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Abstract

MCODE is a high-level language, stack machine designed ¢to
support strongly-typed, Pascal-based languages with a variety of
data types. The instruction set is constructed for efficiency
and extensibility and is based on an examination of common pro-
gramming language operations. The architecture provides pro-
grammed control over both operand type selection and address
field widths. 1In addition, right operand addressing is included
to improve the size characteristics of MCODE instructions over
those of traditional stack machines. The design is compared for
efficiency with the instruction sets of the EM-1, Digital Equip-

ment PDP-11 and VAX-11/788.
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1. Introduction

With the growing use of high-level languages for systems and
applications programming, computer instruction set design has
moved from bit selection of internal CPU data paths to instruc-
tion sets which are oriented to common high-level language opera-
tions. Tanenbaum[l11l] discusses a stack machine(EM-1) designed
with this philosophy. The EM-1 is intended to directly execute
the code produced by the SAL compiler. SAL is a typeless systems
pProgramming language similar to BCPL[10#]. 1In this paper, we have
extended the EM-1 to provide an instruction set for a Pascal-
based, strongly-typed, systems programming language, Modula[l3],
which was designed by Wirth and implemented by Cook[6]. OQur
Modula machine code, MCODE, not only provides extensible type
operations but also maintains the efficiency of the EM-1. The
EM~-1 was designed based on an analysis of 300 procedures compris-—
ing 10,000 lines of code. The MCODE improvements are based on
our analysis[9] of 3,581 Pascal procedures and functions with
over 120,000 lines of program text.

The next section gives a brief EM-1 description which is
followed by a discussion of the MCODE improvements. Also, the
instructions used for expressions and Modula statements are
illustrated. Finally, some comparisons are drawn with respect to
other current architectures, including the PDP-11[1] and

VAX[2].

2. Background

Tanenbaum designed the EM-1[11] to optimize the most fre-
quently occurring high-level operations in programs as analyzed
by himself, Knuth[8], Alexander and Wortman[3], and Wortman[l4].

The most effective innovations in the EM-1 are encoding refer-



ences to the first 12 bytes of 1local procedure storage and 8

bytes of static storage as single opcodes, array element access-
ing, and "if" statement comparison and branching. The hypothesis
is that smaller code sizes will enhance faster program execution
by better utilizing the bandwidth of CPU data paths. In addi-
tion, as the machine gets closer to the source language, com-
pilers can produce more efficient code and can eliminate space-
consuming peephole optimization routines.

Another important aspect of the EM-1 design is the notion of
giving the programmer code improvement tools which are machine
independent. In Knuth's Fortran analysis[8], he strongly sug-
gested that program execution histories be automatically gen-
erated for each job. With Tanenbaum's machine organization, the
programmer need only declare the most frequently used variables

first in textual order to effect a performance improvement.

3. Extensions

The first problem that we found in trying to use the EM-1
design was its lack of a variety of data types. Modula provides
the user with character, Boolean, long and short integer, and
floating point operations. When the EM-1 is extended to encom-

pass these operations, the 255 opcode limit is quickly exceeded.

Our solution was to introduce modes of computation. A mode sets

the CPU's fetch and execute microprogram to adapt to a particular
data type such as floating or integer. A collection of 8-bit
opcodes is provided to set the CPU mode. Therefore, a single "+"
opcode suffices for all addition operations on any data type.
The setting of the mode can be thought of as the replacement of

the microcode jump table for a subset of the opcodes.
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The mode approach is based on our observation that exXpres—

sions are wusually comprised of operands of the same type; thus,
we expect that the space occupied by any extra instructions
needed to set the mode will be offset by the savings in opcode
space. Modes also provide an expansion and contraction capabil-
ity for machine families. For instance, all floating point
operations could be eliminated to build microprocessors intended
for traffic control or a decimal mode could be added for commer-
cial applications. For many environments, the savings in micro-
code space could be significant.

Our second extension was to provide direct addressing for
right operands. According to all of the analyses, expressions
tend to be simple. Tanenbaum found, for instance, that 31% of
all assignment statements had a single term for a right hand
side. Consider the evaluation of "at+b" on a typical stack
machine. We must "push a", "push b", "pop b and add", and
"replace a with result". The alternative is to "push a", "add
b", and "replace a with result". This sequence not only saves an
instruction fetch but also the redundant push and pop of "b" plus
the instruction space. These savings will be replicated for
every term in any expression which can be evaluated from left to
right.

Finally, we have extended Tanenbaum's single byte addressing
modes, provided an option to shorten address fields, improved
subscripting, record and pointer referencing, and introduced some
additional high-level language oriented constructs. In the next

section, we will discuss operand addressing.



