ON INEQUALITY TABLEAUX

by

Anthony Klug

Computer Sciences Technical Report #403

November 1980

On Inequality Tableaux

Anthony Xlug

University of Wisconsin

Abstract

Tableaux are representations of relational algebra expressions
suitable for a number of useful computations. The tableau
construction is generalized in this paper so that relational
algebra expressions having domain/value comparisons with <,
'<', etc. can be represented. Transformation rules for the
tableau chase are given for these "inequality tableaux", and
one use of the chase is given in which the wvalidity of view
dependencies can be determined. The equivalence and optimiza-
tion of relational algebra expressions (including '<' com-
parisons) is shown equivalent to existence of certain row
preserving functions on tableaux representing the expressions.

Keywords and Phrases: —relational algebra, tableau, inequality

comparisons, chase, view constraints, equivalence, optimiza-
tion
CR Categories: 4.33, 5.21

Author's address: Computer Sciences Dept., University of
Wisconsin-Madison, Madison, WI 5378A

Contents
1 INtrodUCtioN ceeeeeosceoososscssesssssnssscssccnssasncssassssscs 1
1.1 Overview Of PApPer ..ocessccsscscssosssssscscssnssocnacsssscsscs 1
2 Relational DefinitionNS (.eeeeecoscesscsosnsasssccnnoscscssscnce 2
3 Inequality TableauX c.issescscsccscssssonccescnssscscnansnces 5
4 Transformation Rules and Chasesceeoccecscsscsscccssocses 11
5 Testing Expression Constraints c.eocececcescocccacsoccccccnes 16
f Equivalence and Optimization ..ccccecccecececcccascccnccncnn 23
7 Summary and ConcluSionsS ..ccscscecssssccssccsssccsesoncncone 27

8 REFEYECNCES oooosccessscscsssosssoscssoscoscsssosssssooscssscansss 27

1. Introduction

Tableaux have been used by a number of authors to solve a variety
of problems in the relational database model. For example, they have
been used to optimize relational expressions [AhSU], to test for loss-
lessness of joins [AhBU], to test validity of dependencies [MaMS] and
to check correctness of views [K1Pr]. The tableaux wused in these
works could only represent relational expressions which contained
equality comparisons among domains and between domains and <constants.
In the "real world", queries do not consist solely of equality com-
parisons. Tableaux would bhe more useful if they could model queries
with the domain comparison operators "less-than", "greater-than-or-
equal®, etc. In this paper we introduce the notion of “inequality
tableaux", tabular representations of relational algebra expressions
which contain these general comparison operators. We then present a
number of wuseful computations which can be performed on inequality

tableaux.

1.1, Overview of Paper

After presenting definitions for relational algebra and inequal~-
ity tableaux (Sections 2 and 3), we first show that the expressive
power of relational algebra is exactly the same as the expressive
power of inequality tableaux. Then we consider chase rules for ine-
quality tableaux (Section 4). These rules are hasic to the use of
tableaux. In Section 5, we show how chases can be used to verify con-
straints on views defined with expressions having inequality comparis-
ons. In Section 5, we consider equivalence and optimization of ine-

quality tableaux.

2. Relational Definitions

In this section we present our basic set of definitions. we
define relations, instances, dependencies and relational algebra

expressions.

The formal model we use does not make the universal instance

assumption [BeGo2].

A schema consists of a list <Rp,...,Ry” of relation names. With

each relation name R; is associated an integer called its degree and

denoted deg(Rj). Throughout this paper, one fixed schema <Ry,...,Ry>
is assumed. In the examples, we assume that Ry and R, are binary and

that R3 and R4 have three domains.

An instance (or database state) I of schema <Rl,...,RN> is an

N+2-tuple <D,0,I1,...,Iy>, where D is the domain of values, O is a

1

partial, asymmetric, transitive order* on D, and for each i=1,...,N,

I; C pdeg (Ri) = rThe relation O specifies which data elements are less

than other data elements. Domains of all relations are taken without
loss of generality to be the same set D, and p™ is the set of all m-
tuples over D. For convenience, we will assume that the set N of
natural numbers 1is embedded in D and that the less-than relation on

natural numbers 1is consistent with the order on Dz.

1 For all pairs (a,b) in 0, (b,2a) is not in O, and if (a,b) and
(b,c) are in 0, then (a,c) is also in O.

What we really want is the kind of interpretations (instances)
which appear in mathematical logic [Endel in which the formal
languages have constant symbols and the interpretations have interpre-
tations of constant symbols. To simplify matters for those not fami-
liar with models in logic, we use the natural numbers both as constant
symbols in our language (relational algebra) and as their own in-
terpretations in the instances. Other data types may be considered to
be coded as natural numbers.

3

We usually think of data dependencies as properties of schema
relations. However, if we are also studying views and dependencies on
views, a more general idea of dependency is convenient. We think of a
dependency as a statement about a set of tuples of the appropriate

degree:

A functional dependency (FD) for degree k is a pair <Z,A>, also

written Z->A, where 2z C {1,2,...,k}, A € {1,2,...,k} and A £ Z.

A join dependency (JD) for degree k is a sequence <Xqy,...,Xp>,

also written [Xj,...,X in which each X; is a sublist of {1,...,k}

m]’
and where U X; = {1,2,...,k}. A sublist of a set X is @ nonrepeating

sequence whose entries are taken from X.

