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ABSTRACT

Given a collection of distributed programs and the
modules they use, the module allocation problem is to deter-
mine an assignment of modules to processors that minimizes
the total execution cost of the programs. Standard
approaches to this problem are based on solving either a
network flow problem or a constrained 0-1 integer program-
ming problem.

In this paper we discuss an alternative approach to the
module allocation problem where a closed, multiclass queue-
ing network is solved to determine the cost of a particular
module allocation. The advantage of this approach is that
the execution cost can be expressed in terms of performance
measures of the system such as response time. An inter-
change heuristic is proposed as a method of searching for a

good module allocation using this model and empirical evi-
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dence for the success of the heuristic 1is given. The
heuristic normally finds module allocations with costs
within 10 percent of the optimal module allocation.

Fast, approximate queueing network solution techniques
based on mean-value-analysis allow each heuristic search to
be completed in a few seconds of CPU time. The computa-
tional complexity of each search is O(M K (K + N) C) where M
is the number of modules, K is the number of sites in the
network, N is the number of communications processors, and C
is the number of distributed program types. It appears that

substantial problems of this type could be solved using the

methods we describe.

Key words and phrases: task allocation problem, file
assignment problem, distributed computer systems, multiclass
queueing network model, mean-value analysis.
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A Queueing Network Approach to the
Module Allocation Problem
in Distributed Systems

l. Introduction

The problem of determining optimal file and program
locations in a computer system has received considerable
attention for computer networks [5,6,9,16], multicomputer
systems [7,14,23] and distributed data base systems [11,15]
Standard approaches to this problem are based on solving
either a network flow problem [23] or a 0-1 integer program-

ming problem. (See, for example, [7]). Both of these

methods suffer from the disadvantage that they do not prop-
erly model gueueing delay. Thus the optimization c¢riterion
cannot be directly related to response time or to congestion
measures of the system. Instead the allocation problem is
solved based on simple estimates of program execution
times [14].

In this paper we show how the same data used to formu-
late the network flow or integer programming solutions to
this problem can be used to generate a closed queueing 'net—
work model of the system. This model can then be solved to
obtain estimates of program execution time that include
queueing and communications delay. To simplify our discus-
sion, we consider a variant of the task allocation prob-
lem [7] where each distributed program receives service
sequentially from a collection of modules at different sites

in the system. We refer to this problem as the "module
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allocation problem."

The model can be extended in a straightforward way to
handle file assignment problems as well. Extensions to the
parallel processing case appear to be possible but are not
considered in this paper.

Formally stated, the module allocation problem is to
determine an assignment of modules to processors that minim-
izes the execution cost of the distributed programs running
on the system. The cost function we use in this paper is
the sum of the response ratios (response time divided by
requested processor time) across all distributed programs on
the system. Inputs to the model include the number of dis-
tributed programs of each type, the modules used by each
distributed program, module execution times per program, and
estimates of the amount of data transferred between modules
during the processing of each program. Modules located at
the same site are assumed to have immediate access to this
data; the data must be transferred over communication lines
between modules that are not coresident.

An interchange heuristic is proposed as a method of
finding a good module allocation. In an empirical study of
40 randomly generated test cases, the heuristic search usu-
ally found module allocations that were less than 10 percent
below optimal; these allocations normally produced 40 per-
cent improvement over a randomly chosen module allocation.
Finding these approximate solutions required solving 3M (K-

1) queueing networks where M is the number of modules and K
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is the number of nodes in the network. Optimal solutions
were determined through exhaustive search at a cost of KM
gqueueing network solutions.

For many reasonably sized module allocation problems,
the storage requirements and computational costs of exactly
solving each queueing network model during the search are
prohibitive. Three approximate solution tech-
niques [17,18,20] were investigated to decrease the resource
requirements of the exact solution techniques to a manage-
able level. When these techniques are combined with the
interchange search, the result is an algorithm capable of
rapidly finding good module allocations. For example, each
interchange search on a 10 program, 5 module, 5 node problem
required as 1little as 4 seconds of cpu time on a
Univac 1100/80 system. The complexity of the resulting
algorithm is O(M K (K + N) C) where M is the number of
modules, XK the number of sites in the network, N the number
of communications servers, and C is the number of distri-
buted program types. It appears likely that the procedures
outlined in this paper should be feasible for the solution

of substantial allocation problems.

