st

R

i

=

55

T
Wt

P
o
y

£
o S
fg
.

.

.

-

i
.

.

-

o

i

.

-

e
W

-

L
D

.
L
.

.

-
.
o
-
¢ -
. e
_ -

.

oo

o - =

2

.. _ .
L & “

.

.

.

-

o

oo g
r____

.
.

"g
-

|

.

o
o

O

.

o

.

- -

<«

=
.
-

Lo
.
.

DESIGN CONSIDERATIONS FOR DATA-FLOW
DATABASE MACHINES
by

Haran Boral
David J. DeWitt

-
-
-
.
<

=
oo

Computer Sciences Technical Report #369

October 1979

Design Considerations
for
Data-flow Database Machines

Haran Boral
David J. DeWitt
Computer Sciences Department
University of Wisconsin
Madison, Wisconsin
Usa

This research was partially supported by the National Science
Foundation under grant MCS78-7#1721 and the United States Army

under contracts #DAAG29-79-C-#1455 and #DAAG29-75-C-03024.

ABSTRACT

This paper presents a discussion of the application of
data-flow machine concepts to the design and implementation of
database machines which execute relational algebra queries.
Three levels. of operand granularity for data-flow database
machines are introduced and compared. We demonstrate, that
relation~level granularity 1is too <coarse and that tuple-level
granularity is too fine. The third level of granularity, a page
of a relation, is shown to be the best choice from both hardware
and software viewpoints. Finally a preliminary design for a
data-flow database machine which utilizes page-level granularity
and supports distributed control of instruction execution 1is
presented.

1.8 Introduction

During the past several years we have been investigating the
design and implementation of multiprocessor database machines for
the execution of relational algebra queries. In [1,2] the archi-
tecture of DIRECT, a MIMD database machine, is described. The
problem of relation fragmentation and its impact on query execu-
tion time is discussed in [3]1. In [4], four processor assignment
strategies for MIMD database machines are described and evaluat-
ed. One of the primary results presented in [4] is that the ap-
plication of data-flow machine techniques to the processing of
relational algebra queries significantly enhances system perfor-
mance. However, it leaves open several questions about data-flow
database machines which we intend to address in this and future
papers.

In Section 2.0, we introduce the basic concepts of query
processing and data-flow machines. 1In Section 3.4, three levels
of operand granularity for data-flow database machines are intro-
duced and compared. We will demonstrate, that relation-level
granularity is too coarse and that tuple-level granularity is too
fine. The third level of granularity, a page of a relation, is
shown to be the best <choice from both hardware and software

viewpoints. Then, in Section 4.8, a preliminary design for a

data-flow database machine which supports page-level granularity
is presented.

The architecture of [1,2] is that of a data-flow machine

where all the control functions are centralized. We would like
to design a machine with distributed control. Past work [3,4]
has strongly suggested that there are a large number of hidden
problems. Consequently we feel that one is well advised to move
towards a design with distributed control in several steps. This

paper is our first such step.

2.0 Background

2.1 Relational Query Processing

Each relational algebra query is generally comprised of one
or more relational algebra operations (instructions) and is or-
ganized in the form of a tree. Each node, represents an operation
to be performed on a number of relations. Some examples are res-—
trict, join, append, and delete. Nodes higher up 1in the tree
operate on relations computed by nodes below them. Figure 2.1
contains an example of a typical relational algebra query in the
form of a query tree.