A constraint is either an FD or a JD.

A schema FD is a pair <Rj,Z—>A>, also written Rj;:Z—>A, where R; is
a schema relation and Z->A is an FD for deqree dea(Rj). Similarly, a

schema JD is a pair <Rj,S>, also written R;:S, where 8 is a JD for

degree deg(Rj).

An FD Z->A for degree k is true in a set X of tuples of degree k
if for all tuples t;, t, in X, if t4[71 = tz[Z], then tl[A] = tz[A].
Brackets '[', ']' indicate projection on the listed domains. A JD

[Jl,...,J for degree k is true in a set X of tuples of deqree k if

m]
every element t € pk such that t[J;] is in X[Ji] (i=1,...,m) is in X.
A schema constraint <R;,c> is true in an instance I = <D,O,Il,...,IN>
if ¢ is true in the set I, of tuples. If C is a set of schema con-

straints, sat(C) is the set of instances in which each constraint of C

is true.

The query language we define is a hasic relational

algebra [Codd]. The set E of expressions over our fixed schema is

defined as follows: Base relations R; are expressions. If cem,

then the unary constant relation {c} is an expression. Given expres-

sions ejre,, we get new expressions by taking projections, eg[X],

where X is a sublist of the domains of e;, Cross products, ejXe,, res-—

trictions, e;[XeY], where X,Y € doms(e) and © is '=' or '<', eand

unions, e; U ey, where ey and es have the same degree.

With these operators we can also define selections, Joins and

intersections.

For each e € E of degree k and for each instance I, the value of
e on I, denoted e(I), is a subset of Dk. The formal definition, which
is omitted, gives the usual semantics for relational algebra operators

[Codd].

Example 1. Consider the schema:
emp(name ,dept#) dept(dept#, mgr#, budget)
The query "List the names of all employees whose departments oare

headed by manager 15 or which have a budget smaller than S1AGQE" can

be expressed as the algebra statement:
(emp [2=1] (dept[2 = '15"' or 3 < 'lgacgp']))I[1]
(We quote constants to distinguish them from domain numbers.) In terms
of the primitive operations, this statement is:
(emp X

(dept X {15})[2=41[1,2,31 U (dept X {1@aa0})[3<41[1,2,3]
) [2=31 [1]

There are two properties of expressions we would like to bhe able
to determine: We would like to know what dependencies hold on sets of
tuples derived from expressions, and we would like to know when the
tuple sets from one expression are always contained in or are equal to

the tuple sets derived from another expression. Knowing these

5
properties would allow use to verify correctness of view constraints,
and would help us optimize expressions. Thus we define the following

concepts:

An expression constraint is a pair <e,c>, 2lso written e:c, where

e €E® and ¢ is an FD or a JD for degree deg(e). An expression con-

straint e:c is true in instance I if ¢ is true in e(I).

An expression constraint e:c is valid in a set P of instances |if

for every I € P, e:c is true in I.

Expression ey is contained in expression e, with respect to & set

P of instances, written ej Cp €5y if ej(I) C e,(I) for 211 instances I
in P. We write e; C ey if ey;(I) C e, (I) for all instances. Expres—
sion e is equivalent to expression e, on a set P of instances, writ-

ten ey =p ey, if el(I) = e, (I) for 21l instances I in P.

3. Inequality Tableaux

Tableaux [AhBU] [AhSU] [ChMe]l [SaYal [K1Pr]l [MaMS] are shorthand

notations for relational expressions which are well suited for compu-
tational purposes. Previous definitions of tableaux have modeled only
projections, equi-selections and natural joins on universal instances
[AhSU] or projections, equi-selection and equi-restriction and cross
product on arbitrary instances [ChMe] [K1lPr]. Here, we introduce a
more general concept of tableau which can represent the relational
algebra operators of the previous section in which restrictions may
have "less-than" comparisons. We also incorporate a previous type of
generalization [K1Pr] in which multiple summary rows are allowed. To
motivate the definition, we first consider the conjunctive queries of
Chandra and Merlin. The derivation of tableaux from conjunctive

queries is particularly easy to see.

[

A conjunctive query is a first-order predicate calculus formula

of the form:
(Xl,...,xk).ka+l...xm.Al&...&Ar,

where each Ai is an atomic formula R-(tl,...,t)y, where each term t 1is

J p
a variable or a constant. Given an instance I, the result of a con-
junctive query is the set of all k-tuples <d;,...,d> of values which
make the query true when substituted for xXq,...,Xp, respectively. It
can be shown that every expression in E with only equality operators
can be expressed as a set of conjunctive queries. The tableau for a
conjunctive query is obtained by collectinag, for each relation Rj, the
arguments of each atomic formula for Rj into a table. We could gen-
eralize the set of formulas considered conjunctive queries by extend-
ing the allowable atomic formulas to include formulas of the form
(tl < t2), again where the t's are variables or constaents. We can

collect the old atomic formulas into tahles as before, and the new

ones we can collect into a boolean matrix which has a row and a column

For each ~variable —and —constent appearing—inthequery.—The—formal

definitions follow.

