THE INDUCTION OF THE SYNTAX OF
NATURAL LANGUAGE BY COMPUTER

by

Paul James Orgren

Computer Sciences Technical Report #378

December 1979

THE INDUCTION OF THE SYNTAX OF
NATURAL LANGUAGE BY COMPUTER

BY

PAUL JAMES ORGREN

A thesis submitted in partial fulfillment of the
requirements for the degree of

DOCTOR COF PHILOSOPHY

(Computer Sciences)

at the

UNIVERSITY OF WISCONSIN - MADISON

1979

© Copyright by
Paul James Orgren

1979
A1l Rights Reserved

-iii-

THE INDUCTION OF THE SYHTAX OF

NATURAL LANGUAGE BY COMPUTER

Paul James Orgren

Under the supervision of Professor Leonard Uhr

ABSTRACT

This thesis discusses a computer program, Synner,
that attempts to learn an augmented transition network
(ATN) grammar for English. The process being modelled 1is
that of a human learner who already has some conceptual
knowledge and a vocabulary relating to that knowledge.
This learner observes a real-world event and hears a sen-
tence describing that event, and then adjusts his rules of

grammar, if necessary, to account for the new sentence.

Synner's conceptual knowledge and vocabulary are
predefined in terms of conceptual dependency (CD) theory,
a representation based on a small number of primitives.
To avoid the problems of perception, the "real-world"

event is hand-coded into a CD structure, while the sen-

tence is given as a string of words on an interactive com-

puter terminal.

The learning procedure begins by comparing the sen-

tence to the event using its built-in knowledge of the

-]V

vocabulary. This matching process determines the semantic
role of each word in the sentence. A parse of the sen-
tence 1is then attempted using the current ATN grammar.
There is a set of rules specifying how the sentence is
allowed to differ from what 1is allowed by the grammar.
The search for differences proceeds from the smallest ones
to larger ones, in order to insure that the least possible
difference that can account for the sentence is found.
The differences discovered, if any, are used in altering

the ATN so that the new sentence is legal.

The conciseness of the ATN is dependent on the train-
ing sequence used. A sequence of sentences tﬁat builds
slowly on previous sentences results in a more compact
grammar than does a sequence that jumps from one type sen-
tence to another. The results are encouraging for
research along these lines, with as 1little as possible
presupposed about the structure of the grammar to be

learned.

- -

ACKNOWLEDGMENTS

I wish to thank Professor Leonard Uhr for his gul-
dance in all stages of this research. I would also like
to thank the other members of the committee, Professors
Gregg Oden, Larry Travis, William Havens and Charles
Davidson, for their helpful comments. Thanks are also due
Greg Scragg for his advice during the early stages of tinis

work.

I wish to thank my parents, James and Sally Orgren,
for instilling in me the desire for education. Most of
all, I would 1like to thank M. Cecilia Ferreira-Orgren,
without whom this dissertation would never have been done;
and to Lisa Orgren, for bringing a 1lot of Jjoy to our
lives. To Elsy Ferreira, many thanks for the help at home
so that I could spend more time on this research during

the final stages.

Thanks to Hideko Takahashi for drawing the figures,

and to Jess Anderson for the use of his terminal.

This research was supported in part by a grant from

the National Science Foundation to Professor Leonard Uhr.

-] -

Table of Contents

ADSETrACE 4ttt sttt aseneeeorssssasssrsssarsns e anaans iii
Acknowledgementsieiiiiririteentessonranaren e .V
Table of Contents ..ttt eesenaassssasenatcaasss vi
List Of FiguUres tuoveeiiiiinnreeesnsonsossantscsncnssns ix
Chapter 1 Introductionveiiiiieniinnnnn 1
1S BREE i) o /NN R 1

Goals of the Present Research N

OVEPrVIEW et veesarotsaennssnssossssssnsasas 9

Organization of the Dissertation 9

Chapter 2 Representationsccvvveiveriennann. 11
Conceptual Dependencyeeeoeesnceonens 11

Augmented Transition Wetworks 16

Chapter 3 Description of Synnerccveeneenen. 21
Dictionary «...cveruneninonienrenenenns 21

1. NOUNS v v oevecanosencanossonnsoosas 21

2. VerbDS ittt enrostoenoarossosssnnnsos 24

3. Adjectives ...t 25

Matching .+ vvvvieinneniiinteneneannessoens 25

Learning «.eeieieereansaacte e oasnnn 27

-vii-

1. Initial ATN ittt iiieiiniaanans 27
2. Modifying ATNS .. vieneiniinnnnenn 30
2.1 Finding differences 30

2.2 Modifying the grammar 33
Generalization +..eeeeersesesosanosssones 43
Chapter 4 Resultsieieerenrieecns e et ug
First Sentenceeieeeneerersoncenncss 50
Second Sentence ... iriiiiiiii e 52
Third Sentenceccoveeeeecccnn e 52
Fourth Sentence Crese s e enans 55
Fifth and Sixth Sentences e e 55
Seventh Sentence e s e 55
Generalization ...eeieeieirirneeeeancenons 59
Eighth to Tenth Sentences 52
Fleventh Sentence ...ceeeeieneocaasaennnn 62
Twelfth to Fifteenth Sentences 65
The Malevolent Teacherccccceeeenn 65
Chapter 5 Discussioncve00eee ettt et 70
Limitations of Synneroeeceeseecss 70
CONCLUSIONS vt ttveseeseensesansasnsnsasan 73
Future Directionsceeeieriiiivneanns T4
1. Near FULUre .iiie i eneoennnnons T4

2. Longer Term Possibilities 79

References

Appendix

Appendix

Appendix

Appendix

Appendix

A

rel

-viii-

3. Distant Futurecciivieiienenn 79
Summary e tecereenasasssatene s eens 80
.......................... et e . 82
Qutline of the Programeeeeeesesscss 84
bictionary 90
Verb and Event Input/Qutput ...y 92
Sample Output ...t iii it 95
Additional Grammars ...eeeecesstescasssons 99

Page

13:
15:

22:
23:
29:
31:
36:
37:
39:
40:
4a:
45:
b7

w (o2
LA -

(W3]
=

7 .
{

58:

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure

- Figure

U

O o

11

12.

13.
4.

-iX -

List of Figures

Title

Conceptual Dependency connectors
Conceptual Dependency structure
Sample ATHN
Classes
Typical event structure
A not very useful ATN
ATN for "The angry boy hit the girl."
"The boy hit the girl."
"The angry boy hit the scared girl."
"With his hand, the boy hit the girl."
"The boy hit the girl with his hand."
"John hit the girl."
Loops can be formed.
Subnet before generalization.
Subnet after generalization.
‘Grammar after sentence 1.
Sentence 2.

Sentence

LA

Sentence I,
Sentence 5.

Sentence 6.

60:
651:
63:
b4
66:
67:

Figure

23.
24,

Sentence 7.

Grammar after generalization.
Sentence 8.

Sentence 9.

Sentence 11,

Generalization after sentence 15.

CHAPTER 1

INTRODUCTION

This thesis investigates the question of how a gram-
mar for a natural language can be inferred by a computer,
given a semantic structure, a dictionary of words defined
in terms of that structure, and a series of grammatical
sentences together with an event for each sentence upon

which the meaning of the sentence is based.

History

Several researchers have investigated the problems of
natural language learning by computer. The work of some

of these will be reported below.

Uhr (1964) was among the first to deal with the ques-
tion of natural language learning (as opposed to natural
language processing) by computer. He discussed two pro-
grams and a projected hird program which learn ¢to
translate from one language to another. These programs do
not have a semantic memory. The learning process operates
only on strings: the teacher types in a sentence in one
language, the program replies with 1its best attempt at
translation, and then, as feedback; the teacher provides
the desired response. Each program looks for matches

between the feedback string and its own output string, and

increases the weights of rules that led to matches and
decreases the weights of rules that caused mistakes. As
the weights are adjusted over the course of several train-
ing sentences, the program can handle more sentences

correctly.

The first of Uhr's programs operates on strings of
words separated by blanks. The second program is given
strings with no word delimiters; one of the things it has
to learn is how to find the words. The third program was
to handle words in context, making decisions based on

groups of words rather than one word at a time.

Quillian (1959) developed a program called the Teach-
able Language Comprehender (TLC) that learns facts which
are used in "comprehending" English text. TLC has a
semantic network representing factual assertions about the
wofld. Text is presented to the program, which "compre-
hends" that text by relating each assertion (whether
explicit or implicit) it contains to the semantic memory.
TLC then uses its comprehension to adapt the semantic net-
work, 1incorporating the facts repfesented by the text.
These new facts can be used to aid the comprehension of

future sentences.

¥lein et al. (1968) described the Autoling systen,

which builds context free phrase structure grammars. It

-3-

operates only on strings of words =-- no semantic referent .

is used. Autoling receives grammatical strings from its
informant, compares the current string with the current
grammar, and hypothesizes a change in the grammar to
account for the new sentence. It generates a sentence
based on this change, and asks the informant whether it is
a correct sentence. If not, the change is not made and a
different one is tried. It thus uses negative feedback to

guide the learning process.

Autoling is meant as a model of a linguist construct-
ing a grammar for a language rather than as a model of a
child learning a language. Linguists use negative infor-
mation for faster and more accurate construction of the
grammar. However, psychological studies (Brown, 1973)
have shown that children get 1little negative feedback con-
cerning syntactic errors and make little use of any they

do get.

Jordan's (1972) METQA is similar to Uhr's (1964) pro-
gram in that the language learning is based on pattern

recognition. METQA is not given any built-in semantic or

linguistic information. It receives input in the form of
unstructured, unsegmented strings and gets feedback
interactively from a human trainer. This learning mechan-

ism is used to learn several types of language behavior

within the- same program: translation, information organi-

zation, and question answering.

The language learning that Siklossy's (1972) ZBIE
program does is based on the "Russian through Pictures"
book (Richards, 1961), where a human learner is given a
series of pictures along with sentences describing those
pictures. 1In place of the pictures, ZBIE is given a {unc-
tional language (FL) internal representation of those pic-
tures. By matching the FL structures with the correspond-
ing natural language sentences, ZBIE constructs a set of
rules for translating from FL into Russian. The induced

rules are pattern matching rules similar to those used by

Uhr (1964).

Salveter (1979) has implemented a program (Moran)
which learns Conceptual Memory Structures (reminiscent of
Shank's Conceptual Dependency structures, discussed in
chapter 2) from perceptual input. Moran's 1input 1is a
series of two snapshots that depict an action occurring
and a sentence that describes that action. The snapshots
and sentences are provided by a human trainer. The output
is a set of conceptual graphs that represent the various
meanings that were discovered for each root verb, and the

relationship among these meanings.

For each snapshot sequence, Moran first creates a
representation for what happened by linking states in the
first snapshot with states in the second snapshot. It
then locates the existing representation that it considers
to be closest semantically to the current input. Finally,
it modifies the graph structure so that the current input
is represented and similarities to and differences from

previous inputs are reflected.

Anderson (1977) investigated the induction of aug-
mented transition networks (ATNs) for natural language
(see Chapter 2 for a discussion of ATNs). His Language
Acquisition System (LAS) uses a version of HAM (Anderson
and Bower, 1973) for 1its knowledge structure. LAS 1is
presented with a series of sentence-event pairs, where the
event represe;ts the meaning of the sentence and is speci=-

fied as a HAM structure.

The HAM structure 1is a propositional network that
contains English words to represent the objects and
actions involved in a proposition. 1In order to construct
an ATN, the HAM event structure is manipulated to match
the sentence. This manipulation 1involves bending and
twisting the graph until it has the meaning-bearing words
of the sentence in the same order as they appear in the

sentence. If this reordering can be accomplished without

-f -

any branches crossing, the graph deformation condition 1is
said to be met, and learning can take place. When the
graph deformation condition is met, the BRACKET routine 1is
activated. BRACKET is a routine which uses the results of
the graph deformation to form the surface structure of the
sentence; it also leaves room for pre-positional and
post-positional noun modifiers, whether or not they exist
in the sentence. For example, the bracketed structure for
"The girl hit the boy who liked the cake" would be:
((The()girl())hit(the()boy(who liked(the()cake()))))

BRACKET has determined the entire structure for the sen-
tence, including the structure of adjectives (which do not
even appear in the sentence) for "girl", "boy" and "cake".
This bracketed sentence is then used in building the ATN;
the levels of bracketing indicating the level of the sub-
nets to be formed. Because of the way BRACKET works, LAS
is apparently being given most of the rules of English
syntax; the training sequence 1is used merely to convert

those rules into the form of an ATN.