In a relational database system one of the most time consum-
ing operations that must be performed is the join operator (a
conditional cross product of two relations). 1In [5]1, several al-
ternative Jjoin algorithms for uniprocessor systems are presented
aéd analyzed. The computational complexity of each ranges from
O(nlogn) for the ‘“sorted-merge" algorithm to O(n2) for the

"nested-loops” algorithm. While the nested-loops join algorithm

is the slowest on a single processor, it appears to be the best

J:Rel Rel, ,»Rel

12° 13 14

J:Rel Rel,,>Rel R:Re13+Re1

10° 11 12 13

R:Rel,»Rel

R:Rel,~Rel 5

1

10 11

R:Restrict
J:doin

Ficure 2.1

A SampLE Query TREE

algorithm for execution of the join operator on multiple proces-
sors. The algorithm works by joining each of n entities in one
relation (the outer relation) with all of the entities 1in the
other relation (the inner relation). If we consider an entity to
be a tuple and there are n processors available, then each pro-
cessor can Jjoin one tuple of the outer relation with the entire
inner relation. Therefore, the execution time will be 1/n th the
time required for a single processor to execute the join.

All the other algorithms presented in [51 involve performing
some operation on the entire relation (sorting it or creating an
index on some attribute). Although these algorithms can be per-
formed on a multiple processor system, they are difficult to im-
plement and at various points severely constrain the amount of

parallelism that can be exploited.

2.2 Data-flow Machines

A data-flow machine is an architecture devoid of a program
counter where instructions are enabled for execution as soon as
their operands are present. Such a machine consists of a memory
section, a processing section, and an interconnection device
between the two sections. A memory cell contains an instruction
and room for the operand data. As soon as all the required data
is present, the contents of the cell are sent to some processor
for execution. This frees the cell for the execution of the next
instruction. Output from the processor is sent via the intercon-

nection device to one or more memory cells, possibly enabling one

or more Instruction(s) 1n the destination cell(s).

Various architectures for data-flow machines have been pro-
posed [6-18]1. These architectures differ from each other in many
ways. One difference is the granularity of the operands and the
types of operations that the processors execute. For example,
Dennis [6] talks about assigning such instructions as add and
multiply to the processors whereas Arvind [7] and Rumbaugh [9]
assign entire procedures to processors.

For data-flow database machines there are also several al-
ternative variable granularities for enabling relational algebra
operators in the query tree. That is, the basic variable wused
for scheduling decisions can be a whole relation, a fragment of a
relation, or a single tuple. 1In Section 3.4, we will describe
and then contrast each of the these granularities.

In order to illustrate our ideas we chose to wuse the MIT
machine [A] as a model since it 1is easy to understand and
describe. Furthermore we feel that although the model differs
significantly from others the basic results remain unchanged.
The machine organization of Figure 2.2 depicts the model
described in [A]. 'Although later, more sophisticated, variations
have been described in the literature [10d] we feel that they do
not conceptually differ from the original.

In the machine of Fiqure 2.2 the interconnection mechanism

is divided into two sections. The arbitration network provides a
path from every memory cell to every processor. Enabled cells

travel through it to processors for execution. Result packets

Processing !
Unit 0
o f .
°)
° °
e °
rﬂmﬁPr«Dcesssing
Unit m r‘
S
Result Instruction
Packets Packets
Instruction e |
;;;i Cell 0
g .]
i Digtribution Arbitration
° ;
Network

b Network Memory

Instruction
3 Cell n-1

FIGURE 2.2

Tue MIT DaTa-Frow MAcCHINE MoDEL

——aresent—from-the— pProcessors “throu q h—thedistribution network to

the memory.

2.3 Relational Query Processing in Data-Flow Machines

We assume that the instruction 1in each memory cell
corresponds to a node in the query tree and that the data is
represented by page tables, pointing to pages either in a cache
or on mass storage. Thus a relation can also be thought of as a
stream [17] of pages (there is a close correspondence between the
stream operators of [18]1 and the page operations of [1,21). 1In
order to simplify our discussion we assume that at the time that
a memory cell fires, the associated data pages are retrieved from
a cache and placed, together with the control information, on the
arbitration network. Similarly, the distribution network places
output pages in the cache and updates the page tables in the tar-
get cells,.

