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Abstract

An LL(])-based error correction algorithm is
presented. The algorithm can be used with any LL(1)
grammar and is able to correct and parse any input
string. It chooses locally least-cost repair
operations (as defined by the user) in correcting all
syntax errors. Moreover, the error corrector can be
generated automatically from the grammar and a table
of terminal correction costs. Correctness, local
optimality and linearity of the algorithm are
established. Implementation and test results are
presented. The algorithm is seen to be very fast and
quite modest in its primary memory requirements.
Further, its performance on test cases is very

encouraging.



List of Footnotes

1 . . . . . .
present address: University of Wisconsin -~ Madison,

Madison, Wi. 53726

Nxmmmmnn: supported in part by National Science
Foundation Grant MCS78-82570

umummmnn address: Bell Laboratories, Naperville, Il.

68540

45ince $ is assumed to be guaranteed as the the last
input symbol, it will never be inserted during
correction. Thus C($) is not strictly needed, but

is included to simplify notation.

5g.g., programs with parentheses or blocks nested

deeper than the stack depth limit.

6spurious errors, induced by an error corrector, are
not included in error counts as they are not

considered "real" user errors.

7The two correctors used somewhat different insertion

costs.

Index Terms

Error correction, error recovery, LL(1) parsing,

compilation, least-cost corrections, syntax errors



I. 1Introduction

In [6}, an LL(}) error correction algorithm which operates
by "insertion-only" is studied. The algorithm is particularly
simple in structure and lends itself to compact and efficient
implementations. Further, the corrector can be automatically
generated from an LL(!) grammar and a table of terminal insertion
costs. The corrections chosen by the algorithm can be shown to

be always locally optimal (i.e., 1locally least-cost). The
mmenwmvs is also noteworthy in that it presents a very high
level correction model in which all repairs are determined solely
by the language to be processed and the insertion costs used (and
not by the underlying context-free grammar or details of the
correction algorithm). Such a high level model makes using (and,

via costs, tuning) the corrector a very simple matter.

Nevertheless, this corrector has two distinct liabilities.
First, the corrector cannot be used with all LL{l) grammars, but
rather only with a subset termed "insert-correctable." As
discussed in [6], most modern programming languages, as typified
by Pascal and Algol 68, are not insert-correctable in structure
{although they are very close). This means that if the language
being parsed is fixed and unalterable, the insertion-only

corrector may not be able to repair all errors (i.e., in some

situations it will report failure).

Secondly, even in those cases where some insertion can

repair a given error, it is obvious that sometimes a simple
deletion will be preferable to a possibly long (and costly)
insertion. Thus if high quality corrections are desired,

deletions must sometimes be allowed.

In this paper we extend the insertion-only LL(l) corrector
to include deletion operations. In doing so we create an
algorithm which can be used with any LL{}) grammar. Further, the
extended corrector's performance is always as good as, and is
usually superior to, that of the original algorithm. The extra
costs incurred are moderate enough to allow the extended

algorithm to be used in production compilers without

significantly impacting either their size or speed.

This paper is organized as follows. 1In section 2 we briefly
review the structure and properties of the original
insertion-only algorithm. The extended algorithm is presented in
section 3, while implementation and test results are discussed in
section 4. Finally, in section 5 the results of this work are

summarized and possible future research is considered.



2. A Least—-Cost Insertion-Only Corrector

In our presentation, we shall assume that the reader is
familiar with the basic notions of grammars and parsing [l]. The
empty (or null) string is denoted by \. cat denotes string

catenation.

The algorithm presented in [6] is an "insertion-only" error
corrector for LL(!) parsers. Because the corrector may need to
no:mwmmnw:mmnnwosmmnn:mm:mommzw:wcwmnnw:m~Mnmm

necessary to use an augmented grammar. Let G = A<:~<n,m~wv.

Then the augmented grammar G' = (V © {z'}, v, @ {$1,

PO {2z -->1251}, 2'), where $ gV, 2' € V . All input strings
wiil be terminated by the endmarker symbol, $. We shall consider
all grammars to be augmented and denote <n O {$} by @n. v, g {z2'}

o -~ < 1 - o = b o » s
by <:. Similarly, V <: 1] <n and V <= U <n. Given as input a

)
=/=>%¥ xa..., the «correction algorithm will find a least-cost

string xa... (x € V., a € an such that 2' ==>* x... but 2°

string y € <M such that 2' ==>% xya... if such a string exists.