The transitive closure of a binary relation R (in the mathemati-

cal sense), denoted R*, is defined by the rules:

*
R C R

Here, 'O' is composition.

The set V¥V of variables is the set {al, oy A3y .. } of sub-
scripted "a"s. The set ¥ of symbols is ¥ U N. We associate a natural

ordering on ¥ as follows: N has its usual ordering; V¥ is ordered by

7
index value, and every element of N is less than every element of V.
A tableau T of degree m is an N+2-tuple <5,B,Tqy,...,Ty” such that
s ¢ ¥", for each i=1,...,N, T; C yde9(R;) every variable in S appears
in some T;, and B is a binary relation on the symbols in TyreeaTy- S
is called the summary, The relation B can be considered to be a
boolean matrix or a boolean valued function, and we will sometimes
write B(x,y)=1 when xBy is true (or (x,y) € B). We call B the LT-

matrix (less-than matrix). We consider the empty tableau, <d&,...,8>,

to be a tableau of any degree. Note that summaries may contain many
rows. As we will see, this is useful for testing expression con-

straints.

A tableau set of degree m is a finite set of tableaux of degree

If X is a tuple, & tuple set, a tableau or a tableau set, we let

Y (X) denote the set of symbols occurring in X.

il

A valuation r for tableau T and instance I <D,O,Il,...,IN> is a

function Y(T)->D which 1is the identity on N C ¥. Valuations can be
extended to functions on tuples and functions on sets of tuples by

component-wise and element-wise extension.

By using valuations, a tableau T = <S,B,Tl,...,TN> can bhe con-
sidered to be a function on instances. Given instance I, the value of
T on I is defined by:

T(I) =U {r(s) : r is a valuation for T, r(T;) C I;,
i=l,...,N, r(B) C 0}

Example 2. Consider the tableau:

S B Rl R2
a; ay (az,a3) 21 @, aj ay
a, as ay @

The following table gives an instance and three valuations on it which
satisfy the above conditions. (They are, in fact, the only valuations

which do.) The corresponding valuations of the summary are also given:

Rl R2 a) ap a3 a, S
4 2 2 1 4 2 3 1 4 1
1 @ 3 1 2 3
3 A 5 4 1 B 2 1] 1
a2
1 8 3 1 1 1
3

Given a tableau T <S,B,Tl,...,TN>, if B and the order on W, <prr
. . . . * .

are union compatible, i.e., if (B U <N) is asymmetric, then T deter-

mines an instance I = <D,O,Il,...,IN> by taking D = ™ U ¥Y(T), O =

(BU<N)*, and I; =T

i i i=l,...,N. Historically, I would be called

the "Herbrand interpretation” [Herb] for T. We will often simply con-
sider T itself to be the instance. The following lemma states an
important but easily checked property of tableaux which relates their

use as functions and their use as instances.

Lemma 1. If tableau T = <S,B,Ty,...,Ty> can be considered an instance,

then S C T(T).
Proof. Let the identity function on ¥(T) be the valuation. [l

A tableau set Y = {Tl,...,Tk} may be considered to be a function
by defining:

Y(I) = Tl(I) U ... U Tk(I).

9
We now define the concepts of "contained in" and "equivalent to"

for tableaux.

Tableau T; is contained in tableau T, with respect to a set P of

instances, written T; Cp T?, if Tl(I) C T2(I) for all instances I in
P. We write Ty C T2 if Tl(I) C TH(I) for all instances I. Tableau Tl

is equivalent to tableau T, on a set P of instances, written Ty =p TZ’

if Ty(1I) = T2(I) for all instances I in P. Analogous definitions are

made for tableau sets.

The above constitutes the basic definitions for tableaux. We now
give (informally) a transformation from expressions to tableau sets.
The tableaux generated contain only one row in their summary. Except
for union, the rules are given for single tableaux; if the expression
is represented by a tableau set, the rules are applied to each tableau
in the set.

(1) The tableau for a schema relation R: of degree m has a row

1

<al,...,am> in T,

, a row <a;,;...,a_> in the summary, and other
i 1 m &

components empty.
(2) The tableau for a constant relation {c} has ¢ in the summary and
other components empty.
(3) If T represents e, then a projection e[X] is represented by
removing from the summary entries not in the columns of X.
(4) If T represents e, and symbols sy, s, are in columns X and Y,
respectively, of S, then the tableau T' for e[X=Y] is obtained as

follows: If sy and sy, are the same symbol, then T' = T. If

and sy are unequal constants, then T' is the empty tableau. Oth-
erwise assume that the symbol sy precedes the symbol sy in the
natural ordering. T' is obtained by replacing all occurrences of
Sy in T by Sy

For a less—than-restriction, e[X<y], T' is obtained from

1n
T by adding the pair (SX,SY) to B.

(5) If Tl,T2 represent e1r€y, respectively, then the tableau T' to
represent e;Xe, is obtained by making the sets of variables dis-
joint, making S' the cross product 5;Xs,, making B' the union
B, U B, and making each other component T'; the union Ty; U Toy.

(6) A union ey U e, is repesented by the union of the tableau sets

representing e, and e,.

Theorem 1. Let Y be the tableau set resulting from expression e. Then

Y(I) = e(I) for all instances I.

