5.7)
+ 3n%K[ (VO,VU) + (WW,WV)].

Comparison of (5.1) to (5.6) shows that we can exploit the
symmetry of this argument in U and V to prove the following theorem,

which quantitatively describes ¥.

Theorem 5.1. Let ¥ be given by (4.9). For P-vectors U and V,
(5.8) v, v) = (2/K)E,V) + E,

and E is estimated by (5.7). O

6. Rates of convergence. In this section we take up the problem of

determining the convergence rates of the iterative methods (4.1) -

(4.3) when applied to the elliptic and parabolic model problems (2.9)
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and (2.10) with the k-line and kxk block structures described in
section 4. We limit our discussion to the case where k 2 2; although

a similar argument applies when k = 1 (and formulas (6.4) - (6.9) are

by showing that the Jacobi method for these block structures satisfies
the assumptions of section 3. After p is determined for the Jacobi
method it is easy to find the convergence rates of the Gauss-Seidel and

SOR methods.

Lemma 6.1. Assumption Al holds for both block structures and both

problems if h is sufficiently small.

Proof. 1In all cases, inspection of the submatrices (&4.7) of A, as
given by (4.8), shows that the diagonal elements of A are positive and
the other elements are, for small h, nonpositive. Therefore N is

nonnegative and A and M are M-matrices: that is,

-1

6.1) Nzo0, Mlzo, andalzo0.

(Y]

Moreover, A is irreducible for small h. Al follows from Theorem 3.13

of [33]. O

«

Lemma 6.2. Assumption A2 holds for both block structureé and both

problems if h is sufficiently small.

Proof. This follows from (6.1) and the Perron-Frobenius theory;

see Theorem 2.1 in [33]. O
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We remark that when nonnegativity of Mn1 or A-1

fails, Al and A2
often can be established by other means. For example, Al holds when A
is positive definite and N is nonnegative. A2 follows from supposing

__that M is positive definite, N is symmetric, and the splitting

satisfies block property A {see{il5 (3315135325, for then

. -1 . . .
eigenvalues of M "N are real and occur in signed pairs.

Lemma 6.3. Assumption A3 holds for both block structures and both

problems if h is sufficiently small.
Proof. In light of Theorems 4.1 and 5.1, NO € 2+0(h) £ 3. O

Lemma 6.4. Assumption A4 holds for both block structures and both

problems if h is sufficiently small. For the k-line scheme,

(6.2) q = 2/k, D = max {3k+0(h), Ielm/k},
while for the kxk block scheme

(6.3)  q=4/k, D=max {6ks0(h), (ldltlel)/k}.

Proof. These statements essentially follow from Theorems 4.1 and
5.1. We sketch the argument for the k-line block structure (4.5).

From Theorem 4.1 and (4.10),

¥

_ <P Q-1
(NU,V) = zi=1 2820 1+ hei,ks+1/2]ui,ksvi,ks+1

+ 21.)_, ;21
1-—

1
1 Ts=0 [1

he; ys+1/21Y5 ke+1Vi,ks”

Following the steps from (5.1) to (5.6), we estimate the term

T(i,s) := [1 ¢ hei,ks+1/2]Ui,ksVi,ks+l
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to get

5,5 T(,s) = (/K)(U,V) + E/2 + hR/2,

with B satisfying (5.7) and

R

A

P A WAANS R
< TFTTE

I ~
R et Ul 4vi) + |EL/2]

The second term in the expansion of (NU,V) is appraised in the same

way, to yield

aU,V) = (2/K)(U,V) +E,
[E| £ B(2+hlel ) [(1T,UL, [VD+(IU], 19,V1)]
+ h(lel /K) (10, 1V]) + h%3k(1+hle] /2) [(-40,0)+(-AV,V)].

But this implies the inequality of A4, with D given by (6.2). O

Our next theorems follow immediately from these lemmas and

Theorems 3.1 ~ 3.3.

Theorem 6.5. Let p(kL) and p(kB) denote the spectral radii for
the k-line and kxk block structures, respectively, of the block Jacobi
scheme applied to the elliptic problem (2.9). Let A0 denote the

smallest eigenvalue of the problem

Iv=Av in Q, v = 0 on 9Q.

Then

]

p(L) = 1 - (k/2)A% + o(h®),

(6.4)

p(KB) = 1 - (K/4)Agh + o(8®). O
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Theorem 6.6. Let p(SkL) and p(SkB) denote the spectral radii for
the k-line and kXk block structures, respectively, of the block Jacobi

scheme applied to the parabolic problem (2.10), and suppose that P1

__holds. Let

/\1 = min {c(x,y) : (x,¥) € Q3.