1.1. Relation to Previous Work While most of the integer

programming formulations to the file assignment problem use
linear cost criterion independent of queueing delay, some
researchers have used queueing delay to formulate waiting

time constraints [6,15]. The formulas used in these cases
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are based on assuming infinite source poisson arrivals.
While our approach does not allow waiting time constraints,
the finite size of the workload is properly modeled with a
closed gueueing network.

Closed queueing network models have been applied the
file assignment problem [10,25]. The approach used in these
cases was to convert the problem from a discrete to a con-
tinuous valued optimization problem and then use non-linear
optimization techniques such as gradient search to find an
optimal solution. The real-valued solution was then trun-
cated to determine a placement of files on devices.

The integer programming approaches normally result in
non-linear problems. These problems are then solved either
by reducing the problem to a linear problem [6], by using
intelligent search techniques such as "hypercube
search" [16], or by using heuristic search tech-
niques [5,15].

There is no substantive previous work in which the file
assignment problem with an underlying gueueing network model
with multiple classes and a general topology was solved for
locally optimal allocations. In the module allocation prob-
lem we assume that modules (like files in the file assign-
ment problem) may not be subdivided so that integer program-
ming techniques are required. A linearization of this prob-
lem does not appear feasible. This leaves only exhaustive
search or intelligent search techniques to be used to £ind

optimal solutions. For many reasonably sized problems,
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these are intractable.

Heuristic search techniques with reduced resource
requirements are needed. 1In general, the heuristic search
techniques produce suboptimal solutions where the degree of
approximation is unknown. By testing the heuristic scheme
on problems where the optimal solution is known, confidence
in the heuristic may be established. This is the approach

we follow in this paper.

1.2. Organization of this Paper In the next section of

this paper we describe our hardware and software models. We
then present a solution method that uses mean-value analysis
(MVA) [18] to efficiently calculate the congestion measures
of the system for a particular task allocation. Next we
discuss the problems of searching for an optimal module
allocation and describe the interchange heuristic that we
have found useful for determining good allocations. Empiri-
cal evidence for the success of the heuristic is presented.
Following this, the results of our experiments with the

approximate solution techniques are described.

2. Model Description

Because we are interested in modeling the interplay
between the hardware and software of a distributed system,
we need to model both of these entities. Our model descrip-
tion 1is thus logically divided into two portions: (i) a

hardware model and (ii) a software model.
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2.1l. Hardware Model We consider a distributed system with

K "nodes" where each node consists of a processor and some
communications lines. (We will use the term "server" to
refer to a station in the queueing network model so that
there is no confusion between "nodes" in the distributed
computer system and "nodes" in the queueing network model.)
Each processor is modeled by a single processor sharing (PS)
server. This is reasonable if the true service discipline
is round-robin among all waiting tasks and 1if the round-
robin guantum size is small in relation to the mean service
time.

For this paper, we assume that the distributed system
is completely connected. That is every node in the system
has a direct communications path to each other node.* We
assume that each communications path is a half-duplex path
that can be represented by a single server in the queueing
network. The total number of communication servers in the
network is therefore K(K-1)/2 and total number of servers J
in the queueing network will be K + K(K-1)/2.

We will use the term communications processor (CP) to
refer to the communications servers. We assume that CP”s at
a particular node operate independently of the CPU at the
node. In particular, the CPU service rate at a node is

independent of the number of messages being transferred by

* Our method also applies to the case where there 1is a
fixed route between nodes that are not directly connected.
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the CP”s at the node.

We will let CPU(i) be the index of +the server that
represents the CPU at node i in the queueing network and let
CP(i,j) be the index of the server that represents the CP
between nodes i and j. Figure 1 shows the relationship
between the various servers in the hardware model.

We assume that messages are transmitted between nodes
by being divided into packets of fixed size. Furthermore,
we assume that if packets from several messages are waiting
for service from a particular CP, then packets are transmit-
ted in a round-robin order among all messages waiting for

the CP (including those messages waiting to be sent the

Figure 1
Servers Represented in Hardware Model
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other direction). With these assumptions it seems reason-
able to assume that the communications lines can be modeled
by PS servers as well although this assumption is less ten-
able than in the CPU case. The primary justification for
this assumption is that it allows the service times at the
CP“s to be class dependent while allowing the queueing net-

work model to be solved efficiently [3].