Proof. Left to the reader. L[]

Example 3.
S B R; R,
Ry[2<11R5) [1,4] —-=> . %
al 84 (a?,a3) al 87 a3 a/_j,

Example 4.

(Rp X Ry X Rl)[2=3 & 4=5 & 6<1 & 1<'8']1[1,3,5] -->

S B Rl R2

a; a, asg (a4,a}) a; a, a, aj
(31,8 a3 a4

The existence of the reverse transformation is stated by the next

theorem.
Theorem 2. For every tableau set Y there is an expression e € H such
that e = Y.

Proof. The proof should generate equi-restrictions from pairs of

occurrences of the same variable, less-than-restrictions from pairs in

11

B, and selections from occurrences of constants,]

Example 5. Consider the tableau:

S B Rl Ry

aj 2 ag (az,a3) a; a, ay A as
(ag,1) 249 3y 23 85 @5

The corresponding expression is (with domain numbers labeled for clar-

ity):

(Ry X R1 X R3 X R3 X {2}

o w
-0 U1 A
gl

o Ul A
DN~

[
1
12 3 4 5 6 7 8 9 14 11 4
7
1

= 00N
— 2

4, Transformation Rules and Chases

Chases for "equality" tableaux were originally used in [AhBU] for
testing for lossy Joins. Two transformation rules (F-rules and J-

rules) are made explicit in [MaMS] where chaeses are used to determine

closures of sets of dependencies on single relations. In [KlPr], T-
rules were added in order to test constraints on expressions. In this

section, the chase computation for inequality tableaux is defined.

A chase consists of a sequence of transformations on a tableau
which preserves equivalence with respect to a given <c¢lass of

instances. Formally, a transformation rule for a set P of 1instances

is a partial function f on tableaux such that £(T) =, T. We define
four classes of transformation rules. The first two correspond to
schema FDs and JDs, respectively, which are valid in the given class P
of instances. The third type of transformation rule adds rows to the
summary when this will not change the value of the tableau, and these

rules are applicable in any set of instances. The fourth rule forms a

12

closure of the LT-matrix.

The rules for changing the LT-matrix need to infer all "less-
than" relationships among symbols of a tableau. Since it is possible
to have, say, pairs (a1,3) and (A,az) in the LT-matrix without (3,4)
being present, we need to include the order on natural numbers in
these rules. Let M(T) be the constants appearing in tableau T =
<S,B,;Tyree-rTy>y and let <N(T) be <y M (N(TYXN(T)). Then the

*
—-closure of B, written B+, is the set of order pairs (R U <N(T)) .

+

This is a closure of B with the ordering on the constants taken into

account.

F-Rules. For each scheme FD Rj:Z->A there is an F-rule which is

defined as follows: If T = <S,B,Tyj,...,Ty> and there are tj, t, € Ty

such that t1[2z] = to,[Z]1 and t;[A] # t,[Al, then

(a) If tl[A] and to[A] are unequal constants, replace T by the empty
tableau.

(b) Otherwise, if they are unequal symbols s;, Sy, and s, is less than

5y in—the natural orering, replace all the occurrences in T of So

by occurrences of Sy where B is considered to be a set of ordered
pairs. (If we consider B a matrix this means OR-ing the So—row
into the Sy-row, OR~-ing the s?—column into the sl—column, and

removing the sz—column and s?—row.)

J-rules. For each JD Ri:[xl""'xk] there is a J-rule which is

d

defined as follows: If there is an element t € Y“eq(Ri) such that for

each j=1,...,k there is a tj e Ty with ti[xi] = t[Xj], then add t to

T; if it is not already there.

T-rules. If r is & function Y(T)->Y(T) such that r(Ti) C Ti for

i=1,...,N, and r(B) C B, then add r(S) to 8 if not already there.

13
LT-Rules. If T = <S5,B,T;,...,Ty> and B # B+, replace T by the empty
tableau if BY has a non-zero diagonal. NDtherwise replace T by

+
<8,BY, Ty, ..., Ty

Example 6. 1In Figure 1 some examples applying these rules are given.
We note in the next lemma that applying any of these rules

results in an equivalent tableau.

Lemma 2. Let T be a tableau.

(1) Let T' be the result of applying the F-rule for R;:Z2->A to T.

I

Then T = T' wrt sat(Ri:Z—>A).

(2) Let T' be the result of applying the J-rule for <R,,S> to T.

il
Then T = T' wrt sat(R;:8).

(3) Let T' be the result of applying the T-rule for the function r to
T. Then T = T'.

(4) Let T' be the result of applying the LT-rule to T. Then T = T'.

Proof. Proofs similar to what 1s needed for (1), (2) and (3) can be
found elsewhere [MaMS] [KlPri. For (4), note that if I =
<D,0,I7,0ee,Iy is an instance and r is a valuation for T on I such

that r(B) C 0, then r(B%) c o. [

Lemma 3. A given set of F-, J-, T- and LT-rules can be applied to a

tableau only a finite number of times.

Proof. As in [MaMS]. The LT-rule can be applied only at the begin-
ning of a chase or after some other rule, and these other rules can

only be applied a finite number of times. []

Given a tableau T we may apply the transformation rules to T to

obtain a seqguence Tl,T2,T3,... of tableaux all equivalent to T.