4. Operand Addressing

The three MCODE instruction formats are illustrated below:

FORMAT 1:

FORM 2,3,3 §,opcode,local address

FORMAT 2:

FORM 8 opcode [operands]

FORMAT 3:

FORM 8,8 255,0pcode [operands]

In MCODE, addressing is partitioned 1into references to
either static or local procedure storage. The MCODE machine uses
byte addressing and has an address space of 2**32 bytes. The
instruction formats are designed so that the most frequently
occurring operations require a minimum of instruction space.

A format 1 instruction can address the first 8 16-bit words
of the current procedure's activation record. The impact of this
convention can be seen by noting that our results indicate that
97% of all procedures have fewer than 4 formal parameters and 90%
of all procedures have fewer than 4 local variables. Tanenbaum's
short address convention for static variables was eliminated
since the size of the static address space is not known until
load time. However, the number of parameters and local variables
is known at compile time. In addition, our analysis shows that
53% of all variable references were to local variables or parame-
ters. To test the effect of this idea, we changed all the local

variables in the Modula compiler to C[7] "register" variables

which decreased each instruction reference by 16 bits. The



compiler's size decreased by 10% and its compile rate went up

several hundred lines per minute.

The format 2 and 3 instructions can have their operands on
the stack or can have a right operand specification. Operand
addressing is optimized in a fashion similar to that provided by
the Bl17900][12]. The AMODE instruction sets the address field
width to 8, 16, or 32 bits for references to either static or
local storage. Note that program counter relative addressing is
not affected. More than 98% of all Modula programs can use an
AMODE which selects 8-bit local and 16-bit static addresses.

As an example, the 8-bit AMODE setting would save 8 bits per
operand reference over the 16-bit addresses used in the PDP-11.
The AMODE setting has no effect on indirect addressing on the
stack. The VAX implements 8-bit address fields but an 8-bit
selector is also required for a total of 16 bits.

A natural concern, however, is keeping AMODE set correctly.
Since Modula has no "go to", the AMODE bookkeeping is easily
maintained on the parse stack. Also, the procedure call instruc-
tions automatically save and restore mode information. In addi-
tion, the linkage editor 1is responsible for checking address
field overflow if too small an AMODE is being used. MCODE imple-

ments the following addressing forms:

A operands on the stack

B {static|locallx{direct|indirect}
C local direct

D indirect address on the stack

E 32-bit absolute address

F constant(8, 16, 32 bits)
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G constant(0-15)
H {subscript|element} x B
subscript- ((sp})-1)*Mode size + EA)
element - ((spf))+EA) Effective Addr.
I local x {direct,indirect,indirect x
{subscript,element}}
J 8-bit jump offset

K 16-bit jump offset

Forms B and H cover accesses to simple variables, pointers,
one dimensional arrays, and record elements occurring in static
and local storage, or as parameters. Subscript addressing
assumes a lower bound of one which is the most common case. For
direct addressing, different lower bounds can be subtracted from
the address field to produce the correct subscript calculation.
Forms F and G are used for immediate addressing while forms E, J
and K are wused for program counter relative jumps and absolute
addressing. Forms I and C are used with the format 1(8 bit)
instructions. Form I can be wused to access local variables,
"const" simple parameters, "var" simple parameters, and array and
record parameters.

Tanenbaum[11] recommends that references to global procedure
variables be implemented by a microcode search of the procedure
call back-chains. The claim is that this method eliminates the
overhead of maintaining a static display. Based on our experi-
ence with implementations of Algol[5] and Pascall[4], a single
reference to a global variable uses more time than that needed to

update the display. The following code sequence is typical.



procedure entry:
CONTROLBLOCK [SAVE]=DISPLAY[NEST]

DISPLAY[NEST]=PB

procedure exit:

DISPLAY [NEST]=CONTROLBLOCK[SAVE]

The first eight locations in static storage are used for the
DISPLAY. According to our study, 89% of all procedures were not
nested; 9% were nested one level; and 2% were nested 2 or more
levels. Out of the 3,581 procedures that we examined, ten pro-
cedures were nested to 4 levels and no procedures were nested
more than four 1levels. Therefore, a maximum of eight nesting
levels was considered sufficient. Next, we will examine the for-

mat of the one byte instructions.