2.2. Software Model We let M be the total number of

software modules 1in the system. We assume that there is
only one copy of each of the M modules.* We assume that a
module is an atomic program unit and cannot be split between
two nodes in the network.

We suppose that there are D distributed programs to be
run on the system. We let P be the number of instances of
program i. For each distributed program i, we let Ui be the
set of modules used by the program. We assume that a pro-
gram is executing only one module at any given time and that
communications transfer time is not overlapped with computa-
tion time.

We will use the D by M matrix E={e } and the M by N

i3
matrix R={ri j} to estimate the CPU resource demands from
14

module execution. Each entry e; 3 of E with j in Ui gives
14

*Multiple copies of modules can be handled by counting
modules more than once in this total. Even though there is
no parallel processing within individual distributed pro-
grams, having multiple module copies can improve system
throughput by allowing parallel processing across distribut-
ed program types.
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the total average execution time required to execute module
j during the execution of distributed program i on a CPU
with instruction rate normalized to 1. Each entry ri,j of R
gives the rate factor by which the execution of module i
should be adjusted when the module is executed at node 3.

Thus the average service time required at node j by distri-

buted program k for the execution of module m is given by

eilm / rmrja

We do not consider here the problems of estimating the

entries in the matrix E. This matter has been considered in

detail by others [7,21,22].

The matrix R represents the speed differences between
CPU”s on a per module basis. For simplicity, we assume that
any module can be executed at any node. A module can effec-
tively be prohibited from executing at a particular node by
making the corresponding ro 3 value small.

14

We use the D by M by M matrix c=1c,

1,j,k} and the vec~-

tors S={si} and L={Li} to calculate intermodule communica-

tion costs. Entry c¢ gives the communications time

i,3,k
required to transmit data from module j to module k during
the execution of program i whenever modules j and k are not

coresident and assuming a CP with speed normalized to 1.

For consistency we assume c,

1,j,k=ci,k,j for all j,k. Entry

s . ., gives the speed of the CP connecting nodes i and j.
CP(i,3)
Li gives the node where module i is located in the network.

Thus if j and k are modules used by program i and Lj is not

the same as Lk' then the resource demand on CP(Li,Lj) caused

10
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by execution of program i is given by:

3,5,k 7/ SCP(Li,Lj)

The formulation we have proposed is essentially the
same as that used in the integer programming or network flow
approaches to the task allocation problem [7]. However, our
approach provides the additional capability of estimating
congestion delays in the network. In [7], the "cost"™ func-
tion 1is based on processing time cost and communications
volume cost. Performance measures (such as 1limits on the
communications bandwidth) are treated as constraints.

To illustrate how this formulation might be extended to
the file allocation problem, note that if one were to iden-
tify a CPU server, k, in our model with a disk and to iden-
tify a module, m, with a file on that disk, then exactly the

same formulation holds. The quantity e can be inter~

i, m
preted as the total average number of disk words required
from file m during the execution of program i and rm,k
represents the transfer rate of the disk at node k. The
value ci,j,m can represent the communication time required
to transfer data from file m to module j during the execu-
tion of program i. The model can be improved by allowing
both CPU and disk servers to be present at one node and by
using the techniques of [1,24] to model overlap of I/0, com-

munications and CPU processing. There appear to be no fun-

damental difficulties in solving this improved model.

11
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3. Queueing Network Model Solution

Given a particular module allocation L we can use the
parameters described in the last section to calculate the
parameters of a queueing network model of the system. Fol-
lowing the approach of [1,13] who ignore the exact topology
of the queueing network they are solving, we ignore the
exact order in which the modules are executed. This is pos-
sible since the performance characteristics of a queueing
network are known to depend only on the total per class ser-

vice time at each server in the network [8,12]. In our

present context, this means that only the following parame-
ters are significant:
(1) The total mean service requirement of each distributed
program at each CPU in the network, and
(2) the total mean communications time required at each
communications processor in the network during the exe-
cution of the distributed program.
Since the order of module execution is immaterial, we will
assume that they execute in numerical order and we will
define the response time of a distributed program as the sum
of the waiting times at each node that the program must
vigit to receive service.
Let T={ti j} be the service time matrix for the queue-