Because of the restrictions on graph deformation, LAS
cannot handle situations where semantically related com-
ponents are separated in the sentence. These situations
can ocecur in inflected languages like Latin, and occur in
English in "respectively" constructions, ¢.g.

nJohn and Bill ate ice cream and cake, respectively."

Goals of the Present Research

There is no algorithm that can be guaranteed to learn
any arbitrary grammar from the class of finite state gram-
mars in a finite amount of time (Gold, 1967; Anderson,
1976). However, humans do learn natural language, which
has at least the complexity of a finite state grammar.
Natural languages, therefore, must not be arbitrary selec-
tions from a class of languages, but must be restricted in
some way such that human learners can use a set of heuris-
tiecs in discovering the grammar. These heuristies would
not work for all grammars, but would enable learning of
those that met the constraints. Natural languages must
meet these constraints (whatever they are) in order to be

learnable.

Studies by Moeser and Bregman (1972, 1973) have shown
that for humans, semantics makes learning a grammar
easier. In one of their experiments, two groups of sub-
jects were given 3000 training sentences in a natural-like
artificial language; one group had pictures for a semantic
referent, the other had no semantic aids. 1In a test given
after the training sequence was completed, the group that
had seen only strings was very close to chance in judging
the grammaticality of strings, while the group with the

semantic referents during training (though not given any

referents for the test strings) was almost perfect.

The research described in this thesis assumes that
semantics can guide the search for grammars of human
languages. It investigates how a computer program might
induce an augmented transition network for English, given
sentence-event pairs, where the event 1is a conceptual
‘dependency structure upon which the sentence is based.
For example, the sentence

"The big girl hit the boy."
would be presented along with an associated event which
shows a girl hitting a boy. This is similar to what
Anderson (1977) did; the main difference is in the seman-
tic representation. The HAM structure Anderson used 1is
very close to English. Also, his program used a bracket-
ing procedure which built in much knowledge of what a

3

grammatical sentence should be.

A computer program, Synner, has been implemented to
investigate the mechanisms a program might use to learn an
ATN grammar from a sSeries of conceptual dependency-
sentence pairs. Its behavior indicates that a few well
chosen rules on using the semantic information can result
in a concise grammar that handles the sentences seen,

given a favorable training sequence.

Cverview

Before any learning is done, Synner has a built-in
dictionary which defines words in terms of a Conceptual
Dependency(CD)-like semantic structure (see chapter 2).
Learning takes place when Synner "observes" an event and
"hears" a sentence describing that event. To avoid the
problems of perception, the event is pre-coded in the same
CD-like structure that is used for the permanent diction-
ary. To avoid the problems of speech recognition, the
sentence is given as a string of written words on a cou-

puter terminal.

Synner uses 1its dictionary to compare the words in
the sentence with the event that is given, and determines
the semantic role of each of the words in the sentence.
It uses this match information in constructing and modify-
ing an ATN grammar that describes the structure of the
sentences that have been seen. When each sentence has
been used, it is discarded and Synner proceeds to the next

sentence-event pair.

~

Organization of the Dissertation

Chapter 2 discusses the Conceptual Dependency tneory
of Schank and the Augmented Transition Network formalism
of Woods. Both of these representations are heavily used

by Synner. Chapter 3 describes the learning mechanisms

=10~

used by Synner. Chapter U4 illustrates results obtained
from one of 3ynner's 1learning sessions. Chapter 5
discusses the implications of this research and possible

future directions.

-11=

CHAPTER 2

REPRESENTATIONS

Conceptual Dependency

Schank (1972) describes a theory of knowledge repre-
sentation called Conceptual Dependency (CD). It 1is
intended as a language independent way of representing the
meaning underlying natural language. CD is a verb based

structure that 1is supposed to represent most actions

describable by language.

In CD, all verbs are described in terms of a small
number (10 - 15) of primitive ACTs. The primitives are
supposed to represent concepts that humans learn early in
life and upon which more complex conceptualizations are
built. The exact set of primitives used in CD changed
from one paper to another as they were debated among
Schank's students, but the basic idea remained the same.
One possible set of primitives is the following (these are
not to be construed as-having the full range of meaning of
the English words that they resemble): PROPEL, MOVE, IN-
GEST, EXPEL, GRASP, PTRANS, ATRANS, CONC, MTRAHNS, SPEAK,
SENSE. Briefly, PROPEL is one entity imparting motion to
another; MOVE means moving oneself or one's body part(s);

INGEST is to take something into the body; EXPEL is to

-12-

expel from the body; GRASP is what a hand can do; PTRANS
is a change in location; ATRANS 1is a cﬁange in ownership;
CONC is to conceptualize or create ideas; MTRANS 1is to
move information from one part of the mind to another;
SPEAK is obvious; and, finally, SENSE is used witan a
modality to represent seeing, hearing, smelling, etc.
Since Synner is concerned solely with physical events,

only the first six primitives are used by Synner.

Also involved in CD theory are "picture producers”
(PPs =-- essentially, physical objects) and "picture aid-
ers" (PAs) that describe PPs. PAs can be states or rela-
tions. States are things like FEAR, HUNGER, COLOR, etc.
that have a scalar value. Relations connect two or more
PPs; for example, one PP can be PART-OF another or in

PHYSICAL-CONTACT with another.

The primitive ACTs, the PPs and the PAs are joined
together using connectors drawn from a small set (10 or so
members) . Some of these connectors and the rules for
using them are shown "in Figure 1. Figure 1a shows the
central connector: the conceptualization arrow. The rule
states that a PP can be the agent of a primitive ACT. 1b
says that a PP can be modified by a PA. 1ec shows tnat a
PP can change from one state or relation to another. 1d

states that an ACT can have a PP as an object, while 1le

a)

b)

c)

d)

8)

f)

q)

Figure 1.

PP

PP

PP

ACT

ACT

ACT

&—= acT
& e
—>
=
<
— pp
—>
<__9___
—
|
S—
R
0
—_—
<

PA

PA

PP

PP

Conceptual Dependency connectors

-13-

-1l4=

shows that an ACT can have a direction from one location
to another (a location is just a PP being treated as
such). 1f illustrates the fact that an ACT can have an
entire conceptualization as an instrument, while 1g says
that a conceptualization can have some state or relation
change as a result. There are a few more connectors in
the CD system, but they are not necessary for understand-
ing how Synner works. Those readers interested in a com-

plete description should see (Schank, 1973) or (Schank,

1975) .

The effect of all of these rules in cénstructing a CD
net is difficult to see when presented individually. For
an example of their use, see Figure 2, which illustrates
one sense of the English verb "hit". This says that a hit
involves a human propelling a physical object from himself
toward another physical object, with the result that the
two physical objects go from some unspecified relation to

being in physical contact.

CD was chosen as the semantic representation for
Synner primarily becahse of its high degree of language
independence. Since 1t uses a small number of primitives
rather than _a large set of interconnected words from a
natural language, it seems to assume less than other rep-

resentations about the structure of any particular

=15~

sJanjqonuas Aouspuadag Tengdsouoc) g2 24nBIL4

S %rg0-SAHd
> N
€rg0-SAHd

1OVLNOO-SAHd &———

Y
NVINNH

2060- L
PEO-SAHd —5—» T3dOdd &) 'NVWNH

€ rEO-SAHd

-1H =

language. Because the primitives are based on more or
less universal human concepts, CD should be as suitable
for other human languages as it is for English. Further-
more, since Synner is modelling a real-world event through
the use of a precoded semantic structure, the structure
used should be one to which a perceptual analyzer could
convert visual scenes. A system based on primitives seems
to make this perceptual process more feasible than does a
higher-level semantic representation that 1s closer to

language.

Augmented Transition Networks

Augmented transition networks (ATNs) are widely used
to represent the syntax of natural language 1in computers
(Woods, 1959). They have the computational power of a
Turing machine, which 1s necessary for grammars with the
complexity of natural language. ATNs have the further

advantage of being able to incorporate semantic knowledge.

ATNs are based on finite state machines (FSMs) .
Briefly, FSMs consist of several nodes (or states) con-
nected by arcs and can be used to parse a string of sym-
bols. There is a unique starting state and one or more
final states. The arcs are labelled with symbols that can

ocecur in the input stream. When at a given node, 1f the

next symbol in the input labels an arc leading from that

node, then that arc is traversed to its destination node
and the symbol is deleted from the input stream. If the
input symbol does not occur on a label for an arc leading
from the current node, then the parse fails. If a final
state is reached at the same time that the input stream is

exhausted, then the input has been successfully parsed.

ATNs add several capabilities to the FSM formalism.
First, as a notational convenience, it is not necessary to
list input symbols on thne arcs; instead, classes of sym-
bols can be created and named, and only the class names
need appear on the arcs. Second, ATNs can have subnet-
works (or sub-machines). In place of input symbols or
symbol classes, the name of a subnetwork can appear. In
order to traverse the arc, a "push" to the named subnet-
work is performed. That subnetwork operates on the input
string starting from the current position in the string;
if a final state in that network is reached, tne parse 1s
"popped" back to the calling level and the arc at that
level is traversed. .If the subnetwork cannot reach a
final state, then the "pushing" arc 1is not traversed.
Third, these subnetworks can be recursive; that is, a Sub-
network can call itself either directly or indirectly,
through a chain of other subnetworks. This recursiveness
gives ATNs the power of context free grammars. Finally,

ATMNs have arbitrary registers which can be given values

-18~

upon traversing an arc or tested for values before an arc
can be traversed. This final augmentation of the FSM for-
malism gives ATNs the power of Turing machines. With this
addition, the state of the parse 1is no 1longer fully
defined by the current node together with the subnetwork
call history; it is now also necessary to know the values
of all the registers to specify the current state of the
parse. General purpose programs could, in theory, be

written as ATNs.

When representing the grammar of a natural language,
ATNs are generally used as follows: the input symbols are
words, and the registers are used to contain semantic

information and to build a parse tree for the sentence.

In this thesis, the following conventions are used in
presenting ATNs: 1) the parse always starts at 3; 2) an
arc labelled with the word "jump" means that the arc can
be traversed without reading anything from the 1input
string; 3) an arc labelled with "pop" indicates that the
current network has been successful (i.e. reached a final
state); U4) an arc labelled with a name alone indicates
that a push to the subnetwork with that name is required;
and 5) an "&" ("€ ") followed by a name requires a member
of the named class of words to be present ia the input

sentence for the arc to be traversed.

-19-

For an example of the notation used, see Figure 3.
This network would parse all and only the following four
sentences:
"The boy hit the girl."
"The girl hit the boy."
"The boy hit the boy."
"The girl hit the girl.”
A push is made to NP, which requires "the" followed by
"boy" or "girl". If this is successful, then the parse is
popped back to the top level and the arc is traversed to
node 32. A "hit" is required next, followed by another

nush to NP. Thus, the four sentences above are allowed.

ATNs were chosen to represent Synner's grammar pri-
marily for the following reasons: 1) they are well suited
for implementation on a computer and 2) they have the
power required to represent the syntax of natural
language. Furthermore, there have been studies (Kaplan,
1972) that indicate that ATN grammars can handle well
those language constructs that are easy for humans, while
they have difficulty with some of the same constructs that

cause problems for humans.

-20-

N1y o1dueg & 2Jn¥T 4

146 Koq N
oy} 130
0 A

S3ISSVID QYOM

d0d N3 13a3

dOd dN A3 dN

CHAPTER 3
DESCRIPTION OF SYWNER

Dictionary

The semantic structure of Synner's built-in diction-
ary is based on Schank's conceptual dependency representa-
tion. Synner's dictionary consists of four types of words:
names of classes of physical objects (common nouns), names
of individual physical objects (proper nouns), verbs, and

states and relations between objects (adjectives).