Otnerwise, it will return a symbol '?' ¢ <n as an indication of

failure.

The LL{!) parsing algorithm used with the corrector must be
constrained. It is well-known that every LL(l) grammar is strong

[i], and the conventional parsing algorithm for LL(l) languages

takes advantage of this fact. However, this algorithm will not
necessarily detect an error upon first encountering an erroneous
symbol ([i}, [6]). That is, it does not possess the immediate

error detection (IED) property. A simple and efficient way of

obtaining the IED property in Strong LL{l) parsers is discussed
in [71. In what follows, we shall assume that the LL{l) parser

used possesses the IED property.

The error-correcting algorithm will require two auxiliary
tables, S and E. These tables rely on an insertion-cost function
C: C{\) is defined to be 0; for a € on. C(a) > 8 is supplied as

an a priori valued, and for W= KX 8 om.

C(w) = Oﬁx_v+...+OAxsv . C(?) is defined to be ©.

For X € o- define S{X) to be an optimal solution to:

Min {Ciy) | x ==>*

%
y € <ﬁ

y}

In other words, S(X) identifies the least-cost terminal string
derivable from X. Further, mﬁx“...xav = mﬁxwv cat ... cat mﬁxav
(m > 8, xw [<] Qv. The insertion-cost function C can now be
extended to strings: C(Y) = C(S8()Y}).

4gince $ is assumed to be guaranteed as the the last input

symbol, it will never be inserted during correction. Thus
C($) is not strictly needed, but is included to simplify
notation.
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For A € V and a € V we define E(A,a) to be an optimal solution

ﬁﬁ
to:

Min {C(y) | & ==>* ya... }
If & =/=>* ...a..., then E(A,a) = ?

Algorithms which compute the S and E tables may be found in
[61.

We are now ready to present the error-correction algorithm.
It will compute a string "Insert" to be inserted to the immediate
left of the symbol currently flagged as being in error. Let the
parse stack be x:...x~ sz is the stack top), and let the
erroneous input symbol be ‘a’'. The parser will call the

following algorithm:

{ xs...x~ is the LL(I) parse stack,
a is the error symbol,

function rr!H:mmnnnx:...xm‘mv : Insert;

Insert is the string to be inserted as a correction,
Prefix is a least-cost prefix derivable from the stack
symbols already processed }
Insert := ?; Prefix := \:
for i := n downto ! do
if CPrefix) > C{(Insert)
then {No cheaper insertion is possible}

return(Insert);

if C(Prefix cat E(X;,a)) < ClInsert)
then {A cheaper insertion has been found}

Insert := Prefix cat mAxw.mv“

Prefix := Prefix cat maxwvn
end {for}

return(Insert)

end {LL_Corrector!}

The function considers, in turn, individual parse stack symbols.

When symbol xw is considered, a possible correction is

mﬁx:...xm+_v cat mﬁxw~mv. That is, S(X,...X, ;) can be used to

match stack symbols xs...x»+_,

'a' to be matched. This string is adopted if it is cheaper than

then mﬁxw~mv can be used to allow



(b) Assume LIL_Insert extended as described in [6] is used with
an LL(l) parser.
Then each invocation of the extended LL_Insert algorithm can

be performed in constant bounded time and space.

O

Note that in case (b), the size of the Insert string

returned by LL_Insert is not necessarily constant bounded in

size. This does not contradict the results of the theorem
however because the extended algorithm can specify the insertion
by merely returning the index of the stack symbol which is to be

used to generate the error symbol.

3. A Locally Least-Cost Correction Algorithm

We now add deletion operations to the correction process.
Assume a user-supplied deletion cost function is available where

for a € V D(a) > B8 is the cost of deleting ‘a'. D(\) is

e’ -
defined to be 8 and D($) is fixed at ® (because the endmarker is
guaranteed to be «correct). D can immediately be extended to
terminal strings: cﬁm_...mav = UAm~v+...+UAw5v. Assume further

that this correction algorithm is invoked in a situation where x

€ <M has already been read (and accepted) by the parser and

10

b ...UB is the remaining input (m > I, U-...~Us e Onv. That is,

i

2! ==3*%* x... but 2' u\uv* xaw... Now a correction is
characterized by two parameters, i > @, the number of input

symbols to delete, and y € v*, the string to be inserted after

any deletions.