r
ing network. That is, let ti 4 he the mean service demand
r
by customer class i at server j. (Because we have assumed
the PS discipline at each node in the network, only the mean

service times are significant, and the exact form of the

12
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service time distribution does not matter [3]). We
represent each distributed program as a distinct customer
class in the queueing network. Given the module allocation

vector L, ti i can be calculated according to:
4

g D Z
t, . = e, . / r.
1.7 - i=1 j in U, 1,] ]rLj

1

when j represents a CPU server and

D 5
t., . = ' . s
1,] g i=1 £ clrjrk / SCP(Lerk)

all modules j,k with

3 and k in U, and
that are not coresident

when j represents a CP server.

Given the matrix T, one can apply any of the standard
techniques [4,19] to determine performance characteristics
of the queueing network. Because we were primarily
interested in response time and mean dJueue sizes, and
because the mean-value analysis (MVA) method [18] is
extremely easy to program, we chose MVA as the solution
method for our queueing network. MVA also has the advantage
that approximations are known that extend the class of net-
works that can be solved well beyond the class of BCMP-type
networks [1]. For details of the MVA algorithm we used,
see [1].

The storage requirement of the MVA algorithm increases
with the product of the number of customers in each
class [4]. 1In our case storage requirements are propor-

tional to

13
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D
J g l (p;+1)
i=1 |

where J = K + K(K-1)/2 is the total number of servers in the
gueueing network and P; is.. the  number of instances of
program i in the system. 1In general this storage require-
ment can be large. For example, if we assume that there is
only one instance of each distributed program, then we see
that the storage required to solve our queueing network

model for K processors and D distributed programs requires

D

O(K2 27) words of storage. Balbo and Bruell [4] mention a

device for reducing the storage requirement for this case to
J 2D-1, Even then, this storage reqguirement can be high, as
Table 1 shows. Note that the number of modules M does not

change the storage requirement for the queueing network

model solution.

Number of Number of Total Number Words

Programs (D) Nodes (N) of Servers (J) Required
10 5 15 7680
12 5 15 30720
14 5 15 122880
16 5 15 491520
10 10 55 28160
10 12 78 39936
10 14 105 53760

Table I

Storage Requirements
for MVA example

14
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To solve gsystems with more than 15 different distri-
buted programs would be impossible. Fortunately, good
approximate solution algorithms are known that have a much
smaller storage complexity [17,18,20]. These technigues
should allow the solution of models with dozens of different
programs and dozens of instances of the programs. An inves-
tigation of these approximation schemes is given in Sec-

tion 6.

4. Search Algorithm

Since any module can conceivably run on any processor,
there are a total of KM possible values for the module loca-
tion vector L. To evaluate the cost function for a particu-
lar module allocation requires the solution of a queueing
network. 1In general this solution has computational com-
plexity of the same order as the storage complexity given
above. Thus for all but the smallest problems, exhaustive
search to find an optimal solution will be out of the ques-
tion. We therefore propose that an interchange search be
used to attempt to find a good module allocation.

Let the cost function G(L) denote the "goodness” of a
particular module allocation. In this paper we have used
the sum of the response ratios (response time divided by
requested processor time) of the distributed programs in the
system as the goodness function G. Alternatively, for load

balancing purposes, G could be calculated as the root-mean-

square of the (total) mean CPU queues over all nodes in the

15
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system. In either case, the search procedure is to attempt
to determine a module allocation that, without loss of gen-
erality, we may assume minimizes the function G.

Then an interchange search to find the optimum module
allocation would proceed in the following way. Pick an ini-
tial module allocation L and an order in which the modules
are to be moved O={oi}, Solve the queueing network for this
initial allocation and calculate the goodness Ffunction G.
Then starting with module Oyr solve each of the N-1 queueing
networks with module 0y allocated to a node other than its
current location and holding all other module allocations
fixed. One of these locations has the minimal G value thus
far encountered. (If more than one has the minimal G value
choose one at random as being best seen so far.) Suppose
the best 1location found for module Oy is node j. Then set

Lol to j. Now repeat the process for module 0, and so forth
until module Oy has been considered at all N nodes. We will
call this process of sequentially shifting each module
Oyre <70y an iteration of the search. Note that one
iteration of the search requires the solution of M(N-1)
queueing network models.