Then

IA

p(SKL) £ 1 - (k/z)Alh” + o(hY),
(6.5)

A

p(SkB) £ 1 - (k/A)Alh“ + oY),

and equality holds if d = e =0, so that S1 is satisfied. O

We remark that the character "S" is to remind us of the singular
perturbation nature of the parabolic equation.

When a matrix A under a block partition satisfies block property
A, then the spectral radii Pgs of the Gauss-Seidel method (4.2) and Py
of the SOR method (4.3) are determined by the spectral radius p of the

Jacobi method ([1], [33, chapter 4], [35]):

2 2 _ 22
Pes = P» (py tw = 17 =wpp,

Moreover, Py is minimized for a specific w:
2.1/2
512,

Wy = 2/(1 + (1 - Py =Wy " 1.

With the block structure imposed by (4.5) or (4.6), A has block

property A. This observation proves our next result.
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Corollary 6.7. Let A represent thh' Then

Peg(KL) = 1 - kJ\th + o(h?),
(6.6)
p, (kL) =1 - 206A)?h + o),
Peg(KB) = 1 - (k/2)/\0h2 + o(h?),
6.7)
p, (kB) =1 - 2?0 + o).
Let A represent h22h. Then
Peg(SKL) € 1 - k/\lh" + o(aY),
(6.8)
p,(SKL) S 1 - Z(k/\l)l/zha/?‘ + 0¥y,
and
Peg(SKB) £ 1 - (k/2)A 0" + o(h%),
(6.9) .
p,(SKB) <1 - (2k/\1)1/2h°’/2 + o¥?). o

7. Other operators. In this section we extend our theory to cover the

more general operators L and £ defined by

Lu :

it

- (aux)X - (buY)Y + duX + euy + fu,
(7.1)
Lu :

cut + Lu.

For simplicity we have excluded terms in the cross-derivative uxy'
Self-adjoint operators L with this term have been discussed in [23].
We assume for convenience that a, b, ¢, d, e, and f are smooth

functions on @, that c satisfies (2.5), and that
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(7.2) a(x,y) 2 a, > 0, b(x,y) 2 bO >0, f(x,y) 20 onQ.

L is uniformly elliptic by the strict positivity of a and b, and

satisfies a maximum principle by virtue of the nonnegativity of f.

As in section 2, we let U be a mesh veCtdr“on”the*meshwpoin%stHﬁwawm

defined by (2.3). At points (x y ) of Qh we define

:= (a,

3541, 3 15 F 21, /%0 iy T (b o+ by 54q)/2.

1,]

The discrete approximations to (7.1) are then

el 5 0= [ai’f%,J‘(Uiﬂ,J‘ Uiyl ai—‘a,j(ui,j " Ui J”/h
- - - b, U, . - h
(7.3) bs ’J+1( ’J+1 %, ) i,3- '2( i,] i,3- PV
+ di,j(Ui+1’j - 0. 1’J)/(2h) * e, .(Ui’j+1 - i’j_l)/(Zh)
+ £, .U, .
i, 1,]
and
7.4 2.0]. . := (c, /U0, . + [L UL,
(7.4) [2, ]1,3 (CI,J/ ) i, (L, ]1,3

It is not difficult to see that the machinery of section 3 still
works. The main theorem of [24], which relates the minimal eigenvalues
of (3.1) and (3.5), is easy to establish with L and L given by (7.1)
and (7.3), respectively. Consequently Theorems 3.1, 3.2, and 3.3
apply, mutatis mutandis, to splittings of the matrix A arising from
(7.3) or (7.4). !

Now we must determine q for the Jacobi scheme, using either of the

block structures (4.5) or (4.6).

For the k-line structure, a direct computation yields

WO, V) = 2 [by yopn * By pin/2005 ey kst

t2 [bl kst h?i,ks/Z]Ui,ks+1Vi,ks’
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where the sum is over 1 £ 1 £ P, 0 £ s £ Q-1. Consider a term

T(i,s) := [b + h v

e; ks+1/ 2105 ksVi, ks+1

Ble; 1s41/205 ksi, kst

i, kst

i

D; ks+iVi,ks'i,ks+l *

tIby pean T Psoke+ilUi ke i, ksl

The factor in square brackets in the last term above is bounded by
thVyblm, because b is smooth. Proceeding as in the proof of Lemma

6.4, we establish the validity of A4 with
(7.5) q = 2b/k, D = max {3k|b|_+0(h), 2|Vyblm+le|m/k}.

