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ABSTRACT

Iterative methods for solving elliptic difference equations have

received new attention because of the recent advent of novel computer
architectures and a growing interest in three-dimensional problems.

The fundamental characteristic of an iterative method is its rate of
convergence. We present here, in the context of the model problem in

two and three dimensions, a very simple theory for determining the

rates of convergence of block iterative schemes. This theory is easily
extended to general domains, general elliptic problems, and higher

dimensions.






Introduction

Some 15-20 years ago there was considerable interest in iterative
methods for elliptic difference equations - see [13],[14],[18]1,[19],[20],
[21],[10]. More recently there has been a greater emphasis on direct
methods for these sparse matrices, as shown by [6],[71,[15],[16].

However, the advent of new computer architectures — "vector ma-
chines" and "parallel processors” — and a renewed interest in three-
dimensional problems make it desirable to reconsider the analysis of
iterative methods, as in [3],[81,[9],[17].

A fairly general theory for estimating the rates of convergence of

iterative methods for elliptic difference equations was developed in [13].

However, partly because of the generality of that work (variable coeffi-

cients, general domains, etc.), it is by no means a transparent discussion.
Because of this, and the interest in a particular block iterative scheme
(kxk blocks), D. Boley, B. Buzbee and S.V. Parter [3] gave a relatively

direct discussion of the basic ideas for the case of the model problem -

the Poisson equation in a square. Their presentation was based on the
relatively strong estimates of J. Nitsche and J.C.C. Nitsche [12] and
A. Brandt [4].

In this report we give another variant of this general approach to
the problem of estimating the rates of convergence. Our new presentation
avoids the estimates of [4] and [12]. For the model problem in two or
three dimensions this is a small thing. However, the estimates of [12]
have never been extended to general regions and cannot hold in more than

three dimensions. On the other hand, the approach taken here can easily



be extended to general domains, general elliptic equations, and any dimen-
sion. Thus, in addition to solving some particular problems of interest
we also give a development which could be used in the general case.

In section 2 we describe the model problem (in two and three dimen-
sions). 1In section 3 we develop the general theory for these model
problems. In section 4 we describe some particular iterative schemes.
These are:

i) In two dimensions - k-line blocks and kxk square blocks.

i1) In three dimensions - k-plane blocks, kxk-Tine blocks and kxkxk

cubic blocks.

Finally, in section 5 we obtain the spectral radius of the block

Jacobi_scheme associated with each of these block structures. The spec-

tral radii of the associated Gauss-Seidel and SOR schemes are then
determined in the usual way (these schemes all satisfy block property

A- see [1],[21]) from the formulae (see [1],[20],[18])

1.1) Pgs = P

1.2) (pw+w-1 )2 = wpmpg

where Pes® Py and op denote the spectral radii of the Gauss-Seidel,
SOR and Jacobi iterative schemes respectively.
We are indebted to Bill Buzbee for his continued encouragement in

this work.



2. The Model Problems

Let
2.7a) 2(2) = {(x,y)5 0<x,y<1} ,
2.1b) 2(3) = {(X,y,2); 0<x,y,z<1} .

Let P be a fixed integer and set

_ 1
h = BT

Consider the sets of interior mesh points

2.22) a(2:h) = {xpey;) = (33 . 1<, <P,

2.2b) Q(3,h)

i

Txy552,) = (RJRAR)T T3, <P,
as well as the boundary mesh points

2.3a) 3Q(2,h)

11

{(X19y3) = (1h33h, i OY'j = 0 or P+1} s

1

2.3b) 35(3,h) = {(ih,jh,Ah)y i or j or m =0 or P+1} .

As usual, we define the discrete Laplace operators by

Two-dimensional Case: for 1< 4, j <P

U - 2U - 2U,

i,J+1

11 d L+ U, . U 4
2.4a) (8, (2)0) . = it1,J ind ~ i-1,9 , 1,341 i,3

iJ h2 h2



Three-dimensional Case: for 1 < i, j <P

2.4b) (0,(3)0); 5 o = Yirlgn T i,1in T Biongan
LRV} 2
h
o Vg T g P Yen, Vg T igen T Y0
h? h?

