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a. INTRODUCTION

The purpose of this monograph is to present a brief overview of the basic
structures upon which broad areas of mathematical analysis are built. It is
intended to carry the reader from the material covered in elementary courses on
linear algebra ('vectors, matrices, and determinants') and analysis ('advanced
calculus'), to the point at which he or she can understand the level of abstraction
and the fundamental concepts of courses on topology, real and complex function theory,

measure and integration theory, probability theory, and functional analysis.

NG atc@mpt‘wiii‘be*made—tcAexp&a&n—a&l~fhe~de%ailedAramiﬁieations_nF the

mathematical structures presented; but the reader wishing to move on to higher
levels of specialization will have been led through an outline of the principal
concepts, definitions, vocabulary, and properties, sufficient to give him or her
an understanding of the sense and flavor of these essential topics underlying

modern mathematical analysis.



L. SETS AND PROPOSITIONS

We begin with the undefined concepts of an_chject (or element or point)
and of a set (or class or collection or family) of objects. If an object denoted
by the symbol x is in a set denoted by the symbol 4, we say that x belongs to (or
is a member of) A, and we write

xr € A. (1.1)

If x is not in 4, we write T & A or x € 4, (1.2)
Two symbols representing objects will be considered equal if and only if they represent

the same object: 1if x and y represent the same object, we write z = Y; if not, x # y.

Two expressions or symbols denoting sets will be considered equal (or <dentical)

and will be said to refer to the same set when every object belonging to one of the
sets belongs to the other and vice verea. Thus no considerations of order, arrange-
ment, or repetition are relevant to identifying a set. If A and B denote the same

set, we write

A—="By if wst, 4 F B 1.3
If every element of a set 4 is in a set B, we say that 4 is a subset of (or is
contained in) B, and conversely, that B contains A, and we write
A € B or B 2 4. (1.4)
We note that a set may itself be considered as an object and be a member of another

set. A set may also be used to label a family of objects (possibly sets): when so

used, it is called an index set: for example, if the family K consists of the sets
Sa’ SB’ SY, and Sd’ where the set whose elements are a, B, y, and § is J, then J will
be referred to as the index set and we may say that K is made up of all sets SA such
that A € J. Introducing a useful formal concept, we call the set to which no object
belongs the null (or empty) set and denote it by @. Thus, for whatever object is

symbolized by wx,
x €& ¢. (1.5)
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Objects and sets whose membership relations can be unambiguously determined

are called well-defined.

A set may be specified by enmumeration of its members: the elements are

listed, separated by commas, between curly brackets. For example,

[

Family {Pa, Ma, Dick; Jane, Spot},

(1.6)

or D {x, ¥y, 2, p, q}.

The enumeration may be implicit, using formulae and/or conmtinuation denoted by

ellipsis (...): for example,
Even Numbers = {2, 4, 6, 8, ..., 2n, ...}. (1.7)

It may sometiwzs be useful to use semi~colons as separators: for example, the
signed integers may be specified as /
{..., =3, -2, -1, 0,1, 2, 3, ...1 =
{0; 1, 2, 3, ...; -1, =2, -3, ...}, (1.8)
according to convenience. Alternatively, a set may be specified by a common

property of all its members: the curly brackets contain an arbitrary symbol,

followed by a colon (sometimes a vertical bar is used instead) and then by a
statement about the object represented by the symbol, which is true of all members

of the set and false of all other objects. For example,

i

Even Numbers {k: k is a positive integer divisible by 2},

Children of John {¥t: John is the father of M}, , (1.9)

Unit Disk {z| 2 = x + iy and @’ y2 < 1}
We note that the symbols used in (1.9) may each be replaced by another (so long as
distinct symbols remain distinct in any one specification) without changing the set

specified: such symbols are called dummy variables. For example {x: x is red} =

{y| y is red}, and the Unit Disk is {¢|] ¢ =p+ig and p2 + qz < 1}. The colon or

vertical bar may be read as "such that": the Even Numbers are "the set of k, such

that k is a positive integer divisible by 2." Often, some property of the members
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of a set is mentioned before the "such that" symbol: for example,

Even Numbers = {positive integer k| k is divisible by 2},
2 (1.10)

{z =a+ iy: " + y~ < 1}.

1

Unit Disk

We carefully distinguish between objects and the sets of which they are
members, even if they are the only members. Thus, x € {2} € {{x}}; but these three
entities are entirely different: {x} is & subset of {a, y, 2}; while {{x}} is a
subset of {{x}, {z, y, 2}, 4, B} and also of {x, {x}}; and z is not necessarily a
set at all. @ is the empty set; but the set {@} is not empty: it has the element @.

We assume the undefined concepts of true and false, as applied to statements
(or assertions): loosely described as grammatically correct sentences in the indicative
mood.) We say that a statement is aboﬁt an object if its meaning explicitly depends on
understanding the nature of the object (or if the object appears, or is referred
to, in the statement.) A statement is called a proposition if its truth or false-
hood can be unambiguously determined. We shall sometimes find it useful to associate
a truth-value with a proposition: if the proposition is true, its truth-value is 1,

and if it is false, its truth-value is 0. If two propositioms, symbolized by ¢ and

¥, say, have the same truth-value, we say that they are eguivalent and write

¢ * . (1.11)
We observe that equivalence of propositions is an equivalence relation (this idea
will be returned to later), having the properties (true for all propositions ¢, ¥,
and ) that

L H

if ¢ ¢ ¢, then Y * ¢; (1.12)
if ¢ ¢ v and P &y, then ¢ < ¥x.