The processing of queries in a data-flow fashion is related
to the 1idea of processing relational queries in a pipelined
fashion which has been previously suggested by Smith and Chang
[111 and Yao [l12]. There are, however, several important differ-
ences between the two approaches. The first deals with the
number of processors which can be used to execute each node in

the query tree. In the pipelined approach, there will be at most

one processor executing each node in the tree and therefore the

concurrency obtained will be limited by the number of nodes in

the query tree. In the data-flow approach we can have any number

of processors executing each node and can dynamically adjust
which processors are executing which nodes in the query tree in
order to maximize performance. The other major difference is
that in the data-flow approach we never need to wait for one node
to completely finish before initiating the subsequent operator as

has been suggested is necessary for pipelining [12].

3.9 Three Operand Granularities for Data-flow OQuery Processing

3.1 Relation=-level Granularity

The coarsest possible granularity for enabling 1instructions
is the relation. That is, a node in the query tree is enabled
for execution only when its source operand(s) has (have) been
completely computed. Clearly, if the query is in a tree format,
all leaf nodes are immediately executable. A node higher wup in
the query tree is enabled whenever all of its descendants have

finished executing.
3.2 Page-level Granularity

This approach is a variation of the relation-level granular-
ity except for the criterion which is used to enable instructions
in the query tree. 1In this approach a page of a relation (con-
taining a set of tuples) is used for scheduling decisions. This
means that an operator can be initiated as soon as at least one
page of each participating relation(s) exists. Assigning proces-

sors to operate on pages rather than relations offers the possi-

bility —of- having —a very flexible processor-allocation strateagy

(that is, an instruction's "needs"™ are evaluated more often).
Furthermore, it becomes possible to cut down on page traffic
between the data-flow machine memory and the mass storage
device(s) by distributing processors across all nodes of the tree
and pipelining pages of intermediate relations between them.

In order to evaluate data-flow query processing which em-
ploys relation-level granularity with page-level granularity a
simulation was implemented. While this simulation measures the
performance of each data-flow strategy on a multiprocessor organ-
ization [1,2] which is not a true data-flow machine (i.e. it has
centralized control), we feel that similar results would be ob-
tained if the strategies were tested on a machine with more de-
centralized control organization.

Using a benchmark containing ten queries (2 queries with 1
restrict operator only, 3 queries with 1 join and 2 restricts
each, 2 queries with 2 joins and 3 restricts each, 1 query with 3
joins and 4 restricts, 1 query with 4 joins and 4 restricts, and
1l query with 5 joins and 6 restricts), a relational database con-
taining 15 relations with a combined size of 5.5 megabytes, and
two memory cells for each processor, these two granularities were
compared. The results are presented in Figure 3.1. As illus-

trated by this experiment (and for 5 other tests presented 1in

[41), the page-level granularity generally outperforms
relational-level granularity by a factor of about two to one.

These results seem to verify the benefits of pipelining pages of

X104

20—
18
L [0 RELATION-LEVEL (RANULARITY
N < PAGE-LEVEL GRANULARITY
16—
" i
D =
g »
S I
CO b
i -
- 12f
g
Z —
= 101~
lL-l -
b "
— B[~
= _
& =
i e
- - 8_
e}
(—) -
L>L<.| L
Ll 4?
2...
ol—! ' | | Lt 1 | | |
g 10 20 30 40 50 60 70 80 80 100

NUMBER OF PROGCESSGRS

FIGURE 3.1

CoMPARISON OF PAGE-LEVEL AND RELATION-LEVEL GRANULARITIES

————relations—u p—t he —query tree ~inorder to minimize movement o f—data

between a shared data cache and secondary memory and, therefore

maximize system performance.
3.3 Tuple-level Granularity

In this approach a tuple of a relation is the basic unit
which 1is wused for scheduling decisions. This means that an
operator can be initiated as soon as at least one tuple of each
participating relation(s) exists. As with page-level granulari-
ty, this granularity also offers the possibility of having a
flexible processor allocation strateqy and pipelining tuples of
intermediate relations between nodes in the query tree.

