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ABSTRACT
The main purpose of this work is to give explicit sparsity-

preserving SOR (successive overrelaxation) algorithms for the solution
of separable quadratic and Tinear programming problems. The principal
and computationally-distinguishing feature of the present SOR algorithms
is that they preserve the sparsity structure of the problem and do not
require the computation of the product of the constraint matrix by its
transpose as is the case in earlier SOR algorithms for linear and

quadratic programming.
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1. Introduction

Recently iterative SOR methods have received widespread attention

in the solution of the symmetric and nonsymmetric linear complementarity

problem [3,11,15,16,1], quadratic and linear programming problems
[4,6,12,13]. In the case of the latter two problems which are our principal
concerns here, the recently proposed SOR algorithms do not preserve any
sparsity that the original problems may have had. This is due to the

fact that algorithms as presented in [12] require the product of the
constraint matrix by its transpose, which can cause loss of both sparsity
and accuracy. In this work we shall present some explicit realizations

of the algorithms of [12,13] which will not require the multiplication

of the constraint matrix by its transpose. These computationally
improved realizations which follow from the algorithms of [12] have not
been given explicitly before. The absence of such sparsity-preserving
algorithms has been a critical factor in preventing the application of
SOR methods to many large important but highly structured problems such
as economic equilibrium problems, transportation and network flow
problems. In addition some of the present realizations of the SOR
algorithms (e.g. (14) and (32) below) require only simple operations on
the rows of the constraint matrix, and hence very large problems can be
tackled by such SOR realizations, because only Tinear row arrays are
needed in the computations. These advantages become even more pronounced
if these linear row arrays are sparse and hence can be stored in packed
form.

The paper is organized as follows. In Section 2 we give an SOR

algorithm for the symmetric linear complementarity problem or equivalently



for the quadratic programming problem with nonnegativity constraints only.
This is a special case of the general algorithm presented in [11] but

given here, in a simple explicit form in terms of the rows of the matrix

defining the problem, principally to make it preserve problem sparsity.
In Section 3 we consider a separable quadratic programming problem and
give a version of the SOR algorithm of [12] which does not require multi-
plication of the constraint matrix by its transpose. Hence this present
form of the algorithm is now ideally suited for Targe sparse problems. In
Section 4 two sparsity-preserving SOR algorithms for linear programming
are given. One is based on finding the "smallest" optimal primal-dual
solution (LPSOR1) [13] and the other is based on perturbing a Tinear
program to a separable quadratic program and then solve the latter by the
method of Section 3 (LPSOR2) [12]. Computational experience with a
version of LPSORT [9] on problems of size up to 800 constraints and 1000
variables and the non-sparsity-preserving version of LPSOR2 [12] have
been very encouraging. It is hoped that further refinements will make
SOR methods simple, robust and commercially viable methods for solving
very large separable quadratic and Tinear programs.

We briefly describe now the notation used. A1l matrices and vectors

are real. For the mxn matrix A we write Ac RN and denote row i
by Ai’ column j by A,j and the element in row i and column j by

Aij‘ For x in the real n-dimensional Euclidean space R", element i

is denoted by X; and x, will denote the vector with components

(x;); = max {x;,0}, i=T,...,n. A11 vectors are column vectors unless

transposed by the superscript T. ||x|| will denote the 2-norm,



n
(x0)% =( ] x9)%. A matrix ¢ in R™" s positive semidefinite if

xTCx:; 0 for all x in R" and positive definite if x'Cx >0 for

all nonzero x in R". For brevity we shall sometimes omit mentioning
the dimensionality of a vector or matrix, it being obvious from the
context. The vector e will be a vector ones in a Euclidean space of
appropriate dimension. For a twice differentiable function ¢:Rm><Rn~+R,
Vu¢(u,v) will denote the mx1 gradient vector with elements

) aa,yl-, i=1,...,m, Vv¢(u,v) will denote the nx1 gradient vector
i

vV, ousv)

v, olusv)

with elements §§iyi1l, i=1,...,n, Vo(u,v) = , and V2¢(u,v)

Sv,i

n+m)x(n+m)

will denote the Hessian in R( with submatrix components

denoted as follows

) Vyuusv) vy o(usv)

Voo(u,v) =

Vvu¢(u3v) VVV¢(U,V)



2. SOR Algorithm for the Symmetric Linear Complementarity Problem
k

We consider here the problem of finding z in R™ such that

Mz +q >0, z>0, zl(Mz+q) =0 (1)

koxk and Qe Rk. Conditions (1)

where M s a symmetric matrix in R
are [10] the necessary optimality conditions for the quadratic program-

ming problem

minimize-%zTMz + qu subject to z >0 (2)

ZeR

Conditions (1) are sufficient for z to solve (2) whenever M is
positive semidefinite [10].

