FAST ALGORITHMS FOR NP-HARD PROBLEMS WHICH ARE OPTIMAL OR NEAR-OPTIMAL WITH PROBABILITY ONE

by

Routo Terada

Computer Sciences Technical Report #356

July 1979

FAST ALGORITHMS FOR NP-HARD PROBLEMS WHICH ARE OPTIMAL OR NEAR-OPTIMAL WITH PROBABILITY ONE

BY

ROUTO TERADA

A thesis submitted in partial fulfillment of the requirements of the degree of

Doctor of Philosophy
(Computer Sciences)

at the

University of Wisconsin-Madison

1979

The author was supported by the Institute of Mathematics and Statistics of the University of S. Paulo, Brazil, and by Fundação de Amparo à Pesquisa do Estado de S. Paulo, under grant number 75/509.

This research was supported in part by NSF Grant number MCS76-17323. It was also facilitated by the use of Theory Net (NSF Grant number MCS78-01689).

FAST ALGORITHMS FOR NP-HARD PROBLEMS WHICH ARE OPTIMAL OR NEAR-OPTIMAL WITH PROBABILITY ONE

by Routo Terada

Under the supervision of Professor Lawrence H. Landweber

ABSTRACT

We present fast algorithms for six NP-hard problems. These algorithms are shown to be optimal or near-optimal with probability one (i.e., almost surely).

First we design an algorithm for the Euclidean traveling salesman problem in any k-dimensional Lebesgue set E of zero-volume boundary. For n points independently, uniformly distributed in E, we show that, in probability, the time taken by the algorithm is of order less than n $\sigma(n)$, as $n \to \infty$, for any choice of an increasing function σ (however slow its rate of increase). The resulting solution will, with probability one, be asymptotic, as $n \to \infty$, to the optimal solution.

In addition, by applying a uniform method, we design algorithms for five NP-hard problems: the vertex set cover of an undirected graph, the set cover of a collection of sets, the clique of an undirected graph, the set pack of a collection of sets, and the k-dimensional matching of an undirected graph. Each algorithm has its worst case running time bounded by a polynomial or a function slightly greater than a polynomial on the size of the problem in-

stance. Furthermore, we show, as corollaries of main theorems, that each algorithm gives an optimal or near-optimal solution with probability one, as the size of the corresponding problem instance increases.

ACKNOWLEDGMENTS

I wish to thank Professor Lawrence Landweber for his constant encouragement and advice throughout my entire study and research work. I would also like to thank Professors Raymond Bryant and John Halton for their dedicated reading of the manuscript and Professors Peter Ney and Marvin Solomon for serving on the committee. I am particularly indebted to Professor John Halton who put up with my questions about probability theory, answering most of them immediately and spending considerable effort leading me in search of answers to the others.

Special thanks to Marilyn Wolff for her patience in typing most of Chapter II.

I am grateful to the University of S. Paulo and Fundação de Amparo à Pesquisa do Estado de S. Paulo for their financial support.

I wish to express my deepest gratitude to my wife Mary, my son Randy, and my parents.

to Randy

Contents

I. Introduct	ion and Summary
1. Prel	iminary Definitions and Motivationsl
2. Prev	ious Work and Summary of the Thesis5
3. Nota	tion and Background Material 7
II. Euclidea	an Traveling Salesman Problem
	coduction and Summary
2. Algo	orithm A12
	nptotic Execution Time 21
4. Asyn	nptotic Performance 23
5. A 0	Generalization of the Results 43
6. Prod	ofs of the Basic Lemmas50
7. Cond	cluding Remarks64
III. Additio	onal NP-Hard Problems
1. Int	roduction 67
2. Bas	ic Lemmas and Theorems68
3. Min	imization Problems 74
	Vertex Set Cover Problem74
3.2	Set Cover Problem 76
4. Max	imization Problems79
	Clique Problem79
4 2	Cot Dagking Problem

4.3 k-Dimensional Matching Problem82	viii
IV. Alternative Algorithms for the Maximization Problem	ns
1. Introduction84	
2. Algorithm D and	
its Asymptotic Performance84	
3. Expected Running Time86	
4. Worst Case Running Time91	
5. Applications of the Main Results 94	
5.1 Clique Problem94	
5.2 Set Packing Problem95	
5.3 k-Dimensional Matching	
Problem97	
6. Some Numerical Tables98	
V. Conclusions and Open Problems 110	
VI. References	3

į...