There appear to be two primary hardware limitations of the
tuple-level granularity: the bandwidth requirements placed by
such an approach on the arbitration network and the movement of
data from the primary memory of the data-flow processor to mass
storage.

When the nested-loops join algorithm is applied with tuple-
level granularity, each tuple of the "outer" relation will be
joined with every tuple of the "inner" relation. Let the outer
relation be A and the inner relation be B. Assume that the
number of tuples in A is n and the number of tuples in B is m.

Furthermore, assume that each tuple in A and B is 198 bytes long

and that c¢ represents the number of overhead bytes associated
with each instruction that passes through the arbitration net-

work. Therefore to execute the join, n*m*(200+c) bytes will have

to pass from the memory through the arbitration unit to the pro-
cessing section.

Next consider the bandwidth requirements if this same exam-
ple 1is executed using page-level granularity. Assume that each
page is 1400 bytes long. Therefore, relation A occupies n/10
pages and relation B occupies m/l@ pages. The number of bytes
that must pass through the arbitration unit is thus n/16 * m/10 *
(20808 + c), which reduces to n*m* (280 + c/144) bytes. Even if one
ignores the overhead of sending a packet (which is probably the
same for both granularities), the bandwidth requirements of the
page approach is 1/18 that of the tuple level approach.

While increasing the page size to 14,7¢0 bytes will obvious-
ly decrease the arbitration network bandwidth requirements by
another order of magnitude, such an éhcrease may have an adverse
effect on query execution time because it may reduce the maximum
degree of concurrency which is possible. 1If, for example, the
number of processors available for query execution is approxi-
mately equal to n * m, then tuple-level granularity 1is optimal.
We feel that this is unlikely as typically the value of n * m
will be in the millions. Therefore for typical queries (unless
there are millions of processors), tuple-level granularity places
an unnecessary burden on the arbitration network without an ap-
parent increase in performance. By sending pages of relations
to the processors, a similar degree of concurrency can be
achieved while minimizing network traffic.

The second problem caused by tuple-level granularity ap-

-1~

proach is that of memory management. An efficient mechanism must

be provided to facilitate data transfers between the mass storage
units and the cache memory. Any such mechanism relies on block
transfers of data. Thus a relation in a database must be divided
into a number of fixed size data pages. When looking for a can-
didate page in the cache to be thrown out the memory manager now
must know whether additional tuples are expected to be placed in
a padge or not. One possible solution is to provide a second
cache for tuples which are produced without a page to place them
in. Although plausible, this considerably complicates the func-

tion of the memory manager.
4.9 A Preliminary Data-flow Database Machine

Based on our experience in the areas of database machine
design and query processing in MIMD organizations, we have iden-
tified the following requirements for data~-flow database
machines. We feel each is very important for database machines in
general and data-flow database machines in particular:

1) Concurrency Control. We feel that a database machine, in

addition to the execution of a single query tree by several pro-
cessors, must be able to support the simultaneous execution of
multiple queries from several users if system resources are to be

effectively utilized. This reguires careful control of which

queries are permitted to execute concurrently.

2) Distributed instruction initiation and control. In

(6,131, the arbitration and distribution networks are responsible

~11-

for instruction initiation and data distribution. The arbitra-
tion network, in particular, provides a mechanism for initiating
several enabled instructions simultaneously. For data-flow data-
base machines, these networks are too general purpose. Instead
the functions of each can be distributed thereby simplifying the
complexities of these networks. This can be done without degrad-
ing performance since packets originating from one cell are sent
to a fixed subset of the processors.

3) Flexible processor assignment arrangement. In order to

optimally wutilize the processors available, it must be possible
to assign either one or all of the processors to an instruction.

