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1. Introduction

R. Robert in [11] proved the following result:

Theorem [Robert] Let E be a Banach space and A a maximal mono-

tone operator from E into its dual E* and which satisfies:
Int (conv dom A) # § and c¢1 dom A convex. Let AO be an operator
from E into E* which satisfies:

a) ¥xeE, AXx c Ax

0

b) dom AO is dense in dom A

Then, for every x 1in int dom A,
- * . *
(1.1) Ax = C]O(E*,E) conv {x*; (x,x*) EC]EXG(E*,E) Gr AO}
Using this result, P. Benilan gave the following theorem:

Theorem [Benilan] Under the above hypothesis, the graph of A is

equal to
(1.2) {(x,x*) ecl dom Ax EX;¥y* e Ay, (x*-y*, x-y) >0}

Benilan did not publish his result, but S. Menou guoted it with
its proof in [10]. H. Attouch [9] also proved these two results for
the case when AO is the minimal section of A, and applied them to
the study of measurable dependence for a family of maximal monotone
operators.

In Hilbert spaces, these results can be interpreted as saying that
a monotone operator can be uniquely extended to a maximal monotone

operator within the closure of the convex hull of its domain if the



closure of the domain of the original operator is convex and the inte-
rior of the convex hull of its domain is nonempty. In Section 2, we give

a_direct proof of such a theorem without using Robert's theorem.

I,_t.‘_i.s_ﬁi.n,te,re.s.tiAn.g,‘tQ_gene\lna'! jze (1' .| ) to_all_the domain of A.

The difficulty is the unboundedness of a maximal monotone operator at
jts boundary points. In Section 3, we prove that a monotone operator
is bounded on any open segment between an interior point and a boundary
point belonging to its domain. As a corollary of this result, we also
prove that a maximal monotone operator is bounded in a bounded, convex
set P in the interior of its domain if and only if its minimal section
is defined and bounded in c¢1 P. These results themselves extend the
known result about the local boundedness of a monotone operator at an
interior point of its domain [27] [al.

In Section 4, we give a formulation similar to (1.1) but in the
whole domain. In Section 5, we use the above results to get a new for-
mulation of convergence in the graph sense [9] for sequences of maximal
monotone operators. We confine our discussion to Hilbert spaces in
most places and to finite-dimensional spaces in some places.

We use H to denote a real Hilbert space. We use i and J
to denote integers, t and s to denote real numbers, and
X, Y» Z» Uy Vs Wy hy Ky P and q with or without subscripts to

n

denote vectors in H or R. Wwe use conv D, c1 D and int D to

denote the convex hull, the closure and the interior of a set D

respectively, dom F to denote the domain of a function F,

and of to denote the subdifferential of a convex function f.



2. Uniqueness of the Maximal Extension

Qur first theorem follows. It may be derived from Benilan's

theorem, but we prove it directly.

Theorem 1. Suppose that F 1is a set-valued monotone operator in H,
that D = int dom F 1is convex and nonempty, and that c¢1 D = c1 dom F.

Define

*

(2.1) F (x):= {y|<y-v, x-u> > 0, ¥(u,v)eGraph F}

for all xecl D. Then F* is the unique maximal monotone operator

satisfying Graph F c Graph F* and dom F* < c1 D.

Proof. It is already known that there exists a maximal monotone
operator F' satisfying Graph F < Graph F' and dom F'< c1 D [2].
By (2.1), any such maximal extension must be contained in F*. There-
fore, if we know that F* 1is monotone, we can conclude that F* s
the unique maximal extension of F, satisfying dom F* < c1 D.

We now prove that F* is monotone.

Suppose that (x],y]), (xz,y2)<sGraph F*, Write u = (x1+x,)/23
then uecl D. Choose any ugeint dom F. let wu; =u+ t:(uy-u),

O<‘% <1,'H -+ 0, i=1,2,3,.... Since eD, uecl D and

Yo
D = int dom F = int (c1 D), we know that u, €D c dom F, i=1,2,3,...

Therefore, we can choose Ve F(ui), i=0,1,2,3,..., and we have



Y Yge X mXp> T <YyVis XpmXp> F <YomVies XpmXp>

2<y]-v1, Xq-u> + 2<y2—vi, Xp=U>

2<y]-vi, Xq-uy> + 2<y2-v1, Xp=Us>

+ 2<y =V, U+ -V, -
2 ¥q Vis uj-u 2<y2 Vis Uj-u>

1]

2<y]-v1, Xq=Us> + 2<y2—v1, Xo=Us>

+ 4<v0—v1, u;-u> + 2<y]+y2-2v0, u,-u>

2<y]—vi, Xy=us> + 2<y2—v1, Xo=Uys>

+ 4(t1/(1-t1))<v0—vi, Ug-us> + 2t1<y1+y2-2v0, Ug-u>

v

t1<y]+y2"2VO, UO-U> 5 -i=-|,2,3,...-

The last inequality is due to the monotonicity of F and to (2.1).