Observe that the variable coefficient b has led to a variable q.

In the same way, for the kXk block scheme we obtain

(2a + 2b)/k,
(7.6)

o]
i

max {3k|al +3kIb] #0(h), 21V, al#21V. bl +Cldltlel )/k].

We collect our results in the following two theorems.

Theorem 7.1. Let p(kL) and p(kB) denote the spectral radii for
the horizontal k-line and kxk block structures, respectively, of the
block Jacobi scheme applied to the elliptic problem (2.9) with Lh given
by (7.3). Let fO denote the smallest eigenvalue of the problem

Lv = ybv in Q, v = 0 on 99,

and let TO denote the smallest eigenvalue of the problem

Lv = y(atb)v in Q, v = 0 on 3Q.
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Then

p(L) = 1 - (k/2)Tgh? + o),

(7.7)

I

p(kB) = 1 - (k/2)[jh” + o(h?). O

Theorem 7.2. Let p(SkL) and p(SkB) denote the spectral radii for
the horizontal k-line and kXk block structures, respectively, of the
block Jacobi scheme applied to the parabolic problem (2.10) with £h

given by (7.4), and suppose that P1 holds. Let

1
H

1 ¢ min {c(x,y)/b(x,y) : (x,y) € 03,

=1
]

| = min (2(x,y)/(a(x,y) + b(x,y)) & (x,y) € 0}.

Then

iA

p(SKL) £ 1 - (k/Z)Flh“ + o(h%),
(7.8)
p(SkB) £ 1 - (k/z)rlh“-+ o(h™),

and equality holds if d = e = 0, so that S1 is satisfied. O

The nonzero pattern of A is the same whether A arises from (2.6)
or (7.3). In the more general case, then, A retains block property A
for both the k-line and kxk block partitions. Consequently the
analogue of Corollary 6.7 is valid. We leave a statement of this

Corollary 7.3 to the reader.
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8. Other domains. Extension of our results from two to m space

dimensions is straightforward. We sketch this for the model problems

gset in the m-dimensional unit cube, and then return to the

two-dimensional setting to discuss domains other than the unit square.

more general operators on these domains can be handled as outlined im

section 7.

Impose a uniform mesh of size h = 1/(P+1) on the unit cube
— - m
Q(m) = {x = (xl, ..,xm) €eR :0¢< X, < 1}.

Let  be a multi-index B = (B, .-,B.) € Z", and let y(i) be the
multi-index whose ith component is 1 and whose other components are 0.

By xB we mean the point x = (Blh’ ..,Bmh) in Bm. Hence putting

B :={B € Zm : 1

A
A

B. SP}, B:={Be gm : 0

< P
i B, € P+1}

allows us to write

Qh(m) {XB : B € B},

BQh(m) {xﬁ : B € B and at least one Bi = 0 or = P+1}.

With the m-dimensional Laplacian A(m) := Zi 82/6xi2, our model

operators are

if

m
Lu := -A{m)u + zi=1 diaulaxi,
(8.1)

fu :

i

cdu/dt + Lu;

we suppose that c and all di are smooth and that ¢ satisfies (2.5):
Discretization of these operators is done as in (2.6) and (2.7). Let

U= (UB) be a mesh vector. The approximation of A(m) is given by
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(8.2) (8,1, := 5 Wy = g+ Ugay(i))/h"

and the discrete operators corresponding to (8.1) are

(8.3) [LhU B 1= [-Ah(m)U]B + Zi di,B(UB+Y(i) - UB'Y(i))/(Zh)’
‘(R 4) [QnU]p 1= (cﬁlr)Uﬁ + [Lhu]ﬁ'

In m dimensions there are m obvious block partitions. Suppose for
example that m = 3. 1In the k-plane block structure, each block of U
comprises the unknowns UB associated with the points xB on k

consecutive planes. Indexing the blocks by s, we have

T :={u

s B B € B, k(s-1) < By < ks}.

In like fashion, for blocks of kxk lines the basic subblock is

:= {U

r,s B : B € B, k(r-1) < BZ < kr, k(s-1) < B3 < ks},

and kxkxk blocks are given by

~

ks
r,s,t ’

A

:= {U, : B €B, k(r-1) < Bl

A

B kr, k(s-1) < Bz

A

k(t-1) < 53 kt}.

