AN ANALYSIS OF RUN-TIME ERRORS
IN PASCAL PROGRAMS
by
Richard J. LeBlanc
Charles N. Fischer
Computer Sciences Technical Report #384

April 1980



An Analysis of Run-Time Errors

in Pascal Programs

Richard J. LeBlancl

Charles N. Fischer2’3



Abstract

The results of an experiment in which run-time errors in Pascal
programs were recorded and analyzed are reported. A surprisingly
large number of run-time errors in a wide variety of categories
were observed. The implications of these statistics on compiler
implementation and programming language design are discussed.
The utility and importance of run-time checking mechanisms are

confirmed by this experiment.

Key Words and Phrases: Pascal, run-time checking, error
distribution, compiler implementation, programming language
design

CR Categories: 4.12, 4.22



Footnotes

School of Information and Computer Science, Georgia Institute
of Technology, Atlanta, Georgia 30332

Computer Sciences Department, University of Wisconsin -
Madison, Madison, Wisconsin 53706

Research Supported in part by National Science Foundation Grant
MCS78-02570.

As neophyte programmers often learn to their chagrin!

This is a very painful conclusion to reach in 1light of the
amount of work that went into our implementation of set
operations.

Pascal 6000 [5] does this limited kind of pointer checking.

Since eof may be false even though no more data remains to be

read.



1. Introduction

The UW-Pascal compiler [1] is a diagnostic compiler for the
programming language Pascal [5] developed at the Madison Academic
Computing Center of the University of Wisconsin-Madison. Among
the unique features of this compiler is the variety of errors it
can detect at run-time. 1In particular, the compiler generates
code to monitor the use of pointers and variant records, in addi-
tion to including the typical arithmetic and range checking. The
motivation for these checks and the implementation techniques
used have been previously reported [2,3]. This paper describes
the results of a six-month experiment which monitored the actual
distribution of run-time errors in some 24,000 Pascal program

executions.

2. The Experiment

The run-time support routines for the UW-Pascal compiler were
modified to make a record of all errors detected during the
execution of Pascal programs. Additionally, via sampling, an
estimate was made of the total number of Pascal executions during
the course of the experiment. Sampling was used rather than an
actual count in order to reduce costs and to avoid problems with
contention for the files used to record the data. One-tenth of

the total executions were actually sampled.

For each program to be counted, a record was made of its initia-
tion and its termination. An estimate of the total number of
runs is easily obtained from the initiation count and the sampl-

ing rate. Terminations were also recorded in order to detect

-1



certain errors (e.g., infinite loops) which are not trapped by
the Pascal support routines. The difference in the initiation
and termination counts can be used to estimate the total number

of such errors.

Tables 1, 2 and 3 present the data which were collected. As the
tables indicate, the UW-Pascal compiler can operate in two
different modes. 1Its basic mode of operation is to generate a
standard relocatable binary module which can be linked with sup-
port routines, library routines and separately compiled Pascal
routines [6] for execution. As an alternative for those programs
which only need be linked to Pascal support routines, the com-
piler can generate code in core and cause it to be executed
directly without a linkage step. The data for the two modes are
separated in the tables because it is conjectured that the counts
presented, for the most part, represent two different groups of
users and that significant conclusions can be drawn from the
differences detected between the two groups. The data for load-
and-go compilations is further subdivided in order to examine the
utility of proceeding with the execution of programs known to

contain source errors.

3. Explanation of Error Types

The number of distinct error messages which can be produced by
the UW-Pascal compiler is considerably larger than the number of
entries in the tables. The following list details the grouping
of run-time errors we have chosen. Brief descriptions of unusual

errors detected by the compiler are also included.