At the end of one iteration, one will normally have a
much improved solution over the initial guess. However,
because the module locations have changed during the search,
module ©; may not now be at its best location with respect

to the current location of the other modules. Therefore

another iteration of the search should be conducted. This

16
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process is repeated until either a predetermined maximum
number of iterations has been performed, or until no modules
are moved during an iteration. (Our experience is that at
most 3 iterations are ever required.)

Clearly this search procedure need not find the optimal
module allocation. However, empirical evidence (See Sec-
tion 5) suggests that even if the optimum allocation is not
found, the result of the search is usually within a few per-

cent of the optimal module allocation.

5. Empirical Validation of the Search Procedure

Since we cannot be sure that the search procedure men-
tioned above will ever find an optimum module allocation, we
have compared the solutions found by the interchange search
to optimal module allocations found through exhaustive
search. To complete the exhaustive search in a reasonable
amount of time, we restricted our attention to a small prob-
lem of 5 programs, 5 nodes, and 5 modules with one instance
of each distributed program. This gives a total of
55 = 3135 queueing networks to solve to determine an optimal
module allocation.

Since we did not have access to measured data for the E
and C matrices, we constructed our test cases at random
according to the following rules:

(1) For each distributed program i and each module i, j was

inserted in the set Ui according to the result of a

Bernoulli trial with probability of success b.

17



Bryant and Agre

(2) For each distributed program i we chose a program exe-
cution time factor PE(i) as a uniformly distributed

. i P i
random number between PEmln(l) and _Emax(l).
(3) For each module we chose a module execution time factor
ME(i) as a uniformly distributed random number between

ME (i) and ME (i) .

min max

(4) The execution matrix E was calculated according to
e, . = PE(i) * ME(j]
" (1) (3)

The communications matrix C was calculated as

= i *
exponential.f(0.10 max(ei,j ’ ei,k

i, i,k ) )
where exponential.f(xbar) is a function that returns an
exponential pseudo-random number with mean xbar.

Values of these parameters for the cases we have con-
sidered are given in Table 2. Parameters for the hardware
portion of the model are given in Table 3. For simplicity,
we have assumed that all columns of the matrix R are con-
stant, i. e. the speed of the processor is the only factor
in determining module execution times from the E matrix.

We make no claim that these parameters represent those
on a real system. Our concern here is to determine the use-
fulness of the heuristic search procedure we have proposed.

We constructed 10 random problems using the parameters
as above. To give the reader a feeling for the parameters
of a typical problem we have summarized these in Tables 5
and 6. For each problem we found an optimal solution by

exhaustive search and by the heuristic search algorithm

18
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program PE_. PE module ME_ . ME
. min max K min max
id id
1 8.0 10.0 1 0.5 2.0
2 0.5 2.0 2 0.2 0.4
3 5.0 6.0 3 1.0 1.5
4 0.5 2.0 4 0.5 2.5
5 8.0 10.0 5 0.25 0.5
module usage probability (b) = 0.5
Table 2
Parameters for Generation
of Software Model
node id execution rate to node from node CP rate
1 2.0 1 1 1.0
2 1.0 2 1 1.0
3 1.0 3 1 1.0
4 1.0 4 1 1.0
5 0.67 5 1 0.67

All other CP”s have rate 0.67.

Table 3
Hardware Parameters
for Sample Solution

described in the last section. To get an estimate of the
success rate of the heuristic search, we tried it 10 times
on each problem, with a random starting point and random
choice for the module movement vector O in each trial. The
goodness function was the sum of the response ratios of the
distributed programs on the system.