Let us agree to call a basic block an s-slice of U if we partition U by
imposing restrictions of the form k(si—l) < Bi s ksi on the indices

Bm-s+1’ “ey Bm. With this notation, it is easy to state and prove the

m~dimensional version of Theorem 4.1.

Theorem 8.1. Let k 2 2. Denote by Nj the operator acting as N in

the xj—direction. Let A represent thh or hzﬂh. For the block Jacobi

scheme (4.1) based on s-slice blocks,

_ <l
N=2_ g Nyt o). B
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Observe that s-slice decompositions preserve block property A.
Assertions similar to Lemmas 6.1 - 6.4 are readily demonstrated; the

following lemma collects the results.

2 2

Lemma-8-2.Let -k > 2 and let A correspond to h Lh or h™2 .
1)

Assumptions Al - A4 are satisfied by the block Jacobi method (4.1)

A
A

based on s-slices. Specifically, for 1 = s = m,

INI, =N

b 0= 2s/k + 0(h) £s + 1, q = 2s/k,

D = mex {3sk+0(h), 2‘3’ a1 /K,

=m-s+1
(8.5)

m m
Bl < mD[20_; (1V,00,19D) + 20_; (JUL,19391) + (11, 1VD)]

+ b2D[ (-4, (mU,1) + (-8, (mV,M)]. O

Now the machinery of section 3 grinds out theorems like those of
section 6. Rather than turn the crank, we choose to consider problems
with the model operators (2.1) set in more general domains Q of 52.

We begin by describing Q and Qh. Assume that Q is a bounded
domain in 52 with Lipschitz boundary 8Q, and that locally Q lies always
on one side of 9Q. This last condition ensures that Q has no internal
cusps. Boundedness implies that Q has "leftmost" and "bottommost"

tangents x = X, := min fx : (x,y) €Q}, yv= ¥y = min {y : (x,§) e 0}.

Choose h > 0 and impose on 52 a grid of lines

(8.6) x = x; 1= % ¥ ih, y = V5 3T Y + jh;

the intersections (Xi’yj) are called grid points. Define ﬁh to be the

collection of all the grid points (Xi’yj) € Q together with all the
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points of intersection of the grid lines (8.6) with 9Q. Then BQh :

Qh N 9Q, and Qh consists of those points of Qh that lie in Q. The
points of Qh are called mesh points.

The points of Qh are conveniently viewed as being of two types:

e foliur Neares i : i selves grid

points (xi,yj), and the other points of Qh are called irregular. Ve
consider finite difference approximations of the operators (2.1) that
differ from the earlier constructions (2.6) and (2.7) only at irregular
points. Any of a number of approximations at an irregular point will
suffice for our purpeses; it is only necessary that the approximation
be at least an interpolation of degree 0 (see [13, pp. 199 f£f.1, [6]).
Proceeding as before brings us to a linear system (2.11), to which the
block iterative methods of section 4 can be applied.

To use the theory of section 3, we need to establish the relations
(nu,v) = (qU,V) + E,
(8.7) IE| £ hD[(IVxUl+|VyUl,lVI) + (lUl,leVHIVYVI) + (101, 1vD)]
+ b2D[ (8,0, 1) + (-B,V,V)]

of A4 for mesh vectors U, V that vanish on BQh. It is clear from the
argument of Lemma 6.4 that (8.7) remains true if Q is composed of "grid
rectangles,"” whose sides are grid lines (8.6). All that remains is to
prove (8.7) for more general domains. But this will follow if we can

show that Q is almost a union of grid rectangles. To this end, note

that ﬁ, being bounded, is contained in some rectangle

R .= 2. <
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Pick an integer k 2 2 and subdivide R into closed subrectangles

o= : < < < <
Rr,s = {(x,y) *k(r-1) = X = Xppr Yi(s-1) © y = yks}‘

Q is the union of rectangles Rr S that lie entirely within ﬁ, and

3

fragments of such rectangles. TLet R be the interior of the set

R := {Rr,s : Rr,s C 03,

and for any subset G of R let (U,V)G denote the inner product of mesh
vectors U and V over the mesh points in G. Because N is bounded, (8.7)
is an easy consequence of the following lemma, whose proof is similar

to the proof of inequality (13) in [11].

Lemma 8.3. Let U and V be mesh vectors that vanish on th. Then
2
8.8) UV, - U,V 2656 [(-4,0,0) + -8V, 1]

whenever h £ hO’ for some constants w and h0 that depend only on Q.