Letting i - +», we have
<y1—y2, x1~x2>_3 0.
This completes the proof.

Corollary 1.1 If the interiors of the domains of two maximal monotone

operators are identical and nonempty, and if they have a common single-
valued selection in this interior, then these two maximal monotone

operators are identical.

Corollary 1.2 If a maximal monotone operator has a cyclically monotone,

single-valued selection over its domain, then this maximal monotone

operator is also cyclically monotone.



The proof of Corollary 2 follows a line similar to the proof of
Corollary 2.8, p. 39 of [2].

These two corollaries extend Corollary 2.2, p. 29 and Corollary 2.8,

p. 39 of [2] to more general selections.



3. A Boundedness Property

It is known that a monotone operator in H s locally bounded at

_every interior point of its domain, and that _a maximal _monotone operator

must be unbounded at every boundary point of its domain [4]. In

the following theorem, we show that a monotone operator is bounded on
an open segment between an interior point and a boundary point of its
domain. This makes it easier to investigate some properties at a

boundary point by approximating it from the interior.

Theorem 2. Suppose that F 1is a set-valued monotone operator in H,

zeint dom F, xedom F. Then
(3.1) {y|yeF(tx+(1-t)z), 0<t<1}
is bounded.

Proof. Suppose that ueF(z), veF(x)., Write h=x-z. For

0<t<1 and yeF(tx+(1-t)z), we have

1

<v-y, h> = (1/(1-t))<v-y, x-(tx+(1-t)z)> > 0,

1]

(3.2) <y-u, h> = (1/t)<y-u, (tx+(1-t)z)-z> > 0,

<U, h> < <y, h> < <v, h>.

Given any weH, Tlet k = 2w, A >0, such that
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zZ+ kedom F, z - kedom F

Choose

pe Flzrk)5;qe Flz=k)~
For 0<t< 1 and yeF(tx+(1-t)z), we have

0 < <p-y, z+k-(tx+(1-t)z)> = <p-y, k-th>,

<y, k> < <p, k> - t<p, h> + tcy, h>

(3.3)
< <p, K> - t<p, h> + tcv, h>
< <p, k> + |<p, h>| + |<v, h>];
0 < <q-y, z-k-(tx+(1-t)z)> = <q-y, -k-th>,
<y, k> > <q, k> + t<q, h> - t<y, h>
(3.4)

> <q, k> + t<q, h> - t<v, h>

> <q, k> - |<q, h>] - |<v, h>|.

From (3.3) and (3.4), we know that for all
yeF(tx+(1-t)z), 0 < t <1, <y, k>, i.e., <y, w> 1is bounded, i.e.,
(3.1) is weakly bounded. This means that (3.1) is bounded [7][8].

The theorem is proved.

Corollary 2.1 Suppose that F s a set-valued monotone operator in

H, and that P 1is a bounded convex set satisfying P < int dom F.
If F has a single-valued selection F0 which is defined and bounded

at all the boundary points of P, then F s bounded on P.



Proof. Fix zeP c int dom F. Take x as an arbitrary boundary point
of P, v = FO(x)e F(x). Using the same argument as the proof of

Theorem 2 and noticing that v and h are bounded, we get this

Corollary 2.2 Suppose that F is a maximal monotone operator in H,

and that P satisfies the same hypotheses as above. A necessary and
sufficient condition that F be bounded on P 1is that the minimal

section of F be defined and bounded in c1 P.

Proof. The sufficiency follows from Corollary 2.1. We prove necessity.
Every point x 1in <c¢1 P can be approached by an open segment in

P c int dom F. Since F is bounded on this open segment, there is a
sequence {(xn, vn)e Graph F, n=0,1,2,...}, such that X, converges

to x and v weakly converges to some point v. According to

Theorem 1 and the maximality of F, (x,v) e Graph F and |[|v] = Tlim anH.
Therefore, the points v defined in this way are bounded for aHn_)oo

Xxecl P by the bound of F on P. Hence, the minimal section of F

is defined and bounded on c¢1 P. The coroliary is proved.



4, Another Form of the Maximal Extension

n

In this section, we confine our discussion to R . To give another

form of the maximal extension of a monotone operator, we use Theorem 2

and the fact that the recession cone of the function value_ set of_a

maximal monotone operator at each point of its domain is exactly the

normal cone of the closure of its domain at that point [6].

Theorem 3. Suppose that F is a set valued monotone operator in R",
that D = int dom F is nonempty and convex, that ¢1 D = ¢1 dom F and
that F* s the unique maximal extension defined by (2.1). Then for

all xecl D,

(4.7) F*(x) = ¢1 (conv S(x)) + N(x),

where N(x) 1is the normal cone to c1 D at x, and S(x) is the set

of all Timits of sequences
{yi|yieF(t1x+(1-ti)z), 0 <ty <1, ty=1}
for every zeD.