Table 6 summarizes the results of this experiment. The

table gives the average goodness value over all module allo-

19
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Program
1
2

Modules used by each program

Program id

Module list

Ul W N

BN W =N

Time required by program in

Each module it uses (E matrix)

Total Time (module, time) list
18.8 (2, 2.25) (3, 9.04) (4, 7.52)
0.93 (1, 0.93)
25,3 (L, 3.28) (2, 1.54) (3, 6.16)
(4, 5.12) (5, 9.21)
3.83 (3, 3.83)
30.0 (2, 2.15) (3, 8.63) (4, 7.18)
(5, 12.9)
Table 4

Typical Problem Parameters

20
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Communication Communication
Costs for Program 1 Costs for Program 3
modules cost modules cost

2 3 1.39 1 2 0.14
2 -4 1.74 13 0.27
3 4 1.15 1 4 0.92

1 5 0.71

Communication 2 3 0.53

Costs for Program 5 2 4 0.67

2 5 1.37

modul es cost 3 4 0.06

2 3 1.20 3 5 0.62

2 4 0.97 4 5 0.13
2 5 1.27
3 4 2.12
3 5 2.50
4 5 1.58

Table 5

Module Communication Cost Matrix

21
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Exhaustive Search Heuristic Search
Problem Average Best Found Found Found Average Worst %
Number Goodness Goodness Same Equivalent Worse % Worse Worse
1 12.7 6.75 3 5 2 28.8 28.8
2 12.4 7.21 0 0 10 5.4 7.1
3 15.3 7.74 4 4 2 45,6 45.6
4 12.9 7.36 1 3 6 8.3 13.2
5 12.8 7.30 0 4 6 3.2 3.2
6 13.7 8.07 1 2 7 3.8 4.8
7 12.8 6.86 2 1 7 15.5 21.7
8 15.6 8.38 4 6 0
9 12.1 7.06 0 0 10 2.9 6.5
10 12.3 6.67 2 3 5 14,7 17.7
Table 6

Summary of Exhaustive versus Heuristic Search

Note: Average % Worse only includes the
"Found Worse" Cases

cations, the best goodness function value found by the
exhaustive search, the number of times (out of 10 trials)
when the heuristic search found exactly the same module
allocation as the exhaustive search, the number of times
that the heuristic search found an equivalent module alloca-
tion (i. e. a different module allocation with the optimal
goodness function value), and the number of times that the
heuristic search failed to find as good of module allocation
as the exhaustive search. The last two columns give the
percentage difference between the two solutions in the cases
that the heuristic search failed.

In all but three of the cases, the heuristic found the

same allocation as the exhaustive search case did at least

22



A Queueing Network Approach to Module Allocation

once in 10 trials. Of the total of 100 heuristic case tri-
als, 45 found either the same solution as the exhaustive
search or another solution with an identical goodness func-
tion wvalue. Except for Problems 1 and 3 (where only two of
the heuristic searches failed to find a value with the same
goodness as the global optimum), the maximum percent differ-
ence between the optimum allocation and the one that the
heuristic search found was Jless than 22%. The average
difference between the optimal allocation and the heuristic
search result was 5.1% when averaged over all 100 trials.
In general, the heuristic search found a solution 40% better
than the average G value. Considering that the exhaustive
search took about 6 minutes of CPU time (times are for a
Univac 1180 system) while each heuristic search took about 6
seconds of CPU time, the heuristic search appears to have
been very successful. In all cases the heuristic search
converged in at most 3 iterations, for an overall cost of 60
(=3M(K-1)) queueing network solutions.

We have conducted 2 more experiments like the one
described above, with slightly different parameters. Of the
300 heuristic searches in 30 problems that we have per-
formed, 113 found solutions as good as the optimal solution.
The average difference between the optimal G value and the
value found by the heuristic search was less than 10 percent
when averaged over those cases when the solutions were not
equivalent. In the 300 trials, the heuristic search seri-

ously failed (i. e. found a solution worse than the optimal
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solution by more than 20%) only 4 times.

For problems with more modules, programs, or nodes, the
exhaustive search process becomes prohibitively expensive.
For the case of D distinct distributed programs with one

instance of each program, the computational cost of solving

each queueing network is O(K2 ZD). Complexity of exhaustive
search is therefore O(KM K2 2D). For the heuristic search
this becomes 0O (M K3 2D).

We have run our heuristic search on problems as large
as 10 programs, 5 nodes and 5 modules. Each heuristic
search on this problem took about 6 minutes of CPU time.
Our estimates are that one exhaustive search in this case
would require about 6 hours of Univac 1100/80 time. To
overcome these complexity limits we have used approximate

MVA algorithms.