14

S Ry F-rule S R4
R3:l"’>2
a; a, ay ay; a, aj —————— aj a5 a, a1 a5 aj
a1 94 %5 @) a8y a;g
B B
(ﬂla4) (ﬂra§)
(all3) (alr)
J-rule
S R [{1,2} S R
3 ' 4 3
{2,3}]
a1 ap az a; a az ~ > 8) a az a; a, aj
a4 8y ag 84 @y 25
a1 a8, asg
B B
(alraz) (alla?)
T-rule
a3 - 8.2
asg al as al ao as > a8y ajy a, a) a, as
ap a3 9y @p @1 a3 @) asz a
B B
(azpal) (a2'al)
(a3,a7) (e3,a7)
S R3 LT-rule S R3
: B --> B+ -
ay a2 a4 a1 asy a3 T—————— a1 as 32 a1 a2 a3
a8y ay ag aj aj ag
B B
(al,B) (81,3)
(alra?)
(3,5)
Figure 1. Transformation Examples

15
Eventually there will be no applicable rules, and the sequence will
terminate. That the final tableau in such a sequence is unigue fol-

\

lows from the next theorem:

Theorem 3. The transformations rules above have the Church-Rosser pro-
perty [Seth]. That is, if T' and T" are the results of applying two
transformation rules to T, then there exist sequences T'l,T'l,...,T'k
and T"l""’T"m where each tableau in the sequence is obtained from
the previous element by a transformation rule, where T'y = T, T"l =

™", and where T'y = T"m. (See Figure 2.)
Proof. Left to reader. [

Thus the following chase function is well-defined [Seth]: Given a set
C of schema constraints and a tableau T, chaseC(T) is the tableau

resulting from applying all possible transformation rules for C to T.

Some important properties of the chase are given in the following

theorem.

Tl =Tllx
k m

Figure 2. Church-Rosser Property for the Chase.

15
Theorem 4. (1) chasex(T), considered an instance, satisfies the con-
straints in C.
(2) T = chasen(T) wrt C.
If T' = chaser(T), then 8' = T'(T'), where S' is the summary of T';
the first occurrence of T' is the function on instances, and the

second occurrence is T' the instance.

Proof. (1) F- and J-rules can only be applied when the tableau, con-
sidered an instance, violates the corresponding constraint. (2) This
follows from Theorem 2.

(3) The inclusion "S' C T'(T')" has already been shown. To prove the
other inclusion, suppose x € T'(T'). There is & valuation p such that
X = p(s) for some s € S8', p(B) C BY and p(T'i) C T'i (i=1,...,N).
Since T! is a8t the end of a chase, BT = B, so the T-rule for p is

applicable to T', but since T' is already the end of a chase, we must

have p(s') C S'. 1In particular, x = p(s) € s'. [J

The last point we make in this section is that T-rules can be

replaced by a possibly simpler algebraic computation:

Theorem 5. Let T be & tableau and e an equivalent expression. Let T'
. *
= chaseC(T) for some constraint set C. Define the function chase as
. * *
the chase function without the T-rules, and let T = chaseC(T). Then

* . .
gt = e(T*), where T 1is considered an instance.
Proof. Left to the reader. []

5. Testing Expression Constraints

Having introduced inequality tableaux and the chase function for

inequality tableaux, we now show how these concepts can be used to

17
determine valid expression constraints given the validity of certain
schema constraints. This problems is important because, for example,
application programs using views defined by relational algebra expres-—
sions may depend on certain constraints holding. RKnowing that view
constraints follow from schema constraints also means that the views

do not need to be materialized in order to check their consistency.

This problem was solved in [K1Pr] for expressions containing only
equality comparisons. The solution can be generalized to apply to
inequality tableaux, and we give in this section some examples of its

use.

The motivation for the method we use is Theorem 4. This theorem
says that chasing a tableau makes the tableau, as an instance, satisfy
the constraints used in the chase. Now we are looking at constraints
which might hold in the value set of a2 tableau, so we want to chase a
certain tableau and try to make the summary satisfy the expression

constraint. We will need to be able to generate a representative

tableau for the given expression which has a summary of —a particular
form. We arrange that the summary, as a tuple set, will violate the
test constraint. TIf the chase removes this violation in the summary,
the constraint must be valid. Otherwise we will have a counterexample

state.

Given expression e (without unions) and equivalent tahleau T with
a one row summary, we replicate the tableau with brand new symbols in
some places and old symbols in others. The symbol renaming functions

used to replicate the tableau must be compatible. An allowable or

on the variables of T such that for each r;, r; may be the identity on

some symbols in the summary, but it must otherwise map variables to

18

variables not used by any other r By convention, we also consider

jo
the identity renaming to be compatible with any set of compatible
renamings.

Example 7. Let T be the tableau:

5 B Rl R?

a; a, aj (a4,a}) a; a, a, asy
(a;,8 as ay

Take r; to be the identity, and r, and ry to be defined by the rules:

I)
al~9 al a1-9 a-
as - as aq - ag
ag - a5 23 - a3
a, = ag ag = 3g

Then ry(T) U rz(T) U r3(T) is the tableau:

S B Rl R2
ay @, aj (aA,al) ay ap an aj
a1 a5 ag (81,8) a3 agn an ag
a ag as (ag,al) ag ag ag ajy

(ay,a) a- ag
(a7,8 as ag

The new tableau is equivalent to the original. This is because no new

"connections" have been made among the rows making up the tableau.