A locally least-cost correction is therefore defined as a

pair (i,y) which is an optimal solution to the following:

Min  {D(b;...b;) + C(y) | xyby, ... € L(G) }
g<i<m, <m<m

The following routine, which uses LL_Insert as a subroutine,

computes locally least=-cost corrections for LL(1} parsers.

function rbIOOnnmnnongx:...x"~U~...Uav : (Del,Insert):;

{ x:...xm is the LL(1} parse stack,
U_...Ua is the remaining input,

Del is the number of input symbols to delete, .
Insert is the string to insert after all deletions }

:= ?; Del := 0;
for I := 1 tom do

1f D(b,..%by_;7 2 C(Insert) + D(bj...bp.q)
then { No lower cost correction is possible }

return;y;

< C(Insert) + UAU_...UUmHv

then begin {A better correction has been found }
Insert := rrlmsmmnnax:...x_~vwv“
Del := I -1
end
end {For}
end {LL Corrector}



the current correction string. Stack symbols are considered
until the stack bottom is reached or until no cheaper insertion
is possible (because Prefix, which must begin any new correction,
is at least as costly as the current correction string). If none
of the stack symbols can derive the error symbol, LL_Insert

returns '?', the initial value of Insert.

Because the entire LL(l) parse stack is examined (if
necessary), it is easy to see that LL Insert will find a valid
insertion if one exists. Further, the definitions of the S and E

functions guarantee that the value of 1Insert returned is

least-cost. Thus we have the following result from [6]:

Theorem 2.1

Assume that for some LL(1) grammar, G, X... € L(G) but xXa...
m~ a € On. Further, assume that while
attempting to parse xa... an LL(l) parser .invokes LL Insert as

g L{G) for x € V

‘a' is encountered. Then LL_Insert will find a

soon as
least-cost y € <M such that 2' ==>* xya... if such a string

exists. If no such y exists, it will return '?'.

In practice, LL(l) parsers invariably use a bounded depth

parse stack (i.e., a parse stack with a fixed maximum depth).
Such parsers accept a string x$ iff x$ € L(G) and the parse stack

does not overflow while processing the input. For modest

maximums (e.g., 58 to 108}, overflows are so rare that only
pathologic inputs are excludedd. For bounded depth LL(])
parsers it is easy to establish that each invocation of LL_Insert
requires only a constant-bounded amount of time. In the general
case, to parse an input x$, a maximum stack depth of O(Ix!) may
be reguired. In this case a variant of LL_Insert can be
employed. As detailed in [6], we can maintain an array of
pointers to the top (i.e., uppermost} occurrence of each
vocabulary symbol in the parse stack. Only those stack locations
pointed to by the array need to be examined by LL Insert. This
follows from the observation that if the error symbol is to be
derived by a symbol Y on the stack, the uppermost occurrence of Y
can clearly be used. Because only a fixed number of stack
locations (bounded by 1V1} need to be processed, LL_Insert can

still execute in constant-bounded time. Thus the following

result from [6] can be established:

(a) Assume LL_Insert as defined above is used with a bounded
depth LL(])} parser.
Then each invocation of LL_Insert requires constant bounded

time and space.

mm.©.~ programs with parentheses or blocks nested deeper than the
stack depth limit.
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LL_Corrector operates incrementally, first trying ]
deletions, then | deletion, etc. This continues until the
endmarker “Uav is reached or until no cheaper correction is
possible (because the best known correction is no more expensive
than the current cumulative deletion cost). This organization
can readily be implemented. As long as no correction of finite
cost is known, input symbols already considered (i.e., U_~Um~...v
can be deleted (since there is no correction which will allow
them to be accepted). Once a finite cost correction is found

(say Del=i, Insert=y), subsegquent input symbols must be saved

(e-g., in a queue) since they may be needed once parsing is

restarted.

At this point we need to continue considering input symbols
only to verify that the current correction is least~cost {or to
determine a cheaper one). Normally, only a few more symbols will
need to be examined. In particular, we need never look beyond
symbol Uu where OAUM+~...UMV > C(y). Since deletion costs are
often set rather high (to discourage wholesale deletion of a
user's input), once any correction is found, we tend to converge
rapidly to the locally optimal correction. Indeed, as discussed
in section 4, our tests indicate that the costs involved in

computing locally optimal corrections are quite reasonable and

apparently no real problem in actual production compiliers.