6. Approximate Solution Techniques

Recently Schweitzer [20] (see also Appendix B of[2]),
Reiser and Lavenberg [18], and Chandy and Neuse [17] have
proposed fast, approximate MVA solution techniques that cir-
cumvent the exponential storage and computational growth
problems of the direct MVA algorithm. In this section we
explore the wuse of these methods in our module allocation
problem.

The speed and accuracy of these methods can be very
impressive. For example, when applied to the 8 node, 4

class problem of [18] Schweitzer’s algorithm (the fastest
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algorithm of the group) runs more than 100 times faster than
the direct MVA method. 1In relation to this method, the
other algorithms run 7 (Reiser and Lavenberg), 11 (Chandy
and Neuse), and 110 times as long. These proportions depend
not only on the number of jobs in the network but also on
the characteristics of the network itself. For example, |if
one of the servers is a bottleneck, Schweitzer”s algorithm
converges faster and can be as much as 240 times faster than
the the direct method! While Schweitzer”s algorithm is the
fastest, Chandy and Neuse”s "MVA plus linearizer" [17]
method is by far the most accurate, with relative errors in
queue lengths and mean queue times being less than one per-
cent in all cases. Relative errors in the other two methods
were usually in the range of 4 to 10 percent.

To compare the accuracy and speed of these methods when
applied to the module allocation problem, we randomly gen-
erated 100 module allocation problems according to the rules
given in Section 5 and used all three methods as well as
direct MVA to solve the resulting queueing networks. The
results of this experiment are summarized in Table 7. Each
of the module allocation problems solved was for a 10 pro-
gram, 5 node, 5 module case, with one instance of each dis-
tributed program. We see that the execution times of the
four methods are approximately in the ratio 1:3:30:74. This
means that the exhaustive search problems of Section 5 that
would have required 6 hours of CPU time using the direct MVA

algorithm could be done in about 5 minutes using
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Schweitzer”s algorithm.

As the number of instances of each distributed program
is increased the computational cost of the direct MVA algo-
rithm increases exponentially as discussed in Section 3.
Schweitzer”s algorithm has computational complexity O(J Q)
where C is the number of customer classes (distributed pro-
gram types). Execution time is essentially independent of

customer population. Reiser and Lavenberg”s algorithm has

Method Average Execution Time Maximum Execution Time
per Queueing Network
Solution (seconds)

direct MVA 6.5 6.5

Schweitzer .088 . 140

Reiser and Lavenberg . 240 .380

Chandy and Neuse 2.4 3.3
Table 7(a)

Execution Time Comparison
(Times are for Univac 1100/80)

Relative Errors (Percent)

Response Ratios Goodness Function
Method Average Maximum Average Maximum
Error Error Error Brror
Schweitzer 4.7 36. 3.9 9.1
Reiser and Lavenberg 5.4 41, 4.8 9.5
Chandy and Neuse 0.00+ 1.7 0.00+ 0.33

Table 7(b)
Accuracy Comparison

Table 7
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computational complexity O(J P) where J is the number of
servers and P is the sum of the number of customers in each
class. Storage complexity of both of the methods is 0O(J Q).
Since Schweitzer”s algorithm has the same accuracy as the
Reiser and Lavenberg method and better performance than the
latter, we decided not to use the Reiser and Lavenberg
method. Chandy and Neuse”s method has storage complexity
O(J C2). The computational cost of this scheme is more dif-
ficult to quantify, but the Chandy and Neuse algorithm calls
a version of Schweitzer”s algorithm 2(C+1)+1 times when
solving a network with C classes. Overall execution cost is
actually more like 2.5(C+1l) times that of Schweitzer”s algo-
rithm due to the "linearizer" calculation which requires
O(J C2) operations. Like S ~-eitzer”s algorithm the cost is
independent of the network population.