The

error groups are:

arithmetic error - This category includes such standard
errors as zero division, real overflow, and attempts to con-
vert a real number too large for integer representation.
subrange error - These errors represent attempts to assign
an illegal value to a subrange variable.

subscript out of range - A reference to an array using an
index outside of the declared bounds of the array occured.
set range error - Two different errors are included here:
assigning an out-of-range value to a set variable as well as
attempting to <create a set including an element beyond the
limits imposed by the implementation.

no label for case expression - This error occurs when a case
statement has a selector which does not match any of the
labels.

illegal reference to variant - Pascal requires that when a
reference is made to one of the fields of the wvariant part
of a record, the tag field must have a value which matches a
label of the referenced variant.

pointer error - Every use of a pointer is checked to detect
attempts to use unintialized pointers, pointers with a nil
value and pointers which point to objects which have been
attempt to change a locked tag - The tag field of a variant
record may not be changed when a field of a variant is being
used as a var parameter or a with record (see [2,3]).
attempt to dispose a protected object - A dynamically al-

located object may not be disposed when the entire object or

- -



(16)

any part of it is being used as a var parameter or a with
record (see [2,3]).
error 1in standard routine parameter - These errors indicate
violations of the restrictions placed on parameters to stan-
dard procedures and functions (e.g., a negative value as a
parameter to chr).

attempt to read past end of file - A call to read, readln or

get occurred when eof was true.

attempt to read an ill-formed number - An attempt to read an
integer or a real found an illegal sequence of characters.
illegal <call to I/0 routine - This group includes trying to
read on a file not open for reading, trying to write on a

file not open for writing, and calling reset on input or

rewrite on output.

reference to unassigned external file - A reference was made
to a file variable for which there was no corresponding ex-
ternal file assigned to the run.

stack or heap space overflow - A call to new or the invoca-
tion of a procedure of function discovered that needed space
was unavailable.

separate compilation error - Execution of a program built
from incompatible separately compiled modules [6] causes
this error (only possible for relocatable compilations).
user limit error -~ This category involves a variety
limitations on execution such as limits on execution time,
total cost, pages printed, etc.

error in source code - UW-Pascal allows execution of

programs containing source code errors; execution 1is



terminated if an erroneous statement is reached or an

incorrectly declared variable is referenced.

4. Analysis of Results

The most striking results of this experiment are the wide
distribution of errors and the unexpectedly high run-time error
rates which we observed. 28% of all relocatable runs, 57% of all
load-and-go runs without source errors and 81% of all load-and-go
runs with source errors terminated with some run-time error. In-
deed, the true error rates must be higher still since programs

which do not induce a run-time error <can still compute an

incorrect result?. Of course, errors are to be expected in a
university computing environment. Nevertheless, the moral is
clear: a programming system must anticipate user errors as the

norm, not the expection. The automatic detection and isolation
of run-time errors is an all but indispensible component of such

a system.,

The error distributions reported in the tables confirm our expec-
tation that different groups of users tend to use the two ver-
sions of UW-Pascal. Particularly significant is the far smaller
percentage of the runs using the relocatable compiler which
terminate in error. Though this difference is influenced to some
extent by use of the relocatable version for "production" work,
the vast majority of the runs recorded were for academic class
assignments. Another indication of the difference in user
populations is the differing frequencies of subscript errors,

variant errors, end of file errors and references to undefined



external files. The significance of each of these categories of
errors will be considered below. In general, however, the
differing frequencies apparently reflect significantly different
skill levels on the part of programmers as well as different pat-

terns of feature use.

The data in Table 3 confirm the utility (for debugging purposes)
of allowing the execution of programs with source errors. Almost
20% of such executions resulted in normal termination. This in-
dicates that only parts of these programs not affected by the
source errors were exercised by the test data. Such successful
executions are certainly helpful to the testing process. Of
those executions terminating in errors, slightly more than half
involved errors other than the source code errors. Since the
distribution of these errors is much like that for load-and-go
compilations without source errors, it is apparently the case
that useful information is being obtained about errors other than

those detectable at compile-~time.