We further note that the assertion of a proposition is equivalent to the assertion

that it is true:

o = (o = 1); (1.13)

where we use parentheses in the usual mathematical way.
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We observe that (1.11) is itself a statement, "¢ is equivalent to ¢", which
is constructed from the propositions ¢ and y: the beginning of an algebra of
propositions, which we shall proceed to develop. We now introduce the idea of a
truth-table: a table, for an expression involving a number of propositions, listing
its truth-values corresponding to every possible combination of the truth~values of the
constituent propositions. If the expression is constructed from #n distinct
propositions, then the truth-table will have 2* lines. To illustrate, the truth-

table for (1.11) is

R . Thidh ) 9 = v
1 1 1 1 1 1
1 0 0 1 0 0
0 1 0 or, more comPactly, 0 0 1 (1.14)
0 0 1 g 1 0
A A

When used as above, the truth-table defires the effect of the operator ®. We may
also use truth-tables to prove or verify identities (that is, propositions which

are necessarily true.) For example, we may prove (1.13) as follows:

¢ < (¢ <« 1)
11 1 1 1 (1.15)
01 0 01

A

In this case, the table has two lines, because there is only one constituent

proposition, ¢. 1In the first line, ¢ is given the truth-value 1, and in the second

line, the truth-value 0. Of course, the "1" has the constant value 1, which is entered
in each line. Using the definition (1.14), we next enter iﬁ each line the truth-value
of "(¢ # 1)" beneath the corresponding "¢". Finally, beneath the other "¢", we enter
the truth-value of the equivalence of the "¢" and of the expression in parentheses,
whose truth-values we have just entered. If the entries in this final column are all

"1" (see the column marked "A"), then the identity is proved, being always true.

Let us now define three operations on propositions, the negation of ¢, denoted
by not ¢ or v¢, the disjunction of ¢ and ¥, denoted by ¢ or y or by ¢ v ¥, and the

conjunction of ¢ and ¥, denoted by ¢ and ¢ or ¢ A~ ¥. These are defined by the truth-



tables:
) b v P b A U
01 1 1 1 1 1 1
110 100 (1.16)
10 0 1 1 0 0 1
0 0 0 0 0 0
A A A

To avoid having to use excessively many parentheses to determine the order, we adopt
the usual algebraic conventiom, that operations (v, v, A) take precedence over
relations (¢, =, <). It then follows rather easily that:
vvg) e gy
v (v x) ¢ Gvedvis da@ax) @ (6 ay)ayx;
(1.17)
vy ) e (veda (W) v (ha ) e (v g) v (v )
bA v ® AW v@ax); sv@ax) ® (b v al v ).

For example, we give the truth-table proofs of the fourth and seventh identities:

v vy) e (ve)a (v) b v WAax) (6 vd) A (b v )
0 111 1 01 0 01 11 111 1 111 1 111
11 100 1 111 1 110
0 110 1 01 0 10 11 001 1 110 1 111
11 000 1 110 1 110
0011 1 1.0_0_0_.1 01 111 1 011 1 0-1-1
00 100 1 011 0 000
1 000 1 10 1 10 00 001 1 000 0 011
00 000 1 000 O 00O
A A

The second and third identities are called associative laws; the sixth and seventh
are called distributive laws.

We say that a proposition ¢ implies a proposition ¢ (or ¢ is implied by ¢,
or if ¢ then ¥, or ¥ Lf ¢, or ¢ only if ¥) when ¢ is true whenever ¢ is true: we

write

¢ = ¥ or ¢ = ¢. (1.18)

The corresponding truth-tables are

¢ = ¥ $ = v
111 11 1
1 0 0 and 11 0 (1.19)
01 1 0 0 1
01 0 01 0
A A



From this it follows immediately that

G=v) = (v¢)v §

(1.20)
and that (b =y9) = ov (v ¢)
We can easily verify the further identities
b =9 = =29 )
(=9 & ((vé)=(vy));
ey = (=P G =9));
. (1.21)
b = b;
LN H
(G=v) A @G=2x) = (=x). )

The fourth of these identities demonstrates that the relation = is reflexive, and
the sixth, that = is transitive: between them, they show that = is an order relation
for propositions (we shall return to this idea also, at a later stage.) It also

follows that < is an order relation; indeed, by the first identity in (1.21), *

is—the—inverse-relation—to-=+—The third—identity-accounts—for—the-common-way—-of

reading ¢ as "if and only if" —— it is also sometimes written as iff.

If a proposition refers to one or more objects, this may be explicitly
indicated by a notation such as ¢(x) or y(p, q, r). 1If the proposition ¢(x) is true
for all choices of the object symbolized by x, we write

(V) ¢(x). (1.22)
We call the expression (Vx) a quantifier, and we may read it as '"for every choice of z"
1o

or "for all x". We note that, here also, the "x" is-a dummy variable, replaceable with

no effect by any other symbol. If there is at least one object for which a proposition

#(x) is true, we may write
() ¢(x), (1.23)

using the quantifier (3z), which may be read as "for some z" or "there exists an &



such that'". It follows at once that
v (V) ¢(x)) = (Hxy (v ¢(x)) , (1.24)
which may be abbreviated to the quantifier identity,
v (ve) o (dx) v (1.25)
and similarly, we have that
v () e (V) v (1.26)
A third quantifier is sometimes useful: (¥!x), which may be read "there is a unique
x such that'. We see that
(Vo) = (Hx) and (3lz) = (dx). (1.27)
We now return to the consideration of sets. First, we observe that any well-
formed mathematical statement is a proposition, and in particular, that (1.1) and (1.2)
are propositions. In fact, we see that