A list of all the words in Synner's dictionary 1is

presented in Appendix B.

1. Nouns

Objects are classified in a simple hierarchical tree
structure (see Figure 4). The only exception to this
strict hierarchy is the class of body parts, each of whic
can be related to several different classes by a part-of
relation. For instance, head can be a part of man, hovy,
woman, etc. These ;elationships are indicated in eacn
event structure where they apply rather tnan in the dic-
tionary. An event showing John walking, for example,
would involve movement of feet and legs, all of which

would be indicated as part-of Joan. Figure 5 shows an

event where HAND is part-of BOY-1.

- SQW................ esisesssnese serecarrneessrnccencen
sosse() " 94n3Td u _Mo H)H HH Hﬁ H}H

! BOp-=s+eressressessesesssmmmasssssssssnsns, ,\.rz_w NVWOM A0H
i:.....................:.... W
AMVNOILOH N e
a NNO . N
i
- 3

ASON 3A3 911 uy
HLAOW _ uv3 \ 1004 / aNvH “ava

TETTTRTEY TR LS ST

NYINNH-NON NVANH

11 | 1y !

HJ0H Wvd ONITING 1Yvd-ACO8 wa ZmI czm AL 3341

L u< N

IVRINY ANV

ONIAIT - zoz ONIAIY

rgo0-SAHd

94n3oNJ4qS qudAe [eo1dAl 4 8unBy

D>

1OVINOD-SAHd €&—

(1-A0”) LYvd

U

013
aNVH (09) sSSYNW
) (Gv)3azs
N4 \ (8)31VLS-SAHd
2- W9

(G)3LVIS-SAHd

lllwo ONVH I.m||v 13dodd <= 1-Aod

7 N\

213" (001)SSYWN (G)3zis

-2l

At each leaf node of this tree (except body parts},
there are one or more links to actual instances of that
class. These are the "actual" physical objects that

Synner knows about in the world.

Each class in the tree has one or more names attached
to it from the dictionary. The instances of classes may
or may not have names. For example, John and Mary are the
names of two of the individual objects, but no rock has

its own name.

2. Verbs

The definition of a verb is given as a Conceptual
Dependency framework, where the picture producer slots are
filled with class names, and state values are given as
ranges of possible values. For a sample verb definition,
see Figure 2 earlier in this thesis. The verb dictionary
used by Synner is based upon and selected f{rom one given
by Schank (1973). Subscripts on the class names in the
dictionary indicate whether the same or distinct objects

1

must be used to fill the slots with two or more

occurrences of the same class name. For example, every
occurrence of PHYS—OBJ2 must be filled by the same object,
whereas PHYS-OBJ3 must be a different object.

-25-

3. Adjectives

Ad jectives are defined in terms of primitive states
and relations, along with a range of possible values. For
instance, "scared" is ?EAR with a value in the range -7 to
-2. One problem with this type of definition is the lack
of context. "Small" is defined as MASS with a value less
than 60. But what is small for an adult human might be
average for a child and enormous for an insect. Thus,
this means of definition has problems for a general
knowledge structure. However, it does offer enough
expressive power for the purpose of the learning that

Synner is reQuired to do.

Matching

The events that Synner observes are precoded in the
same Schankian representation that is used in the diction-
ary. The difference 1is, where the dictionary has class
names filling slots, the event has individual objects. A
dictionary definition can be applied to any of a class of
objects; but in a given event, some actual instance of the

class is involved. See Figure 5 for a typical event.

When a seuntence and event are presented to Synner,
the first thing it must do is decide how the sentence 1is
related to the event. This is done through reference to

the dictionary.

-2H-

First, the sentence is scanned for any words which
are defined in the verb dictionary. When one is found,
the event CD structure is compared with the dictionary
definition for that verb. If a match is found, then words
in the sentence which are defined in the noun and adjec-
tive dictionaries are compared to objects and states or

relations in the event.

When this process is completed, Synner knows for each
word in the santence whether it has a referent in the
event, and, if so, what that referent is and what its

function is.

The following example may help clarify this process.
The verb HIT is defined as in Figure 1. The event is like
the one in Figure 5. A sentence describing this event

might be, "The angry boy hit the scared little girl."

When the sentence is scanned for a verb, "hit" is
found. The structure of the event is checked against the
requirements for the verb HIT. As part of this matching,
the objects involved in the event are compared to the
classes in the dictionary entry for "hit". BOY-1 is found
to be an instance of the class BOY, which is, through some
intermediate classes, a subclass of HUMAN; thus, it meets

the restrictions. For the second occurrence of HUMAN1 in

the dictionary, the same BOY-1 must match. If BOY-1

-27-

occurred in the event in that slot while BOY-2 filled the

other slot, the match would fail.

After it is determined that "hit" does name fthe event
that occurred, a search is made for nouns and adjectives.

It is found that BOY-1 is an instance of the class BOY,

and that the word "boy" names that class; thus, "boy" must
name BOY-1 in the sentence. Similarly, "angry" names a
state of BOY-1, "girl" names GIRL-2, "scared" names a
state of GIRL-2, and "little" may name a state of the boy,
the girl, or the rock (which exists in the event, but is
not mentioned in the sentence). MNo match is found for the

two occurrences of the word "the'".

The match routine builds a list for each word in the
sentence, describing whatever the matching process has
been able to determine about the semantic role of that
word in the sentence. These lists are then passed to the

learning routine.

Learning

1. Initial ATN

After the matching of the sentence and event has been
completed, it 1is necessary to use this information in
building and modifying the grammar. There is a special

case for the first sentence-event pair encountered: no

-P8-

previous ATH exists. Synner has a set of guidelines on how
to go about constructing this first ATN, which 1s given

below.

One way to create an ATN for a sentence wduld be to
just run a linear string of arcs, one for each word, as in
Figure 6. This grammar would always parse that sentence,
but would not be readily generalizable. In order to get a
more general grammar, Synner never puts word arcs in the
main (top level) network; only pushes to subnetworks can
occur on arcs in the top level net. Synner forms these
subnetworks based on strings of contiguous words which are
semantically related. Essentially, that means that each
noun and each verb gets its own subnetwork. If an adjec-
tive is adjacent to the noun it modifies (as deteruined by
the event match), then it is put in the same subnetwork
with that noun; otherwise it gets a subnet of its own.
Words like "the", which are not in the dictionary, are
arbitrarily put into the same subnetwork with words that
follow them in the sentence; unless there are no following
words, in which case” they are included with preceding
words. Furthermore, an individual word is never placed on
any arc, even in a subnetwork. Instead, a class of words
is created (with just one member initially) and that word

class name is put on the arec.

-29=

NIV Tnjssn Aasa qou y 9 24n8T14

1

419 a34vis

AHONV

-30-

When these word class arcs are created, a restriction
is placed on that arc indicating what semantic role a word
must play in the sentence for that arc to be traversed.
For nouns and adjectives, this semantic role is specified
by what path was taken through the event network to reacn
the object or state named by that word. For verbs, there
is simply an indicator as to whether it named the main
conceptualization or a subordinate one. Words not in the
dictionary, like "the'", are put onto arcs with no semantic

restrictions.

For the event in Figure 5, the sentence "The angry
boy hit the girl", if the first sentence seen, would form
the ATN shown in Figure T. (The subnet and class names
are mnemonic ones that have been substituted for the arbi-

trary ones Synner would use.)

2. Modifying ATNs

o

.1. Finding differences

After a first ATN has been constructed, a different
method of learning is‘used. The matching of the sentence
with the event takes place as with the first ATN. But,
then, an additional step 1s taken: the sentence with the

word marked as to semantic role 1s parsed with the pre-

existing ATN. This parsing does more than check for the

-31-

NP VP NPX POP
@ @ ® &
€DET € ADJ €N POP
‘ RESTR: RESTR: -7
AGENT
gV ‘ POP
RESTR:- "'—_$
VP . MAIN‘ @
ACTION
€ DETX € NX POP
RESTR: .7
NPX : m_ @ >
DIRECTIO!

WORD CLASSES

DET the
ADJ angry
N boy
\' hn_
DETX the
NX girl

Figure 7. ATH for "The angry boy hit the girl."

-32-

grammaticality (according to the existing ATN) of the sen-
tence -- it attempts to determine where and how this sen-

tence differs from a legal sentence.

The search for differences starts with the smallest
differences and works up to larger ones. The first thing
that is tried is to allow a word that is not in the word
class that the arc requires, as long as its semantic role
is identical to one required for that arc. The second
attempt 1is to loosen the word restrictions -- allow a
match for nouns and adjectives if the beginning (first two
elements) of the event path is the same, whether or not

the word 1s identical.

As many of these word and restriction exceptions as
nacessary to parse are allowed in the sentence, and they
may be comhined with the higher level differences to be
described below. Only one of any of the higher level

differences is allowed in a sentence.

The first of the higher level parse relaxations to be
tried is to skip a word arc; that is, traverse a word arc
without swallowing a word from a sentence. This allows

skipping a word that the grammar would otherwise require.

The next attempt at parsing is to delste any one word

from the sentence. The effect of this is to permit a sen-

tence which has a word that does not fit in the grammar.

-33-

The third of the higher level attempts 1is to allow any
word to mateh a word arc; this 1s a more radical change

than just slightly loosening the semantic restrictions.

Finally, there are the very high level differences.
Again, only one of these is allowed per sentence, and they
can only be combined with the two lowest level differ-
ences. The first of these is to allow any number of con-
secutive words from the sentence to be deleted, provided
that the parse is at a point where it is about to push or
has just completed a push to a subnetwork. The second is
to allow any number of consecutive words to be deleted

from the sentence, in place of a push to a subnetwerk.

The parsing procedure constructs a parse path, noting

what exceptions, if any, were allowed to the parse.

2.2. Modifying the grammar

All of the examples given in this section will be
with reference to the grammar in Figure 7. The effect of
the examples will not-be cumulative; that 1s, each one
will refer back to the original grammar in Figure 7.

If the parsing procedure found any exceptions to the

1

ATN that, when allowed, resulted in a valid parse, tne
learning procedure uses these exceptions to modify the

ATN. A summary of the rules to be discussed in this sec-

tion is given in Table I.

The low-level exceptions cause simple changes. VWhen
a new word was allowed on an arc, that word is added to
the word class. For example, the sentence "An angry boy
hit the girl" will add the word "an" to the word class
DET. When semantic restrictions were relaxed, the new

semantic role is added to those allowable for the arc.

The higher level exceptions result in slightly more
complex changes. If a word arc was skipped, then a new
jump arc is added to the grammar connecting the same two
nodes that the skipped arc connects. For example, the
sentence "The boy hit the girl" requires that the %ADJ arc
be skipped. Therefore, the NP subnetwork is modified as
shown in Figure 8. When a word from a sentence was
skipped at a point in the parse before node X of the ATN,
then a new word arc is added in the following way: a new
node Y is created; all arcs entering X are redirected to
Y; then both a word arc incorporating the new word, and a
jump arc are created and link Y to X. The sentence "The
angry boy hit the scared girl" requires that the word
"scared" in the sentence be skipped. Then the subnetwork
NPX is modified as in Figure ¢, and the new word class
%ADJX is created and given the single member "scared". If

a word was replaced by another word regardless of restric-

Learning Rules

EXCEPTION TO PARSE
matches except word,
same semantic role

matches except for slightly
different semantic role

skip a word arc

skip a word in sentence

traverse word arc with word
that does not match that arc

skip consecutive words
before or after push

skip consecutive words
in place of push

no parse successful

-

MODIFICATION TO ATN

add word to class

expand semantic
restrictions

add Jjump arc

add new node, insert
word arc and jump arc

add word arc

if words related:
new subnet, with push
and jump added at
pushing level
otherwise:
optional learning

if words related:
new subnet as option
to old subnet
otherwise:
optional learning

optional learning

[Optional learning means the teacher has the option to
force a series of new subnets to be formed.]

Learning Rules

Table T

-36-

W TJI8 8yl 3Ty Aoq 8ulam

‘g 9J4n¥1y

13a3

- dN

-37 -

*f 2UdNnBI4

-38-

tions, then a new word arc connecting the same two nodes

as the replaced one is created.