Chapter I

Introduction and Summary

This introductory chapter begins with some basic definitions in the area of design and analysis of algorithms, and some of the motivations for this thesis. Section 2 contains a brief review of previous work in the area, and a summary of our results. Most of the details are left for later chapters. Section 3 contains a description of notation and some basic concepts in elementary probability theory.

1. Preliminary Definitions and Motivations

Algorithms can be evaluated by a variety of criteria. Frequently, we are interested in the rate of growth of the time required to solve larger and larger instances of a problem. More specifically, let P be a computational problem, i.e., a collection of computational tasks each of which is called an instance of P. With each instance I in P we associate an integer |I|, called the size of I. Generally speaking, we take the size |I| = n to be correlated to the amount of information required to specify I. If, for all sufficiently large n, the time needed by an algorithm A to solve instances of size n has a least upperbound proportional to f(n), we say that the worst case running time of A is f(n) or that A solves P in f-time. In particular, when f(.) is a polynomial on n, we say A solves P in polynomial time, and if $f(n) = c^{p(n)}$, where c is a constant and p(.) is a

polynomial, we say A solves P in <u>exponential-time</u>, and A is <u>not</u> fast.

There is a general agreement that if a problem P cannot be solved by a polynomial-time algorithm, then P should be considered intractable. Of course, in some applications, just a subset of all the problem instances is of interest and can be shown to be tractable.

There is evidence that a certain class of problems, the non-deterministic polynomial time complete problems ("NP-complete" for short), is likely to contain only intractable problems (see, e.g., Aho, Hopcroft and Ullman[1975]). Many "classical" problems in combinatorics, such as the traveling salesman problem, the Hamiltonian circuit problem, and integer linear programming are NP-complete. All problems in the class can be shown "equivalent", in the sense that if one is tractable, then all are tractable (Cook[1971], Karp[1972]).

We will consider a second class of problems, called the "NP-hard" problems, which are at least as hard to solve as the NP-complete problems in the sense that the existence of a polynomial time algorithm to solve an NP-hard problem implies that all NP-complete problems can also be solved in polynomial time (Cook[1971], Karp[1972]).

Since many of the NP-complete and NP-hard problems have been studied by mathematicians and computer scientists for decades, and all known algorithms to solve any of them require at least exponential time, it is natural to conjecture that no algorithm requiring less than exponential time exists , and consequently, to regard all the problems in these classes as being in-

tractable.

But in many real-world applications, exact solutions for NP-hard problems are not required. As a result, some researchers have developed approximation algorithms for these applications, which attempt to guarantee near-optimal solutions to all instances of a problem (cf. Garey and Johnson[1976]). The definitional set-up is as follows. Consider a minimization(resp., maximization) problem which, for each problem instance I, asks for a solution with minimum (resp. maximum) cost m(I). Consider an algorithm A that, on problem instance I, produces a solution of cost A(I). Then, given a real number r > 1, we say that A solves the problem within ratio r if , for all I,

$$A(I) < r m(I)$$
 (1.1)

(resp.,
$$A(I) > (1/r) m(I)$$
 (1.2)

This "guaranteed approximation" approach has yielded a number of successes, particularly in connection with various packing problems (cf. Garey and Johnson[1976a]). However, some important NP-hard problems seem to be not well suited to this approach. For example, Garey and Johnson[1976] prove that it is NP-hard to solve the coloring of a graph problem within a ratio r<2 (the cost in this case is the number of colors). Moreover, no polynomial-time algorithm is known which solves the coloring problem within any fixed ratio r. Another example is the problem of finding the largest clique (i.e., complete subgraph) in a graph. Garey and Johnson [1976] suggest how to prove that the following statements are equivalent (the cost here is the clique size):

- (a) for some r>1, there is an polynomial-time algorithm to solve the largest clique problem within r;
- (b) for every r>1, there is a polynomial-time algorithm for solving the largest clique problem within r.