12

In cases where we wish to perform error-recovery rather than
error-correction, the queuing of input symbols required by
LL_Corrector may be an undesirable complication. Besides
actually maintaining the queue (which is itself a space and time
overhead), we must also worry about formatting a source listing
with appropriate error diagnostics. This usually implies that
the source images associated with gueued symbols must also be

saved so that suitable messages may be generated once a

correction is determined.

For error correctors this extra complexity must be borne in
the interests of obtaining the best available repairs. Since
error recovery routines are primarily interested in simply
restarting parsing after a syntax error, the incremental
advantage in using a locally least cost correction to restart an
LL(l) parser may not be worth the costs involved. 1In such cases
a variation of LL_Corrector can be used instead. As usual, the
algorithm will examine and delete input symbols until a
finite~cost correction is found. Thereafter, it will examine
subsequent input symbols only if deleting them 1leads to
progressively better (i.e., cheaper) corrections. Once an input
symbol is reached whose deletion does not lead to a better

correction, the modified LL Corrector returns.

The chief advantage of such an approach is that input

symbols need never be gqueued since we never look beyond the first
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non-deleted input symbol. Of course, this modification does not
always find a locally optimal correction but it always does at
least as well (and often better than) the original insertion-only
corrector with almost no additional complexity or computational
overhead. Thus for recovery purposes it represents an especially
nice balance between simplicity of construction and quality of

performance. As such, it appears to compare favorably with other

LL(1) recovery techniques ([i8], [Il]).

The following establish the correctness, local optimality

and robustness of the LL_Corrector routine.

Assume that some LL(1) parser for a grammar, G, is processing an

input of xdm...ds and that %x... € L{G) but xU~... € L(G) for x

t

soon as Uw is encountered, it will compute a locally least=-cost

e V¥ and R On. Then if LL Corrector is invoked as

correction (i,y) (B<i<m, y € <mv such that chw+_... € L(G).
Proof:

Follows immediately from the correctness and local optimality of
the LL_Insert routine.

o

Corollary 3.2
Let x$ be any input string where x € <m. Then any LL{1l) parser

using LL_Corrector will be able to parse and accept x$.

Proof:
Each invocation of LL_Corrector will return a correction which
allows at least one more (non-deleted) input symbol to be

accepted by the parser.

We now turn our attention to efficiency issues. In
considering the space and time requirements of LL _Corrector, it
is important to note that the corrector and associated parser
will almost certainly not be used in their full generality. As
noted earlier, a bounded depth parse stack will almost certainly
be used by the LL(1) parser. So too, deletion costs of =zero,
although allowed by our model, seem never to be used (since they
make wholesale deletions far too easy). It is easy to establish

that LL _Corrector, when used with a bounded depth parse stack and

strictly positive deletion costs, is linear in operation.

Theorem 3.3

Assume a bounded-depth LL(1) parser uses LL_Corrector with
strictly positive deletion costs. Then an input of x$ will Dbe
processed using (a) O(ixl) time and (b) constant space.
Proof:
Each invocation of LL_Insert requires constant time (by Theorem
2.2). The size of Insert returned by LL_Insert can also be

constant bounded (because each stack state contributes a piece

of bounded size). Consider each iteration of LL_Corrector as it
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processes input symbols. Until LL_Insert returns a value # ?,
we know the input symbols already considered ~U- by, ...} will
have to be deleted. Each of these iterations is charged to the
input symbol to be deleted and each such symbol is charged only
once. Once LL_Insert returns a value z # ?, we can bound the
number of additional iterations needed by C(z) (since each
additional iteration represents a possible deletion costing at
least one). But, as noted above, the maximum size of 2z (and
thus of C(z)) can be bounded by a constant. Therefore the total
time reguired to find a least-cost correction once any finite
cost correction is discovered is constant bounded. This time,
as well as the time to insert and later parse the “Insert"
string is charged to the first non-deleted input symbol which is
guaranteed to be consumed once parsing is restarted.

i

Recall from section 2 that non-bounded depth LL(}) parse
stacks can be accommodated by extending the LL _Insert routine.
Similarly, deletion costs of zero can be handled by preprocessing
the input (when the first syntax error is discovered) so that
when LL Corrector is invoked, pointers are available to the first
occurrence (if any) of each terminal symbol in the remaining
input. Obviously if the locally optimal correction is to delete
up to a terminal symbol 'b* and then to insert
rhtHsmmnnﬁxs...xw.dv. we need only delete up to the first

occurrence of b in the remaining input (to which we have a

16

pointer). This means LL _Corrector needs to only invoke LL_Insert
at most _<n_ times per error and since at most 0{(lx]) errors are

possible, the following can be established.