Note: While U is to be defined on the entire mesh region
Q(2,h) v (2,h) or Q(3,h) v 3(3,h), Ah(2) and Ah(3) are defined

only on the interior mesh points, £(2,h) or (3,h). Also we define the

usud erence—operators
“1'+'I S |

2.5a) [v U155 = - L 1<j<P,0<ic<P
U, oyq - Us s

2.5b) [V, 5 = LI 8 g<cj<p,1<ic<p

In fact, we will use the symbols Vx, Vy, VZ to designate the forward

divided difference quotients in the x, y and z directions, in all

dimensions. This usage should cause no confusion.

The basic problem is: Given grid vectors F and G, and m=2 or 3,

find a grid vector U such that

2.6a) A

2.6b) U=G6 on 32(m,h).



After an ordering of the points (Xi’yj) or (xi,yj,zn) is de-
termined we Tet A be the matrix representation of —thh(m); sym-

bolically, we write

2.7) A~ —thh(m).

As we have already noted, Ah(m) maps vectors with P 4 2um'1

components into vectors with p components. The matrix A is
actually a pm by P™ matrix. The known boundary values, G, are put on
the right-hand-side. 1In this way the difference equations (2.6a), (2.6b)

take the form

2.8) AV = F

where the ~ over F s meant to indicate both the result of ordering
the components of —h2F and the necessary modifications of F required

by the G terms. In any case, every vector V with pm components may

be thought of as a grid vector which also satisfies

2.9) V=10 on 5(m,h).

An iterative method for the solution of 2.8) is determined by a

“splitting"
2.10a) A=M-N.
Equation (2.8) 1is then

2.10b) MV = NV + F .



After choosing a first guess VO, one obtains V],VZ,...,Vk,... from
2.11) wkHT ke F

Let
2.12) o = max{|A|; det (A\M - N) = 0} .

It is well known that the iterates Vk converge to the unique solution

Vv of (2.8), independently of VO, if and only if

2.13) p<1.

The first problem studied in this report is: Find the asymptotic

behaviour of o as h =10

Remark: Of course, for every A which is a generalized eigenvalue

(i.e., det (AM - N) = 0) there is a vector U # 0 such that

2.14) AMU = NU .




3. A General Approach

We make some assumptions about the splitting (2.10a).

A.1) M = M* and is positive definite.
(N, X0
A.2) p = max >
X£0 (Mx,x)
where
R C - _ v
Goyr = x7y = [ xg¥y 0 (or = ) xijnyijn) :

Note: N = N* because A = A* and M =M*; as is well known [5],

the generalized eigenvalues are all real and

[{ Nx,x2|

pP="MaX <MX,X)

x7#0
The force of the assumption (A.2) therefore is that maxIA! occurs

for a positive eigenvalue X = p.

A.3) There is a positive constant NO’ independent of h, such that

NIl < Ny -
Here
INY], = sup{l(NU)ij[; |U1j| <1} .

Finally we come to the main new concept.
A.4) There are positive constants q, D, independent of h, such

that if U 1is a grid vector satisfying

U=0 on 32(m,h)



then

3.1) (NU,U> = g(Uu,U> + E,
where

3.2) |E] < Dh[XU,U) - <AhU,U>].

Remark: As one might imagine, the determination of q and the verifi-
cation of (A.4) are the important technical aspects of this analysis when
applied to any particular case. However, as we shall see, it is not too

difficult.

Lemma—3. 1+ Suppose-the_splitting (2.10a) satisfies (A.1) and (A.2).

Then the method is convergent, that is,
3.2) p<1.

Proof: Let U be the eigenvector associated with p . Then (NU,U)> > O .

Since M=A+ N and A ids positive definite, we have

0 < o = SNUUY {NU,U)
P T Mu,UY  CAULUY + CNU,U?

< 1.

The basic result of this section is

Theorem 3.1: Suppose the splitting (2.10a) satisfies the conditions
(A.1), (A.2), (A.3) and (A.4). Then

3.3) o= 1My gpdy .



Proof: Let U be the grid vector

3.4a) Uii = (sin imh)(sin jmh), m=2,

3.4b) Uijn = (sin imh)(sin jwh)(sin nrh), m= 3.