Recently, such negative results and the conjecture that all NP-complete and NP-hard problems are intractable have motivated the design of the so-called "probabilistic algorithms". In this thesis we are interested in the design of a particular type of probabilistic algorithms for NP-hard problems, those which are fast and are guaranteed to give optimal or near-optimal solutions with "probability one", as the size of the problem instance increases. This is the strongest type of probabilistic algorithm we can look for (cf. Feller [1968], or Chung[1974]).

To formulate what "probability one" means, a probabilistic distribution over all problem instances is assumed. Let $\{I_j,\ j\geq 1\} \text{ be a sequence of problem instances such that the size } |I_j| = j, \text{ and } \{I_j,\ j\geq 1\} \text{ is sampled incrementally according to the probabilistic distribution assumed, in the sense that } I_j \text{ is obtained from } I_{j-1} \text{ by adding one component or element of the problem to } I_{j-1}, \text{ according to the probabilistic distribution.}$ For example, if the underlying problem structure is a graph, the incremental change might be the addition of a new node and some edges incident to it, with all the edges of the previous graph unchanged. Using the same notation of (1.1) and (1.2), given a real number $r\geq 1$, an algorithm A solves a minimization (resp., maximization) problem within ratio r with probability one iff for

every $\epsilon > 0$, we have (cf. Feller[1968] or Chung[1974])

$$\lim_{n \to \infty} \Pr\{1 \le \frac{A(I_j)}{m(I_j)} < r + \varepsilon, \text{ for all } j \ge n\} = 1$$
(1.3)

(resp.,
$$\lim_{n \to \infty} \Pr\{1 \ge \frac{A(I_j)}{m(I_j)} > 1/r - C$$
, for all $j \ge n\} = 1$)

When r = 1, we will say that A is an <u>optimal</u> <u>algorithm with</u> <u>probability one</u>, and when r > 1, we will say A is a <u>near-optimal</u> algorithm with probability one.

2. Previous Work and Summary of the Thesis

One of the earliest results on probabilistic algorithms is a fast algorithm by Solovay and Strassen [1977] and Rabin [1976] for testing whether a number n is prime. This problem becomes infeasible to solve for n larger than 10^{60} . Rabin claims that the probability of error (i.e., guessing that a composite number is prime) is halved at each step of the algorithm, regardless of the size of n.

Posa[1976], and Angluin and Valiant[1977] give polynomial-time probabilistic algorithms to find Hamiltonian circuits in graphs. This problem is known to be NP-complete (Karp[1972]). Their algorithms find a solution with probability tending to one, as the size of the problem instance increases, if the graphs are sufficiently dense.

Grimmett and McDiarmid [1975] describe a polynomial time probabilistic algorithm to color a graph within any ratio r > 2

with probability one. As we mentioned in Section 1 (Garey and Johnson[1976]), the coloring of a graph is an NP-hard problem. They also have a polynomial-time algorithm to find the largest subset of the set of vertices of a graph such that no two vertices in the subset are connected. This algorithm is near-optimal (within r = 2) with probability one, as we comment in Section 4.1 of Chapter III.

In this thesis, we study algorithms for three minimization and three maximization NP-hard problems.

In Chapter II we give a fast algorithm to solve the k-dimensional Euclidean traveling salesman problem (k-TSP for short) which is optimal with probability one. For the particular case of k=2 (i.e., the TSP in the plane), Garey et al.[1976], and Papadimitriou [1977] proved that the TSP is NP-hard. The best known polynomial-time approximation algorithms for this problem, by Christofides[1976], solves it within r = 3/2.

