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Abstract

In recent years, the emphasis in programming lanquage design has
been in the area of data abstraction. This paper explores the
uses of scheduler modules and region statements as user abhstrac—
tions to construct operating svstem programs. Also, generalized
schedulers are presented as alternatives to the monolithic
choices for operating system primitives availabhle in current
languages such as Mesa, Modula, or Fuclid.
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SCHEDULERS AS ABSTRACTIONS--

AN OPERATING SYSTEM STRUCTURING CONCEPT

1. Int;oduction

A gcheduler is an algorithm that determines the order in
which competing processes are allowed to use resources such as
processors, devices, procedures, data, etc. One of the simplest
examples of a scheduler is Dijkstra's[10] semaphore abstraction
which can be used both for mutual exclusion and signaling. Even
though semaphores are wuniversally available as hardware primi-
tives, they have some disadvantages[4,12] for concurrent program-
ming. However, semaphores are very useful for implementing higher
level abstractions.

The most important such scheduling abstraction is the moni-
tor concept developed by Brinch Hansen[2,3] and Hoare[ll]. Hoare
defines a monitor as a "scheduler consisting of a certain amount
of 1local administrative data, together with some procedures and
functions which are called by programs wishing to acquire and

release resources". The notation is as follows:

[class] monitorname: monitor
...declarations of data local to the monitor;
procedure procname(...formal parameters...);
begin ...procedure body... end;
...declarations of other procedures local to the monitor;
«..initialization of data local to the monitor...

end;

The local data defines a resource and the 1local procedures



provide the only mechanism to manipulate the encapsulated data.
Thus, a monitor provides its wusers with an abstraction which
automatically protects the resource from uncontrolled access and
which hides implementation details as suggested by Parnas[21].
The "class" keyword denotes a monitor type similar to a SIMULAG67
class([9] which can be wused to declare several monitors with
identical structure and behavior, for example, three disk
schedulers. However, there are other situations where it is
preferable to have a single manager [13,25] for a pool of
resources. In fact, as is shown by Silberschatz, Kieburtz and
Bernstein[25], a manager and a monitor are really two distinct
subclasses of schedulers.

We suspect that many more such subclasses exist. A funda-
mental question, then, is whether each new abstraction should be
a "builtin" high-level language primitive or whether each new
abstraction should be defined using existing language extensibil-
ity features. 1In this paper, the latter choice will be explored
in the context of the *MOD (Star MOD)[6] programming system,
which is an extension of our Modula[7] system. After describing
the framework of the language, an implementation of a buffer
manager will be examined. Finally, the concepts of a "scheduler
module" and a "region" will be defined and their use as mechan-

isms to build scheduler abstractions will be illustrated.

2. System Overview

Before proceeding further with a more detailed discussion of

scheduler modules, the module concept of Modula[28] will be con-
sidered as the focal point for the design of the *MOD system. A

module wusually corresponds to a program abstraction and consists
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of an external interface specification, data structure defini-
tions, procedures, processes, and an optional initialization
part. In *MOD, a module can be used as a type definition or to
délineate a lexical scope as 1in Modula. Therefore, both the
information-hiding properties proposed by Parnas and the flexi-
bility of the Simula "class" mechanism are maintained.

In Modula, if the prefix "device" or "interface" 1is used
before the keyword "module", the semantics of the module change.
For instance, "interface" denotes a module which semantically is
similar to a monitor([l1l]. *MOD extends the Modula prefix nota-

tion to provide the user with the following module types:

MODULETYPEDECLARATION ::= type IDENTIFIER = [MODULETYPE] module;

[MODULEBODY]
[begin STATEMENTLIST]

end IDENTIFIER

MODULEDECLARATION ::= [MODULETYPE] module IDENTIFIER;
[ [MODULEBODY]
[begin STATEMENTLIST]

end IDENTIFIER]
MODULETYPE ::= MODULETYPEID | scheduler

MODULEBODY ::= EXTERNALINTERFACE

BLOCKHEADING

EXTERNALINTERFACE ::= [define ELEMENT [,ELEMENT]...;]
[export ELEMENT [,ELEMENT]...;]

[pervasive ELEMENT [,ELEMENT]...;]



BLOCKHEADING ::= [import IDENTIFIER [,IDENTIFIER]...;]

[DECLARATIONLIST]

ELEMENT ::= IDENTIFIER[(readonly|protected)]

Thé module "type" declaration can be wused to construct
extended data types as in Simula[9] except that a *MOD programmer
has more control over the external interface and protection
specifications. The builtin module type, "scheduler", can be
used to build synchronization abstractions such as monitors[l1],
managers[13], or interface modules[28]. A module "type" can be
used to replicate an existing module definition or to modify the
properties of a module, as is the case with "scheduler" prefixes.