(x 84y ¢ ~(x€4) . (1.28)

Further, we have the tautology,
(V4) A = {z| x € 4}. (1.29)
In fact, given any proposition ¢(x), we may formally define a corresponding

set by writing
A = {z| ¢(=)}. (1.30)

Owing to certain problems and paradoxes, it is necessary to limit the objects considered
to members of a given universe of discourse (or global set) W: thus, to define a valid
set, we must modify (1.30) to the form

A={z| €W o)} or A={x€W: ¢} (1.31)
In othervwords, we may only define sets as subsets of a universe of discourse —— which
may itself be any well-defined set. (Nevertheless, the reference to W is often omitted;

though it must be understood.)
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Applying the algebra of propositions to statements of the form (1.1), we may
now construct an algebra of sets. (Both of these algebras are given the name Boolean
algebra.) Corresponding to the equivalence of propositions, we have the equality of

sets:
(A=B) « ((x€4) s (x€ B)). (1.32)

Clearly, equality is also an equivalence relation, with the three characteristic

properties exhibited im (1.12): for all sets A, B, and C,

4 = 4;
(4=B) = (B= 4); (1.33)
(A=B)a (B=¢() = 4 =0C).

. c R , -
We now define set operations (75 U, MY and relations (=, &, D, €), again giving the
former precedence over the latter, in the absence of parentheses. Corresponding to

the negation of a proposition, we have the complement of a set:

A° = {x:n (zE D). (1.34)

Corresponding to the disjunction of two propositions, we have the union of two sets:

A4 VU B = {x: (x€4)v (z € B)}. (1.35)
Corresponding to the conjunction of two propositions, we have the intersection of

two sets:
AB = A N B = g (x € 4) » (z € B)}. (1.36)

The latter notation is formally preferable (compare (1.36) with (1.35)), but the
former has the irresistible advantage of brevity. Seven identities analogous to those

in (1.17) follow immediately: for all sets A, B, and C,

U = 4
AV(BUCO = (AUBYUC, AnBnrC) = UngBne,
GUBS = WHN G WnB® - ) U Y, (1.37)
AN(BUC) = (ANB)U (4n(); AUBNC) = (AUB)N@UOC).

(The method of proof of these is discussed in Exercises (1.9) and (1.10).)
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Corresponding to implication between propositions, we have containment between sets:
(ACB) = (Vx) ((xed) = (xeB),

(1.38)
or equivalently, (AD2B) ¢ (V) ((x € 4)«={xe€B).

The analog of (1.20) is now the assertion

(ACB) ¢ (W=0UHUB or (A2B) « (W=A4U (B%)); (1.39)

or using a quantifier,
(ACB) = (Vxr) ((x & 4) v (x € B)), (1.40)

where we recall that "(Vx)" is an abbreviation for "(Vx € ¥)'". The six additional
identities in (1.21) give us that

(ACB)* (B24); (ACB « (4% 2 B);

i

(4 =B)« ((ACB)» (42 B));

(1.41)
ACA A2 4
ACB A (BLC) =UCO.

Thus we see that & and 2 are mutually inverse order relations on sets.

Using quantifiers and index sets, we may extend the concepts of union and
intersection of sets to arbitrary families of sets. Let J be the index set and let
F=1E| a€Jl. (1.42)
Then we define the union of F as
UF=Ug B = {z| (30 € J) x € E}, (1.43)
and the intersection of F as
NF=nN__E ={z| (ya €J) x € E}. (1.44)

o&J o

Sometimes, the family F is finite (say, with J = {1, 2, 3, ..., n}) or countably

infinite (this idea will be discussed later) (say J = {1, 2, 3, ...}). Then we write
UF = LJ”_ E and NF = r\n_ E s
ont e asl o (1.45)
U = ch N = nm .
or F =1 Ea and F =1 Ea’ respectively,

in close analogy with the mathematical notation for sums (I) and products (I),.
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A few more identities and relations will round off our discussion.

note that, formally,
¢ = {x: 0} and W= {x: 1}.

We also see that v ().

First, we

(1.46)

(1.47)

(This is sometimes expressed by saying that "a false proposition implies ever
P y ying prop p Yy

proposition."”) Pairing off identities for propositions and sets, we have:

¢ =W, 01 WC =g, 1w o0
AVUA=A4=404, $v o*p*pno;

AU P

A, ¢V 0*g; AVUW=W, ¢v 1=1;

ANg=9, ¢r0®0; 4Ny

1
=N

ERRREY
ANB € A ¢ AUVUB.
Some of our results may be generalized for arbitrary families of sets:

the last relation above gives

for

(1.48)

instance,

(=3 M. C cu
vz € J) eT E'a "EC EVer Ea. (1.49)
Similarly, we can verify that
c c c c
= N R [ = .
(LQGJ Ea) aEd (Ea) ? ( oEJ Ea) UaEJ (Ea) ’ (1.50)
Y (U = U n . U (N =N U ’
40 ( e Ea) s (4 Ea>’ A ( e Ea) ET (4 E&).

If AB = @, we say that the sets 4 and B are disjoint (the intersection used

to be called the join; and the union was the meet —— though it seems as if it

should be the other way around! The same kind of paradox of nomenclature occurs

in the fact that, if propositionm ¢(x) implies proposition ¥(x), we say that ¢(x)

contains ¥(x); yet it is {x: y(x)} which contains {z: ¢(x)}.) More or less conversely,

ifA°B # ¢ and A C B, we say that 4 is a proper subset of B and write A C B or B D A.