Assume an LL{l) parser uses LL Corrector extended as outlined
above .

Then any input string x$ can be parsed and ({if necessary)
corrected in O{|x!) time and space.

Proof: Follows from Theorems 2.2 and 3.3 and the above

discussion.

Because of the extra overhead and complexity the above

extension entails, it would certainly have a worse average-case

behavior than the original LL_Corrector. Thus we do not expect
that it would ever be used in practice. Nevertheless, it is of
value in showing that efficient (i.e., linear) LL{]l) correctors

can always be constructed.



4. Implementation and Test Results

The LL_corrector algorithm has been implemented and tested
on a number of LL{!l) grammars, including ones for Pascal and a
variant of ALGOL 64. The speed of table generation was gquite
acceptable, requiring about 68 seconds to compute and store the S

and E tables for the ALGOL grammar A_<n_umw. _<:_nm_.

1=174}
and about 70 seconds for the Pascal grammar A_<n_umq~ ~<:_n_ww~
|Pi=251) on a Digital Equipment VAX-11/788. Total sizes for the
D, S8 and E tables were 37K bytes for the ALGOL grammar and 4€K
bytes for the Pascal grammar. Only a small fraction of the
tables need be kept in main storage. The D and S tables, which
are fairly small, would normally be stored in main memory, but
the E table, which accounts for most of the total space
requirement, can easily be kept in secondary storage, since only
one column of the table is needed for each call to LL_Insert.
Execution of the correction algorithm is very fast, requiring an
average of 9 milliseconds per correction (excluding Eile access

time).

As mentioned in section 3, usually very few iterations of
the loop in LL_Corrector (i.e., calls to LL_Insert) are needed to
determine a locally optimal correction. Qur measurements
indicate that with fairly well-tuned correction costs, a deletion

is considered in only about 508% of the corrections. In very few

18

cases 1is deletion of more than one symbol considered. Thus

deletions have only a small impact on the speed of the corrector.

The following short program (adapted from [9]1) provides
examples of the kinds of corrections effected by LL_Corrector.
The correction costs used are 1listed in appendix A.l. The
original program is first presented using a "T" to flag symbols
considered erroneous. Next, the corrections performed by the
algorithm are displayed with insertions underlined with *'s for

emphasis and deletions "commented out” with '{' and '}'.

The original program:

l. program ex(input, output);
2. var a: array [ i : 18 ] of integer;

T
3. b: array [ 1..18 2..20 ] m
1
4. i, 3, k, 1 : integer;
5. begin
6. 75 i +3 >k +1+4
1
7. then write (i ; )
T 1
8. b l, 2] :=3* (i/+ 3 ;
11 ﬂ_ﬁ T H
9. if i = | then then goto I;
S



The corrected program:

I. program ex (input,. output) ;
2. var a: array [ i {:} .. 18 ] of integer;

* %

3. b: array [ 1..18 , 2..28 |} of id

* * Kk ok k
4. i, 3, k, 1 : integer;:
5. begin
6. T i :=+ 3>k +1+4

*k
7. ; if constant then write (i) {1}
Xr I AK K hk kKK Xk *
8. b=1 {,} +2 (I} sid=3* i/ #5303
* % * LR & *

9. if i = | then if constant then goto I:

FERAKKRKKR KR RRIAITER
16. end {end} .

Most of the corrections performed in the above example are
guite reasonable, but a few point up limitations of our approach.
For example, in line 6, 'if' should probably be inserted before

1j'. Such a correction cannot be performed by LL _Corrector (or

most other correction technigues) because ti' has already been
consumed by the parser when the error is detected. Some
correctors ([81, [9]) advocate a "backward move" in such a
situation but this can be very difficult in a one-pass compiler
since symbols accepted by the parser may already have been
translated. Graham, Haley and Joy {8] suggest that backward
moves be limited to terminal symbols which have not yet been
reduced (to guarantee that no semantic actions need to be
"undone") . Unfortunately, this approach (designed for LALR(1l)

parsers) is not suitable for LL{1) parsers, as semantic actions,

20

initiated by action symbols, can occur at any point during a

parse.