For our application, the accuracy of the Chandy and
Neuse algorithm is 1less important than the speed of the
Schweitzer algorithm. We therefore decided to use the
latter. Combining the interchange search with the
Schweitzer”s MVA algorithm results in an approximate solu-
tion to the module allocation problem which has complexity
0o M K3 C). Typical execution times on a Univac 1100/80 sys-
tem were of the order 4 to 6 seconds for a 10 program, 5
node, 5 module problem depending on whether 2 or 3 itera-
tions of the heuristic search were required. Thus it should
be possible to solve a problem with 50 programs, 10 nodes

and 80 modules in about 30 minutes of CPU time.
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This estimate assumes that the network is completely
connected. If there are fewer than O(KZ) CP”s then the
estimate above should be replaced by O(M K (K + N) C), where
N is the number of communications processors.

Of course, there is no guarantee that a module alloca-
tion found using the approximate algorithm will be the same
as one found using the exact MVA algorithm. To estimate how
different the allocations might be using the two queueing
network solution techniques, we compared optimal module
allocations determined using the direct MVA method to
optimal module allocations found wusing the Schweitzer”s
algorithm, In ten exhaustive search trials on a 5 program,
5 node, 5 module problem, the optimal module allocations
using the exact and approximate MVA algorithms were found to
be identical in 8 out of 10 cases. TIn the 2 cases where the
optimal allocations were not identical, they differed in the
placement of only two modules. While this is not a defini-
tive comparison, it does appear that the error in the
approximate method does not grossly change the optimal
module allocation.

As a final comparison we repeated the experiment of
Section 5 for the 10 program, 5 node, 5 module case. This
time we used PEmin(i)=l.0 and PEmax(i)=100.0 to generate a
wider variety of problems. The results of 10 trials of this

experiment are given in Table 8.
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Exhaustive Search Heuristic Search

Problem Average Best Found Found Found Average Worst %

Number Goodness Goodness Same Equivalent Worse % Worse Worse
1 83.6 31.7 0 0 10 1.7 3.7
2 97.3 32.4 3 0 7 1.9 13.3
3 83.6 31.9 0 0 10 5.5 6.2
4 78.2 33.3 1 0 9 4,1 9.9
5 88.8 36.3 2 0 8 1.6 6.4
6 85.1 32.2 0 0 10 2.6 3.9
7 83.7 30.6 1 0 9 4.2 5.3
8 79.2 34,3 0 0 10 3.6 17.6
9 83.2 34.0 2 2 6 2.8 5.5
10 88.4 32.0 1 0 9 1.8 5.2

Table 8

Summary of Exhaustive versus Heuristic Search
Using Schweitzer”s MVA Solution Algorithm
(10 program, 5 node, 5 module case)

7. Concluding Remarks

We have discussed an alternative approach to the module
allocation problem in distributed systems which allows
representation of congestion components such as mean dqueue
size or response time in the criterion function. The data
required to perform this analysis is essentially of the same
form as that used in standard approaches to this problem
based on network flow algorithms or 0-1 integer programming.
The construction of a queueing model from the data was
described and shown to be efficiently solvable. We have
suggested a straightforward heuristic search as a method of
finding a good module allocation and provided empirical evi-

dence of the success of this heuristic.
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One advantage of the heuristic search is that problem
constraints such as limited main memory size can easily be
handled. The search is merely not allowed to enter a state
which the constraints would prohibit. The introduction of
such constraints could however increase the number of trials
necessary to find a good solution.

Use of exact queueing network solution methods is lim-
ited by the exponential growth of storage and computational
costs as the number of distributed program types increases.
The use of an approximate MVA solution algorithm due to
Schweitzer [20] when combined with the interchange search
was shown to yield good solutions to the module allocation
problem at a computational cost of O(M K (K + N) C) where M
is the number of modules, K the number of sites in the net-
work, N the number of communication servers, and C the
number of distributed program types. It appears that this
technigue should be usable on substantial sized module allo-
cation problems.

Our present model assumes that computation on different
CPU”s is not overlapped nor is communication overlapped with
computation. Analytic methods have been proposed to handle
limited forms of overlap [1,24]. Whether these methods can
be generalized to handle the high degree of overlap possible
in a distributed system remains to be seen. Modeling of
overlap is especially necessary if this problem is to be

extended to handle the file allocation problem as well.
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Further research needs to be done on the search tech-
nigque. By allowing a module to be split between nodes it
should be possible to use non-linear optimization techniques
to search for a good module allocation. The resulting real
valued module location vector L would then have to be trun-

cated to an integer solution, much as is done in [10,25].
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