The very high level exceptions can cause new subnets
to be created. When a string of words from the sentence
has been deleted before or after a push arc, then that
string is checked to see whether all the words are closely
related semantically. If they are, then a new subnetwork
is formed, and a new node, a push arc and a jump arc are
created at the pushing level, in much the same way that
the new arcs and a node were added in the new word case.
The sentence "With his hand, the angry boy hit the girl”
requires skipping the first three words in order to be
parsed. The words are found to be semantically related
(by default, since "with" and "his" are unknown and will
be related to anything), so a new subnet is created and
the top level network is modified (see Figure 129). 1If the
new JUMP is to a node that consists only of a POP, Synner
replaces that JUMP with a POP. Thus, if tne sentence were
"The angry boy hit the.girl with his hand," the effect on

the top-level network would be as shown in Figure 11.

When a string of words is deleted in place of a push
arc, that string is checked for semantic connectedness and
nade into a new subnetwork if it quealifies. A new push in

parallel with the old push 1s added at the pushing level.

-39-

W 1419 2uy3 31y Koq ay3 ‘puey STY

./\{n_qn.\\

U3Tha Ol 94n8Td

puoy NM3IN
Siy 13aM3N

yim mumm

S3ASSVID aUOM

103r80 .
Y153y @lu\’lﬂ\@ IMIN
NMIN3 13aGM3N3 d34d3

cn

~40-

d0d

W PUBY STY Y3TM TJT8 843 3Ty Aoq Sul, Ll e4nd1g

d0d

MIN XdN @\/ﬂ;\ aN

“U1-

The sentence "John hit the girl" would cause the grammar
to be modified as shown in Figure 12. (If the skipped
string was zero words long, a jump 1is added in place of
the new push, thereby making that skipped network

optional.)

The above description of when and how modification of
the ATN is done still leaves some cases not accounted for.
These cases are: the two different ways in which a string
of consecutive words in the sentence is skipped, if the
string was found.not to be closely related semantically;

and when the sentence did not parse at all.

There is an option that can be set by the user
(teacher) to cover these cases. Most of the time this
option is set so that no learning is done when one of the
cases arises. The program simply prints a message that it
could not sufficiently parse the sentence, and that nota-
ing was learned. This ensures that no radical changes are
made to the ATN; that changes are made a single step at a

time. -

However, it is occasionally desirable for Synner to
learn a new type of sentence structure. The option can
then be set so that learning is forced; it is as 1if the
teacher were saying "Pay attention now. I'm going to saow

you something completely new." When this option 1is turned

U2

W TJ4T8 2y3 3Ty uyop, gl °4nsd1d

NHOP Nd

S3SSVID QUOM

1N30V .
é@%\e 1dNd

d0d Nd 3

dNd .
“ A : 'S
T XdN dA dN

-43=

on and one of the insufficient parses occurs, a process
l1ike that used for the first sentence that Synner sees is
used. The words that could not be parsed (possibly the
entire sentence) are broken into groups of semantically

related words, and a subnet formed for each group.

Generalization

All of the learning mechanisms discussed above result
in a grammar which continually grows in order to handle
new constructs. However, the ideal grammar for a given
language certainly is not the largest one. Therefore, it
is desirable to have some mechanisms for restructuring the
grammar, finding common features that can be merged.
Synner has a limited generalization capability which 1t
carries out when the teacher periodically gives a command

to generalize.

An alternative for deciding when to generalize would
be for Synner to invoke generalization after every n input
sentences. The final grammar would not differ by much
from that obtained with the method actually implemented:
if generalizations can be made, they are; if not, they are
not. The only difference is that structures that could be
generalized at a certain point using one method might have
to wait a while before being modified using the other

method. The primary reason that Synner 1is implemented as

T

it is, with the trainer being responsible for invoking
generalization, is to ensure that the Generalize procedure
is 1invoked after the last sentence of the training

sequence.

In the current version of Synner, one type of gen-
eralization has been implemented: loop forming. The
loop-forming procedure searches the grammar for the
existence of structures that would allow the occurrence of
zero to two or possibly more consecutive instances of
words with the same semantic restriction. (In English,
adjectives modifying a noun can have this form; 1. e.
there may be zero adjectives, one, two, or more.) Because
of the way Synner builds ATNs, the above condition 1is
satisfied only by a structure like the one in Figure 13.
The loop-forming procedure 1ooks for occurrences of nodes
that have only two arcs leaving the node, one jump arc and
one word arc, where both arcs have the same destination
node. 'When a node meeting these conditions is found, the
destination node is checked for the same condition plus an
additional constraint; he semantic restriction on the
word arc must be the same as that on the word arc of the
previous node. If these conditions are met, then loops
will be formed. Before doing so, though, a check is made
to see whether three, four, or more consecutive nodes

meeting the conditions exist. If they do, all will be

~45.

*pouwao] 2q uedo sdooT

¥-4.183Y

€1 94nd1g

H°y1ls3H

merged into the loop.

To form the loops, the following procedure is fol-
lowed: suppose Ab is the node that begins the repetitive
sequence, Ae ends it, and Ae—1 is the next to last. Then
all the jump arcs in the sequence are deleted; the word
arc entering Ae is modified so that it originates from Ae

rather than Ae (thus looping from Ae to Ae); the words

-1
from the word classes referenced by the word arcs between
Ab and Ae_1 are merged into the new looping arc; all arcs
pointing to node Ab are redirected to Ae; and nodes Ab to
Ae_1 are deleted. As an example, suppose we had the sub-
network in Figure 14. The loop-forming routine would find
the conditions met and would modify the subnetwork,

resulting ian the subnet shown in Figure 15.

Other possible generalization techniques are dis-

cussed in the "Future Directions" section of Chapter 5.

47

‘uoTqezZIlEJ8USE dJ0JOq J3Uqng

"wi 24n3tT4

b Aoq N
Aibuo Biq 1cav

Biq peipos 2rav
D ey} 130

$3ISSVI0 QHOM

-uoTqezIlRJ0USE JB3JEB I2UQNg *Gl 2J4n8T4

(16 Aoq N
peipos Aibub biq Lrav
o oy} 134

S3SSVYI0 QHOM

~49-

CHAPTER 4

RESULTS

The program, Synner, was implemented in UW-Pascal on
a Univac 1110 computer. It consists of approximately 6000
lines of code. The semantic memory and the augmented
transition networks arehboth implemented as graphs of Pas-
cal records. An outline of the structure of the program
is given in Appendix A. Appendix C gives an example of
how verbs and events are actually entered to and printed
by the progranm. Appendix D has a sample learning step,

showing all input and output.

Pascal was chosen as the implementation language for
Synner because the recofd structures, pointers and user-
defined typing available make it a straightforward matter
to represent CD graphs and ATNs. The primary advantage of
Pascal, though, is its strong type checking. The compiller
together with its run-time support can perform a thorough
check for misuse of variables, pointers, types, etc., thus
making debugging easﬁ and leading to confidence in the

correctness of the final version of the program.

A sentence by sentence examination of how the learn-

ing mechanisms work in practice will now be undertaken.

The teacher will first present simple sentences, and taen

gradually 1increase the complexity, building on previous

knowledge.

First Sentence

At this point, Synner has no grammar at all. The
teacher should start with a simple sentence that can be a
basis for later sentences. The event is like the one in
Figure 5, except that it shows a girl hitting a boy rather
than the other way around. The sentence that is presented
with this event is

"The girl hit the boy."
The sentence 1is compared to the eVent, and three word
matches are found: "girl", "hit", and "boy". Since no
previous grammar exists, the special rules for a first
grammar are used. Since none of the words is closely
enough related to any of the others, each is put into its
own Ssubnetwork. (For known words to be put into the same
subnet, it is necessary that they all be nouns or adjec-
tives that refer to the same object in ths event.) The two
occurrences of the unknown word "the" are arbitrarily put
into the same subnetwork as the words they precede. The
resulting grammar is shown in Figure 16. (After this,
when a grammar 1is illustrated, only those parts of the
grammar that have changed from the previously illustrated

grammar will be shown.)

-51-

NP VP | NPX POP
s
- & e

WORD CLASSES

DET the
N girl
v hit
DETX the
NX bay

Figure 16. Grammar after sentence 1.

Second Sentence

The next event shows that boy hitting another girl

with a small rock, and Synner is given the sentence
"The big boy hit the girl."

After matching to find the semantic role of each word, the
existing ATN is applied to the sentence. The PARSE pro-
cedure discovers that if the word "big" were deleted and
different words with the same semantic roles allowed in
place of "girl" and "boy", then the sentence could be
parsed. This information is passed along to the LEARN
procedure. LEARN adds "boy" and "girl" to the N and NX
word classes, respectively. Then, since "big" 1is closely
related to "boy", a new word arc and a new Jjump arc are

added to the NP subnetwork (see Figure 17).

Third Sentence

The same event is repeated, but this time the sen-
tence
"A big angry boy hit the girl."
is presented. The PARSE routine finds that if "a'" is sub-
stituted for "the" and the word m"angry" deleted, the sen-
tence can be parsed. LEARN uses this information to add
ma" to the word class DET and to add another word arc and

jump arc to subnet HP. The result is shown in Figure 18.

-53-

‘2 eousquUag ‘Ll 24n8TY

Koq 141b
oy

Hy

b Aoq
biq

oy}

XN
Xl3aa
A

N
rav

13a

S3SSVTI0 QHOM

ravs 13403

‘¥1S3Y 'fl\.

*dN

-5l

‘¢ sousjuay

gL 24ng14

.
I3
e
.
.
H

116 Koq N

Aibup 2rav
big rav
oy D 1340

SASSVTIO QHOM

‘dN

-55-

Fourth Sentence

Now Synner is shown a girl hitting a boy again, along

with the sentence
"The girl hit the boy with her hand.”

This sentence can be parsed except for the three words at
the end, so LEARN checks to see that they are semantically
related. They are (by default, since nothing is Xknown
about "with" and "her"), so a new subnetwork PP 1is created
and a push to PP and a pop arc are added to the main net-

work (see Figure 19).

Fiftlh and Sixth Sentences

The next two sentences (presented together with
appropriate events) are
"The boy hit the scared girl."
and
"The big boy hit the scared little girl."
These two Sentences cause changes in the NPX subnetwork in
much the same way that sentences 2 and 3 modified the UP

network. Figures 20 and 21 show the grammars resulting

from sentences 5 and 6, respectively.

Seventh Sentence

The seventh sentence presented is

"The big boy hit the little girl with a small rock."

‘t sousquag 6l 24NBT4

pupy Ndd
oYy dl3a

Yum d3yd

-

S3ISSVIO qHOM

‘dd
@m g1 \;6
o Ndd 3 d34d3

dlids3

G
e () OO @(\mw s
dod XdN an dN
209 |

-57~

d0d

@ ¥1STY

. XN3

+¢ 90oudqUSS 02 24NBT4

Koq 116 " XN

peinos Xray
ey D x13a

S3SSVID QHOM

Xrav s

X134a3

* XdN

=58~

d

Od

Y EELDUELYETN

XN3 eXrav3

‘Lz 94n814

»
[
L
-

Koq 416 x.z
oj 1| axrav
peinos xrav
ey} o 130
S3SSVYI0 AHOM

g dNOP @ e .
Hi1S3 " XdN
X13a

Xravs

-59-

An interesting feature of the sentence is that "little"
and "small" can each refer to either "girl" or "rock". 1In
the parsing phase, "little" will parse correctly only if
it is related to "girl", so it is assumed that that is the
case. "Small" is an excess word, so that information 1is
passed to LEARY. LEARN finds that if it assumes that
"small" is referring to "rock", it can insert a new arc
into the PP subnet. It therefore makss that assumption
and modifies PP. There 1is also another minor change --

adding "a" to DETP. The result is shown in Figure 22.

Generalization

At this point Synner is told to generalize. In both
the NP and NPX subnets it finds structures which can turn
into loops; each subnet allows zero, one or two
occurrences of adjectives. These two subnetworks are

modified and the corresponding word classes are merged.