In [4,6,117] iterative SOR methods have been proposed for solving
(1), but without paying any special attention to possible sparsity that
the problem may have. We give below a sparsity-preserving SOR algorithm
based on that of [11]. Our proofs here depend intimately on the results

of this reference. If we define

e(z):=n%zTMz + qu (3)

then the SOR algorithm for solving (2) can be represented as a gradient

projection algorithm of the following type

B R B AN ) P T CA AL e 1) (4)
J J JJ zj 1

where ® 1is the relaxation factor or stepsize that must be in the open
interval (0,2) and i represents the ith iteration. More specifically

we have the following.



LCPSOR Algorithm

Choose 20 e RQ, we (0,2). Having z' compute 71t as follows:
L (zi—wM—1( j? M zi+]+|Z(M 24 )) i f (5)
] U N N S DA L
for j>1 i=1,. K
-1 .
If ij <0, set ij to 1 in (5).

The following convergence theorem follows directly from [11].

Theorem 1: LCPSOR Convergence

(i) Let M be symmetric. Fach accumulation point of (5) solves
(1). If in addition M 1is positive semidefinite then each
accumulation point of (5) solves (2) as well.

(ii) Let M be symmetric and positive semidefinite and such that
Mz +q >0 for some zeR" (6)

Then the seguence {zi} of the LCPSOR algorithm (5) is
bounded and has an accumulation point that solves both (1)
and (2).

(iii) Let M be symmetric and positive semidefinite and such that
problem (1) (or equivalently problem (2)) has a nonempty
bounded solution set. Then the sequence {zi} of the LPSOR
algorithm (5) is bounded and has an accumulation point that
solves both (1) and (2).

(iv) Let M be symmetric and positive definite. Then the sequence
{zi} of the LCPSOR algorithm (5) converges to the unique

solution z of (1) and (2).



Proof
Parts (i), (ii) and (iv) follow from Theorem 2.1, Theorem 2.2 and

Corollary 2.2 of [11] respectively. To establish (iii) we note that

from Lemma 2.3(b) of [11] that if the sequence {zi} of (5) is

unbounded then there exists a yesz such that

0#7>0,M=0,q7<0

This contradicts the boundedness assumption on the solution set of (1)
since if z solves (1) then z + Ay also solves (1) for all A >0

because z + Ay > 0, M(z+Ay) + q > 0 and

0 < (z05)T(M(37)*q) = Aq'¥ < O. 0



3. SOR Algorithm for Separabie Quadratic Programming

We consider here the separable quadratic program

T T
minimize %»CUX + ¢ X subject to Ax > b, x > 0 (7)
XeR

where D 1is a positive diagonal matrix in Rnxn’ Ae Rmxn’ Ce Rn,
beR™ and no row of A is identically zero. For more general quad-

ratic programs see [12]. Associated with this quadratic program is

the dual quadratic program [5,17,10]

maximize —J—xTDx4-bTu subject to Dx-ATu—v-+c= 0, (u,v) >0 (8)
(X,u,V)eRNTMEN 2 -

which upon elimination of x by using the constraint relation

X = D'1(ATu+v—c) (9)
gives
minimize v%(ATu+v-c)TD'](ATu+v—c) —bTu subject to (u,v) >0 (10)
(u,v)eRMN

This problem (10) is now precisely of the form (2) and the LCPSOR
algorithm (5) can be applied to it easily. Because our principal
interest here is sparsity preserving we shall spell out the algorithm

for solving (10) explicitly. Define the objective function of (10) as

olu,v)i= = (ATurv-c) D" T (ATurv-c) - blu (11)

PO et

then

AD™ 1 (ATutv-c) - b
Vo (u,v) = (12)
D'](ATu+v—c)



and
a~ AT a7
V2¢(u,v) = (13)
| o TaT 77
Now the SOR algorithm for solving (10) can be stated as
i+1 i W i+] i+l i i i
u: o = (u. - o Vo d(Uq  seeneslUs qollzsnnenst sV ))
J J i .01 u. 1 J-17"3 m +
(v, ou'sv ))jj J
j=1,.....m
i+1 i w i+l i+ i+ i i
v, = (v;- o 7., o(u seenesVi asViseneasV. ))
J J i i V. > j-1""] n'ly
(Y, 0usvi)) sy
Jj=1,. >N

where w 1is a relaxation factor in (0,2). More specifically we have

the following.

QPSOR Algorithm

Choose (UO,VO)E'Rm+n, we (0,2). Having (u1,vi) compute

+
(u1+1,v1+]) as follows:
. . j-1 m ..
i+l i 0 -1, 9 T i+ T i,
c= (uy - —2— (ADT () (AV). + ) (A").,u,tv -c)-b.))
I (N A = R *
for j>1
j=1, MM

(14)

Note that any sparsity or structural properties that the matrix A
may have are not destroyed in the QPSOR algorithm as would be the case

in [12], and in fact may be taken advantage of in the present algorithm.