The module's IDENTIFIER names the module and must be matched
by the IDENTIFIER following the "end". The DECLARATIONLIST may
consist of declarations for constants, types, variables, modules,
regions, procedures or processes. The STATEMENTLIST can be used
to initialize the module. The module boundary delineates a
closed lexical scope which can only be superseded by the explicit
specification of "define", "export", "import", "pervasive" or
"region". Reglions are discussed in Section‘7.

The protection attributes, "readonly" and "protected”,
specify read access or no access, respectively, for exported
variables or types. The protecticn specification is relaxed 1in
two cases. First, the protection 1is not applied within the
eXxporting module. Therefore, protection forces the user to mani-
pulate exported variables by calling procedures that have also
been exported from the defining module. Secondly, a protected

variable can be used as a subscript and a protected pointer can



be used to qualify a reference to an unprotected type. The util-
ity of these exceptions is discussed in Section 4.

An IDENTIFIER specified in an "impért" list causes a
declaration from a global scope to be made accessible within the
module. The "export" attribute allows a local declaration to be
visible at the enclosing lexical level, while "pervasive" makes
the IDENTIFIER known at all enclosed lexical 1levels within the
outer scope. The "define" statement is provided as an alterna-
tive to "export". It gives the user the ability to 1list those
IDENTIFIERS which can be referenced externally, but only by qual-
ifying the reference with the module name as with the SIMULA[9]
class nétation. "define" can be used to prevent naming conflicts
and to shorten import lists. The ability to specify the external
interface for each module 1is becoming a standard feature of
modern programming languages as is demonstrated by its use in
Mesa([28], Euclid[l16], Alphard[23], Ada[l2], etc. MODULETYPEs

will be discussed in Section 6 and regions in Section 7.

3. *MOD Synchronization Primitives

*MOD provides the user with the simplest possible mechanisms

necessary to implement a critical section and with a flexible set

of process scheduling operations. The procedures are listed
below:
sm:semaphore

Pp(sm) the process is queued until sm is true.

set sm to false.

Vv (sm) sm is set to true,.



d:queue
link(q [,r]) link the process on gq with rank r.
the default rank is zero.
a process cannot perform two links

in succession.

delay delay the process on q.

must be paired with a link.

join(gq [,r]) the same as a link followed by a delay.
swap(q [,r]) if no process is queued, continue execution.

if r is not specified, select the
process with the highest delay rank.
otherwise, select the first process
with a matching rank.

control of the processor is transferred

to the selected process.

unlink(qg [,r]) same as swap except that control of the

processor is not transferred.

awaited(g [,r]) yields "true" if a process with a

matching delay rank is waiting.

Each of these operations is justified on the basis of its effi-
ciency and the difficulty that a programmer would have in its
duplication. The rank selection option for queues allows the
programmer to order process execution based on an examination of
an arbitrary data structure. The data structure can be tested to

determine the rank used to order a process on a "wait" queue. 1In
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a similar fashion, if a unique number is used as a rank, the pro-
cess to wake up can be calculated before executing the "unlink"
statement. The "link" and "delay" statementsy are provided to
allow a process to hold a place in line, to perform some action,
and then to delay. If an "unlink" or ‘"“swap" occurs between a
"link" and a "delay", the process is removed from the queue and
is marked as "waiting for delay". When the "delay" occurs, the
process is marked "ready" and continues execution. The "swap"
versus "unlink" option was included to give the programmer con-
trol over process switching. The following example implements a

"test and set" operation on a Boolean variable using these primi-

tives.

var s:semaphore :=true;
type tsboolean = module;
define testnset, set;
import s;
var b:boolean :=true;
procedugg testnset:boolean;
Eggiﬂ Pp(s); testnset:=b;
if b then b:=false end if;
v(s)
end testnset;
procedure set;
Eggig p(s); b:=true; v(s)
end set;

end tsboolean;

The semaphore, "s", is a global variable which is shared by



all variables declared with the "tsboolean" type. Since the time
spent within the two procedures is quite small, the degree of
granularity provided by a single 1lock should be sufficient.
Next; we will discuss how protected types can be wused to build

managers.