The PP subnetwork is not modified, since it allows
either zero or one adjectives, but not two or more; this
is insufficient for ‘the loop forming rules. The entire
grammar resulting from this generalization 1is shown in

Figure 23,

-A50~-

*) 9ousquag -2z 8J4nl14g
A

puDy %901
liows
By o

YHm

Ndd
drav
di3d

a3

.

S3ISSY10 QHOM

Tm@bffﬁﬁb 1S3y @ @ — 9

drav 3 dl3d3

Hd3

‘dd

NP:

VP:

NPX:

D

PREP ETP PPN PoP
" STR:
OB CEECH ORI
JUMP

ADJP

WORD CLASSES

DET a the

ADJ angry big
N boy girl

v hit

DETX a the -
ADJX ittle scared
NX girt boy
PREP with

DETP g her
ADJP small

PPN . rock hand

Tigure 23. Grammar after generalization.

-h2m

Eighth to Tenth Sentences

Sentence 3 introduces something new:
"Jjohn hit the little girl."
This sentence can be parsed only if the NP subnet 1is
skipped and the word "John" 1is also skipped. Therefore,
LEARN creates a new subnet, PNP, as an alternative to NP

(see Figure 24).

The ninth sentence,
"Mary hit John."
does the same thing for NPX, creating PHNPX as an alterna;
tive. It also adds "Mary" to the PY word class, as shown

in Figure 25.

The tenth sentence,
"The boy hit Sue." ,

merely adds the word "Sue" to the PNX class.

Eleventh Sentence

The next sentence that Synner sees introduces the
passive constructioni
"The girl was hit by the boy."
This sentence is so radically different from those that
the grammar allows that 1t cannot be parsed using any of
the PARSE procedure's rules. Synner therefore reports

that it cannot learn anything from the sentence.

-63-

' 90US3UBS *heZ 9J4nBI4

uyor Nd

S3SSVT0 aHOM

SICE

d0d Nd3
ONNORIONE

XdN. dA dN

-64-

‘Gz 24n81y4

uuor XNd
uyop AJopy N

S3SSVI0 QHOM

: g ' XdNd
Tnan_\\g _—

\ yy

dN

-A5-

The teacher then resets the option that tells Synner
to create a grammar for this sentence, regardless of
whether it can be parsed. The sentence is repeated, and
since Synner still cannot parse it, an entirely new path
through the top-level network is created, using the same
rules as those used to build the first ATN. The new gram-

mar 1is shown in Figure 26.

Twelfth to Fiftenth Sentences

These sentences merely duplicate for the passive
voice what sentences 2, 3, 5 and 6 did for the active.
The sentences are:

"The big boy was hit by the girl."
"The scared little girl was hit by the boy."
"The big surprised boy was hit by the angry girl."

"The girl was hit by the big angry boy."

At this point generalization is invoked, and adjec-
tive loops are formed for the passive voice just as they
were for the active voice after sentence 7. The resulting

grammar is shown in Figure 27. (The entire grammar in its

raw, computer-printed form is shown in Appendix E.)

The Malevolent Teacher

The sequence of sentences shown above was carefully

chosen to build up the grammar one step at a time. The

PSNP :

PSNPX :

WORD

PSDT
PSN
PSAX
PsY
psay
PSOTX
PSNX

CLASSES

the
girl

S§§§

the

Figure 26.

Sentence

11.

-66-

-57-

‘Gl 90US3USS J83JE UOIJRZITRJDUSN

"lg @andty
: biq Kibuo
61q paioos ejy pespdins
Koq b
oy}
Aq
b Aoq
oy

XrvSd
ravsd
XNSd
X 1asd
Agsd
NSd
10sd

S3ISSVID qQHOM

-68-

result is that Synner was able to do a reasonable job of
building a concise ATN. But the same set of sentences,
presented in an order that 1is not as well formulated,

could have far different results.

A new test sequence was run (starting with no gram-
mar) that consisted of the samé sentences as above but in
the following order:

3, 1, 7, 4, 2, 6, 9, %, 5, 10, 13, 15, 11, 12, 14, gen-

eralize.

This sequence was tried twice: once with the "brief”
option on the entire time, so that no learning was done
when the sentence was not parseable; and once with the
"prief" option off, so that some learning was always
forced. The first case resulted in a grammar that was
larger than the grammar obtained from the well-planned
sequence described above, since many times a new subnet-
work was formed in place of an old one; the well-planned
sequence would have produced just a word arc or jump arc.
But, despite being lérger, the grammar did not account for
all the sentences, since several were not parseable at
all. The second case resulted in a grammar that accounted
for all the sentences, but was extremely large. Every
time a sentence was not parseable, which occurred rela-

tively frequently, an entire new path through the top-

-69-

level network was created. In neither of the cases was
the loop-forming mechanism useful; no one subnet allowed
the occurrence of zero, one and two adjectives. 1Instead,

these were spread across different subnets.

Appendix E shows the final grammars produced by these

two runs.

-70=

CHAPTER 5

DISCUSSION

This chapter will discuss the limitations of Synner,
some conclusions that can be drawn from the research, and

some possible future directions for the research to take.

Limitations of Synner

Synner, as implemented, is limited to learning gram-
mars of sentences involving action verbs with physical
objects. This is not a 1limitation of the conceptual
dependency (CD) formalism, which can represent (at least
some) static states and abstract or mental actions. The
situation that Synner is modelling is that of an event
occurring along with a sentence describing that event.
Since the event is presented to Synner precoded as a CD
structure, abstract and mental actions could be -included.
But it is difficult to imagine a perceptual system on a
computer that could observe thoughts being moved around in
someone's brain or t@e abstract concept of transfer of
ownership. Thus Synner has been limited to those actions

for which a perceptual system is more feasible.

The use of registers in the ATNs that Synner con-
structs is limited to specifying the semantic role of a

word on traversal of a word arc. This means that rela-

-71=

tionships among separated parts of a sentence cannot be
represented in registers. This limitation implies that
the grammars produced by Synner cannot have a complexity
greater than that of a context free grammar (since the
Turing Machine equivalence proof for ATNs depends on the

existence of arbitrary registers).

Synner cannot currently learn a grammar with a sub-
network depth greater than two. That is, subnetworks of
the top level network cannot in turn have subnetworks.
This limits the complexity of the grammar that can be

learned.

Whenever any generalizations are made by a learning
program, whether something as simple as relaxing semantic
restrictions or as complex as restructuring the network,
it is possible for overgeneralizations to occur. Computer
programs are not alone in this; human language learners
also overgeneralize. For instance, children in general
first learn the past tense forms of verbs on a case by
case basis: go - went, etc. Later, after having learned
several regular past tenses, they form a rule and apply it
to all verbs. So where previously the correct foruw was
used, they now use go - goed. After more time has passed
and more examples have heen heard, they relearn the irreg-

ular forms (Brown, 1973).

~72-

Synner does not yet have any automatic mechanisms for
undoing overgeneralization. However, Synner's grammar is
periodically checkpointed, that is, saved on external
files. Thus, if the teacher notices an incorrect overgen-
eralization on the part of Synner, the grammar can be
restored to a previous atate and training taken up from
there. The training seguence is an important factor 1in
determining whether and how often overgeneralization
occurs., A well-designed training sequence (that bhuilds
slowly and carefully upon previous knowledge) can avoid
much overgeneralization, while poorly designed ones could
fool the program into making many incorrect generaliza-

tions.

Finally, the most serious constraint on the language
for which Synner constructs a grammar: size. The size of
the vocabulary is limited by machine storage considera-
tions. The larger the vocabulary, the more expensive the
program will become. A vocabulary approaching the size of
a typical human vocabulary will be either impractical or
impossible on present day computers. Fach verb definition
requires a rather 1large CD network, and the nouns must
nave an underlying network of classes. The current 36~
word dietionary requires about 3500 36-bit words of

storage on the Univac 1110.

-73-

Conclusions

The research presented here has indicated, by the
existence of the program, Synner, that a relatively small
set of heuristics can be used to generate an interesting
grammar from events and sentences, even when the represen-
tation of the event is not closely related to English sur-
face structure. Synner's MATCH procedure is the heart of
the system. It finds the relationship of individual words
in the sentsnce to the semantic structure of the event.
It is this capability that is the primary feature distin-
guishing Syaner from Anderson's LAS (Anderson, ~1977).
Because of this matching capability and the semantic rep-
resentation that is not dependent on English structure as
LAS's HAM representation is (LAS uses a bracketing pro-
cedure for sentences that depends on the relationship of
the HAM memory structure to English surface structure),
Synner is able to make fewer assumptions about the nature
of the language to be learned and is still able to con-

struct as good a grammar.

Another important factor demonstrated by the program
is that the teacher plays a major role. A well designed
training sequence that builds gradually on nrevious
knowledge can result in steady, accurate learning. Poorly

(or malevolently) designed training sequences can delay

-Tl4-

learning or even lead Synner down false paths. Most
learning programs would have this same difficulty. If the
examples presented to a program are misleading, it is dif-

ficult for the program not to be misled.

A third factor was discovered while testing Synner:
the power of the learning rules should not be too great.
Synner has a parameter that can be turned on to allow any
two of its higher-level differences from the grammar to
occur in one sentence. However, some tests made with this
parameter turned on resulted in the grammar getting out of
hand too easily. Incorrect generalizations occurred with
alarming frequency. After this experience, all runs were

made with this option turned off.

Future Directions

1. MNear Future

The current version of Synner can learn grammars only
For those sentences which contain action verbs; sentences
that refer only to states, such as "the boy is angry", are
ignored. The reason for this is that the MATCH procedure,
which compares the sentence and event, requires the pres-
ence of an action verb in order to find the relationship
between sentence and event. This procedure could be modi-

fied relatively easily to find the nouns and adjectives in

a sentence even when no verb 1is present. The relation-
ships that are found could then be used in building the

grammar.

The tree structure of nouns connected by IS-A (i.e.
subclass-of or instance-of) relations eliminates some
interesting possibilities. This structure could be
changed to a more general semantic net graph structure,
with the possibility of a class being a subclass of more
than one class, and has-as-part relations in addition to

IS-A.

The current implementation of Synner uses ATN regis-
ters for just one purpose -- to specify the semantic role
of a word found in conjunction with a word arc. The use
of registers could be expanded, so that they could be set
and tested in order to specify relationships among words
and to specify the semantic role of an entire subnetwork.
This would greatly expand the complexity of the language
that could be learned. An example of an English construct
that this would enablz is "respectively™. Consider the
sentence
"Tom and Sue ate and drank brats and beer, respectively."
The current version of Synner could construct a grammar
for this, but the grammar would not specify any con=-

straints on which actor 1is performing which action on

-76-

which object. Sentences like

"Tom and Sue drank and ate brats and beer, respectively,”
or

"Tom and Sue drank and ate beer and brats, respectively,"
etc., would be accepted as valid descriptions of the sane
event described by the first sentence. With more liberal
use of registers, the relationships among words in dif=-
ferent parts of the sentence could be described and

enforced.

There are other goals that a more general use of
registers would enable, some of which will now be dis-
cussed. One type of gensralization that Synner cannot yet
make that Anderson's LAS can is the merger of two subnet-
works into one. In LAS, whenever a phrase is successfully
parsed by one subnetwork, a check is made as to whether
any other subnetwork can parse tnat phrase. If it finds
this compatibility often enough, the two subnetworks are
merged into one. In Synner, since the word arcs specify
what semantic role an individual word has, it is not very
often that a subnetwork in one part of the grammar can be
used to parse a phrase from a different part of the sen-
tence. However, if registers were used to move the
specification of the semantic role to the point of the
call to the subnetwork rather than being within the sub-

network itself, then subnetworks could be merged even

-77=

though different semantic roles are required by the dif-

ferent calls.

Currently, Synner forms only one }evel of subnet-
works. The main network has subnetworks, but the subnet-
works do not in turn have subnetworks. There 1s enough
information available from the MATCH procedure about word
relationships to enable a more complex structfure. If
words name entities that are in the same part of the con-
ceptual dependency structure, then those more central to
the main action could be put into the highest level sub-
network, those next most central and related to words in a
given subnetwork could be put into a subnetwork of thnat
subnetwork, and so on. All of this would require that
registers be used to specify the relationships among the
subnetworks. Implementing this would require defining
another type of register in Syunner's ATN formalism,
require searching for partial matches of words with one
another (based on their role in the event) instead of an
all or nothing match, "and require modifying the learning
rules so that subnets are created when partial matches are
found. 1In total, it would probably require approximately

400~ 600 more lines of Pascal code.