5. Local Variable References

We followed Tanenbaum's design by allocating 64 opcodes to
special addressing. As we discussed previously, the local vari-
able address space was set at 8 16-bit words, or a 3-bit address
field. This left 3 bits for opcodes. These 8 opcodes were par-

titioned as follows:

PUSH Form I (spy) = (EA)
POP Form C (EA) = (spl)
ADD Form C (sp) += (EA)
SUB Form C (sp) —-= (EA)
CMPB= Form C,K if (spt)=(EA) then

(pc) += SE(K)

CMPB<> Form C,K if (sph)<>(EA) then



(pc) += SE(K)

The PUSH instruction uses two opcodes for direct or indirect
references to simple variables, and two opcodes for indirect, or
"var", references to arrays and records. The number of address-
ing modes for POP was decreased to one in order to increase the
number of opcodes. 1In addition, we found that wvariable 1loads
occur in a 2.7/1 ratio over variable assignments which indicates
that POP is used 1less frequently than PUSH. The last four
opcodes were assigned based on our frequency of use information.
Out of all operator occurrences, "+" was used 21% of the time,
"-" was wused 9%, "=" was used 20%, and "<>" was used 10% of the
time. According to Tanenbaum, the dynamic frequency of these
operators is even higher. 1In conditional expressions, we found
that "=" made up 32% of all operators and that "<>" was used 17%
of the time. Since Tanenbaum found that "if", "repeat", and
"while" had a dynamic frequency of 38%, the comparisons were
implemented to both test and jump. Using these formats, many
subprograms can be completely coded using only 8 bit instruc-

tions.

6. Right Operand Addressing

Because of the number of opcodes needed for right-operand
addressing, we restricted the operators based on the same fre-
quency analysis which was used to select the 8-bit instruction

set, The following table 1lists the instructions which can

address memory:

PUSH Form A,B,D,F,H,G (sp})

(EA)

POP Form A,B,D,H (EA) (sph)



PUSHA Form B,E,H (spl) = EA

ADD Form A,B,F (sp) = (sp)+(EA)
ADDTO Form B (EA) = (EA)+ (spl)
AND Form A,B,F (sp) = (sp) &(EA)
CLR Form B (EA) = ¢

CMPB=  Form A,B,F if (spt)=(E3)
CMPB<> Form A,B,F if (spf)<> (Ea)
DEC Form B (EA) = (EA)-1

INC Form B (EA) = (EA)+1
MUL Form A,B,F (sp) = (sp) *(EA)
SUB Form A,B,F (sp) = (sp)~-(EA)
SUBFM  Form B (EA) = (EA)- (spT)

The selected operators make up 80% of all operator references in
the Pascal programs that we analyzed. Address modes B and F were
chosen since 35% of all operand references were to simple vari-
ables and 34% of all operands were constants. The ADDTO and

SUBFM instructions correspond to Modula statements.

7. Array, Record and Pointer References

Simple record references are treated just like simple wvari-
able references and can be accessed using direct addressing.
However, arrays of records or records as parameters must be
accessed by an offset from a base address. The "element" address
mode implements the pointer or parameter case.

Our analysis showed that 16% of all array references had a
single constant subscript and that 52% of all subscripts were a
single simple variable, The constant subscript case resolves to

a variable address so the standard address formats can be used to



access the array. The "subscript" mode was introduced to imple-
ment accesses to one dimensional arrays. In fact, we found that
references to multidimensional arrays made up only 7% of all
array references, MCODE uses descriptors to implement the mul-
tidimensional case.

In the EM-1, every array has an array descriptor cell, an
array descriptor packet and an array data area. This approach
works fine for Algol but not for Pascal-like languages. First in
Pascal, all arrays have static bounds so a single descriptor can
be generated in static storage. This approach allows descriptors
to be shared and saves stack space as well as setup time.
Secondly, Pascal allows arrays of arrays and pointers to arrays
which implies that the base address of an array may already be on
the stack and not in a descriptor. The MCODE SUBS instruction
transforms the subscripts into a single byte offset which can
then be used by the PUSH or POP instructions. The SUBS instruc-

tion also checks each subscript for validity.
SuUBS descriptor address

The instruction address points to an array descriptor which
contains the number of bounds, bounds pairs, multipliers, element

size and virtual origin. SUBS leaves the element index on the

stack. For 1instance, "A[I].B[J]" would produce the following
code.

PUSH I

SUBS A desc.

PUSHA element( A+B offset)

PUSH J
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SUBS B desc,

ADD

For most Modula programs, each array type can be described by a
single 1instance of a descriptor no matter how many variables of

that type are created. Next, the expression operators will be

described.

8. Operators

The following table lists the MCODE operators which are all

format 2 instructions.

ABSolute LoGical shift
ARith. shift MOD

CONVert NEGate
DECrement NOT

DIVide OR

DUPlicate SQuaRe
INCrement XOR

MCODE also includes instructions for moving and comparing blocks
of storage as well as library call instructions to implement the
Modula virtual machine environment and the floating-point math
routines. In the next section, the code generated for the

"case", "if" and "for" statements will be discussed.