On the other hand, there has been some research on heuristic methods for the solution of the 2-TSP. For example, computer programs to find near optimal solutions for 2-TSP instances of up to 300 points in an acceptable amount of time were described by Krolak et al.[1970] and by Lin and Kernighan[1973]. Their programs seem to give good results but no rigorous analysis of the algorithms are available.

Karp[1977] gives an algorithm whose expected running time is bounded by n \log^2 n. He claims it solves the 2-TSP within any r > 1 with probability one, but, as we comment in Section 7 of Chapter II, the proof of this claim is incomplete.

In Chapter III we give polynomial-time algorithms for two

minimization NP -hard problems which are optimal with probability one. The problems are the vertex set cover of an undirected graph and the set cover of a collection of sets. The best known polynomial-time approximation algorithm for the vertex set cover problem, by Gavril (cf. Garey and Johnson [1978], p.134), solves it within r=2. Also in Chapter III we give polynomial-time algorithms for three maximization NP-hard problems which solves each of them within r=2 with probability one. The problems are: the clique of an undirected graph , the set pack of a collection of sets, and the k-dimensional matching of a graph. So far, no polynomial-time approximation algorithm is known to solve any of these three problems within any fixed ratio r. All the algorithms presented in Chapter III are derived from a central algorithm , Algorithm C.

In Chapter IV we have new algorithms for the three maximization problems considered in Chapter III. These new algorithms are optimal with probability one, but they require more running time than the ones in Chapter III. The algorithms in Chapter IV are also derived from a central algorithm, Algorithm D.

3. Notation and Background Material

This section contains a summary of notation and some elementary probability theory which will be used throughout the remaining chapters. We intend to only provide a basis for the terminology which we will propose and use later. Most of the additional concepts and notations are defined when they arise naturally in later chapters.

When dealing with asymptotic behavior of functions, specif-

ic notations are available to describe the relationships between functions f(n) and g(n), all of which are based on the behavior of the ratio f(n)/g(n), for all sufficiently large values of n. We say that

$$f(n) = o(g(n))$$
 iff $f(n)/g(n) \rightarrow 0$;

$$f(n) = 0$$
 (g(n)) iff $f(n)/g(n) \le c$, for some constant c;

$$f(n) \sim g(n)$$
 iff $f(n)/g(n) \Rightarrow 1$.

For the basic background material in elementary probability theory, we will follow Feller[1968].

Let Ω be the space of all possible outcomes of a random experiment. Ω is called the sample space of the experiment. A function defined on a sample space is called a random variable. Let X be a random variable and let x_1, x_2, x_3, \ldots be the values which it assumes. In general, the same value x_j may correspond to several sample points. This aggregate forms the event that X = x_j ; its probability is denoted by Pr{ X = x_j }. The system of relations

$$Pr[X = x_j] = f(x_j), j=1,2,3, ...$$
 (3.1)

defines the <u>probabilistic</u> <u>distribution</u> of the random variable X. Clearly,

$$f(x_j) \ge 0, \sum f(x_j) = 1$$
 (3.2)

If a value x is never assumed, we write $Pr\{X = x\} = 0$.

If two or more random variables x_1, x_2, \ldots, x_n are defined on the same sample space, their joint distribution is given by the system of equations which assigns probabilities to all combinations $x_1 = x_{j1}$, $x_2 = x_{j2}$, etc.. The variables x_1, \ldots, x_n are called <u>mutually independent</u> if for any combination of values x_{j1} ,

$$Pr\{X_{1}=x_{j1}, X_{2}=x_{j2}, \dots, X_{n}=x_{jn}\} = Pr\{X_{1}=x_{j1}\} Pr\{X_{2}=x_{j2}\} \dots Pr\{X_{n}=x_{jn}\}$$
(3.3)

Let X be a random variable assuming the values x_1, x_2, \ldots , with corresponding probabilities $f(x_1)$, $f(x_2)$, ... The expected value of X is defined by

$$& X = \sum_{k} x_k f(x_k)$$
 (3.4)

provided that the series converges absolutely.