4) Broadcast facility for join operations. When more than

one processor is used to executed the "nested-loops" join algo-
rithm, each processor will join a distinct set of pages from the
outer relation with all the pages of the inner relation. In ord-
er to minimize data movement, a broadcast facility is needed so
that a page from the inner relation can be distributed to some or
all of the participating processors simultaneously. DIRECT [1,2]
utilizes a cross-point switch to achieve this facility.

5) Expandability and Reliability. The database machine

design should permit the addition of additional processors in a
simple and straightforward manner and should be able to survive

an arbitrary number of disabled processors.

-12-

4~l-Hardware—Organization—andGeneral Operation

After careful consideration of the requirements for a data-
flow database machine which were discussed above, we have
developed a ring-based organization which is shown in Figqure 4.1
below. This organization contains six major components:

1) The master controller (MC).

2) A set of instruction controllers (IC).

3) A communications ring (inner ring) connecting the master

controller with the instruction controllers.

4) A mass storage system with a multiport disk cache.

5) A set of instruction processors (IP).

) A communications ring (outer ring) connecting the 1in-

struction processors with the instruction controllers.

The MC serves a number of functions. The first is to handle
communications with the host processor. When a user's query (in
the form of a query tree) is received by the MC it is placed in a
queue of queries awaiting execution. When system resources (ICs
and IPs) become available, the MC removes the next query from the
queue, checks it for concurrency conflicts with other executing
queries, and then distributes a subset of the instructions from
the query to a set of instruction controllers. The other func-

tions of the MC are to control wutilization of the disk cache

amonqg the ICs and to control instruction processor allocation.
The set of instruction controllers forms a distributed arbi-

tration network. Each IC is generally responsible for control-

HOST

MC
‘IEEEEIIIr

IC

FIGure 4.1

USER
USER

USERn

A DaTa-Frow DaTaBASE MAcHINE CONFIGURATION

-] 3=

ling the execution of one instruction (e.g. a restrict, Jjoin,

etc.) from a query. However, the situation may occur when a IC
is controlling the execution of one instruction while receiving
data for another instruction.

Controlling an instruction involves first acquiring a set of
instruction processors from the MC and then distributing instruc-
tion packets (see Section 4.2) to the IPs which are allocated to
the instruction by the MC. Thus the ICs compete with each other
for the processors in the IP pool. The MC is responsible for ar-
bitration of the requests in a manner which maximizes system per-
formance by insuring that processors are distributed across all
nodes in the query tree.

Each IC has a local memory for pages of source relations
which will be used as operands in the instruction packets it dis-
tributes to the IPs. When the local memory of an IC fills, the
IC will write the least desirable pages to its seagment of the
multiport disk cache. One possible approach for controlling
usage of the disk cache is to divide it among the ICs according
to the number of IPs each is controlling. When an IC fills its
segment of the disk cache, pages will be swapped out to disk.
Thus, the IC local memory, the disk cache, and the mass storage
devices form a three-level storage hierarchy.

IPs are responsible for executing instruction packets which

are placed on the outer ring by the ICs. When an IP receives an
instruction packet addressed to it, it performs the operation

specified 1in the packet and then produces an output packet. The

-14-

IP then places the output packet on the outer ring and sends it
to the 1IC which 1is responsible for controlling the subsequent
operation in the query tree. Thus, the IPs and the outer ring
form a distributed distribution network for result packets.

The inner ring, as has been discussed above, is used ex-
clusively for distribution of instructions and other other con-
trol messages by the MC. Since the messages required for such
activities are small and limited in number, a bandwidth of 1-2
million bits per second (Mbps) should be sufficient.

The outer ring, on the other hand, is used for distribution
of instructions and result packets by the ICs and IPs. Figure
4.2 represents the bandwidth requirements of DIRECT (4] with
page-level granularity for the test data described in section
3.2. The following assumptions were made:

- 16K byte operands for instruction packets

- PDP LSI-1lls as IPs (can read a 16K byte page in 33ms)

- The data cache is constructed from Intel 2314 CCD chips

- Two IBM 3330 disk drives for mass storage of relations

- A cross-bar switch with broadcast capabilities is used
to connect the IPs with the data cache.