We will illustrate with some examples how this replication of
tableaux along with the chase procedure of the last section are used

to determine valid expression constraints.
Example 8. Consider the expression:
((R3[2='@'])[3=11R2)[1,5]

The tableau for this expression is:

19

s B R3 R?

a; a, ay] ag agy a,

Given schema FDs R3:1,2->3 and R?:l—>2, we want to test the FD 1-2 on
the expression. We replicate the tableau so that the FD 1->2 is false

in the summary. The tableau generated is:

S B R R,
a; a, ay 9 ajy as a,
a; ay a; 7 ag ag ay

We can apply the F-rule for R3:1,2->3 and get:

S B Ry Ro
ay; a, ay @ ajy az a,
aj; a, a; 0 aj az ay

The F-rule for Ry:1->2 is now applicable, and the result is:

S B R R,
2y a, aj @ a3 a3 a,
a1 a, a; @ aj aj a,

The FD 1->2 is true in S, and so it is valid on the expression.

Example 9. Consider the expression:

Assume there are FDs Ry:1->2, Ry:1->2 and R3:1->2. The tableau for this

expression is:

S B Rq R2 R3

ap a, (agrag) a; aj az ay ag a, ag

To test the FD 1-»>2 on the expression, we generate the tableau:

20

5 B Rl R, R3

a; ap (ag,ag) a; az aza, ag a, ag
a) a7 (agra1g) 21 a9 A9 ag A1y a7 ag
We can apply the rule for the FD R1:1—>2, equating ag to asy and then

the rule for the FD R,:1->2, equating ag to as. The result will be:

R3

a; a8y (84s35) 281 83 a8z a, ag 3, ag

ay a7 (agr319) 21 a3 2z ay; ajy a7 a5
No other rules are applicable. We have not identified a, and ag. The
test FD 1is false in the summary, and this tableau can be taken as a
counterexample state: The FDs Rl:l-éz, R,:1->2 and R3:12 are true in
this (formal) instance, and the tuples <al,a2> and <aj,a,> are in the

value of the expression on this instance.
Example 1@. Consider the JD [{1,2},{1,3},{2,3}] on the expression:

(Ry [2<1] Ry) [4=1] Ry

Thetableau for this expression is:

s B Ry Ro Ry

ay 8y a3 (34,35 a; a, 8, a3 azya
A tableau for testing the JD is (we will look for <aj,a5,a3> in 8):

5 B Ry R2 R3

a; a ag (ag,ay) &y a, a5 ag ag a9
ag 85 a3z (agray) ag ag a, az aj ag
a; ag aj (a8,a7) aj; ag a- aj az aj

We can apply the T-rule with any one of the three functions:

(a) ag > asg, others unchanged
(b) ag -> ayr ag = Ay, others unchanged
(c) aqg = aé, ag => a4, others unchanged

21

In each case, <al,a2,a3> will appear in S. Therefore the JD is valid.

Although we can check the validity of FDs on expressions having

'<' comparisons, example 8 had only '=' comparisons. There is a sim-

ple reason for this:

Theorem 6. If an expression e which is non-empty on at least one in-

stance contains no unions, then an FD is valid on e if and only if it
is valid on the expression obtained from e by deleting all less-than

restrictions.

Proof. Let T be a tableau for e which has two summary rows for test-
ing an FD, and let e' be e with all less-than restrictions removed.
Note that T-rules are not needed to test FDs on expressions, and the
F- and J-rules are applicable regardless of the LT-rule being used.
Hence, we may postpone the LT-rule until the last step in the chase.
So let TrreearT be a chase for T in which T, was derived from Th-1 by
the only application in the chase of the LT-rule. If we let

T'l,...,T'n_1 be derived from TyreeerThy by making all LT-matrices

empty, then T'l is a tableau for e', and the sequence is a chase for
T'y. Finally, note that the LT-rule will not replace Th—1 by the

empty tableau and that the summary of T'n__l is the same as the summary

This theorem fails if the expression contains unions:

Example 11. Suppose relation Ry has an FD Ry:1->2. Let e be
Ry U {<1,5>}. Then the FD 1->2 is not valid on e, but it is valid on

el[2 < "4'] (verified bhelow).

The above techniques can be extended to handle FDs (and JDs) on

expressions containing unions:

22

If expression e is a union e; U ... Ue an FD Z->A can fail to hold

nt
on on e(I) (for some I) if there is a pair of tuples t; € e;(I) and
tj € ej(I), i and j not necessarily distinct, which have the same Z-
values but different A-values. Hence we test all tableaux generated
by concatenating pairs T; for e; and Tj for e such that the symbols

in the Z-columns of the summary are the same.

Example 12. Consider the previous expression:

(Ry U {<1,5>1)[2 < "4']
We assume R; has an FD 1->2. To check the FD 1-»2 on the expression, we
need to check three tableaux, We will only show the case for one
tuple out of R; and the other out of {<1,5>}. The tableau is: (When
the symbols in column of the summary are equated, the variable must be

replaced by the constant, not the constant by the variable.)