Finally, we shall find it convenient to refer to digjoint unions of sets; that is,

to unions of the form (1.43), in which every B E

B
indicated by the notation UaEJ Ea'

=@ (for a # B): this will be
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One last fact will be mentioned, for its intrinsic beauty and its importance
to computer design. We may define a new operation between propositions, denoted by
¢ nor ¥ or ¢ + ¢ and defined by the truth-table and formula:

Y

and o v v o v (e v o). (1.51)

P00 0O |«
O O

It is then easily verified that the three previously defined operations may be
expressed in terms of ¢ (and so can the relations), as follows:
LK T L g
bv iy ® (0¥ (o + ) (1.52)
bAa Yy ® (o + )y (W)

Finally, to reduce the use of parentheses even further, we follow common

algebraic practice by adopting a hierarchy of precedence for operations and relations

occurring in expressions involving sets and propositions:

[1] The interior of a matched pair of delimiters (such as (), ('"),
[~1, [~0, {~}, ¢=>, I=1, 1=1, =10, &.) is evaluated
before the exterior.

[2] oOperations and relations between sets are evaluated before
operations and relations between propositions (naturally, since
relations between sets are propositions, but operatioms and
relations between propositions yield propositioms, not sets.)

{3] Both for sets and for propositions, operations are evaluated
before relations. (This rule has already been formulated for
both cases.)

{41 operations on sets: ¢ before N before U.
Relations between sets: =, C, D, € all together.
Operations on propositions: n before A before Vv

before .

Relations between propositions: = and *= (together)
before <.

[5]1 Quantifiers affect all subsequent expressions until a binary
propositional operator (a, v, ¥) not enclosed in parenthetic
delimiters is encountered, or until the end of any parenthesis
containing the quantifier in question.
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Examples of the simplification afforded by these rules follow:

(1.17), fourth & seventh: V(g VYR Ay, b v ax® (o ve) A vx);
(1.33), third: A=B AB=(=4=C;
(1.37), fifth & sixth: 4B =4 UB%, 40 (BUC) = AB U 4AC;

(1.39), second: ADBeW=4UBE",

(1.41), third & sixth: A=B*A4CB~r"ADB, ACBABCC=A4CC.
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EXERCISES 1

It cannot be emphasized too strongly that the material in the exercises is
an integral part of the text, and that the results quoted therein is important and
will, in many cases, be used later. To this end, results given in exercises are
numbered for reference.

In the first place, the reader is urged to verify in detail all the

identities and other results stated without proof in the text.

(1.1 IfF = {Eﬁ: Jd =1, 2,3, ...} is a countably infinite family of sets E&, then

we write
UF =

Ul L E. = sup. E, NF=0n, E.=inf, . .
121 Eb supJ_)Qo 3 and F =1 Eb 11'1f‘7')Oo Eb (1.53)
(compare (1.45).) Show that (compars (1.49))

i Eﬁ supj»m E&. (1.54)

{1.2) For the same countably infinite family F, we write

nfj+m

2] oo o0 o]
lim inf, E.=U, N, . E, and limsup., F.=n0. U E (1.55)
Jre S ——g=1—t=f"¢ Pioa Sy = g1 4571 ;

Show that
x € lim inf, ~F., iff x is in all but a finite number of the E.;

and that J J 77} (1.56)
x € lim SUp E. iff x is in infinitely many of the Eﬁ.

Hence show that
lim 1nfj+m E& € lim supj»m Eﬁ. (1.57)
(1.3) The class of all subsets of a given set 4 is called the power class of 4 and

is denoted by P(4):
P(4) = {x| x € 4}. (1.58)

Show that, if A has just n elements, then P(4) has exactly 2" members.
(1.4) Prove the following results:

ACPp=A=¢; ACB=AUB=BAANB=4; 4=48Y a5, (1.59)
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(1.5 Prove that x€ S* {2} £S5 and UTES {x} = 5. (1.60),
a U 2 N {w = W] E N F . R
(1.6) Prove that (U _ E)n ( ecn FB) Yer Yaer &, N Fp) (1.61)
: ) 7 ) U (N ; =N N 7 U

and that (Myen 2 Y (Dgep 7o) ven Ngep By Y o). (1.62)
{1.7) Prove that

ACPABCQ = AUBCPUQAANBCPNAQ, (1.63)
(1.8) Prove that, if (Vo € 4) E& E»Fu, then

z ) N r ) [n . , 6/
OJOEA ﬁa) E'(LaEA Fa) and ( o&A Fa) — v o€4 FQ) (1.64)

(1.9} Prove that the definitions (1.34), (1.35), and (1.36) are respectively

equivalent to stating that, for all x € ¥ and all sets 4 and B contained in W,

(@ € A% & (€ a); (1.65)
(x € (4 U B) < (x€4) Vv (x €B); (1.66)
(@ € (4 N B) © (x€4) + (z EB). (1.67)

(1.10% Use the forms (1.65), (1.66), and (1.67) to prove the identities in (1.37).

[For example, to prove the fourth identity; we note that (by the fourth identity in (1.17))

c

(- (4L
LG A

s

)P € (A UB)) (A€ B ) (v (€AY (v

—~
8

M

[ss}
A

* (x€4% r (z€B% @ (@€ (A% N (B%)), as required.]