An interesting alternative is the use of error productions

as discussed in [5]. The idea here is to augment a grammar with
productions which anticipate certain syntax errors. Thus an
expression might be allowed to begin a statement to provide for a

missing statement header (e.g., an if, while, case, etc.). This

approach has been tested with LALR{!) grammars and appears to be
very effective. Because LL(l) grammars are more restrictive than
LALR(1} grammars, error productions may be more difficult to use
with LL(i) parsers. Nevertheless, such productions are an
extremely promising way of dealing with problems such as missing

statement headers because they can be employed without any

changes at all to the parser and error corrector being used.

Another difficulty appears in line 8 in which ...b(},2]...
is probably intended. The difficulty here is that LL_Corrector
seeks only local optimality {i.e., a least-cost way of making the
first non-deleted input symbol acceptable). In this case, the
locally optimal correction (insertion of ‘':=') 1leads to later
spurious errors. This choice can be avoided if more context is
made available (e.g., via a “forward move" phase as suggested by
([81, 91, (121N. However once again this is a substantial
extension to the correction process and it can have undesirable

interactions with the rest of the compilation process. Aan
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alternate way of viewing the problem is that context-sensitive
rules (e.g., type and scope rules) are ignored in the correction
process. Thus the correction LL_Corrector chooses is wrong
because "b" is an array and may not be assigned an integer value.
Indeed, had the input been ...i I, 2] ..., a forward move scheme
might again insert a '[' after the 'i', although in this case

context-sensitive rules would bar such a correction.

The problem of using context-sensitive information in the
correction process has been studied in [2]. This approach,
although as yet untested, seems to have great potential for
improving the overall gquality of the correction process. Other
correctors ([3],. [8]) wutilize context-sensitive information by
calling semantic routines to determine the appropriateness of a
proposed correction. This method can be fairly effective but
care is required to ensure that semantic routines called from an
error corrector have no side effects (sincde proposed corrections
are only tentative). A more serious difficulty is that knowledge
of context-sensitive issues must be built directly into an error
corrector (so that, e.g., it knows which semantic routines to

call). Further, this must usually be done in an ad-hoc manner.

In this case, error productions are again an interesting
alternative because they allow an extant corrector (such as
LL_Corrector) to be employed without modification. The idea here

is to add new symbols and productions to represent some

22

context-sensitive rules. Thus rather than just having a single
terminal symbol, 'id', we might have a number of identifiers
representing various classes of identifiers (e.g., <array id>,
<scalar id>, <procedure id>, etc.). Note that such information
can readily be determined by a scanner by merely doing a
symbol-table lookup before returning a token to the parser. Now
the grammar can be modified so that a '[' can follow an <array
id> but not a <scalar id> or <procedure id>. This allows us to
lower the <cost of inserting a '[' since we have restricted the
context in which a '{[' may appear. Modifications such as these
to the wunderlying grammar, although fairly straightforward, are
extremely useful in enhancing the performance of LL Corrector at
a very modest cost. As another example, note that it is very
easy to add another identifier class, <undeclared id>. Deletion
costs can be set so that it is much cheaper to delete an
<undeclared id> than it is to delete other sorts of identifiers.
This allows the correction process to be much more discerning in
determining which symbols are to be considered correct and which

are to be considered suspect.

It is clear that the behavior of any error-corrector can be
considerably altered by changes to the cost functions. The
“"optimal" selection of correction costs is, however, a difficult
problem, and is usually dealt with in an ad-hoc¢ manner. Two sets

of costs used in our experiments are listed in appendices A.}l and
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A.2; another set may be found in [!5}. The interested reader may

find a more detailed discussion of cost selection in fl41.

To evaluate the performance of our error-corrector, we
adopted the criteria of Pennello and DeRemer [12]: a repair is
rated "excellent” if it repairs the text as a human reader would,
"good"” if the repair is not what a human would do but
nevertheless is reasonable and introduces no spurious errors, and
"poor" if the repair results in one or more spurious errors. By
these criteria, LL_Corrector, in the above example, performed 8

excellent corrections, | good correction and 2 poor corrections®.