Then U =0 on 3Q. The following facts are well-known (see [18],

particularly page 202).

m m
m _ 1 P -
3.5) h (U,U) = [-2—] {m‘] ’ m= 2,3 .
3.6) %%%j%}- = 2m(1-cos wh) = mr2h2[1- %%‘(Wh)z + 0(h")]
Furthermore;for-all—grid-vectorsV—#-0—which—vanish—en 35{msh)
we have the inequality
3.7) - (AhV,V> _1 (AV,V) S 2m(1-cos th) = m 2 + O(hz)
VT T2 SN S ¥: T :

Because—M-=-A-+ N,

S SNULUY (NU,U)
P ZTMU,UY ~ TAU,UTY * (NU,UD

Applying (A.4) and (3.6) we have
{NU,U> = g{U,U> + E

where

E| < Dh{T+mn® + 0(h%)]¢U,U)
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Thus

Using (3.6) we obtain

2.2
3.8) 0> 1 - ””th +0(h%) .

We now turn to the proof of the reverse inequality.

Let U be the eigenvector associated with p and normalized

so—that
3.9) R,y = 1
Then

pMU = NU

oAU = p(M=N)U = (T-p)NU .
Hence
3.10a) -Ah(m)U= uNU
where

_ 2

3.10b) u = (1-p)/ph

From lemma 3.1 and (3.8) we see that

2
3.11a) 0<u§~“1§—+ o(h) ,
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and

3.11b) 1im sup u < mr°
h->0 q

Moreover, the theorem will be proven if we show that
mwz
3.]2) 112_*"&“"’ 0(h) .

From (3.10a), (A.3), and (3.11b) we see that when h is sufficiently small

2m1r2 m
(mu,U>< [ NOJh (u,u) .

3.13) WU :

h

But (3.10a) and (A.4) show that

3.14a) hm<—Ah(m)U,U) =y [qh™(U,U) +E],
where
3.14b) [E| < hD[A™CU,UY - KA, (mUUDT .

Substituting (3.13) dinto (3.14b) gives

2
3.14c) IE] < hp[1 +2"g” ISICRUNNI

Using (3.7), (3.9) and (3.14c) in (3.714a) we have

-hm(Ah(m)U,U>

L uLarE] > mn” + 0(h)



where

2
~ 2mm
|E| ihD[]+ 3 NO] .

Thus
m7r2

and the theorem 1is proven.
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4. Some Iterative Methods

In this section we describe the basic block structure associated
with the iteratives schemes of interest.

Consider a system of Tinear equations

1]

4.1) Ax =y

where A is an RxR matrix. A block Jacobi iterative method for the
solution of (4.1) is completely described by describing the partition
of the R-vector x into blocks. Specifically, suppose that we imag-

ine all R-vectors U partitioned into block vectors of the form

4.2) U= (Ugslysnn U, )¢

where each Uj is itself an Rj-vector. Corresponding to this partition

of vectors the matrix A is naturally partitioned in blocks

A = (Aij)

where each Aij is itself a matrix. In particular, each diagonal block
Aii is a square Ri X Ri matrix. The block Jacobi iterative scheme
associated with this block structure is now given by

33" 4 JsTs J

4.3) AL P Ly x )y
s

In terms of the discussion in sections 2 and 3, we have a splitting (2.10a)

with

4.4) M = diagonal (Ajj) .
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The iterative schemes discussed in this report are described by the
following block decompositions. Let k be a fixed integer. We con-
sider the case where k divides P, i.e, there is an integer Q > 2

such that
4.5) P=kQqQ.
Of course, Q -« as P -+« (h»0) and vice versa.

I.) Two-dimensional Problems:

1.) k-line iterative scheme. This scheme is described in detail in

[13],[14].. Each "block" consists of the unknowns U.. associated with

i3
TJ

the points on k consecutive horizontal (or vertical) lines. For ex-

ample, the s"th block consists of the values
4.6) {Uij; 1<i<P, k(s-1)+1<j<ks} .

2.) kxk block iterative scheme. This scheme is described in [3].