(1.11) Prove that A UB = 4B Y 4B Y 2B, (1.68)
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2. PRODUCTS+ RELATIONS. AND FUNCTIONS

A non-empty set S is said to be a singleton (or to have just one element) iff

xE€ESAYyES=x=y; (2.1)
or, equivélently, iff rx€5=5 {x21° = 9. (2.2)
A non-empty set T is said to be a pair (or to have just two elements) iff

z €T =7 {2}° is a singleton. (2.3)
Given any pair T = {x, y}, we may construct a new set, denoted by

[z, y] = {{z}, {z, y}}; (2.4)
and, similarly, another new set denoted by

ly, =] = {{y}, {=, yl}. (2.5)
The choice of (2.4) or (2.5) determines an ordering of T, and either of these new sets
is called an ordered pair. (More extensive consideration of number and of order will
be given later.)

We now define the Cartesian product of two arbitrary sets 4 and B as

A x B={[a, bl: a € A » b € B}, (2.6)
The properties of the algebra of sets established in §1 lead us readily to see that,
in general, A * B and B x 4 will be quite different, and that
@ x4d=A4Ax0=0¢; ACPABCQRQe{(4dxB & (PxQ;

(Aup xC

[}
It

UAxOOUVUBxO; AOB xC=UxON(px O 2.7)

it
#

Ax (BUOD =UAUxB UMUxO; Ax(BNCO=UxB NMHxO.
These concepts readily generalize to an arbitrary family of sets indexed as in (1.42).
We define the general family of indewed objects denoted by

[z 1e; = {las z 1t a &J} (2.8)
[the purpose of this construction being to firmly label each xa with its index o, even

when some of the ma are identical: we shall see, later, that we are, in fact, defining

a function x mapping the index set J into the global set W, the image of o being x ];
[0
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and then we may define the Cartesian product of the family F in (1.42) as
XF = quJ Ea = {[xa]aEJ: Vo € J) x, € Ea}' (2.9)
We generally do not make a strong distinction between ordered and unordered Cartesian
products: an ordered Cartesian product arises when the index set is itself ordered.
Thus, the preduct defined in (2.6) is seen as the case of (2.9) arising when T is the
set {1, 2}, which has the usual ordering [1, 2]; with El = A and E2 = B. The relations
in (2.7) naturally extend to (2.9): for example,
(@) B, = 6) = X B =0
and ((ye) E, S F) = X

(2.10)
X

=y Fa'

Given the product 4 x B, any subset of the product is called a relation.

o&J Ea

In other words, a relation is an arbitrary set of ordered pairs, with the first
element of the pair in a given set 4 and the second element of the pair in a given
set B. Several notations are available: if

la, P] € R S (4 xB),

(2.11)
then also RF(@, ) ©# 1 and a R b.
wWe also write Ei 4 5B for R T (4 X B) (2.12)
and b € R() for [a, B] € R,

(2.13)
where R(a) = {b: la, b] € R}.
Similarly, write R-l(b) = {a: [a, b] € R}. (2.14)

We call R(a) the tmage of a in B, and R*l(b), the inverse image of b in A. More

generally, for any ¥ C 4 and K C B, define the image of ¥ in B as

R() = {b: (3a € H) [a, b] € R}, (2.15)
and the inverse image of X in 4 as
F Y& = {a: @b € X) la, b] € R}. (2.16)

If R is a relation from 4 into B, we may define the inverse relation by
B = (b, al: [a, b] € B} C (B x 4). (2.17)
We then see that the inverse image of a set or point (as defined in (2.14) and (2.16))

under a relation R is just the image of the inverse relation R—l; and that



(R~ =~R. (2.18)
We now consider special properties of relations. First, if
(Va € 4) R(a) is a singleton (2.19)
(that is, if the image of any point in 4 is a single point in B), then we call R a
function or mapping from A into B. We do not usually write a R b when R is a function
(though there is no valid reason why we should not do so), but we do write
b = R(a) for {b} = R(a), (2.20)
by a time-honored and excusablé abbreviation of notation, and sometimes
b = Ra o b = R, (2.21)
according to choice and convenience.

For dny relation of the form (2.11), we call 4 the domain of R and B the
codomain of R. The image of A, F(4), is called the range of R, and the inverse image
of B, R”l(B), is called the total support of E. [The support of a real-valued function
usually denotes the subset of the domain, on which the function takes non-zero values.]

Clearly, -1
RA)Y £ B and R “(B) £ A. (2.22)

It follows from (2.19) that, if R is a function,

e = a. (2.23)

If R is a function and R(4) B, (2.24)
we say that R is surjective (or that R maps 4 onto B.) 1f R is a function and

(Vb € R(4)) R-l(b) is a singleton (2.25)
(that is, if every point in the range of R is the image of just one point in A4), then
we say that R is injective (or that R is a one-to-one mapping of A into B.) Finally,
if R is both surjective and injective (that is, both one~to-one and onto); so that
both K and R~l are functions (from 4 onto B and from B onto 4, respectively); then

we call R a bijection from A to B.

If R is a function from 4 into B and # C 4, then we write
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- (# * B) (2.26)
for the restriction of R to the domain A (often, we abbreviate notation by omitting

the subscript [H] and identifying R with its restriction.) Clearly, is a relation