We compared LL Corrector with the Simple Precedence
corrector of Graham and Rhodes [9], the SLR(l) corrector of Tai
{15], and the “insertion-only" LL(I) corrector of [6]. All four
techniques were applied to a 63 statement ALGOL program from

[14]. The correction costs used by LL Corrector are listed in

appendix A.2.

mmwmhwocm errors, induced by an error corrector, are not included
in error counts as they are not considered "real" user errors.
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Excellent Good Poor
LL(1} [6] 45% 26% 29%
SP [9] 40% 42% 18%
SLR(i) [15] 41% 518 8%
LL_Corrector 61% 25% 14%

The performance of LL_Corrector is rather impressive and is
certainly comparable, or superior to, the other correction
algorithms. It is important to note that the performance of
LL _Corrector on the above test program is exactly the same as
that of LR Corrector [41, an LR-based error corrector
implementing the same 1locally least-cost model of correction.
This emphasizes the value of having a high-level correction model

in which details of the context-free grammar and parsing

technique being used can be completely ignored.

More interestingly, tne simplified version of LL Corrector
suggested in section 3 (which considers deletions only as long as
progressively cheaper corrections are found), also performed

exactly the same as LL Corrector on the test program. In fact,

in almost all of our tests, the simplifed LL_Corrector routine

produced results identical to LL Corrector. Only when presented



with very ill-formed inputs {e.g.., several extra right
parentheses) did the modified LL_Corrector produce a non-locally
optimal repair. This then suggests that this simplified routine
can indeed be used as the basis of a very efficient and effective

error recovery scheme.

In judging the above performance figures, it is important to
note that the performance criteria used are rather subjective and
open to a wide degree of interpretation. Thus, we adjudged a

correction poor whenever it led to subsequent "spurious” errors.

In cases where a ‘cluster" of errors appear, however, it is
natural for LL_Corrector to sometimes do a correction

incrementally, with one invocation effecting part of a

correction, and subsequent invocations completing the correction.
Consider, for example, an error such as ...i 1= * / i;... One
possible correction would be to delete both '*' and '/', which
would be rated "good" or even “"excellent." LL _Corrector, on the
other hand, would correct the error in two steps: first an 'id’'
would be inserted before the '*', then, on a subseguent
invocation, the e would be deleted. By our strict
interpretation, the first error repair must be deemed poor as it
induces a spurious error. But the overall correction obtained,
vesi = id * i;... 1is comparable in quality to ...i := i;... as
both require two repair operations. This suggests a slightly
weaker definition of a poor correction: a correction is poor if

it, and any subsequent corrections it induces, are manifestly
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inferior to what a human would choose. Thus the correction
performed in line 8 of the example is still considered poor
because of the large number of unnecessary correction actions it
induces. The correction of S L A T into
ceadi = id * i;... however, is (more reasonably) rated "good"
under our revised definition. Using this revised definition, the
performance of LL Corrector on the ALGOL test program iS now:
61% excellent, 33% good and only 6% poor. These figures seem
representative of LL Corrector's performance on "typical" user
programs and certainly suggest that the algorithm's behavior is

satisfactory for all but the most demanding of compilers.

It is interesting to compare LL_Corrector's performance with
that of the LL Insert routine when it alone is used as an
"insertion~only*” error corrector. The difference in performance
between the two is almost wholly’ attributable to the Ffact that
deletion operations are eschewed by LL_Insert. As indicated

above, the main difference between the two 1is an increase of
about 15% in the number of ‘“poor" corrections attributed to
LL_Insert. This figure is then an estimate of the fraction of
syntax errors which require deletion operations to effect a

satisfactory repair. It is a bit surprising that the figure is

so low, and it tends to support the conjecture of [6] that an

7The two correctors used somewhat different insertion costs.
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insertion-only corrector can be used in practice with

satisfactory results.

5. Conclusion

The error corrector presented has many attractive
properties. It presents a very high level correction model in
which corrections - are determined solely by correction costs and
the language being processed. The corrector is usable with any
LL({!} grammar and is automatically generable. The technique can
be guaranteed to handle correctly any input and all corrections
are locally optimal. In cases of practical interest linearity
can easily be established. The correction algorithm can be
simplified by eliminating the queuing of input symbols as
deletions are considered. The resulting routine performs almost
as well as the original and seems especially well suited for use

in error recovery.