Once subnetworks of subnetworks are possible and sub-

networks can be merged, then recursive subnetworks become

possible. Structures can be compared for repetition much
as those that are turned into loops are compared. When
the condition is met, the repetive parts can be replaced

by a recursive call to the current subnetwork.

2. Longer Term Possibilities

At the present time, Synner does not have a stand-
alone parser that can produce a CD structure given a sen-
tence, nor a generator that can produce a sentence from a
CD structure. The problems of parsing and generating sen-
tences using ATNs have been studied by several researchers
(Anderson, 1977; Schank, 1975), and S3chank's students
(Schank, 1975) have even done parsing and generating with
ATNs using a conceptual dependency semantic representa-
tion. Therefore, no new theoretical ground would be bro-
ken by including them in Synner. However, their presence
would enable someone unfamiliar with ATNs to judge the
goodness of the induced grammar by examining the sentences

that can be parsed and generated by that grammar.

A further use of a sentence generator would be to
automatically check for overgeneralization. The current
version of Synner requires manual intervention by the
teacher to undo an overgeneralization by backing up to a

reviously checkpnointed grammar. By using a sentence gen-
p I3 = [«

erator, every time a generalization was proposed Synner

-79-

could produce several sentences dependent on the new
feature of.the grammar and ask for confirmation of their
correctness. If the new feature resulted in ungrammatical

sentences, it would not be incorporated into the grammar.

3. Distant Future

Synner has a built-in dictionary as 1its semantic
basis, while Salveter's Moran (Salveter, 1979) is a system
that learns concepts and verbs from pictures and sen-
tences. If Synner were modified to use Salveter's concep-
tual memory structures (CMS) rather than Schank's concep-
tual dependencies as its semantic memory, then it would
become feasible to merge Moran and Synner into a larger
system. Moran would be building up a system of CMSs,
while Synner would use those CMSs in its syntactic learn-
ing. This combined system would first learn concepts,
then vocabulary, and finally syntax. The learning process
would then continue with the conceptual memory, the voca-
bulary and the grammar all growing in parallel. This is
closer to the way huﬁans learn language than 1is either

Moran or Synner individually. People do not stop learning

vocabulary when they begin to learn grammar.

-80-

Summary

This thesis has discussed a computer program, Synner,
that attempts to learn an augmented transition network
(ATN) grammar for English. The process being modelled is
that of a human learner who already has some conceptual
knowladge and a vocabulary relating to that knowledge.
This learner observes a real-world event and hears a sen-
tence describing that event, and then adjusts his rules of

grammar, if necessary, to account for the new sentence.

Synner's conceptual knowledge and vocabulary are
predefined in terms of conceptual dependency (CD) theory,
a representation based on a small number of primitives.
To avoid the problems of perception, the "real-world"
event is hand-coded into a CD structure, while the sen-
tence is given as a string of words on an interactive com-

puter terminal.

The learning procedure begins by comparing the sen-
tence to the event using its built-in knowledge of the
vocabulary. This matching process determines the semantic
role of each word in the sentence. A parse of the sen-
tence is then attempted using the current ATN grammar.
There is a set of rules specifying how the sentence is
allowed to differ from what 1is allowed by the graamar.

The search for differences proceeds from the smallest ones

-81-

to larger ones, in order to insure that the least possible
difference that can account for the sentence 1is found.
The differences discovered, if any, are used in altering

the ATN so that the new sentence is legal.

The ATN grammars obtained from Synner have shown that
it is feasible for a computer program to infer rules of
syntax of a natural language by comparing sentences to an
internal encoding of the events they describe, even when
that encoding is in the form of a CD network which is not
specific to the structure of English. The conciseness and
completeness of the grammar in representing the sentences
that have been seen is heavily dependent on the order of
presentation of the sentences: sentences that build gradu-
ally on previous ones result in smaller and (generally)
more complete grammar than when sentences are presented

randomly.

The ATM networks that are learnable by the current
version of Synner do not have a high level of complexity,
but the techniques used and the results obtained show good
promise toward developing a program with greater capabili-
ties. An eventual merger with programs that learn other
aspects of language would be a foundation for a more com-

plete language learning system.

-82-

REFERENCES

Anderson, J.R. Language, memory, and thought. Hillsdale,
New Jersey: Lawrence Erlbaum Associates, 1976.

Anderson, J.R. Induction of augmented transition net-
works. Cognitive Science, 1977, 1, 125=157.

Anderson, J.R., & Bower, G.H. Human Associative Memory.
Washington, D.C. : Winston, 1973.

Brown, Roger. A first ianguage. Cambridge, Mass.: Har-
vard University Press, 1973.

Gold, E.M. Language identification in the limit. Infor-
mation and Control, 1967, 10, UHU7-4TH,

Jordan, Sara R. Learning to use contextual patterns in
language processing. Ph.D. thesis, Dept. of Computer
Sciences, University of Wisconsin- Madison, 1972.

Kaplan, Ronald M. Augmented transition networks as
psychological models of sentence comprehension.
Artificial Intelligence, 1972, 3, 77-100.

Klein, S., Fabens, Herriot, Katke, Xuppin, Towster. The
Autoling System. University of Wisconsin Computer
Sciences Department Technical Report # 43, 1968 .

Moeser, S.D. % Bregman, A.S. The role of reference in the
acquisition of a miniature artificial language.
Journal of Verbal Learning and Verbal Behavior, 1972,
11, 759-T759.

Moeser, S.D. & Bregman, A.S. Imagery and language
acquisition. Journal of Verbal Learning and Verbal
Behavior, 19737 I_2_7 91-_9_8.

Quillian, M.R. The teachable language comprehender: a
simulation program and theory of language. Comunica-
tions of the ACM, 1969, 12, 459-176.

Richards, I.A., et al. Russian through Pictures, Book I.
New York: Washington Square Press, 1901.

Salveter, Sharon C. Inferring Conceptual Graphs.

-83-

Cognitive Science, 1979, 3, 141-166.

Schank, Roger C. The fourteen primitive actions and their
inferences. 3tanford Artificial Intelligence Labora-
tory Memo AIM-183, 1973.

Schank, Roger C. Identification of conceptualizations
underlying natural language. In R. Schank and K.
Colby (eds.), Computer Models of Thought and
Language. San Francisco: W.H. Freeman and Company,
1973.

Schank, Roger C. Conceptual Information Processing.
Amsterdam: North-Holland Publishing Company, 1975.

Siklossy, L. Natural language learning by computer. In
H.A. Simon and L. Siklossy, Representation and mean-
ing Experiments with information processing sSys-
tems. Englewood Cliffs, New Jersey: Prentice
Hall, 1972.

Uhr, Leonard. Pattern-String learning program. Behavior-
al Science, 1964, 9, 258-270.

Woods, W.A. Transition network grammars for natural
language analysis. Communications of the ACM, 1970,
13, 591-606.

-8~

APPENDIX A

QUTLINE OF THE PROGRAM

This outline is given in terms of a stripped down
Pascal program, with the following conventions:

a) reserved words and predefined types are in upper case;

b) procedure and function names nave the first letter of

each word in upper case;
¢) all other user defined entities are in lower case;

d) the underscore character (_) is legal in names.

PROGRAM Synner;

VAR
do_learn, brief option : BOOLEAN;
event : “event structure;
sentence length : 0 .. 30;

PROCEDURE Get_ Event;

BEGIN
Get Token;
IF token = k _generalize THEN
Generalize
ELSE IF token = k print THEN
Print_Grammar
ELSE
{Build event structure}l
END;

PROCEDURE Init;

BEGIN
Init _Classes; {create the tree of classes}
Init _Things; {init. the instances of phys. objs.}
Init_Token Table; ({tables needed for verb and

-85-

event input}
Init States; {init. adjectives}
Init_Verbs;
Init_Words {create & alphabetize the dictionary}
END;

PROCEDURE Get_Input;

BEGIN
IF NOT Eof TIEN
BEGIN
Get Event;
Get Sentence
END -
END;

PROCEDURE Match;

FUNCTION Match Act (event, dict : ptr_to_act)
: BOOLEAN;

BEGIN
IF dict = NIL THEN match_act := TRUE
ELSE IF event = NIL THEN match_act := FALSE
ELSE match_act :=
Match Conc(event”.conc_ar, dict”.conc_ar)AND
Matech Obj (event”.obj ar, dict”.obj_ar) AND
Match Dir (event”.dir ar, dict”.dir_ar) AND
Match_Rec (event”.rec_ar, dict”.rec_ar) AND
Mateh Ins (event”.ins_ar, dict”.ins_ar) AND
Match aa (event”.aa_ar, dict”.aa_ar)
END; {Match_ Act} -

FUNCTION Match-Conc (event, dict : ptr_to_conc_ar):

BOOLEAN;
BEGIN
IF diet = NIL THEN match_conc := TRUE
ELSE IF event = NIL THEN match_conc := FALSE

ELSE match conc :=
Match Time(event”.time, dict”.time)AND
Match State(event”.result, dict”.result)AND
Match Act(event”.reason, dict”.reason)AND
Match State(event”.enab by, dict”.enab by)AND
Match:pp(event‘.subj_ppT dict”.subj pp_cl)AND

-86-

Match_pp(event”.loc_pp, dict”.loc_pp cl)AND
Match pp(event”.desc_pp, dict”.desc_pp_cl)
END; {Match Conc}

{Other Match routines are similar to
Match_Act and Match Conc}

BEGIN {Match}
IF event = NIL THEN

do_learn := FALSE
ELSE
IF sentence length > 0 THEN
BEGIN

do_learn := TRUE;
{FInd the words in sentence defined in the
verb dictionary, and then:}
matched := Match Act (event_ptr,
verb[found].act)

{Compare event with sentence,
finding relationship}

END

ELSE
do_learn := FALSE
END;

FUNCTION Parse : BOOLEAN;
{Function Parse attempts to parse sentence using
current grammar. If it cannot, it tries to deter-

mine where, why, and by how much the parse failed.
Returns TRUE if it can determine this,
FALSE otherwise}

TYPE
matching type = (m_none, m_exact, m_x_word, m _restr,
mﬂarc:sk, m_wrd del, m_arc_repl, m_new_push,
m_push_sk);

VAR
match _type : matching_type;
cur sent pos : sent length;
repeating, new _choice : BOOLEAN;

FUNCTION Try_ Node (which_node:node_ptr) : BOOLEAN;
FORWARD;

FUNCTION Try_Net : BOOLEAN;
BEGIN
Try_Node ({first node})
END; {Try_Net}
FUNCTION Try_ Word_ Arc : BOOLEAN;

VAR
matched : BOOLEAN;

BEGIN

-87-

IF {current word meets restrictions} THEN

BEGIN
matched := TRUE;
cur_sent_pos := cur sent pos + 1
END; - - -
IF matched THEN
matched := Try Node ({next nodel);
try word_arc := matched
END; {Try_Word_Arc}

FUNCTION Try_Push_Arc : BOCLEAN;

VAR
matched : BOOLEAN;

BEGIN
matched := Try_MNet;
IF matched THEN
matched := Try Node ({next node}l);
try push_arc := matched
END; {Try_Push_Arc}

FUNCTION Try_ Jump_Arc : BOOLEAN;
BEGIN

try_jump_arc := Try_Node ({next node}l)
END; {Try_ Jump_Arc}

FUNCTION Try_Node (which_node : node ptr):

VAR

BOOLEAN;

-38-

matched : BOOLEAN;

BEGIN
matched := Try Word Arc;
IF NOT matched THEN
matched := Try Jump_Arc;
IF NOT matched THEN
matched := Try Push Arc
END; {Try_Node} B

BEGIN {Parse}
match Ltype := m none;
REPEAT -
match_type := Succ (match_type)
repeating := FALSE;
cur sent pos := 0;
REPEAT
new choice := FALSE;
matched := Try let;
IF cur_sent_pos <> sent_length THEN BEGIN
repeating := TRUE; matched := FALSE END
UNTIL matched OR NOT repeating
UNTIL matched OR (match type = m_push_sk);
parse := matched -
END; {Parse}

PROCEDURE Learn;

BEGIN
IF do learn THEN
IF no_prior_learning THEN
Create New_Network
ELSE IF Parse THEN
Modify Grammar
ELSE IF b?ief_option THEHN
Writeln ¢'Could not parse.')
ELSE
Create New Network
END; -7

BEGIN
Init;
Get_Saved_GState; {restore grammar saved

by previous run (if any)}
WHILE MNOT Eof DO
BEGIN

Get_Input;
Match;
Learn
END;
Save_State {save grammar for next run}

END.