R,
[H]
of H to B, and by (2.1 ), R[H] is a function from H to B. We see that
R[HJ(H) = R(H) € R(4). (2.27)
We note that, for functions, set operations and relations are preserved by
the inverse-image relation; that is, if R is a function from 4 into B, and E and
F are subsets of B, then
-1 -1 - -1
BhNe) =0 BN® =45 RREES) =4 @EnS
rleurn =t urtey; Flaom = tm n sl (2.28)
-1 -1 - -1 -1
ECF = R “(EYy CR ~(F); EF=¢ = R “(E) R (F) = ¢.
[NOTE: Proofs will be placed between double square brackets, The inverse image is
defined in (2.16): this yields the first identity immediately. The sécond identity

is just (2.23), true for any function. Since a function maps each point into only

one point, the inverse images of disjoint sets must be disjoint (that is, there is no
x, such that F(x) is in both F and F, if EF = ¢): this nroves the seventh relation. Now,
Y=R@ *c€R (B »y et ey erexe R (E) *a€a ®E)C the third identity
above. Iff y = R(x) and y € FUF, then y €EFor y € F; so x € R—l(E) or x € R-l(F);
whence the fourth identity follows. Replacing "U" by "M" and "or" by "and" in this
argument, we similarly obtain the fifth identity. Finally, if E C F, then any x for
which R(x) € F is an x for which R(x) € F: the sixth relation follows. ]

Now suppose that a function f maps a set X into a set Y, and that another
function g maps the set Y into a set Z. Then we may define the composition of the

two functions as the function g ° f, mapping X into Z in such a way that
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Fz €X) (g ° A =gf). (2.29)
It follows from this definition that, if a further function h maps Z intec a set T,

then .
helgeF=((h-°g-°Ff (2.30)

Here, the concept of equality of functions derives directly from the equality of sets,
by way of the definition (2.11), since functions are relations and relations are sets
of ordered pairs. This may be expressed in the form

e=f * eC X xNA FCEAXxT) A (yxE€X) elx) = fx). (2.31)

It is clear from the definition that the Cartesian product X x X necessarily

has the subset
1 = {[x, 2]: x € X}. (2.32)

X
This relation is evidently a function; and indeed, it is a bijection which is its own

inverse. It is called the identity or wnit fumction of X, and the subscript X will

often be omitted, when the meaning of I is clear. It follows at once that, for any

function f: X » ¥,
F=Ffrely=1,-Ff. (2.33)

Given the function f: X - Y, there may or may not exist a left-inverse fi of f3
that is, a function fi: ¥ + X such that

fo o =1 (2.34)
If [x, y] € f, then [y, x] will belong to the inverse relation f’l; but, for any y =
f(x), there may be more than one z € frl(y) (always including z = z, of course,) If
this is the case, then no left-inverse can occur (since fi(y) needs to take two or
more values); and if f"l is a function from f(X) onto X (that is, if f is injective),
then fi is a left-inverse iff its restriction to FX) is f’l:

s
furayy = (2.35)
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Similarly, there may or may not exist a right-inverse function of f; that is, fk: Y -x,

such that
fe fk = JY. (2.36)

If any y exists in Y which is not in f(X), then such a Yy cannot be mapped into itself
by any f °© fk whatsoever; while if f(X) = Y (rhat is, if f is surjective), then fk is

a right-inverse iff

; ~1
Vy €D fr) €F "@)- (2.37)
We have thus shown that
f has a left-~inverse iff it is injective, )
(2.38)
and f has a right-inverse iff it is surjective.

Iff f is both injective and surjective, it is a bijection, and therefore has both a
left and a right inverse. Since f is a surjection, fX) = Y, so that, by (2.35),

fi = fml; and since f is an injection, f'_l is a function, so that, by (2.37), f, =

R
frl, Thus, -1
fi = fk = f 7 iff f is a bijection. (2.39)
We now turn to general relations R, whose domain and codomain coincide:
R C @A x 4. (2.40)
ILf JA CR or (Va € 4) a R a, (2.41)
we say that R is reflexive. 1If
(Va, b€EA) aRb = bPRa, (2.42)
we say that R is symmetric. If
(Va, by, c€4) (aRbrbRe)=>aRe, (2.43)

we say that R is transitive. A relatiom which is both reflexive and transitive is
called an order relation (or ordering) on its domain. A relation which is symmetric,
as well as reflexive and transitive, is called an equivalence relation. The inverse

of an ordering is also an ordering (the inverse ordering), and any equivalence relation
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is a self-inverse order relation. Indeed, given any ordering R, the relation
B = RoRY = {lq,bl:aRb bR (2.44)
will be an equivalence relation: we shall call it the core of the ordering R.
An order relation R whose core is the identity of its domain, so that
R = JA or aRbArAbRa ® a=bh, (2.45)
will be called a proper ordering of A; and since any ordering is reflexive (see (2.41)),
we see that, always, RO Q'ZA’ with equality for a proper oréering. A set A with a
proper ordering R will be called a (partially) ordered set (or a poset); and if
RURY = (4x4) or (Va,b€4) @RbH VDR, (2.46)
then we call A a totelly ordered set. Tinally, if a totally ordered set is such that
(Va, b€ 4) (3c €A4) (aRe "b R o), (2.47)

we call 4 a directed set (or a net.) Of course, we might well call 4 a directed set

if (2.47) were to hold with R replaced by R—l; but we shall consider the directing

order—to-be-R-when—(2v47)holds; H~when the inverse property Holds:

For example, it is easily seen that = is an equivalence relation for W, and
also for P(W) (see (1.58) and (1.33)), and that ® is an equivalence relation for all
propositions (see (1.12).) Similarly, we see that C (and its inverse D) is an ordering
for P(W), whose core is = (see (1.41)), making P(W) a poset; and = (and its inverse <)
is an ordering for all propositions, whose core is ¢ (see (1.21)): whether we consider
this érderiug proper depends on whether we conmsider the equivalence ® of propositions
to be identity -——— this is a moot point. Of course, the paradigm of all order relations
is the relation < between real numbers, with inverse ordering 2.