Proof. Divide 90 into a finite number of pieces for which the
angle of the tangent with either the x- or y-axis exceeds some positive
value (say 30°). For instance, let B be a piece of the boundary that
is this steep with respect to the x-axis. Let S be the horizontal
strip of Q that abuts B and is k grid lines high, so that § is’ for some
fixed s the union of rectangles Rr,s and at most two pieces composed of
fragments of such rectangles. Denote by F the piece touching B -- say
the leftmost piece. The smoothness of 3Q ensures that there are

positive constants hO and w, depending only on Q, so that the x-width

of F is at most wh when h £ hO‘ See Figure 1.
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~

Now consider a horizontal mesh line y = yj in this strip S; let
X, be the leftmost and Xy the rightmost mesh points on the line, and
let Xe be the first point in the leftmost subrectangle in S. Observe

that Ixf - xal < wh. Because U vanishes on B, at each point X, between

% and Yi we _have

-1y o -u ),

o+1,] 0,J
and similarly for V. Hence lUi jl < hst”
, =

f-1

1o, v; 412 hz(zo=a leUa,j')(zé;i 1V Ve, 5D
< bPus ] [IVXUO,.IZ + |vxv0,j|2]/z
< nPwro ) (1Y, .|2 + |vxv0’j|2]/2.

Now sum over X, between X, and X¢ to get

™
A

R ¢ R AR T | ¢ (A VR
1 1,] 1,] 1 1,3 1,1

22 b 1 2
h™w V u_ |-+ |vV.Vv_. 2
(17,05 ;1% + 19,75 (17172,

A

and sum this last inequality over j to see that

2
<
| (U, V)l < W21V Uuh s *IVVIL G172,

Repeat this over every fragment F and boundary piece B. Then each

subrectangle Rr s within Q is covered at most four times, so
"y

2.2 2 2 2 2
- < 12 4 1y vi?);
1(U, V) = (U, V)] € 2% [1V, Ul + Iv iy + 17, Ve + 19, V1)

(8.8) follows from Lemma 2.1. O
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9. How general is the method? We expect that our techniques will

permit us to analyze any block iterative scheme in which the blocks
have a regular pattern, so that NU constitutes an orderly, weighted

sampling of any mesh vector U. Evidently most finite difference

approximations on nice meshes give rise to such operators N.

For instance, on uniform meshes in B@ it will be true that
h2[L U], = 3, A, (x.)U;,
h™'p ~ TETBTEE

where § runs over the set of indices Z(B) of "neighboring" mesh points

of the point xB. Each smooth enough coefficient AB(XE) will satisfy

Aﬁ(xg) = Ag(xB) + 0(h)

A

for some smooth function Ag, and will be a linear combination of the
coefficients of the differential operator L to which Lh is an

approximation. Because N is derived from the matrix A representing

thh’ we will have

9.1) [NU]B = Zg BB(xg)Ug.

If N is sufficiently regular, then there will be some regularly

distributed subset S of points of Qh so that

0 XB £ S
(9.2) BB(XQ) = A
Bg(xg) + 0(h) £ € =(B), Xg € S.

Consider now a typical term in (NU,V). At a point XB of 5,

[NU]ﬁVﬁ = Zg BB(XE)UgVB.
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It follows from (9.1) and (9.2) that if U and V are smooth then
NUl.V, 2 3. B.(x,)U.V,;
[NU] gV = Z¢ By (xg)Uglgs

hence

112

(9.3) (NU,V) = (qU,V),

where q accounts for the terms gi and the relative cardinalities of
Z(B), S, and Qh. The approximate inequality of (9.3) indicates that N
is a weak multiplication operator. Development of an estimate of the
error in (9.3) proceeds as in section 5 and in the‘proof of Lemma 6.4.
In effect, our view of N as a weak multiplication operator has
already been used in [23, section 7], where a splitting somewhat
different from the usunal k-line block Jacobi scheme is treated.
Rectangular meshes, which have uniform spacing hi in the xi-direction,
can also be handled, as can other boundary conditions. We see then
that this viewpoint unifies the derivation of the convergence rates of
block iterative methods for elliptic and parabélic finite difference
equations. In fact, the technique will also yield estimates of the
rates of convergence of block relaxation methods applied to the
matrices arising from finite element approximations. But finite
elements are powerful in part because they admit irregular partitions
of Q. For such partitions it is not apparent how to group the unknowns
so that a systematic block iterative scheme is easy to implement. We
direct the reader to [4] for an example of a successful application of
these ideas in a simple case, where the iterative method was easy to

program.
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Figure 1. The strip S of Q.

F is the union of the two leftmost fragments.
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