Each block consists of the unknowns U1.j associated with the points in

a kxk square. It is easiest to describe this block with a double index

(r,s). The (r,s) block consists of the values
4.7) {Uij; k(r-1) +1<i< kr, k(s-1)+1<j<ks} .

1I1.) Three-dimensional Problems:

1.) k-plane iterative scheme. In this scheme each block consists

of the unknowns Uijn associated with the points on k consecutive

planes. In this case the blocks are associated with a single index, say s.
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The s'th block consists of the values

4.8) {Uijn;1_<_1',jf_P, k(s-T1)+1<n<ks} .

2.) kxk-line iterative scheme. In this scheme each block con-

sists of the unknowns Uijn associated with the points on a kxk square
of Tines in the (say) z-direction. In this case the blocks carry a

double index, say (r,s). The (r,s) block consists of the values

4.9) ﬂ%mﬁ T<n<P, k(r-1)+1<i<kr, k(s-1)+1<j<ks} .

3.) kxkxk block iterative scheme. In this scheme each block con-

sists of the unknowns Uijn associated with a kxkxk (cubic) block of

points. In this case each block is associated with a triple index, say

(r,s,t). The (r,s,t) block consists of the values

4.10) {Uijn; k(r-1)+1<i<kr, k(s-1)+1<j<ks, k(t-1)+1<n<kt} .

It is tedious but not difficult to write the representation of A,

M

M-—and—N-for-each-ofthe Jacobi-block iterative schemes—associated
with these choices of the block. We shall give a unified development of
these schemes. However, for the moment, for illustrative purposes, we
sketch the k-line scheme I.7.

Let Lk be the kxk tridiagonal matrix
4.11a) Ly = [-1,4,-1]
Let T be the kP x kP block tridiagonal matrix
4.11b) T= [Tk T 1, s

where Ik is the Kkxk ddentity matrix.
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et R be the kP x kP matrix

4.11c) R [ K

| =i

Then

4.12a) A = M-N

where

4.12b) M = diagonal (T) ,
apnd—N—is—the—-block—tridiagonat-matrix
4.12c) N = [R,0,RY]

A unified approach is provided by considering the 1-dimensional

~

operator N acting on vectors

4.13) V= {V.,V,,...V}

as follows for 1<s<Q-1, 0<j<k-1:

{o, 2<j<k-1,

4.14) (NV)ks+j = Vks+]’ j=0,
lvks, jg=1.
Let Nx’Ny’Nz be the operators which act on grid vectors in 2 or 3

dimensions in the following manner: NX acts on U only in the x

direction, and in that direction acts as N. Similarly Ny and NZ
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act on U 1in the y or 2z directions respectively. For example:

in three dimensions, for 1 < i, j <P and 0<n<k-1,

0, 2<n<k-1
+.15) N0)i5,kem = 1Y5,5,kee12 N=0
Uikt n=1

With these operators it is relatively easy to describe the matrix

N of the five splittings described above.

Theorem 4.1: Let k > 2. Then

For the two-dimensional problem, k-Tline scheme:

4.16a) N=N

For the two-dimensional problem, kxk block scheme:

4.16b) N = NX + Ny

For the three-dimensional problem, k-plane scheme:

4.17a) N=N

For the three-dimensional problem, kxk-1ine scheme:

4.17b) N = NX + Ny

For the three-dimensional problem kxkxk (cubic) block scheme:

4.17¢) N = NX + Ny + Nz

Proof: The proofs of these formulae are given directly by computation

and inspection.
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Theorem 4.2: Let k=15 then the dominant eigenvalue of the Jacobi
iterative scheme associated with each of the above block schemes is

given directly by the theory of tensor products. They are:

The two-dimensional problem., k-line scheme:

4.18a) o(1-L) = 1 - 2h + o(h%) .