Runs using both versions of the compiler exhibit a high frequency
of subscript errors. The much higher frequency for load-and-go

compilations is probably a reflection of less sophisticated

programmers using arrays as their primary data structures. in
any case, the sheer guantity of these errors strongly
demonstrates the necessity of subscript checking. Debugging 1is

far more difficult when erroneous subscripts can potentially have
unrestricted effects, rather than resulting in an immediate error
message. O0f further interest is the relatively small number of

subrange errors in comparison to subscript errors, especially for



load-and-go executions. This comparison seems to indicate that
subrange variables are not being used as effectively as possible,

particularly by the less sophisticated programmers.

The extremely small number of set range errors indicates either
that sets are very easy to use or that they are not used very
much. The fact that none at all were made by users of the load-
and-go version of the compiler tends to support the latter
conclusion®. It seems that the primary use for sets involves set
constructors (or set variables with a constant value) in boolean
expressions. Such use probably does not justify the inclusion of
set types in a language. The in operator in Ada [4] is perhaps a
good alternative to provide the capabilities required by the most

common use of sets.

There are a significant number of case statement errors, despite
the availability of an otherwise clause in UW-Pascal. This is
one kind of error which could be completely eliminated by a
slight change 1in the design of the language. 1If every case
statement were required to include either an alternative for
every possible value of the expression or an otherwise clause,
these errors could not occur. This restriction is not an undue
imposition on a programmer; in fact, it is simply a prudent style

of programming.

As with subscript errors, the frequency of pointer errors among
all users indicates the necessity of pointer checking. Nearly
half of all pointer errors involved references using a nil
pointer, so requiring initialization and eliminating dispose, as

Ada does, does not at all eliminate the need to check the

-] -



validity of pointers. Among the pointer errors in relocatable
executions, about 30% were dangling pointers, emphasizing the im-
portance of checking for such errors rather than merely verifying

that a pointer references an address somewhere in the heap area®.

The importance of variant checking is also confirmed by the data.
Variant errors were far more prevalent in programs using the
relocatable compiler apparently because variant records received
considerable wuse by the students in a compiler class, who were
the dominant users of the relocatable version. 1In Table 1, we
see that variant records were the most misused class of data
structures in Pascal. During our development of this compiler,
and before we had variant checking available, we found variant
errors to be among the most difficult of our debugging problems.
Thus, we believe that the frequency with which variant errors oc-
cur supports our beliefs in the value of variant checks, probably
the most neglected of possible run-time checks in Pascal im-

plementations.

The checks involving locked tags and protected objects were
included in the compiler more for the sake of completeness than
in the belief that they would catch many errors. The occurence
of a few of these errors does indicate the necessity of these
checks in providing complete security of access to data objects.
However, as described in our previous papers, some run-time over-
head and a considerable addition to the complexity of the com-
piler are necessary to implement these checks. The small number
of errors detected indicates that such specialized checking can

be removed (as an optimization) without a significant 1loss of



run—-time security. It can well be argued that the 1low
probability of occurence of these errors makes the inclusion of

such checking in a compiler uneconomical.

The large number of end-of-file errors, especially among the less
experienced programmers using the load-and-go compiler, 1is
probably indicative of basic problems with the design of the 1I/0
features 1in Pascal. Experience in teaching the language has

shown us that proper use of eof and eoln is one of the most

difficult things for programmers to master. Particularly
troublesome is the fact that eof is often misleading when reading

numbers from a file of characters’.

The frequency of errors involving references to unassigned exter-
nal files points out another difficulty with the use of files 1in
Pascal. The problem in this case seems to be that no standard
mechanism is available for specifying in a program the binding of
an external file to an internal file name. This design was ap-
parently influenced by the operating system under which Pascal
was first implemented, which allows executions to essentially be
parameterized by a list of file names. Many other operating
systems (includes ours) only provide this capability to a limited
extent, resulting in the problems our wusers have experienced.
The easiest solution seems to be to extend reset and rewrite to

take an optional second parameter which is a string specifying an

external file name (as has been done 1in several existing im-

plementations) .