-89-

APPENDIX B

DICTIONARY

On the next page is a list of all the words that are
defined in Synner's present dictionary. Following each
word is an indication of what type of thing each word
names: a Class of objects, an individual Thing, a state or

relation (Adj), or a conceptual dependency structure

(Verb).

h e d e) et e e) e}
OO~ VTEWN 2 O0WO~TOUl=ZWhN =

DR DN
O W1l EFwN— O

ww
w0

oW
03 OvU

4= S
-t OO

= =
w N

ABSTRACTION
AMAZED
ANGRY
ANIMAL
ANYTHING
ARM
ARRIVE
ARRIVED
ASTOUNDED
ATE

BIG

BILL
BIRD

BOY
BREAK
BRING
BROKE
BROUGHT
BUG
BUILDING
CALM
CAME
COME
CONCRETE-0BJ
DOG
DRANK
DRINK
EAR

EAT

EYE
FEMALE
FISH
FOOT
FRIGHTENED
FURIOUS
GIRL

GO

GRAB
GRABBED
HAND
HAND
HANDED
HARRY

Class
Adj

Adj

Class
Class
Class
Verb
Verb
Adj

Verb
Adj

Thing
Class
Class
Verb
Verb
Verb
Verb
Class
Class
Adj

Verb
Verb
Class
Class
Verb
Verb
Class
Verb
Class
Class
Class
Class
Ad j

Adj

Class
Verb
Verb
Verb

Class
Verb
Verb

Thing

4y
45
46
47
43
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
A4
65
66
67
68
69
70
71
72
73

75
76
77
738
79
80
81
82
83
sS4
85
86

HEAD

HIT

HUMAN
HUNGRY
JILL

JOE

JOHN
LARGE

LEG
LITTLE
LIVING-THING
LONG

MALE
MAMMAL
MAN
MAN-MADE-OBJ
MARY
MOUTH
NATURAL
NON-HUMAN
NON-LIVING
NOSE

PARK
PLANT
REPTILE
ROCX
SALLY
SATIATED
SCARED
SHOCKED
SHCRT
SMALL
SPOT
STRIKE
SUE
SURPRISED
TALL
TERRIFIED
TREE

WALK
WALKED
WENT
WOMAN

-91-

Class
Verb
Class
Adj
Thing
Thing
Thing
Ad j
Class
Adj
Class
Adj
Class
Class
Class
Class
Thing
Class
Class
Class
Class
Class
Class
Class
Class
Class
Thing
Ad j
Ad j
Adj
Adj
Adj
Thing
Verb
Thing
Adj
Adj
Adj
Class
Verb
Verd
Verb
Class

APPENDIX C

VERB AND EVENT INPUT/OUTPUT

Tnis appendix illustrates how verbs and events are
typed in for Synner to read and how they are printed out
by Synner for humans to read. Verb input starts with the
symbol "NEW" followed by quoted dictionary names for the
verb. FEach substructure in the CD network must be ter-
minated with an "E" (for "end"). Each class name, since
it may be modified by a 1list of state restrictions of
arbitrary length, must be terminated with "epp" (for "end
picture producer"). Event input is similar to verb input
except that the structure is not named, things are used in
place of classes, and the entry of each event 1s ter-

minated with "endevt™.

The output form of verbs and events is an attempt to
approach as closely as possible the 2-dimensional graphic

form of CD network representation.

«-03-

INQD SXHd

0 SSYI0 ON woJagy ¢ NvWod _ 03 =~d-> Tad0oddX
_ £ g0 SXHd -0=> TId0ddX
03 134 DALSNA woaj ¢ (d0 SKHd 3 2 NVWAH
qinsay
Tad0HdX <=>1L NVWnNH
4MIHIS L ILIH 1

q quooshAyd dds § CqosdAyd dde 2 ueuny

1qJoA 2WES JO wdoJ 3ndinQ

q
q dde g ueuny 0J YId
o]
dde ¢ rdoSiHd rd

a
THOAASNO JIVIS 110534
0 W1l dde { ueuny 090§ 14d
1adouadx L0V
2 LAYIHIS, s +IIH, MEN

sqndut quoa Teot1dA]

-0~

(

‘20+30°1L <20td0"1

‘€~ €- MADNY

0 Ul odsup woJjy (

‘G G 9sIMd¥ns ‘9 L AIVIS SAHd

SSYW ‘00+30°G 00+d30°G HZIS) ¢t 1309 =~ 03 ~0-> TIJ0HdX
(‘1Mv¥d ::1MVd LTI LANYH) f<e LANYH -o-> TAd0oHdX
INOO SXZHd 03 AN HAdSNA wouay w2 LANYH R Lx09
1Tnsay

‘1= 1= ¥vaa

‘10+35° L

q dde ¢ G 8z1s8

10+36° L SSYH

10t 10l Ssew
o dde @

TAdoHdX <=
‘00+dAR'H 00+FRw AZIS) L LTHIOD

tqusAs euwes Jo waoJ 3ndanQ

JAIANT d
m L 3ssfyd ¢ G estuduns (Log Ol MIQ
ds |Ta18 dds jpuey qqed (puey [dO

!

q quoosAyd dde (puey dds [Aoq TUOAJSNAN FIVIS LTOSIN

dde {°4 K 4 OZTS

0 3AWIL

Gl GL ssem |- - Je®J €£- €- Js8Bue |TATI_ [ANS 194

1adoadx 10V
MAaN

:qndut queAs TBOoTdA]

-95<

APPENDIX D

SAMPLE OUTPUT

This appendix shows the printed output available from
one cycle (that is, the processing of one sentence-event
pair) of the program. (The cycle shown here is the second
sentence discussed in chapter 4.) Part a shows the event
in its input form, and part b illustrates how the event
structure is printed by Synner. Part ¢ 1is the sentence
that is given to Synner to describe the event. Part d is
debugging information that shows what part of the CD net-

work each known word in the sentence names.

Part e is also printed for debugging purposes; it is
a coded format that shows how the sentence was parsed.
WNDM, "WD", "PU" and "JM" indicate whether the parse was
at a node, a word arc, a push arc or a jump arc, respec-
tively. The column after these symbols, 1if nonblank,
indicates that there was an exception to the parse (see
steps 5, A and 18). For example, "DL" indicates a word
was deleted from the sentence, and "XW" means that the
mateh was exact except for the actual word which filled

the semantic role.

Part f is the ATY grammar as it is printed by Synner.
(This is the complete version of the grammar shown in Fig-

ure 17.) The subnet, node, and word class names are all

-6~

arbitrary. An arc that does not say "push", "jump" or
"pop" means that a member of the indicated word class 1is
required. 1If an arc begins with "z=" rather than "=-", it
indicates that there are semantic restrictions on travers-
ing the arc. The word "again" in parentheses following a

node means that the arcs leading from that node have

already been printed.

~Q7 =

ol

=

o

=]

«

M0
m dod an :0¢ m dod an 6l

L M MY aM “mp | L= an Lt i L M am "m_

L=®e an oGl 2 nm ad ifl oy oL=e an g€t
dod an 2l LM QM Ll L=E an 0l
LM nd 6 “ L=e aN :g | dod an :l

L M MX GM “m | L=B L na an S L M am iy

1= an ¢ i £ M ad 2 | L=®e aNn_ ol
:8utJaas asdJded
_ 28 ST T4ID
gUA NIYW gHA 114
e S0 xo0d

RE TVd KYDNY

: souyoqew TTV
‘1412 aya 31y Loq La3ue ayy

. oo .m- 9- yyad ‘€ € 9sSTHdUNS_ ‘& 9 HIVIS _SKHd
LO+H0°G LO+H0°S SSYW ‘00+¥g;f 0Qo+Agrt 37IS) 8 - CWID 03 ~d-> T3dOddX
_ (‘ro*a0°L_ L0+d0°L SSYW) Og LMD0¥ -O-> '1ddOddX
INOOTSKHd 03 13§ 03dsNQ woay 02 L¥D0¥ R 8 CTWHID
1Tnssy
THIOUAX <=

0 Yyl odsupy woJdj

(“f= h~ YIDNY ‘L- L- ¥yydd ‘20+30°L <20+F0°L SSVH ‘00+d0°G 00+30°G dZIS) ¢t L X049

LAIQNY 3
q dde g°¢ g'€ 9z1s 0G 0§ ssew ¢ 9 1ssfud € € estadans 9- 9- Jedy ZTJITE O UIA

9 dds "Ql "Ql Ssew to0d LU0

4
q quoosdiyd dde |>ood dde ZTJITI THIIdSNO_ ALVIS 1710SAY
0 3AWIL dds g G 9zTs Ol LQl ssem |- |- JdB3F K~ R~ Je8ue |Aoq pdAS T4d
Tedoadx LoV
MIN

:dogs suo wouajy qunding

-98 -

Ay

¢<~dod-

¢~dod-

<~dod-

(utede)
EOVYY <~====Q-VVV=

#0S <~ Ovy-ysnd-

KUDNY
x0d THID
AL
LIH
TID x04d
. HHL
£00YY <-—--- 9-o¥y= 200VY <----- e
<-dod- Z0gyy <-=--- e

ROYYY <----dwnf=--- ZO¥YY
ROVYY <----- o-y¥y= 2OVVY <~-—-- 3
€0S <- dyy-usnd- 208 <~ VV¥-

ee a8 98 oe 0 oo

o~yvvy
a-Jyvv
e-0vy
e-gvy
a-yyvy
B-YVY

{SOSSBT) DJOM

ysnd-
AI.|.

1 00VY
ovy

LOdvY
avy

(A0 AA
Yvv

L 0S
S

qutad

-99-

APPENDIX E

ADDITIONAL GRAMMARS

This appendix shows the grammars produced by the
sequence of sentences described in the "Malevolent
Teacher" section of Chapter 4. The grammars are shown 1in
their raw form as printed by the computer program. For
comparison purposes, the final grammar resultiug from the

well-planned sequence of sentences is shown first.

-100-

(utede) 90IVy <——--o-IVy-=
¢-dod- {OIVY <--=0=-IyV-=

¢~dod-

(utede)
<~dod~

(utefe) Goayy <---dunf---

¢~dod- {0QVy <~—-°-Q¥y-= S0Q¥yYy <-—-P-AVV—=

¢~dod~-

(utede
Alaonw
utede
AAvgoaw
¢-dod- Q0§ <-I¥y-usnd-
(ute8e) {0S <-dvy-ysnd-

G0S <-ayy-usnd- {#0S
¢-dod- {0S <-Oyy-usnd-

90IVV
901IVY

EOHVY

S0DYY
£0DYY

coavy
coavy

G0OVV
£00VVY

GOvYY
LovYY
L0S
€0s
€0s

<==-q-Tyy-=
<-==q-Hyy§-=

¢==-p=Dyy-=
<---q-Dyy-=

¢~dod-

(~dod-

<-=-q-Qyy--

<==-p-2¥y-=
<~==-q-0yy-=

¢~dod-

¢==-p-yyy-=
<-=-a-yyy-=

<-Hyy-ysnd-
(utede)

<-fyy-ysnd-

c0Ivy

COHVY

S0DYY
S09VY

c0dvy

AVCLA

20avy

S00VY
S00VY

c0gvv

SOYvY
SOVYV

90s
c0s

AU

:aousanbas 18909 poo8 wodJ JuTITNSSJ Jeued)d

<-=-e-Tyy--
Alvll

<-=-e-HyY{--
All-

<-=-e-Dyy--
All.l

<-=-B=qyy-=
All-

{—=~B-gyy-=
Alil

<--~B-qyy--

<---e-gyy-=
A.I.l

{~—-B-{yy--
AI-|

¢~pyy-usnd-

<=Fyy-ysnd~

<-yyy-ysnd-
All.