The two-dimensional problem, 1 x 1 block, i.e. "point" scheme:

1 22

4.18b) p(1-B) = cos h = 1-4 72n% + 0(h*)

The three-dimensional problem, 1-plane scheme:

no

wh
i

COSTN 22 4
4.19a) p(1-P) = g0 = T- 2 «“h" + 0(h")

G4-COSTNM

The three-dimensional problem, I1x1-1ine scheme:

2

4.19b) o(12.1) = Acosmh__ 4 _3 2,2

1-%a"h" + 0(h

. 4
6-2 cosTh 4

The three-dimensional problem, 1x1x1 block, i.e. "point" scheme:

4.19¢) 0(13-8) = costh = 1-%-w2h2 + 0(hh

Proof: These formulae follow immediately from the standard tensor product

formulation - see [10].
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5. Rates of Convergence: k > 2

In this section we consider the model problem (2.6a), (2.6b).
We study the five block Jacobi schemes described in section 4
(with k > 2). We determine the appropriate constants q and D so
that we satisfy (A.4) and thus may apply Theorem 3.1 to obtain the

dominant eigenvalues of these iterative schemes.
Lemma 5.1: let 0 < hk <1 and let
5.1) V=(Vy,V,,...v )¢,

let N be given by (4.14) Then

5.2a) (VLN = -,§<v,v> ¥ 2
where
5.2b) le] < h(V,V) + 2h¢V, V.V V)

Proof: For every j, 1<J <k we have

J-1

5.3) Vks+1 - Vks+j -h QZ] (va)ks+2 ’
J-1

5.4) Vis = Visej - P zzo (V) oy

Of course, the sum in (5.3) is empty if j=1.
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In any case
5.5) V, V= (VL)% -V, (Eq+E,) + hPEE
’ ks+1 ks ks+j kstji* 1 2 172
where
k-1
El< T IOVl »  a=12.
2=0
Summing (5.5) on j and dividing by k, we have
5.6) v, .V =]—§(v 2 e lg
) ks+1'ks  k 351 ks+j k ~s

where

_ k k=1

<2 ] P T HT )

s - 351 SFIT L X kS
k-1
2 2
+kh™ (] (T V) e -
020 X ks+4

Thus we can estimate E; by

N Tk 5 k-1 5
5.7) |E | < hk .21(Vks+j) ¥ (1+hk)£ZO(VXV)kS+%

Now (5.2) follows from the form of
s =0,1,...Q-1 .

We recall two basic identities.

~

N

and summation on
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Lemma 5.2: Let m= 2. Then

5.8a) —(U,AhU> = (VXU,VXU> + (va,VyU) .
tet m= 3. Then
5.8b) —<U,AhU> = (VXU,VXU) + <va,va> + <vZU,VZU> .

Proof: These results follow directly from summation by parts

(see [11.[18]).

Theorem 5.1: Consider the two-dimensional block Jacobi iterative

schemes (I.1), (I.2) described by the blocks (4.6) and (4.7) respec-

tively. Let po(kL) and p(kB) denote their respective dominant

eigenvalues. Then

5.9a) o(kL) = 1 - kn?h? + 0(n%) ,
5.9b) o(kB) = 1 - %szhz +0(nd) .

o

Proof: Because of Theorem 4.2 we need only consider the case k > 2.
From the block structure we see that M = M* and is positive definite.
Moreover, block property A holds and thus (A.2) holds. It is obvious
from Theorem 4.1 that

NI, < 3.

Thus, it is only necessary to determine q and D.
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For the k-Tine scheme we apply Theorem 4.1, specifically (4.16a).

Applying Temma 5.1 we have

2

(U,NU) = K

(u,U> + E

where

(V,V) + (V. V,v V0] .
[E] < 2h[CV, V) + v VL7 1]

Using (5.8a) we have

and (5.9b) follows.

Theorem 5.2: Consider the three-dimensional block Jacobi schemes (II.1),

(11.2) and (II.3) described by the blocks (4.8), (4.9) and (4.10) respec-

3

tively. Let p(kP), p(kzL) and p(k“B) denote their respective dominant

eigenvalues. Then

5.10a) o(kP) = 1 - %—szhz + 0(hd)
5.10b) o(kK2L) = 1 - %-szhg + 0(n%)
5.10¢) o(k3B) = 1 - %-wzhz + 0(h%) .
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Proof: The argument uses Theorem 4.1 and Theorem 3.1 and is like that

given for the proof of Theorem 5.1.
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