9. Statements

Procedure call and return are very similar to the EM-1,
except for the display updating, and will not be described. The

"if" statement is implemented with the following instructions:
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CoMPare

CoMPare Branch

Branch

Branch

= > < >= <K= <
= 2> K >= <K= <O
=0 <>0

As an'example, the statement "if a<>b then inc(a) end" would gen-

erate the following code:

Instructions Size PDP-11 Size
PUSH a 8 CMP a,b 48
CMPB= b L1 24 JEQ L1 16
INC a 16 INC a 32
48 96

The syntax and code generated for the "for" statement are

below.

I

for v:=el by e2 to e3 do S end

PUSHA

PUSH

PUSH

PUSH

FOR
L1l ]

ENDFOR

L2

\Y

el

e2

e3

L2

The "case" instructions are as follows:

CASE constant, offset

-12-—

listed



CASE constant, constant, offset

CASETBL constant, constant

These three forms cover the situations in which the "case" is
distinguished by a single value, a range of values, or a jump

table. Next, we will analyze the effectiveness of MCODE with

respect to other machine designs.

1. Comparison with Other Machines

The results in Figure 1 extend the table in Tanenbaum[11] to
include the VAX and MCODE. Obviously, the special addressing and
descriptor-based array computations make a significant differ-
ence. MCODE performs better than the EM-1 for expressions and
parameter referencing and is as good in all other areas. The
difference in the "if" tests occurs because the EM-1 assumes a
2-bit field for branch offsets while we used an 8 bit field. The
VAX instructions are computed using 8 bit displacement address-
ing. In addition, it should be pointed out that the VAX and
MCODE are supporting many more data types than the PDP-11 or the
EM-1. Figure 2 recomputes the space for the same statements but
with all the machines forced to use 16 bit addressing.

The values in Figure 2 give a lower bound on the performance

of MCODE whereas Figure 1 gives an upper bound on the difference.

For 16-bit addressing, which would be used for references to
static storage, MCODE is better in all categories. The EM-1 is
forced to use a 16-bit opcode to access 16-bit addresses which
results in 1its poor performance. Since 50% of all variable

references are to static storage, we feel that this improvement

could have a significant impact on execution speed. The VAX is
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still quite poor with respect to subscripting even though a spe-

cial instruction 1is available for that purpose. Also, the fig-
ures do not reflect the dynamic effect of the savings since

Tanenbaum's measurements 1indicate that the Figure 1 results are

even more significant at runtime.

11. Conclusions

We feel that the availability of modes as an extension
mechanism for high-level language machines can be a significant
factor in adapting microprocessors to changing environments.
Also, modes contribute to space efficiency in the instruction
set. The use of address mode settings to reduce address field
sizes and right operand addressing also contribute space savings,
The current version of Modula produces PDP-11 or VAX code so we
have the means to compare the exact statistics on the static and
dynamic behavior of MCODE with these machines using the same pro-
grams in the same environment. Our analysis should contribute to

the alternatives available for opcode design in modern machine

families,
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Figure 1

Direct Addressing Instruction Size(in bits)

Statements MCODE EM-1 pDP-11 VAX
i:=0 16 8 32 24
i:=3 16 24 48 32
i:=] 16 16 48 49
iz=iHl 16 8 32 24
ie=i+7 24 32 48 40
i:=7j+k 24 32 96 56
i:=j+1 24 24 80 48
i:=aljl 24 32 128 104
alil:=0 32 32 112 88
ali] :=b[j] 49 48 192 168
alil:=b[jl+clk] 64 80 3p4 248
ali,j,k]:=0 64 48 176 200
if i=3j then 32 24 64 64
if i=0 then 24 16 48 48
if i=j+k then 490 40 112 96
if flag then 24 16 48 48
call p 24 16 64 32
call p(i) value 32 24 96 56
call p(i,j) 40 32 128 80
call p(i) byref 40 32 112 56

for i:=1 by 1 to N do a[il:=0 end

104 88 176 lle
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Figure 2

16~-Bit Address Fields

Statements MCODE EM-1 PDP-11 VAX
i:=0 24 32 32 32
i:=3 32 48 48 40
i:=] 48 64 48 56
i:=i+1 24 32 32 32
ie=i+] 48 104 48 56
i:=3j+k 72 104 96 80
iz=j+1 56 80 80 64
i:=al]] 72 96 128 128
ali]l:=0 64 72 112 104
ali]:=b[j] 96 128 192 200
alij:=b[jl+c[k] 152 200 304 296
ali,j,k]l:=0 128 136 176 232
if i=j then 64 96 96 80
if i=@ then 48 64 80 56
if i=j+k then 88 136 160 120
if flag then 48 64 80 56

|
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