The second moment of X is defined by

$$& x^2 = \sum_{k=1}^{\infty} x_k^2 f(x_k)$$
 (3.5)

provided that the series converges absolutely.

The variance of X is defined by

$$var X = & X^2 - (& X)^2$$
 (3.6)

A sequence of random variables X_1, X_2, \ldots is said to converge in probability to X iff for every $\varepsilon > 0$, we have

$$\lim_{n \to \infty} \Pr \{ |X_n - X| > \emptyset \} = 0$$
 (3.7)

Chapter II

Euclidean Traveling Salesman Problem

1. Introduction and Summary

Given an integer $k\geq 2$, the k-dimensional Euclidean Traveling Salesman Problem (k-TSP) can be defined as follows: given a set of n points distributed in the k-dimensional Euclidean space R^k , determine a tour, i.e., a closed path visiting each of the n points exactly once, so that the tour is the shortest possible one (we take the distance between two points to be the ordinary Euclidean distance).

In Section 2 of this chapter we present Algorithm A , a non-recursive, divide-and-conquer algorithm for the k-TSP, $k\geq 2$. In defining Algorithm A, we assume that a non-zero function $\delta(n)$ is chosen. Furthermore, in Sections 3, and 4 we will use the following.

Condition C:

- [1] the points of a sequence $\underline{\underline{P}}$ are distributed uniformly in the k-dimensional unit hypercube $\underline{\underline{C}}$;
- [2] the function $\delta(n)$ satisfies $\delta(n) \to \infty \quad \text{and} \ \delta(n) \quad e^{\delta(n)}/n \to 0 \quad \text{as } n \to \infty.$

Let P^n denote the first n points of P; in Section 3 we prove the following:

Theorem 1: Under Condition C, if Algorithm A is applied to a k-TSP instance \mathbf{P}^n , then Algorithm A runs in time

 R_{n} A/2 n $\delta\,(n)$ $e^{\delta\,(n)}$, as $n\,\Rightarrow\,\infty,$ in probability, where A is a constant

We are thinking in particular of very slowly increasing functions $\delta(n)$. We notice that, for example, if we let $\delta(n)$ = log log log n in Theorem 1,we would have

 $R_n \sim A/2$ n(log log n) (log log n), as $n \rightarrow \infty$, in probability.

Indeed, by choosing $\delta(n) = d \log \sigma(n)$, for any 0 < d < 1, we obtain

Corollary TSP: Under the hypotheses of Theorem 1, we can find a function $\delta(n)$, such that, for any arbitrarily slowly increasing function $\sigma(n)$ the running time of Algorithm A will be

 $R_n = o(n \sigma(n))$, in probability

Let $T_0(n)$ denote the length of an optimal solution for a given k-TSP instance \mathbf{p}^n . And let T(n) denote the length of the closed path given by Algorithm A for \mathbf{p}^n . In Section 4 of this chapter we characterize the asymptotic performance of Algorithm A by the following

Theorem 2: Under the hypotheses of Theorem 1, we have: $T(n)/T_0(n) \Rightarrow 1, \text{ with probability one, as } n \Rightarrow \infty.$

Finally, in Section 5, we consider <u>Condition D</u>, that [1] the points of a sequence \underline{P} are distributed uniformly and independently in a Lebesgue subset $\underline{\underline{E}}$ of $\underline{\underline{C}}$, the k-dimensional hypercube of side $\underline{\underline{C}}$;

- [2] the boundary of $\underline{\underline{E}}$ is of zero k-dimensional Lebesgue measure;
- [3] the function $\delta(n)$ satisfies

$$\delta(n) \rightarrow \infty$$
 and $\delta(n) e^{\delta(n)}/n \rightarrow 0$ as $n \rightarrow \infty$.

In this case, we apply Algorithm A to $Q\subseteq (instead\ of\ \subseteq ,\ as$ in Section 2) and obtain

Theorem 3: Under Condition D,

- (1) Theorem 1 holds, with $\delta(n)$ replaced by $\delta(n)$ $q^k/v(\underline{\underline{E}})$, where $v(\underline{\underline{E}})$ is the k-dimensional Lebesgue measure of $\underline{\underline{E}}$;
- (2) Theorem 2 holds.