The bandwidth for each of the different processor levels was
obtained by dividing the total number of bytes transferred by the
execution time of the benchmark containing ten queries. Thus,
the bandwidth values represent average values and not peak load
values,.

The ring organization which we propose to employ 1is that

X10

10

ByTES/SECOND

15 20 30 20 50 50 70 80 90
NUMBER OF PROCESSORS
FiGcure 4,2

BANDWIDTH REQUIREMENTS oF DIRECT

-15-

which is used in the Distributed Loop Computer Network [13].
This network employs a technique known as shift-register inser-
tion and can handle the transmission of variable length messages.
It has been demonstrated [14] superior in several aspects to
Newhall [15] and Pierce [1A] loops. If 25 ns shift registers are
used (AM25LS1A4 and 299), a ring bandwidth of 49 Mbps can be ob-
tained. As indicated by Figure 4.2, this is sufficient for up to
53 instruction processors. For larger configurations requiring
bandwidths of up to 100 Mbps there appear to be two alternatives.
One expensive option is to use ECL shift registers which <can be
shifted at the rate of 1 bit per nanosecond for the loop medium.
A more appealing alternative are loops constructed using fiber
optic technology. Fiber optics can support bandwidths of 444
Mbps [17]1 and should be commercially available in the next 5-10

years.
4.2 Instruction Control and‘Execution

When an instruction is assigned to an IC it can be in one of
two states. If the instruction's operand(s) are source relations
in the database, then the instruction is ready to be executed. In
this case the MC will also send to the IC a page table describing

each operand. Otherwise, if the instruction is not enabled, the

IC will first create a page table for each operand of the in-

struction and then wait for pages of the source operand(s) to ar-
rive from IPs being controlled by another IC. As pages (which

may not be full) arrive, they are compressed to form full pages

. P

[3]1 _and then =tored~in~thew{GJsW&oca%*memory‘orfits Segment of

the disk cache.

When an IC is ready to initiate the execution of an instruc-
tion (i.e. at least one page of each operand is present), the IC
first sends a control packet to the MC which requests an initial
allocation of 1IPs and disk cache page frames. If the requested
allocation cannot be fully satisfied, the MC will respond with a
list of the 1IPs and page frames which are currently available.
When another instruction ﬁas terminated, the MC will send the
remaining requested resources to the IC.

After the IC has acquired a set of IPs and disk cache page
frames it is ready to initiate the instruction by sending in-
struction packets to the IPs it is controlling. The packet for-
mat which is employed is shown in Figure 4.3. The destination of
the packet is controlled by the IPid field. Upon receipt the IP
applies the operation code to the data pages contained in the
packet. Tuples of the result relation are first placed by the IP
in an internal buffer. After the packet has been executed, the
next step taken by the IP is controlled by the "flush-when-done"
flag in the 1instruction packet. If the value of this flag is
"ves", the IP places the result tuples in a result packet (Figure
4.4) and sends the packet to the IC specified by the "ICid of

destination" field of the instruction packet via the outer rina.

After the result packet is sent or when the value of the
"flush-when-done®" flag is "no", the IP sends a control packet

(Figure 4.5) to the IC which sent the instruction packet. This

RESULT
OPERAND

ONE FOR
EACH

SOURCE
OPERAND

[PiD

PACKET LENGTH

Query Ip

[Cip oF SENDER

ICip oF DESTINATION

"FLusSH-WHEN-DONE"” FLAG

INSTRUCTION OPCODE

RELATION NAME

TuPLE LENGTH & FoRMAT

oF SoURCE OPERANDS

- RELATION NAME

TurPLE LENGTH & FORMAT

(PaGce LENGTH

DaTA Pace

-

FIGURE 4.3

INSTRUCTION PACKET FORMAT

ICiD

PACKET LENGTH

RELATION NAME

PAGE LENGTH

DaTA PacEe

FIGURE 4.4

RESULT PACKET FORMAT

ICip

PACKET LENGTH

[P1D oF SENDER

MESSAGE

FIGURE 4,5
CoNTROL PACKET FORMAT

-17-

is an indication that the IP has finished the task assigned and
is ready for further work.