The extremely 1large number of wuser 1limit errors certainly

includes many manifestations of infinite loops, but we have no

-0



way to estimate how many. We believe this surprisingly large
total mostly reflects the relatively inhospitable program

development environment imposed by our operating system.

5. Summary

The data collected 1in this experiment provide some valuable
insights about issues of compiler implementation and programming
language design. The importance of subscript, pointer and
variant checks is demonstrated by the frequency with which such
errors were detected. Problems with the design of case
statements and I/0 features are also apparent from the results.
The sheer number of run-time errors observed certainly emphasize
the value of run-time checks as a "last 1line of a defense"
between a user and his errors. The question appears not to be
"Can I afford run-time checks?" but rather "Can I afford not to

have them?".

Work 1is currently in progress involving the collection and
analysis of data on the frequency of occurence of compile time
errors in Pascal programs. We expect this experiment to provide
equally enlightening insights into the design and usage of

Pascal.

Acknowledgements

We are grateful to the Madison Academic Computing Center, and in
particular Tad Pinkerton and Manley Draper, for their aid and

support in conducting this research.

-10-



References

[1]

[6]

Fischer, C.N. and LeBlanc, R.J. UW-Pascal reference manual.

Madison Academic Computing Center, Madison, Wisconsin
(1977).
Fischer, C.N. and LeBlanc, R.J. Efficient implementation

and optimization of run-time checking in Pascal. SIGPLAN
Notices, 12, 3 (March 1977), 19-24.
Fischer, C.N. and LeBlanc, R.J. The implementation of run-

time diagnostics in Pascal. To appear in IEEE Transactions

on Software Engineering.

Ichbiah, J.D., et.al. Preliminary Ada reference manual.

SIGPLAN Notices, 14, 6 (June 1979), Part A.

Jensen, K. and Wirth, N. Pascal User Manual and Report, 2nd

Ed. Berlin: Springer-Verlag (1976).
LeBlanc, R.J. and Fischer, C.N. On implementing separate

compilation in block-structured languages. SIGPLAN Notices,

14, 8 (August 1979), 139-144.

-11-



Table 1

Relocatable Compilations
Total Runs: 13936

Total Errors:

% Errors: 27.

Error Type

3871
78

arithmetic error

subrange error

subscript out of range

set range error

no label for CASE expression

pointer error

illegal reference to variant

attempt to change a locked tag
attempt to dispose a protected object
error in standard routine parameter
attempt to read past end of file
attempt to read an ill-formed number
illegal call to I/0 routine

reference to unassigned external file
stack or heap space overflow

separate compilation error

user limit error (estimated)

error in source code

-12-

1031



Table 2

Load-and-go Compi
(without source
Total Runs:
Total Errors:
% Brrors: 56

Error Type

lations
errors)
7529

4262
.61

arithmetic error

subrange error

subscript out of range

set range error

no label for CASE expression

pointer error

illegal reference to variant

attempt to change a locked tag
attempt to dispose a protected object
error in standard routine parameter
attempt to read past end of file
attempt to read an ill-formed number
illegal call to I/O routine

reference to unassigned external file
stack or heap space overflow

separate compilation error

user limit error (estimated)

error in source code

-13-

1176



Table 3

Load-and-go Compilations

(with source er
Total Runs:
Total Errors:

% Errors: 80

ErrorType

rors)

2929
2361

.61

% of
Errors

(I)

arithmetic error

subrange error

subscript out of range

set range error

no label for CASE expression

pointer error

illegal reference to variant

attempt to change a locked tag
attempt to dispose a protected object
error in standard routine parameter
attempt to read past end of file
attempt to read an ill-formed number
illegal call to I/O routine

reference to unassigned external file
stack or heap space overflow

separate compilation error

user limit error (estimated)

error in source code

I: "error in source code" included
IT: "error in source code" excluded

-14-

149
1136