2. Algorithm A

Algorithm A computes a closed path which visits some of the points more than once. We will see later in this section that it is easy to transform such a closed path into a tour with a shorter length.

In specifying Algorithm A, we need a function $\delta(.)$ and an integer m defined as the smallest even integer greater than or equal to :

$$\left(\frac{n}{\delta(n)}\right)^{1/k}$$

where n is the number of points of a k-TSP instance J in \subseteq .

Now we are able to specify:

Algorithm A

(For an illustration for the case of k=2, see Figures 1 and 2 below)

- [1] Divide each side of $\underline{\underline{C}}$ into m equal parts, thus creating a cubic lattice of m^k cells (of side h) in $\underline{\underline{C}}$.
- [2] Let B be the set of $\underline{\text{cell-centers}}$ (mid-points of cells created in [1]). Form the union B U J.
- [3] For each of the m^k cells, find the shortest tour through the points of B ${\bf U}$ J in the cell by applying a dynamic programming algorithm (Bellman[1962] and Held and Karp[1962]);
- [4] Construct a <u>basic tour</u> through the points of B added in step [2] above, using Algorithm B below.
- [5] The closed path consisting of all the subtours constructed in step [3] chain-connected by the basic tour built in step [4] is the result of the algorithm.

To construct the basic tour, we have a cubic lattice of cubic cells of side h, m in each coordinate direction, m^k in all, where m is a positive even integer. Suppose that, for $a_i \in L = \{0,1,2,\ldots,m-1\}$, $1 \le i \le k$, the cell containing the cell-center with coordinates

 $((2a_1+1)h/2, (2a_2+1)h/2, ..., (2a_k+1)h/2)$ is identified by the vector $a = (a_1, a_2, ..., a_k).$ Let $\mathbf{e}_{\mathbf{i}}$ denote the unit vector in the i-th coordinate direction and write

$$r_i = r_i(a) = (-1)^{1+a}1^{+a}2^{+\cdots+a}i-1$$
, for $2 \le i \le k$. (3.1)

Algorithm B: Given cell a, find its successor b according to the basic tour. (For an illustration, see Figures 3 and 4 below.)

[1] If there exists one value d such that

$$d \ge 3$$
, $a_d + r_d \in L$ and $a_i + r_i \notin L$ for $d+1 \le i \le k$; (3.2)
then the successor of a is

$$b = a + r_{d} e_{d}$$
(i.e., for all $i \neq d$, $b_{i} = a_{i}$, and $b_{d} = a_{d} + r_{d}$).

[2] Otherwise, if (3.2) cannot be satisfied by any d , the successor is determined as follows:

$$b = a - e_1$$
, if $a_1 = 1$, $a_2 = 0$,
or $a_1 > 1$, a_2 even; (3.4)

$$b = a + e_1$$
, if $a_1 = 0$, $a_2 = m-1$,
or $0 < a_1 < m - 1$, $a_2 \text{ odd}$; (3.5)

$$b = a - e_2$$
, if $a_1 = 1$, a_2 even, $a_2 \neq 0$,
or $a_1 = m - 1$, a_2 odd; (3.6)

$$b = a + e_2$$
, if $a_1 = 0$, $a_2 < m - 1$ (3.7)

Having defined Algorithm B, we observe that the step [2] above is executed only when

$$a_4 = a_5 = \dots = a_k = 0$$
; and $a_1 + a_2$ is odd and $a_3 = m-1$, or $a_1 + a_2$ is even and $a_3 = 0$.

This is so because step [2] is executed when

$$a_i + r_i \not\in L \quad \text{for } 3 \le i \le k;$$
thus $a_3 + (-1)^{1+a_1+a_2} \not\in L;$
whence $a_1 + a_2$ is odd and $a_3 = m-1$ (odd),
or $a_1 + a_2$ is even and $a_3 = 0$ (even).