If the instruction being performed is a restrict operation,
the IC can respond to this "done" signal, by sending the IP
another data page from the source relation. If this is the last
instruction packet to be sent to the IP, then the IC will set the
"flush-when-done" field to yes. Then, when the IP sends the next
"done" control ©packet, the IC can release the IP by sending a
control packet to the MC releasing the IP.

When an IP first receives an instruction packet for a join
operation, it sets wup an "inner-relation control" (IRC) vector
with one entry for each page of the inner relation. (Initially
this vector will have only one entry, but the vector will grow as
execution of the instruction progresses.) After the IP has joined
the first page of the outer relation with the first page of the
inner relation (the two operands in the packet), the IP will send
a "done" control packet to the controlling IC. Included in this
packet will be a request for the second page of the inner rela-

tion. The IC responds to this request by broadcasting the re-

quested page to all IPs which are executing the join. (An IP can
determine if a broadcast packet is meant for it by examining the
Query ID field of the packet). Subsequent requests for the same
page which are received by the IC "soon" afterwards can be ig-
nored.

Each IP which receives the broadcast packet can be in one of

several states. If the IP has already sent or is about to send a

-]18-

request for the same page to the IC, then the IP can proceed to

join the new page of the inner relation with its current page of
the outer and update its IRC vector appropriately. If the 1IpP
does not have room in its local memory for the broadcast page, it
will ignore the packet. However, the following scenario may ocC-
cur. Because 1its 1local buffer is full, an IP ignores page i of
the inner relation. When broadcast page i+l is received (before
it or page i has been solicited by the IP), the IP will read page
i+l and use it as an operand page. This situation can continue
until a packet is received which indicates that this is the last
page of the inner relation. At this point each IP will examine
its IRC vector and then proceed to request those pages which it
missed. When the IP has joined the current page of the outer re-
lation with all the pages of the inner relation, it will first
zero its IRC vector and then signal the IC that it is ready for
another page of the outer relation which has not yet been distri-
buted to an IP. 1In this way message traffic on the outer ring
1s minimized and yet correct operation of the Jjoin can be

guaranteed.
5.0 Conclusions and Future Research

In this paper we have discussed alternative operand granu-

larities for data=flow database machines and have demenstrated——

that page-level granularity is the best choice for optimum system
performance. We have also presented a preliminary design for a

data-flow database machine which utilizes page-level granularity

-19-

and supports distributed control of instruction execution.

There are several features of our proposed design with which
we are not completely satisfied. 1In particular, we feel that it
should be possible to route some of the data pages which are pro-
duced by IPs directly from one IP to another without first send-
ing the page to an IC. If such an approach could be successfully
implemented then message traffic on the outer ring could be
furthér reduced. There appears, however, to be a tradeoff
between decreased message traffic and increased IP complexity
which needs further examination before the correct approach can
be chosen.

Two other areas which need additional research are algo-
rithms for performing the project operator (elimination of
unwanted attributes and duplicate tuples) using multiple proces-—
sors, and concurrency control. We have been examining the problem
of the project operator for several months and have not vyet
developed an algorithm for which a high degree of parallelism can
be maintained for the duration of the operator. We are also
finalizing the design of a concurrency control mechanism for
DIRECT and need to examine the effect of distributed instruction
control on it.

With regard to equipment, we are in the process of acquiring
ten PDP LSI-11/23 processors with ©NSF equipment grant MCS79-
@7514. These ten processors along with the five LSI-1lls and the
multiport CCD memory currently being used for DIRECT should give

us a basis for a future implementation of a data-flow database

20~

machine if suitable ring network hardware can be obtained.