4. A "Manager" Example

Silberschatz, Kieburtz and Bernstein[25] suggest the follow-

ing criteria for manager construction:

1) It should allow the definition of multiple, identical
instances of an abstract data type, mutually disjoint in

address space, to be managed as a resource pool.

2) Resource instances should be dynamically allocated from
the pool to customer processes, but in such a way that a
customer process can neither determine the identity of
the particular instance that it has been allocated, nor

alter its allocation.

3) It should ensure that at most one ©process can have
access to the address space of a resource instance at

any time.

4) Synchronization blocking should not take place when two
processes simultaneously attempt to access distinct,

previously allocated instances of a common type.

Figure 1 illustrates the use of protected types to implement a

buffer pool manager which meets these criteria.

Restrictions 1 and 4 are trivially satisfied by the example.



Figure 1

module bufmanager;
export bufindex(protected), acquire, release, buffer;
const MAXBUF=10; BUFSIZ=24;
type bufindex= @..MAXBUF :=0; (*zero is an invalid subscript*)
subtype NUMBUFS (bufindex)=1..MAXBUF;
var buffer:array NUMBUFS of
array 1:BUFSIZ of char;
link:array NUMBUFS of bufindex; (*list of free buffers*)
free:bufindex:=1; (*head of free list¥*)
i :NUMBUFS; (*used to initialize free¥*)
mutex,freex:semaphore:=true;
: procedure acquire(var pnt:bufindex);
begin
if pnt=¢ then (*only empty pointers allowed*)
p(freex);
P (mutex) ;
pnt:=free; free:=link{[free];
if free <> @ then v(freex) end if;
v(mutex);
end if;
end acquire;
procedure release(var pnt:bufindex);
begin
if pnt <> @ then (*only allocated pointers allowed*)
P(mutex);
link[pnt] :=free; free:=pnt;
v(mutex); Vv(freex);
end if;
end release;
begin
p(mutex);
for i:=1 to NUMBUFS-1 do link[i]:=i+1 end for;
link [NUMBUFS]:=0;
v(mutex);
end bufmanager;



Since the "bufindex" type is "protected", "bufindex" variables
cannot be read, written or copied except within the defining
module. The protected variables are similar to capabilities with
the brotection enforced at compile~time. As mentioned previ-
ously, however, "protected" variables can be used as subscripts
and pointers (assuming that the referent type 1is not "pro-
tected”) . Also, the subscript of "buffer" must match "bufindex"
in type. As a result, "buffer" can only be referenced via sub-
scripts that have had their wvalues set in "bufmanager". all
variables of type "bufindex" are initialized to zero which is an
invalid subscript for "buffer". The "subtype" declaration
defines a subrange type which matches "bufindex" and which refers
only to valid "buffer" indices. Finally, "acquire" cannot allo-
cate the same buffer twice and a single "bufindex" cannot be
allocated multiple buffers simultaneously. Thus, Restrictions 2

and 3 are also satisfied.

5. The Problems with Monitor Implementations

Since the introduction of the monitor concept by Brinch Han-
sen{[2,3] and Hoare[ll], 1its structure and effectiveness for
operating system design have come under considerable criti-
cism[1,13,17,18,22,24,25,27]. More recently, Keedy{15] has sum-
marized these objections as well as adding several of his own
with the following conclusion:

"The significant point to note is not the individual advan-
tages and disadvantages of these basically similar scheduling
mechanisms, but the fact that a standard mechanism is provided at
all. The implicit assumption is that all the schedulers in an

operating system will be happy to adopt the same basic scheduling
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strategy. ... We conclude that a simple scheduling mechanism as

envisaged by monitors is too inflexible to serve the needs of all

schedulers in real operating systems."

We agree with the conclusion. If monitors are considered as
a subclass of schedulers, it is obvious that they cannot be used
to solve all of the synchronization and exclusion problems, but
only those problems that fall into the monitor class. Other cri-
ticisms arose because people confused Hoare's sample implementa-
tion of a monitor with the class of all monitor algorithms. In
fact, Hoare gives several different combinations of implementa-
tion details based on the usage situation.