LOTIVY
Ivy

LOHYY
HYV

10DVY
Dyvy

LA
Jvy

10UVY
avy

104vy
avy

LODVY
ovy

L0gvy
avy

LOYVY

1 0S
10S

108

-101-

oIg
DIgd aayvaos JTLLIT
xod

THID

NHOL
NHOC

aqayvos
aNVH
yaH

o1g
104

HHL

THIO
HHL

RYONY
gasTaduns
THID
AHL
id
LIH
SYM
x0d
JHL
ans
FUYH
TTYWS
H1LLIT
A00Y
v
HLIAM
KUDNY
THID
v

IIH
104

v

9-1VV
p-OvV
o-1YYy
q-1VV
-1y
q-HYY
e-Hyy
a-9yv
e-DOVy
e-Jyv
B-AVY
p=-Qvy
pP-2VvV
o-(vy
q-avy
e-qQvy
P-vvVy
q-0vy
e-0vy
e-gvy
q-vvv
e-yyy

:s088€T) PJIOM

4e 48 66 €8 09 G4 A6 28 6D SO G% IS SN U6 20 00 L& 2N 44 we sS4 oo

-102-

<~dod- GOHVYV <~—--P-HVY-= HOHVY
(ure8e) K{OJAVY
¢~dod- GOAYY <—=--DP-AVV-= HOJVY
<-dod~- {OIVY
<-dod- £0avy
<~dod- GOVVY <~—-P-Yy¥-= HOVVV
(ute3de) 90S
¢-dod- Q0S
urede 10S
M:ﬂmwmw 708
¢-dod- GOS <-dA¥YY-usnd- }0S
¢-dod- 40§

<~dod-

<-=-0-HyVy-=

(===dunf=---
{—==0=Jyy-=

<-==0-qyy-=

(utede)
{==—=q-QVy-=

<~dod~-

<-==0-yyy-=

<~Tyy-ysnd-
<-Pyy-ysnd-

<-pyy-ysnd-
<~Jyy-ysnd-

<-oyy-ysnd-

€0IVY

£04vy

£0dVY
£0dvy

£0avy

H0avy

HOAvVY

€00VV

EOVVY

L0s
L0sS

£0S
£0S

£os

tuotado 3Jetuaq Uyl ITM sousnbas

<-==q-Iyy-=
<~==q-Hyy-=

¢~dod-

<===q-J7y-=
<-=-q-ayy§--

¢-==-dunf=---
<~==0=Qyy-=

{===q-D¥V-=
<~-dod-
{~—=Qq-yyy-=
(urede)

<~Iyy-ysnd-
(utese)

<-gyy-usnd-

cOIvY

COHYY

A A

c04vyY

c0avY

c0ayvv
c0avy

200vY

c0avy

A AR |

90s

90s
c0s

208

peq J0J] JBWURJI

<-=-e-Iyy--
Alltl

<-==B-Hy Y-~

<==-e-qyy--
A'l

<-=-B-DyY¥--
Allll

(-=-~e-gyy-=
A’Il

<-=-e-yyy--
AIII

<~Jy¥y-ysnd-

<-HYy-ysnd-
<~@yy-ysnd-

<-yyy-ysnd-~
Alu..!

LOIvY
vy

LOHYY
vy

1 0DVY
ovv

104VY
dVV

LOBvVY
avy

Loavy
avy

LOJVY
LA

109Yv
gayv

LOVVY
Vvy

108

10S
10S

10S

-103-

<-dod- GOTYV <~—-P-TYV-= {OTYY <~——0-Tyy-=

(utede)
<-dod=- €0NVY <~--q-4Vy-=

¢~dod=- {OLYY <=—-=0-[VV-=

E0TVY <(~——-Q-T¥Y¥--

Hodvy <---dunf---
HOJAYY <~==0-Yyy-=

E0LVY <~=-qQ-ryy--

c0IvyY AlllMMd<<l|

c0AVY
cOAvY Alltmmx<<|l

coryv AtllMMw<<|l

LOTYY

vy

L OAVY
A

100V
£

vy

¥V

-104~

TID
1049

THID
d1LLIT
q3yvos

JHL

THID
THID

THIO
KYONY
dHL

id

oId
104
JHL
THID
JHL

id

114
SyH
104
qasTdduns
DIg
JHL
ans
TID
dILLIT
Qmm40w

014
aNvH
HAH
HLIA
A0d
JHL
20d
HHL
LIH
104
XYONV
DId
v

-

p=1vyY
o-11VY
q-1vy
e-1yy
O-AVY
q-AvvY
e=AvY
Lt A
q-0vy
e-fvy
q-IvV
e-Ivy
P-HVY
O-HVY
q-HvVvY
B-HVY
e-ovy
p-4dvy
o-4yvV
qQ-4VV
e=4dvy
o=avy
o-dVY
q-davy
e-yvy
q-avy
e-avy
q-ovv
e-0vy
e-dgvy
P-¥VV
o-yVvv
q-yyv
e-yyy

:g98SBT) DJOM

e 4s 66 69 6@ S8 56 S8 0T 56 96 S8 SV 00 UL GO IS IO S8 L LS SN S8 49 00 Bk a0 00 40 00 "e se e e

-105=-

g0S <-Hyy-usnd-

60S <-IVy-usnd-

{===8-DYyY-~ GODYV <——-P-DVYy—= HODVY <———0-DVV-=

¢<-dod- {OAYY <~=--0-FYy-=

(utede)
¢~dod- £04Q¥y <---4-QVy-=

(utede)
¢~dod—- £00YY <=--q-0V¥-=

<~dod=- GOYVY <—=-P-¥VV-= HOVVY <~=-O-yVV-=

(uresde) gLS <~Ayy-usnd-
¢-dod- gQLS <-Ayy-usnd-
(utede) GlS <-Myy-usnd-
¢~-dod- GlS <-yyy-ysnd-
(uteSe) 2LS <-Nyy-ysnd=-
¢~dod- 2lS <-Wyy-ysnd-
L0S <-Hyy-ysnd-
Mcﬂmmmw 10S <-Qyy-ysnd-
utede #10S <-Pyy-ysnd-
h0S
¢-dod- {OS <-OVy-ysnd-

tuo13do J8TJaq AnNoyjTM

<~dod- ZOHVY

¢-dod- LODYY
€0DVY <~~-q-DY¥-= 20DVY

<~dod- 20avy
£09VY <~—--q-4yvV-= 203yY

{oQyy <---dunl--- Z0oqavy
#OQVY <~—-0-A¥V-= 20dVV

700yY <==-dunf--- 200VYy

®R0DVY <—==-0-0YY¥-= 200VVY
¢-dod- 20odvVy
COVYV <—--a-Yyy-= 2Z0VVV
LS
w”m <~Lyy-ysnd- 9L§
w”m <-Dyy-ysnd- €IS
L1S <—1yy-ysnd- QIS
90S <~dyy-ysund- §0S
(ute8e) 20S
£0S
£0S
€0S <-dyy-ysnd- 20S

sousnbes peq JOJ JBUWELD

<-=-e-Hyy-=
A.Ill

<-=-J-Dyy-=

<---&-Dyy--
AIII

¢-=-e-gyy-=
Al!.l.

<-=-e-gyy--
A!lll

<-==e-Qyy--
AIII

<-=-e=0yy--
AI-'

{==-e-gyy-=
Al-ll

{—--B-Yyy--
) A.l'

<-Syy-ysnd-
<~dyy-ysnd-
<-jyy-ysnd-

<-gyy-ysnd-
<~ayy-ysnd-

<-yyy-ysnd-
A-I-I

LOHYY

90DVY
L0DVY

104YV

LOdvY

L0dvy

L 00VY

Lodvy

LOVVY

108

10S

10S
108
108

1 0S

HYY
l
vy

avy

avy

avy

ovy

avyv

vyvv

78]

<-dod- GOMYY <—=—-P-MVV-= hOMYV

-106-

<~dod- {OAVV

(-=--9-N¥y-= SONVV <~—-P-NVVy—-= {OOVV

¢—dod- £0SVVY

<~dod- HOUVY

<-dod- G0dVV <—--P-dVV-= h0OdVV

<~dod- {ONVY

¢-dod- GOLYVY <—=-P-CLYV-= qOLYYV

¢-dod~ {OIVVY

<===0-Hyy-=

<===0=AYY-=

{~=—0-AyYy-~
¢~dod-

(utese)
{===Q-gVy-=

{===0=Yyy-=
¢-dod-

<-=-0-dyy-=

<==~0-Ny¥-=

<===0-Lyy-=

¢===0=TYYy~=

EomMyy

EOAVY

eonyy

E0LYY

HOSYY
#OSYY

couvy

£00YY

£0dvy

EONVY

1 XA

EOIVY

{===q-Myy--

<===q-A¥Y--

<-=-q-y§--

<-=-q-L¥y-=

¢==-dunf---
<-=-0-§yy-=

{--—q-HYyy--
{~==q-Dyy-=
{===Qq~-dyV-=
<~dod-
{=—=q-NYYy-=
{~dod~
¢~-dod-
<~dod~
{===Qq-fyv-=

<-=-q-Iyy--

AV

COAYY

convy

[AVA A

c0syv
c0sSvv

cOHYY

coovy

204dvy

c00vY

CcONVY

COnYY

Oy

AL A

corvv

Z0IvV

<---B-Myy--
A'-

{===B=AYV-—
A.I.!.
¢~-dod~

{===B-{V—-—
AIII-

<-=-'-1yy--
A'-I

A
Allnl

<---E-Yyy--
All

<-=-e-Dy¥--
A-ll

<---e-dyy--
Allll

<-=-B-0yy-=
Alll

<-=-B-Ny{--
A.Il..

<-=~B-Wyy-=
Allll

<-=-e-yy-=
Al‘

<==-B-jyy-=
Alll

<-=-'-Lyy--
A!Iil

<=--B-Iyy--
All.‘

LOMYY
MYV

L OAYY
AVY

aonvy 1
Lonvy
avy

[RUAA A
NATA |

10SYY
SYv

LoYYy
HYV

LODVY
ovv

L0dvVy
dvy

LOOvY
ovy

LONVY
A

LOWYY
WYY

LOTVY
Ty

LOMYY
Avy

LOrvv
ryy

LOIVY
vy

-107-

10d

THID

THID
dTLLIT
qa¥vos

Ad

LIH
SVM
A04g
A3STYdHNS
01g
dHL
H0S
auyy)s
THID
HILLIT
JHL

®4 0% S0 60 SN B BL 25 0 44 S0 BY BN B 06 % AR S8 G4 S6 56 e % GN O PO S8 26 G0 b8 o4

P=MyV
O-MVY
q=-Myy
E~-MVVY
o-SVV
O=AVY
q-AVY
E-AVV
a-AyYy
B-0vy
o-Ovy
q-ayv
E-QVY
qQ-1Lvy
e~-1yvV
q-Svyy
B~SVV
o-HVV
q-4vy
E-HVY
q-Dvy
e-0vy
p=dvy
o-dyy
q-dvy
E~-dyy
E-QVY
o=DVV
o-NyYy
q-NYVY
B-NVV

8- 4 0] NHOP

THID X0d
THID x0d
dH1 v

AHONY
o1d

E-RyY
B0V
e~Jyvy
p=LVvy
o-Lyy
q-rvy
e-Lyy
o~Aavy
9-IVY
q-IVV
e-Ivy
E-HYV
J-Dvy
S~DVvV
p-dvy
o-Qyv
q-Dvvy
E-DVY
E-dyY
o=gvy
q=Hyy
E-JyY
a~qvy
e-qyvy
9-2vy
B=0VY
e~-dvy
P-vVV
o=yyy
q-vvy
ek Ak]

:S9SSRT) PJIOM

B B0 00 00 €4 PP FO BE G0 68 RE S5 04 BC S6 08 8D SN G6 GF BE SE B4 BU S6 AP B S8 B8 B0 ¥