Remark 2
The iteration (14) is very well suited for matrices A which have

a pronounced row structure, for example if A is sparse and the nonzero

elements of each row can be easily located without search. On the
other hand if the matrix A has a pronounced column structure, then

the following alternate but equivalent iteration to (14) may be

preferrable:
i+ i w ER TR S I SR FUUS LI (VU0 D%
uj =(uj —HA-D_%HE((U1 ....uj_],uj....um)A+v -¢ )D7 (A )'j'bj))+
J =1, n ey
1A i i
vy T ( (u A, sty —cj))+ , 3=1, N

Theorem 2: (QPSOR Convergence

(i) Each accumulation point (u,v) of the sequence {(ui,vi)}
generated by the QPSOR algorithm (14) solves (10), and the
corresponding x determined by (9) solves the quadratic
program (7).

(ii) Let the feasible region of the quadratic program (7) satisfy

the Slater constraint qualification
{x|Ax>b, x>0} # @ (15)

Then the sequence {(u1,v1)} of the QPSOR algorithm (14) is
bounded and has an accumulation point (u,v) and the

corresponding x determined by (9) solves (7).
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(i) Follows from Theorem 1(i) and the duality theory of quadratic

programming [10, Theorem 8.2.5].

(ii) Because of (15) there exist a § > 0 such that the perturbed

positive definite quadratic program

minimize +xDx + c'x subject to Ax > b + e, x > es

xeRN 2

has a solution XeR" with corresponding multipliers

(U,V) cR™ that satisfy the Karush-Kuhn-Tucker conditions

DX +c-Ali-V=0,A>b+es, X>es, 020,70

ST

i (A%-b-e8) = 0, V! (%-e8) = 0

Hence

% = DV (ATi+-c) > es > 0
(16)
D~ (ATGG-c)-b > es > 0

Conditions (16) are equivalent to condition (6) for problem (10). Hence
by Theorem 1(ii) the sequence {(ui,v1)} of the QPSOR algorithm (14) is
bounded and has an accumulation point (u,v) which solves (10). Hence

the corresponding x determined by (9) solves (7). 0
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4. SOR Algorithm for Linear Programming

We consider finally the dual linear programs

-
minimize ¢ x subject to Ax > b, x>0 (17)
xRN - B
and
. . T . T
maximize b'u subject to A'u<c, u>0 (18)
ueRM - a

where Aeszxn’ c eRn, and be R™. To avoid trivial cases, we shall assume
that each row and column of A, as well as the vector (E) is nonzero. It
is well known [2] that solving either (17) or (18) is equivalent to solving
both (17) and (18) which in turn is equivalent to solving the linear

complementarity problem

Ny +p>0,y>0, y(yp) =y'p=0 (19)
where
0 —AT C X K
N = , P = , Yy = eR, k=n+m (20)
A 0 -b u

Note that N 1is skew symmetric, that is N + N = 0 and hence

yTNy = 0. As proposed in [13] one way of solving the Tinear program

(17) is to find the closest point to the origin, in the 2-norm, of the
solution set of (19). That is we shall solve the quadratic program

Minimaze %—Hyl!z subject to Ny +p >0, y > 0, pTy <0 (21)
yeR

Note that under the constraints Ny + p > 0, y > 0, the constraint

T T T(

py <0 is equivalent to pTy =0 since 0>py=y Ny+p) > 0.

The dual to the quadratic problem (21) is [5,17,10]
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{2 T T

maximize -%%Lyl -p's subject to y-Ns-t+gp=0, (s,t,8)>0

(y:sat>B)€R3 *l

Elimination of y by using the constraint relation

gives the quadratic program

minimize %~HNTS—Bp+tH2-+st subject to (s,t,8)>0
(Sstag)ﬁR
Problem (23) and consequently problem (21) can be solved by the SOR
method of Section 2. For that purpose it is convenient to let

¢(s,t,B) equal the objective function of (23) that is

0(s:t,8):= & [[NTs-gp+t[|% + ps

and consequently

N(NTs-Bp+t) + p
.

Vo(s,tsB) = |[N's - Bp + t
-pT(NTS-Bp+t)
NN T N -Np NN T -p]
v2o(s,t,8) = |N' I op|=11
T T T T

(22)

(24)

(25)
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It is obvious from (26) that V2¢(s,t,8) is positive semidefinite.

We can now state an SOR algorithm for solving (23) based on QPSOR.