5.0 Acknowledgements

Kevin Wilkinson's diligence and patience in 1listening and

commenting on ideas is much appreciated.

REFERENCES

1. DeWitt, D.J., "DIRECT - A Multiprocessor Organization for
Supporting Relational Database Management Systems," Proceed-—
ings of the 5th Annual Symposium on Computer Architecture,
April 1978, pp. 182-1809,

2. DeWitt, D.J., "DIRECT - A Multiprocessor Organization for
Supporting Relational Database Management Systems," IEEE
Transactions on Computers, June 1979, pp. 395-40A. Also:
Computer Sciences Technical Report #325, Univ. of Wisconsin,
June 1978.

3. DeWitt, D.J., "Query Execution in DIRECT", Proceedings of
the ACM-SIGMOD 1979 International Conference of Management
of Data, May 1979, pp 13-22.

4, Boral, H., and D.J. DeWitt, "Processor Allocation Strategies
for Multiprocessor Database Machines,” submitted to ACM
Transactions on Database Systems. Also Computer Sciences
Technical Report No. 368, University of Wisconsin, October
1979.

5. Blasgen, M.W., and K.P. Eswaran, "Storage and Access in Re-
lational Data Bases," IBM System Journal Vol. 1A, No. 4,
1977, pp. 3A3-378.

6. Dennis, J.B., and D.P. Misunas, "A Preliminary Architecture
for a Basic Data-Flow Processor,"The 2nd Annual Symposium on
Computer Architecture: Conference Proceedings, January 1975,
pp.126-132.

Lo Arvind, and K.P. Gostelow, "A Computer Capable of Exchanging——

Processors for Time," Information Processing 77: Proceedings
of IFIP Congress 77, (B. Gilchrist, Ed.), August 1977, pp
849-853,

8. Davis, A.L., "The Architecture of DDMl: A Recursively Struc-
tured Data Driven Machine," Proceedings of the 5th Annual

1a.

11.

12.

13.

14.

15.

.1-6.

17.

-21-

Symposium on Computer Architecture, April 1978, pp. 210-215,

Rumbaugh, J.E., "A Data Flow Multiprocessor," IEEE Transac-
tions on Computers, February 1977, pp. 138-146.

Dennis, J.B., and K.S. Weng, "An Abstract Implementation for
Concurrent Computation with Streams," Proceedings of the

1979 International Conference on Parallel Processing, August
1979, pp. 35-45,.

Smith, J.M., and P. Chang, "Optimizing the Performance of a
Relational Algebra Database Interface," CACM Vol. 18, No.
14, October 1975, pp. 558-579.

Yao, S. Bing, "Optimization of Query Evaluation Algorithms,"
ACM Transactions on Database Systems, Vol. 4, No. 2, June
1979, pp. 133-155.

Liu, M.T., and C.C. Reames, "A Loop Network for the Simul-
taneous Transmission of Variable Length Messages," Proceed-
ings of the 2nd Annual Conference on Computer Architecture,
January 1975, pp. 7-12.

Reames, C.C. and M.T. Liu, "Design and Simulation of the
Distributed Loop Computer Network," Proceedings of the 3rd
Annual Conference on Computer Architecture, 1974, pp. 124-
129 -

Farmer, W.D. and E.E. Newhall, "An Experimental Distributed
Switching System to Handle Bursty Computer Traffic,"
Proceedings of the ACM Symposium on Data Communications,
Pine Mountain, GA, October 1969, pp. 1-33.

pierce, J.R, "Network for Block Switching of Data," Bell
System Technical Journal, Vol. 51, No. 3, July/August 1972,
pp. 1133-1143.

Frazer, W.D., "Potential Technology Implications for Comput-
ers and Telecommunications in the 198@s," IBM Systems Jour-
nal, Vol. 18, No. 2, 1979, pp. 333-347.