Test results are equally encouraging. The «corrector has
little impact on parsing speed even when processing very
ili-formed inputs. Primary memory requirements are minor because

most of the error tables can be kept on secondary stqrage. The
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quality of the error corrections obtained appears to be

satisfactory for all but the most demanding of applications.

This correction technique can be used as a basis for further
research into more advanced aspects of error correction. The
gquestion of how best to assign correction costs for common
programming languages needs a great deal of study. So too, ways
of extending the limits of this method need to be explored. As
described in ([5], judiciously chosen error productions seem to be
of great value in handling certain difficult cases. Ways of

increasing the context available in choosing corrections (as

suggested, e.g., in {[13]) without unduly impacting the structure

or efficiency of the host compiler are of interest. Because of
the predictive nature of LL(i) parsing, this should be easier
(and cheaper) to do than in LR~-based error correctors. Also,

methods which include context-sensitive considerations (e.g.,

type and scoping rules) in the correction process, as described
in [2], bhave the potential to greatly enhance overall correction

quality and certainly deserve careful study.

In summary, the LL(]) error corrector presented occupies a

middle position in the spectrum of known error correctors. It is

powerful enough to be used in quality compilers but is also
simple enough to avoid the costs and complexities of more

elaborate schemes. As such, we believe it to be a useful
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addition to the repertoire of context-free correction techniques

and a valuable tool in building modern compilers.
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Appendix A.l =~ Pascal Correction Costs

landlarraylbeginlcaselconstidividowntolelselend |

| Insertion | 5t 181 18 { 18| 181 41 8 16 18 |

| Deletion | S| 20 ] 281 2861 201 41 18 | 181 15 |

ifilelfor{forwardlfunctionlgotolifilabellinillinoti

| Insertion | 180 | 18] 180 | 15 |6 118) 18 | 51 5§
| Deletion | 28 | 28} 28 i 25 |1 j208] 28 tis | 5 |
loflorlpackediprocedurelprogramirecordlirepeat ]
| Insertion | 5} 51 18 | 15 | 5 118 | 10 |
| Deletion | 8} 5| 18 | 25 | 5 1 28 i 28 |
Isetithenitoltypeluntillivariwhilelwith|constant |

{ Insertion | 18] 8 | 8] 18 | 8 | 18l 186} 18 |} 5 |

| Deletion | 15} 20 |12} 26 | 18 | 2@} 28 i 28} IS5 |

jidentifierirelational opl:=| ,| .l..1 1 2] TI+}

| Insertion | 8 i 4 | 41 41 7] 41 41 7] 514}
| Deletion | 15 | 4 I ol 8f 8] 8llal 71 6141

=ttty b1 1=1

| Insertion | 4 | 4 | 4 | i8{ 4 | 18] 4 ] 4

| Deletion | 4 | 4 | 4 { 261 51 2861 51| 4}
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Appendix A.2 - ALGOL 68 Correction Costs

landlarraylbeginlbooleanldoiendielselfaiselfor |

| Insertion | 6 { 1i | 18 | g 18}/ 81 61 7 118 |

| Deletion | 6 | 28 | 28 | 28 J151i5 1 18 | 15 | 25

Igollabellifiintegerinotioriownliprocedureiread |

I Insertion | 91 11 |15] 18 1 61 61 181 12 | 18 I

| Deletion | 5| 26 |25] 2@ i 6 1 6] 201 25 I 28 i

lreallsteplstringiswitchlthenlitoltrueluntil |

| Insertion } 16 { 8} 11 | 11 | 6] 9 71 8 I

lvaluelwhilelwritelidentifier|string const |

! Insertion | 11 | 18] 18 | 8 | 7 ]

j Deletion | 286 | 28 | 28 | 15 ] 15 |

larith constlrelational opl ;| +1 =| *} /i//1** |

| Insertion | 6 i 5 i 51 5] 51 5} 51 61 5 |

| Deletion | I5 | 5 1141 5} 51 51 51 51 5 |

boob=>i==1 1 i sle=l (0 )1 () 1§

| Insertion | 4] 6} 61 41id] 8} 9118) 4{i8] 7|

| Deletion 18] 61 61 828! 8] 9/28]106/20]118}
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