S B Ry

1l a2 (a2,4) 1 a2
15 (5, 4)

from B and (4,5) from <y vields a diagonal element (5,5). An FD is

vacuously true in an empty instance.

Other types of constraints on expressions (views) can also be
tested with this method. In [Kl1Pr] a procedure is given for testing
"pseudo-keys", sets of domains, one of which must uniquely identify
each tuple in a tuple set. For example, a pseudo-key {1},{2} is true
in a tuple set S if for all distinct tyrty in 8, if tl[l] = tz[l] then
ty[21 # t,[2]. To test such a constraint on an expression, we gen-
erate a tableau whose summary has two distinct rows with columns 1 and

2 the same. We then see if the chase identifies the two rows.

23

6. Equivalence and Optimization

It has been shown in [ChMe] and [AhSU] that the "contained in"
relation for "equality" tableaux and "equality" tableau sets can be
determined by certain row-preservinag functions on symbols. These so
called ‘"containment mappings" can also be used to optimize expres-
sions. In this section consider the proper "row-preserving” functions
which can determine "equivalence" and "contained in" for inequality

tableauxB.

A containment mapping f from tableau Ty to tableau T5 is a func-

tion W(Tl)—>V(T2) (considered the identity on constants), which is
one~to-one from the summary of Tl onto the summary of Ty, and which
has the properties that f(Bl) C (By U <N)*4' and f(Ty;) C To; for

i=1l,...,N.

Exampl

13. We should not replace the condition:

£(By) C (B, U <)~

by either £(B;) C B, or even f(By) C B2+. Consider the following two

tableaux:

T1: E, B Rl T2: S B Rl

a, ajp 3 a; a, a, aj 4 az ay

Clearly, Ty C Ty, but the function sending a; to aj and a, to a, does

not send B1 to 82 or to Bg.

3 We only consider tableaux with single row summaries. A tableau
with n rows in its summary is equivalent to a set of n tableaux with
sin%le row summaries.

Although the set (B, U <M)* is infinite, the relation f(B;) C
(By U <N)* is easily decidable.

24
Containment mappings are similar to algebraic homomorphisms, and

the composition of two containment mappings is also a containment map-

ping:

Theorem 7. Let f1:T1—>T2 and f2:T2—>T3 be containment mappings. Then

the functional composition szfl is a containment mapping T1-=>T5.

Proof. Clearly, fz(fl(Tli)) C £5(Ty;) C T33. For the LT-matrix, we
have fz(fl(Bl)) C f5((By U <N)*)° We only need to show that
f2((82 U <N)*) C (B3 U <m)*. We use induction on the transitive clo-
sure, If x is in By, then f2(x) is in B3 U <M)*’ because fq is a con-
tainment mapping. If x is in <wr then £(x) = x, which is in By U <py-
If <a,b> and <b,c> are in (B, U <y), then f(<a,b>) = <f(a),f(b)> and
)*

f(<b,c>) = <f(b),f(c)> are 1in (B3 U <) . Hence, f(<a,c>) =

<f(a),f(c)> is in (B3 U <N)*.]

Note that there are only a finite number of possible containment
mappings from one tableau to another. The first theorem of this sec-—

tion relates the "contained in" property, which involves an infinite

number of instances, to the finite set of possible containment map-

pings from one tableau to the other.
Theorem 8. Let Ty, T, be tableaux.

(1) Ty C To if and only if Ty is equivalent to the empty tableau, or
1 = 2 1

there is a containment mapping f:T2—>Tl.

(2) If Ty is in sat(P) (considered as an instance), then Tl Ep T2 if
and only if there is a containment mapping £:T5=>Ty.

Proof. Similar to corresponding proofs in [ChMe] and [AhSU]. []

Corollary. For any tableaux Tyr Toyy and any set P of constraints,

25
Ty Cp Ty if end only if chasep(T;) is empty, or there is a containment

mapping f:T,->chasep(Ty).

Corollary. 1If T is a tableau and T' is a tableau obtained from T by

removing rows from some T;, then T = T' if and only if there is a con-

tainment mapping f:T->T'.

Proof. This follows from Theorem 8 and the fact that we will always

have T C T' for such T and T'. [
These results are easily extended to tableau sets:

Theorem 9. Let Yl and Y2 be tableau sets.

(1) Y, ¢ v, if and only if there is a containment mapping from each

element of Y2 to some element of Yl'

(2) Yy Cp Yy if and only if the chases of the tableaux in Yy are all
empty, or there is a containment mapping from each element of Y,

to the chase wrt P of some element of Yl‘

Proof. Similar to Theorem 2 of [SaYal. [

The Jjoin operation, whether an equi-join or a less-than-join, is
the most expensive operation in evaluating a query. Since the number
of joins in an expression (without union) is one less than the number
of rows in the corresponding tableau, optimization of a query
corresponds to removing as many rows as possible from a tableau [ChMe]
[AhSU]. We can optimize an expression, that is, remove rows from a
tableau by the following process: Given tableau T find a containment
mapping f:T->T where for some i, £(T;) is a proper subset of T; . Now
find another proper containment mapping f':f(T)->f(T). Since tableaux
are finite, this process can be repeated only a finite number of

times. If T' is the final tableau, the only containment mappings

26

T'->T' will be one-to-one and onto. This means will not be able to

remove any more rows from T' and still maintain equivalence.