Proof. Since F* 1is closed, we know that S(x) c F*(x). Since F*(x)

is closed and convex, we know that
F¥(x) o ¢l (conv S(x)) .
From [6], we know that N(x) is the recession cone of F*(x). Therefore,

(4.2) F¥(x) > ¢l (conv S(x)) + N(x).
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The opposite inclusion must now be proved. If F¥(x) s empty,
that is trivial. Suppose F*(x) is nonempty. Just as in the proof

of Theorem 25.6 of [3], it follows that

F¥*(x) < ¢1 (conv E) + N(x),
where E is the set of all exposed points of F*(x). To prove
(4.3) F¥(x) < c1 (conv S(x)) + N(x),
it suffices to prove
(4.4) E < S(x) .

Given any exposed point w of F*(x), there exists by definition
a supporting hyperplane to F*(x), which meets F*(x) only at w.
Thus there exists a vector h with ||h|| = 1 such that h 1is normal

to F*(x) at w but not normal to F*(x) at any other points, i.e.,
(4.5) <h, w> > <h, v, YeF*(x), v #w.

Since N(x) 1ds the recession cone of F*(x), the latter condition on

v implies 1in particular that
<h, k» < 0, YkeN(x), k # 0.
Hence there does not exist a vector k # 0 such that
<u, k> < <x, k> < <xtth, k>

for every ue dom F* and every nonnegative number t > 0. In other
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words, the half Tine {x+th|t>0} cannot be separated from dom F*. It
follows from Theorem 11.3 of [3] that this half Tine must meet the

interior of dom F*. There is a positive number s > 0 such that

z = x + sheint dom F* = int dom F .
From Theorem 2,
{y|yeF(tx+(1-t)z), O<t<1}
is bounded. There is thus a convergent subsequence
{yilyieF(t1x+(1-t1)z), 0<t,<1, -1}
Vi 7 Yx*
According to the closedness of F*,
(4.6) Ve F¥(x) .
From the monotonicity of F*,
<YW, h> = (1/s)<y1—w, Z-X>

= (1/(s(1-t;)))<y -w, (tyx+(1-t;)z)-x> > 0.

Letting i =+ o, ti -~ 1, we have

YeW, h> >0,

(4.7) <w, h> < <y,, h>.
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Comparing (4.7) with (4.5) and (4.6), we know that

Ye =W,

ie ve S{x) so-({4 4 holds This—com
-Gy W A A -2 1= et e e | O SOt

LR A i~ pe )

Corollary 3.1 Theorem 3 is still true if S(x) 1is replaced by the

set §(x):=
(4.8) {XI(Xi’yi) - (x,y), (x1y1)€ Graph F, i=1,2,3,...}.

Proof. Since F* is closed, we know that S(x) ¢ F*(x). Since

F*(x) 1is closed and convex, we know that
F¥(x) > ¢1 conv S(x).
Again, since N(x) is the recession cone of F*(x),

F*(x) = ¢1 conv S(x) + N(x).

Since S(x) = S(x), we get the opposite direction from (4.1).

Notice that Corollary 3.1 is the same as Robert's theorem applied

n

to R if xeint dom F.
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5. Sequences of Maximal Monotone Operators

The following results were suggested by the referee. The

definition about convergence in the graph sense (or, equivalently,

in the resolvent sense) may be seen in [9].

Theorem 4. Let A be a maximal monotone operator in H,
int (conv dom A) # @ and c1 dom A be convex. Let {Ai’ i=0,1,2,...
be a sequence of maximal monotone operators in H, with Ai + A in

o
the graph sense of [9]. Denote their minimal sections by A_i and

[o]

A respectively. Then for every x in int dom A,

(5.1) Ax = ¢1 conv T(x).

(5.2) T(x) = {weak-Timit A.(y.)|y; » X, y, e dom A3,
where the closure is also in the weak sense.

Proof. According to Robert's theorem,

Ax = c1 conv S(x),

where the closure is in the weak sense (we will not mention this further

in the proof) and

S(x) = {weak-1imit K(xj)lxj > xJ}.

o o
From Theorem 1.1 of [9], we know that Ai -+ A and therefore there

exists a double sequence
(x.) > A(x,) as i > =},

According to Lemma 1.6 of [9], we know that there exists

{yilyi > X, y; edom A} such that



-14-

weak-1imit Ai(yi) = weak-1imit A(xj).

Thus, we have proved

Ax_c cl conv T(x).

However, from (5.2) and the fact that Ai + A, Ai(yi) EAi(yi)’ we see
that T(x) < Ax. Since Ax 1is convex and closed in the weak sense,

we know that
Ax o ¢l conv T(x).
Thus, we have proved the theorem.
Theorem 5. If H =R" 4in Theorem 4, then for every x in dom A,
(5.3) Ax = ¢1 conv T(x) + N(x),

where T(x) is defined by (5.2) and N(x) 1is the normal cone of

¢l dom A at x.

Proof. This time we use Corollary 3.1 instead of Robert's theorem
and follow the same argument. Notice that the conditions of that
corollary can be obtained from the hypothesis of Theorem 4 by using

Theorem 0.3 of [10].
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