Our definitions guarantee that, if X is a poset with respect to the ordering R
and 4 is a subset of X, then 4 is also partially ordered by R. Any element x of X,

such that
(Va € 4) a R x, (2.48)
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is called a majorant of A, and we may define the (possibly empty) set
A = {x€X: (Va € 4) a R x}. (2.49)

Similarly, any y € X such that
: (Va € 4) yRa (2.50)

is called a minorant of 4, and we may define the set

td = {y€X: (Va€ 4) y R al. (2.51)
(The terminology is rooted in concepts of size and height, since the concept of order
originaged in the relation <: thus, a majorant is often also called an upper bound,
and a minorant a Zower bound.) If there exists a member x of A, such that (2.48) holds,
then the property (2.45) (called antisymmetry) of the partial ordering R guarantees
that there is at most one such element: it is then called the maximum element of 4
and is denoted by max A. Similarly, if there is a y € 4 such that (2.50) holds, it
must be unique also, is called the minimum element of 4 and is denoted by min 4.
Again, if min 4 exists, it is called the least upper bound (or lut or supremum) of 4

and is denoted by sup A: its uniqueness is guaranteed. Similarly, if max | 4 exists,

it must be unique, and it is called the greatest lower bound (or glb or infimum) of 4

Clearly,

and _is ﬂpnnfpﬂ;b,y_inf_AA,

if max 4 exists then sup 4 = max 4; 1if min 4 exists then inf 4 = min 4.
(2.52)
A totally ordered set is sometimes called a linearly ordered set or a chain.

If 4 is totally ordered by R, and if a, b, and ¢ are in 4, then every pair of points

is related (by R or R_l)g The possibilities are (i) a R bAbReArcRa, or bR a
AeRbaagRejor (i) aRbabRenrnaRe,oraRencRbnradR b, or BRec A
cRanrnbRa,orbRarnaRenbRe,orecRanalkRbacgh by ore RbArbRa

A ¢ R a (this exhausts all possibilities, since there are three pairs with two possible
relations for each.) However, the two cases in (i) (so-called eyelic order) are only
possible if a, b, and ¢ are identical objects. [By (2.43), a RbAbRe =>aR ¢; and

with ¢ R a, by (2.45), we get that q = ¢, whence also ¢ = b. The second case yields

the same result.] The six remaining cases in (1i) can unambiguously be described by
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expressions of the form

aRbRc¢ and we say that b is between a and c,

aReRb " " e " a " b,
bRcRa " " e it b 1" a
E

b R a R e 1" 1" a " b A\ e
]

¢eRaRb " " a " e " b
+ 2
cRbRa " " b " ¢ " a.

We note that "a R b R ¢" means not only that a R » and b R e, but also that a R c.
We also observe that, if one of the three elements being considered is the maximum
of the totally ordered set, then it must necessarily appear on the right end of the
string of characters (in the position occupied by "¢" in " R b R ¢"); and if one of
the three elements is the minimum of 4, it must appear on the left end of the string
(in the position occupied by "a".)

We turn now to equivalence relations. If A is an equivalence relation for 4,

we may, for any g € 4, define its equivalence set as

E& = {b € A: a R b}. (2.53)

It follows from (2.41), (2.42), and (2.43) that
€ . < R [S] (= . .
a Eﬁ, Vb, e Ea) bRe; b E& = g Eb (2.54)
By (1.60), we have {a} C E&, and by (2.53), E& C A. Thus, by (1.64), on taking the
union over all g in A, we get that
= U Cc U C u = . .
A €A {a} C =y Eb S Ye A A (2.55)
This process of determining that a set lies between two others, with respect to the
ordering C, and then showing that the two sets between which it lies are equal; so
that all three are necessarily equal (by the third identity of (1.41)); is a very

useful and powerful tool of analysis, which we call bracketing. Thus we have shown

that V) = :
ha €A Eb 4. (2.56)
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Now consider the intersection EQEE: if z € E&Eb then x € E& (whence, if y € E& then
y R aRux; that is, y R x) and x € Eb (whence, similarly, if z € Eb then z R z); thus,
either E&E% = @ or E& = Eb' With (2.56), this shows that A4 is partitioned into a
number of sets Ek whose disjoint union is A:

(K CA) (((Vf, ke€R) j+k= BB =0 ~w=Y_ 5)). (.57
The set of all equivalence sets in 4 under R is called the quotient set of 4 by F and
is writtén A/R. We may write a/R for the equivalence set E& defined in (2.53), and
then A/R = {a/R: a € A} (2.58)
(it being remembered that a set is identified by its distinct members, without regard
to repetition of equal objects.) It will be noted that the quotient A/R is a family

of sets indexed by the set X defined in (2.57).

Consider now a function f: 4 + B. Then for each b € B, the sets frl(b) are

distinct equivalence sets in 4 under the equivalence relation =f defined by

B =, oy e f£(z) = £y). (2.59)