Example 14. Consider the expression:

(((R[2<'3'] [2=1] R3[3="¢']1) [1=11 (Ry[2<'4'] [1=2] Ry))

[6>1] (Ry [1<2] R3)) [15=5] (Ry [1<2] R3)

The tableau for this expression is:

s B Ry Ry

ay as (a2, 3) a; a, a, ag @
(agr ag) a; ag ag a1y 3713
(ay3,379) 215 @833 @4 ay15 2y
(571 al)

The following symbol mapping is a containment mapping:

a, => a a - a
8 8
aé-% aé ag - ag
aj - aj aig -> a1p
a, =—» a a - a
4 2 11 11
as-é aj 312'9 a-
aé = 0 833 -> ag
a7 - a7 814 - 89
915 = a1y
It produces the tableau:
s B Rl R3
a; aj (ar, 3) a; a, a, a3 #
(ag, ag) ay ag ag a1g a71)
(a7r al)

This tableau is minimal and it corresponds to the expression:

(R1[2<'3'] [2=1] R3[3='M']) [1>1] (Ry [2<1] R3)

27

7. Summary and Conclusions

In this paper it was shown how general relational algebra expres-
sions which may include 1less-than comparison between domains and
between a domain and a constant can be represented tahular forms
called inequality tableaux. The full relational algebra as described,
for example by Codd [Codd], can be represented, (Set difference is
not represented, but including this operator in the algebra would make
the problems considered in this paper undecidable.) We wused this
representation to check view constraints, to check equivalence of

expressions, and to optimize expressions.

Tableaux have been shown by a number of authors to be guite use-
ful devices. In addition to the applications of them given in this
paper, tableaux have also been used to check the equivalence of sche-
mas [BMSU], to evaluate joins in polynomial time [Honel, to investi-
gate semi-joins [BeGol], to check for necessary schema constraints 1in
schema design [KlPr] and to represent locks in a generalization of

predicate locks [EGLT] [Klug]l. By widening the class of relational

algebra expressions which tableaux can represent, all of the previous

uses of them become more valuable.

§. References

[AhBU] Aho A.V.,Beeri C. and Ullman J.D. "The Theory of Joins in
Relational Databases" ACM-TODS 4, 297-314 (1979)

[AhSU78] Aho A.V., Sagiv Y. and Ullman J.D. "Efficient Optimization
of a Class of Relational Expressions”, ACM TODS, 4, 435-454 (1979)

[AhSu79] Aho A.V. Sagiv Y. and Ullman J.D. "Equivalence of Rela-
tional Expressions"™ SIAM J. Comptng. 8, 2, 218-246 (May 1979)

[BeGol] Bernstein P.A. and Goodman N. "The Theory of Semi-Joins",
Tech. Rep. CCA-79-27, 1979, Computer Corp. of America

[BeGo2] Bernstein P.A. and Goodman N. “"What does Boyce—-Codd normal

form do?" Proc. 6-th Int. Conf. on Very Large Data BRases, Montreal
1980

[BMSU] Beeri C., Mendelzon A.0., Sagiv v. and J.D. Ullman
"Equivalence of relational database schemes" Proc. 11-th Ann. ACM
Symp. on the Theory of Computinag, 1979

[ChMe] Chandra A.X. and Merlin P.M. '"Optimal Implementation of Con-
junctive OQueries in Relational Databases", Proc. 9-th Annual Symp.
on Theory of Computing, May, 19764, 77-90

[Codd] Codd E.F. "Relational Completeness of Data Base Sublanguages"
Data Base Systems, R. Rustin (ed.), Prentice Hall, 1972

[EGLT] Eswaran K.P., Gray J.N., Lorie R.A. and Traiger TI.L. "The
Notions of Consistency and Predicate Locks in a Database System"
CACM 19, 11, pp.524-633

[Ende] Enderton H.B. "A Mathematical Introduction to Logic",
Academic Press 1972

(Herb] Herbrand J. "Recherches sur la theorie de la demonstration"
Trav. Soc. Sci. Lett. Varsovie, cl. IIT, 33

(Hone] Honeyman P. "Extension Joins" Proc. 5-th Int. Conf. on Very
Large Data Bases, 198¢

[K1Pr] Klug A. and Price R. "Generalized Tableaux for Chasing
Expression Constraints" to appear

[Klug]l Klug A. "Locking expressions for increased database con-
currency" to appear

[Korf] Korfhage R.R. Discrete Computational Structures, Academic
Press, 1974

[MaMS] Maier D., Mendelzon A.0. and sSagiv v. "Testing Implications
of Data Dependencies" ACM-TODS 4, 4, 455-469 (1979)

[SaYa] Sagiv Y. and Yannakakis M. "Equivalence Among Relational
Expressions with the Union and Difference Operator" Fourth Interna-
tional Conference on Very Large Data Bases, West-Berlin, 1978

[Schm] Schmidt J.W. "Some High-Level Constructs for Data of Type
Relation" ACM TODS 2, 3, PP.247-2A1

[Seth] Sethi R. "Testing for the Church-Rosser property” JACM, 21,
PP. 671-A79 (1974)