LPSORT Algorithm

Choose (s 0 O,BO) R§k+1,
(Siﬂ,ti”,s1 1) as follows:
1w UL N7 - NI g
; —(sj-ﬂ;r]Té(Nj( 921 (N). s, +QZ‘(N )egSymB PFE L)) s 351
. * = =] .
J for j>1
£ o T T g et ))

Parts (i) and (ii) of the following convergence theorem follow

directly from Theorem 2(i) and Theorem 1(ii) above respectively.

Theorem 3:

LPSORT Convergence

(i)

(i)

Each accumu]ation point (s,t,B) of the sequence

{(s',t g )} generated by the LPSORT algorithm solves the
dual program (23) and the corresponding (3) determined
by (22) solve the dual Tinear programs (17)-(18).

2k+1 satisfying Vé(s,t,B) > 0

If there exist (s,t,B)eR
then the sequence {(51,t1,81)} generated by the LPSORI1

algorithm is bounded and has an accumulation point.

e (0,2). Having (s',t',8") compute
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Note that Theorem 2(ii) does not apply here because

Ny +p>0,y >0 imply that pTy > 0 and hence we cannot satisfy

the Slater constraint qualification that there must exist a y

satisfying Ny +p >0, y >0 and pTy < 0. We further note that
the condition V¢(s,t,8) > 0 is sufficient but not necessary for
the boundedness of the sequence {(si,ti,si)}. Numerical experiments
have revealed no serious problems with unboundedness of the sequence
{(si,ti,Bi)} generated by the LPSORT algorithm.

We conclude by giving a sparsity-preserving version of the SOR
algorithm for solving a linear program that was proposed in [12].
This method is based on the fact [14] that the linear program (17) is

solvable if and only if the quadratic program

minimize -%xTx + ch subject to Ax> b, x> 0 (28)

xeRN
is solvable for all eec (0,€) for some € > 0. Furthermore the unique
solution of (28) is independent of ¢ for ee (0,e) and is the
closest solution of the linear program (17) to the origin in the 2-norm
[14]. Note that € may be infinite in some special cases. Problem
(28) can be solved then by the QPSOR algorithm of Section 3. From (8)

the dual to the quadratic program (28) is

maximize —%xTx+bTu subject to ex—Aru-v+c=0, (u,v) >0 (29)

(X,u,v)eRNHMN
which upon elimination of x by using the constraint relation

(ATu+v-c) (30)

m]—

X:
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gives

minimize %~HATu+v—cH2 _eb'u  subject to (u,v) >0 (31)

(u,v)eRMHN

Note that (31) is the classical exterior penalty function [7]
associated with the dual Tinear program (18). However the perturba-
tion results of [14] give the stronger result that € 1in (31) need
not approach zero in order for x defined by (30) to be a solution
of (17). In other words if we let (u(e), v(e)) be a solution of
(31) for e (0,8) then x = L(ATu(e) +v(e)-c) is independent of
e and is the closest solution of the linear program (17) to the
origin in the 2-norm. Note however (u(e), v(e)) need not be a
solution of the dual linear program (18) for ee (0,e), but each
accumulation point of {(u(si), v(ei))} will be a solution of (18)
if {Ei} is a decreasing sequence converging to zero. We can now

solve (31) by a sparsity-preserving algorithm which follows directly

from the QPSOR algorithm of Section 3 by replacing D by el.

LPSORZ2 Algorithm

Choose (uo,vo)e RT+n, we (0,2) and e > 0. Having (u1,v1)
determine u1+1, v1+] as follows:

. . Jj-1 .
u1+]=(l1 W A T) it+]

Hoe~13

T i, i
Tl 2 (AT U, o+ ) (AV), u tv -c)-eb.))
J J ”Aj||2 J° 951 L7y i [ J' '+
for j>1 ‘o
j=l,.....m (32)
vitlo (vi—w(ATuiHWi-C))+
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Note that this LPSOR2 algorithm, unlike the algorithms proposed
in [12], will preserve any sparsity the matrix A may have and there

is no need to compute AAT as was done in [12] and thereby destroying

any sparsity that A may have had.
The following convergence theorem follows directly from the con-
"~ vergence theorem of the QPSOR algorithm, Theorem 2 and the perturbation

results of [14].

Theorem 4: LPSOR2 Convergence

(i) Let the Tinear program (17) have a solution. There exists a
real positive number € such that for each € in the
interval (0,e), each accumulation point (u,v) of the
sequence {(ui,vi)} generated by the LPSOR2 algorithm (32)
solves (31) and the corresponding x determined by (30) is
independent of € and is the (unique) solution of the Tinear
program (17) which is closest to the origin in the 2-norm.

(ii) If in addition to the assumptions of part (i) the constraints
of the Tinear program (17) satisfy the Slater constraint
qualification (15) then the sequence {(ui,vi)} of the
LPSOR2 algorithm (32) is bounded and has an accumulation

point for each ee (0,g).
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