T
The sets frl(a) are disjoint because f is a function, and their union is 4 because
4 is the domain of f (compare (2.28).) This result indicates how we can factor i
into the composition of a surjection g from 4 onto A/Ef (defined by g(a) = a/Ef)
and an injection A from a/Ef into B (defined by h(a/EfJ = f(a); so that, for any a in 4,
gla) = a/Ef, h(aﬁEf) = fla), fa) =h{g@) = (h-° g)(a). (2.60)
Returning to the general Cartesian product defined in (2.8) and (2.9), we
note that, for any o € J, we can define the function Pa from UAGJ EA into Ea for
which Pa({xx}AEJ) = xa. (2.61)
This function is the projection mapping from the product space to the factor space Ea
indexed by a: it is clearly surjective; and the quotient set UAEJ E')‘/EP corresponding
o

to Pa is the set of all sheets indexed by Ea: sets of points {xA}AEJ with fixed x in E&.
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Just as in deriving (1.45) from the general notation in (1.43) and (1.44), when
the index set J of the family F in (1.42) is finite (J = {1, 2, ..., n}) or countably

infinite (J = {1, 2, 3, ...}), we may write

n n _ no,
[0y lqmy for [o ]iepr and X\ ) E = {21/ ¢ (w€Nx €F ], ) 2.62)
or [ma]a=l for [xa]aEJ’ and Xa=l Ea = {[xa]a=l: (Vo € J) @, € Ea}’ }

respectively, using the notation of (2.8) and (2.9).
Finally, we consider the important special case, when all the sets Eain the
family F are the same set F: then we call their Cartesian product a Cartesian power

and write J
X E = E . (2.63)

It follows that the elements of the set E‘7correspond to all possible functions
x: J » FE, with z(a) = T (2.64)
in accordance with the alternative notations mentioned in (2.20) and (2.21).

It now follows from the definitions (2.9) and (2.63) that

E(JXK) K, J

- X = @¥y? = @))Hk (2.65)

[e,8167xk T = %oy Kgex B
and similarly, that

E x pyY = Xagg ExF) = Ullzs y 1t « €T}t (u €0) (g €EAy €M} (2.66)
From the former result, we see that, in commoner parlance, if f is a function of’two
variables o and B; then, for each value of a, f(o, B) is a function“of g, and for each
value of 8, f(o, B) is a function of o. From the latter result, we have that any two
functions z: J ~ & and y: J » F correspond uniquely to a function f: J ~+ (E x F); the

bijective correspondence being given by

(Vo € J) f(a) = {xa, Yy 1 (2.67)
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EXERCISES 2

Again, we strongly recommend that the reader verify in detail all results

quoted without proof in the text of §2.
(2.1 1f4= {0, 1, 2} and B = {7, 8, 9}, list al1l possible functions from 4 into B,
together with their inverse relations, and classify them as surjective, injective,
bijective, or none of these.
(2.2) Suppose that fr X > Y and g: ¥ + 7 both have left (or both have right) inverses.
Prove that g - f then alsoc has a left (or, respectively, right) inverse, Hence, show
that g ° f is, respectively, a surjection, injection, or bijection, if both f and g are
surjections, injections, or bijections.
(2.3 1f4 C Pand BCQ, then prove that

®Ex@) 4 xB® = (% x 9 U U x (&%), (2.68)

(2.4)  Prove that, for f, g, and % functions such that the compositions below are

meaningful,
feg=fehn = g=nh if f is injective,
(2.69)
and geFf=hef = g=hn ir f is surjective.

(2.5)  Let 4 ={o, 1, 2} and R = {[0, 0], [1, 2], [2, 2]}. Determine (and prove)

whether R is reflexive (2.41), symmetric (2.42), transitive (2.43), or antisymmetric
(2.45),

(2.6> Let R be a symmetric, transitive relation on 4. What is wrong with the following
"proof" that R must be reflexive also? By symmetry, (Va, b € 4) a R b =pb R a; and by
transitivity, a Rb A b Ra =g R a, vhich is reflexivity (17)

(2.7 Construct all Possible equivalence relations on 4 = {As u, v},

(2.8) Let N be the set of all positive integers and let f: N> N be defined by f(n) =
nz. Show that f has no right-inverse and exhibit two different left-inverses of f-.

What is the corresponding situation if f is similarly defined with N replaced by the

set R of a11 real numbers?
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(2.9 The axiom of choice may be stated as follows: if F = {Fa: a € J} with
Fa # @ for all o, and Fa F8 = @ whenever o # 8, then there exists a set & such that
(Vo € J) & Fa is a singleton. In other words, given a family F of disjaint non-empty

sets, we can always construct a set having exactly one member from each set in F.

Prove that the axiom of choice is equivalent to the assertion that every
surjection has a right-inverse. [Hint: let Q = ELEJ Ea and f: Q -+~ F be defined by
£ [ .
Flw) Ea whenever u E& ]
¢2,10) Prove that max 4 exists iff A4 # @, and min 4 exists iff A LA # 0. (2.70)

{(2,11) Prove that any partition of 4 as UwEJ Ea can be made the quotient set of 4 by

an equivalence relation R, and define R explicitly,

(2.12) The characteristic function of a set 4 is defined as Xy W+ {0, 1} such that
XA(m) =1 if x € 4 and XA(x) = 0 if x € A. Show that the family of all characteristic
functions, {XA: A € P(W)}, corresponds to {0, l}Wq

(2.13) 1If f: A>Band A # @, construct an e: B > 4, such that f > ¢ o f=f

[Hint: wuse the factorization in (2.59) and (2.60).1

(2.14) Prove that (X o E)N (X, F) = Xes E NF). (2.71)
(2.15) Prove that w’/n (X _ )%= U __ (x _ ¥, (2.72)
g rove tha oEJ “a kT \"a€J % /3
where taer) @B =5, wae sk ¢® - yaE)He. (2.73)
o o o o
[Note that the sets X are proper subsets of J: K C J.]
- &)
(2.16) Prove that (X o, EJ UV (X F) = Y., { X ey @ NEH}Y

K
(XaEJ (Ea n Ré )))} v XaEJ (Ea n Fa);

&%) (2.74)

where the are defined as in (2.73) and the Ra‘ are similarly defined,

@
Qa

with respect to the Fu instead of the Ea' [Hint: use (1.68) with (2.71) and (2.72).]