Finally, language designers have dropped the ball by provid-
ing wusers with arbitrary choices for monitor implementations.
For example, Modula[28], Mesa[28] and Concurrent Pascal[5] all
provide different monitor implementations. It is no more reason-
able to assume that a single choice in this area would be any
more acceptable than the choice of the "array" as the only data
structure in ALGOL. In the next sections, we have combined ideas
from the Schemes [19] paper by Mitchell and Wegbreit and from the
Alphard [23] paper by Shaw, Wulf and London to construct a simple

mechanism for defining arbitrary scheduler abstractions.

6. Schedulers as Abstractions

In Modula[28,7], if the MODULETYPE "interface" precedes the
module definition, the module automatically becomes a Modula
style monitor. We have extended this idea so that a programmer
can use the keyword "scheduler" to define new module types as
prefixes. The following examples will illustrate most of the key

points:
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type simple monitor= scheduler module;
var s:semaphore :=true;
procedure entry;
Qggig_gjs) end entry;
procedure exit;
Qggig‘g(s) end exit;

end simple monitor;

Each "scheduler" module must contain an "entry" and an
"exit" procedure. The "entry" procedure is invoked each time a
procedure within a scheduled module is called. A scheduled module
is declared by preceding "module" with a SCHEDULERTYPENAME such
as "simple monitor". When a Procedure within a scheduled module
terminates, the  ‘"exit" procedure in the corresponding scheduler
module is automatically invoked. The Figure 2 implementation of
a Hoare/Brinch Hansen monitor (HBH_monitor) is an example of a
more complicated scheduler which also defines a set of ‘"builtin"
operators.

The "entry" semaphore enforces exclusion on the "wait" and
"signal" procedures within each monitor instantiation. The use
of "join" and "delay" in the "wait" pProcedure allows a process to
hold its place in the queue while it releases the monitor. In
the sample implementation, a specific processor switch occurs for
each "signal" operation. The switch to the "wait"ing process is
nécessary to maintain Hoare's Proof rules for monitors. An
instance of a HBH _monitor can be declared as in this improved
version of the alarmclock example from Hoare[ll]. We will assume

that the "condition" operators have been extended to include a
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Figure 2

type HBH monitor=gcheduler module;
pervasive wait, signal, condition(protected);
type condition=record
g:queue
end record;
var mutex:semaphore:=true;
urgent:queue;
procedure entry;
begin p(mutex) end entry;
procedure exit;
T begin
if awaited(urgent) then unlink(urgent)
else v(mutex)
end if;

end exit;
procedure wait(var c:condition);
begin
join(c.q); exit; delay;
end wait;
procedure signal(var c:condition);
begin
if awaited(c.q) then
join(urgent); swap{c.q); delay;
end if;
end signal;
end HBH monitor;




"rank" attribute. The "condition" type, "signal” and "wait" are
automatically imported into "alarmclock" by the use of the module
prefix. A negative rank is used to put events at the smallest
future time at the head of the "wait" queue. 1If no process is
waiting for a "tick", the signal is ignored.
Ezgg‘alarmclock= extended HBH monitor module;
define tick, wakeme;
var now:integer :=0;
wakeup:condition;
procedure tick;
begin
inc(now); signal(wakeup,-now);
end tick;
procedure wakeme(n:integer);
wait(wakeup,-(now+max(n,1)));
signal (wakeup,-now) ;
end wakeme;
end alarmclock;

The scheduler abstraction can be used to construct a static
instance of a module which can act like a global manager or to
construct "classes" of scheduler types by using a type declara-
tion. Thus, each user is free to choose an environment-dependent
solution to the problems listed in Keedy[l5].

If the user decides not to use abstractions like the monitor
concept, then new proof rules and programming methodologies must
be adopted. For instance, the Mesa[20] "notify" statement (simi-

lar to "signal") does not guarantee a context switch to the wait-



ing process. Without a context switch, the process which
receives the "notify" has no way of knowing whether an interven-
ing process has destroyed the "notify" invariant. Therefore, the
récommeﬂded programming style is to surround each "wait" with a
"while" loop which tests that the "notify" invariant has been
maintained. It 1is the user's responsibility to maintain the
invariants which are required to ensure the wvalid wuse of an
abstraction. 1In the next section, we will discuss another aspect
of scheduler modules which 1is designed to improve system

integrity in the presence of less than conscientious programmers.

7. Region Specifications

One disadvantage of the modular approach to data abstraction
is that all operators are available to all processes within a
module name's scope of reference. Some algorithms, such as
readers and writers{8], require mutually exclusive operation sets
or may require a collection of operations in a certain sequence.
The problem is how to be certain that the programmer follows the
rules. The *MOD "region" declaration and statement are designed

to address this problem. The syntax is as follows:

REGIONDECLARATION::= region IDENTIFIER=[PROCEDUREID], [PROCEDUREID]

[ ,ELEMENTLIST];

A REGIONDECLARATION is a named export 1list for a module.
Arbitrarily many regions may be declared to form distinct or
overlapping operation and variable sets. Note that the
ELEMENTLIST has the same syntax as the "export" statement; thus,
a region can be thought of as a restricted external interface

specification which also dictates access control. The two
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optional PROCEDUREIDs specify the procedure to <call when the
"region" statement is entered and the procedure to call on exit.

A region reference is written as follows:

REGIONSTATEMENT::= region [(ARGUMENTLIST)] VARIABLEREFERENCE;
STATEMENTLIST

end region [(ARGUMENTLIST)];

Since the region entry procedure is anonymous to the region user,
the optional arguments to the entry procedure follow the keyword
"region". When the region 1is executed, the ARGUMENTLIST is
evaluated, and then the VARIABLEREFERENCE is used to select a
particular region instance. At this point, the entry procedure,
if present, is called. Next, the STATEMENTLIST is executed fol-
lowed by the call to the exit procedure. The region IDENTIFIER
which 1is known at compile-time opens a scope for the ELEMENTLIST
variables and procedures which is closed when the "end region" is
met. Therefore, the region concept provides both a finer degree
of referencing and of control than the general module 1interface
specification. The scope control provided by a region is similar
to the "inner" feature of Simula[9)] and Pascal-Plus[26], but is
more general in that multiple regions with different access and
scope'characteristics can be declared. The exclusion control is
an extension of Kammerer's "excluding region" concept[l14]. An
"excluding region" enforces exclusion at compile-time; whereas a
*MOD region performs the checks at runtime. As an example, con-
sider the following implementation of a critical region for a set

of variables as proposed by Brinch Hansen[3].
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module shared_variables;
export access_a;
region access_a=enter_a, leave_a, a;
var a:integer;
s_a:semaphore:=true;
procedure enter_a;
begin p(s_a) end enter_a;
procedure leave_ a;
begin v(s_a) end leave_a;
end shared_variables;

region access_a;
inc(a)
end region;
The variable "a" can only be accessed within 1its corresponding
region since "a" is not exported from the module. Also, all of
the "a" regions are mutually exclusive by construction.

Next, consider the implementation of the readers and writers
example from Hoare[ll] in Figure 3. The first observation that
we can make is that a programmer cannot access a "data_record”
except within a "reader" or "writer" region. It is also impossi-
ble for a reader to change a "data_record". In addition, the
integrity of the solution does not depend on the programmer to
call entry and exit procedures as in Hdare's solution[1l1]. The
only assumption that this abstraction makes is that each region -

will terminate in finite time.



Figure 3

type readers and writers=HBH monitor module;
export reader, writer;
region reader=startread, endread, data record(readonly);
region writer=startwrite, endwrite, data_record;
var readercount:integer;
busy:boolean;
OKtoread, OKtowrite:condition;
data record:record . . . end record;
procedure startread;

beain

if busy or awaited(OKtowrite) then wait(OKtoread)
end if;

inc(readercount); signal (OKtoread)

end startread;

procedure endread;
begin
dec(readercount);
if readercount <= @ then signal (OKtowrite)
end if;
end endread;
procedure startwrite;

begin
if (readercount <> @) or busy then wait(OKtowrite)

end if;
busy:=true;
end startwrite;
procedure endwrite;
begin busy:=false;
if awaited(OKtoread) then signal(OKtoread)
else signal (OKtowrite)

end if;
end endwrite;
begin
readercount:=0; busy:=false

end readers_and _writers;
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8. Conclusions

This paper presents the concepts of protected types and
scheduler modules as general mechanisms for the construction of
operating system abstractions such as monitors and managers. The
advantages are increased flexibility and control for the systems
programmer as well as arbitrary extensibility to adapt to chang-
ing requirements, In addition, the region concept is introduced
as a means of dividing a module's name space 1into subsets of
secure and controlled referencing environments. Just as
scheduler modules can be wused to build monitor abstractions,
regions, can be wused to define a variety of critical region
abstractions as statements. We feel that these constructs pro-
vide the means to successfully address Keedy's[15] criticisms of
high-level language primitives, such as monitors, for operating

system development.
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