If $a_1 + a_2$ is odd, then

$$r_3 = (-1)^{1+a}1^{+a}2 = +1,$$

and
$$a_3 = m - 1$$
, whence $r_4 = (-1)^a 3 r_3 = -1$; $a_4 + r_4 \not\in L$, whence $a_4 = 0$, so $r_5 = (-1)^a 4 r_4 = r_4 = -1$; $a_5 + r_5 \not\in L$, whence $a_5 = 0$, so $r_6 = r_5 = -1$;

$$a_k = 0$$
.

Also, if $a_1 + a_2$ is even, then

$$r_3 = (-1)^{1+a}1^{+a}2 = -1;$$

and $a_3 = 0$, whence $r_4 = (-1)^a 3$ $r_3 = r_3 = -1;$
 $a_4 = 0$, whence $r_5 = r_4 = -1;$
 $a_k = 0.$

For k=2, step [2] prevails and from the observation made above it is easy to verify that (3.4)-(3.7) prescribe the entire set of successors b of possible vectors a and is in accordance with the basic tour in Figure 3. For k=3, Figure 4 shows the basic tour as an illustration.

m = 6

Figure 1: An illustration of steps (1) - (3) of Algorithm A

.

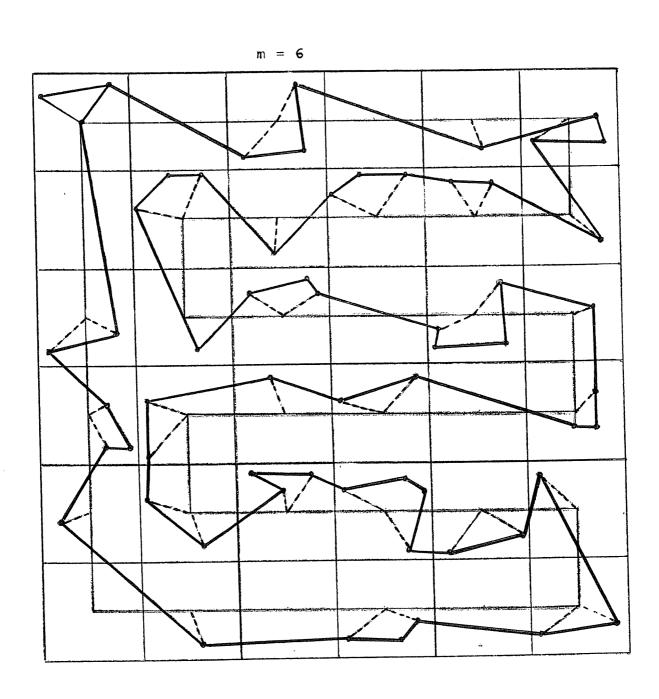
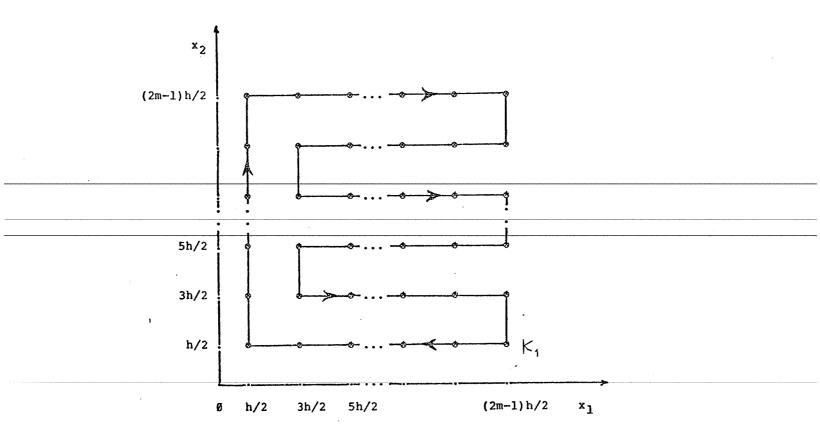



Figure 2: An illustration of steps (4) - (5) of Algorithm A and the final tour

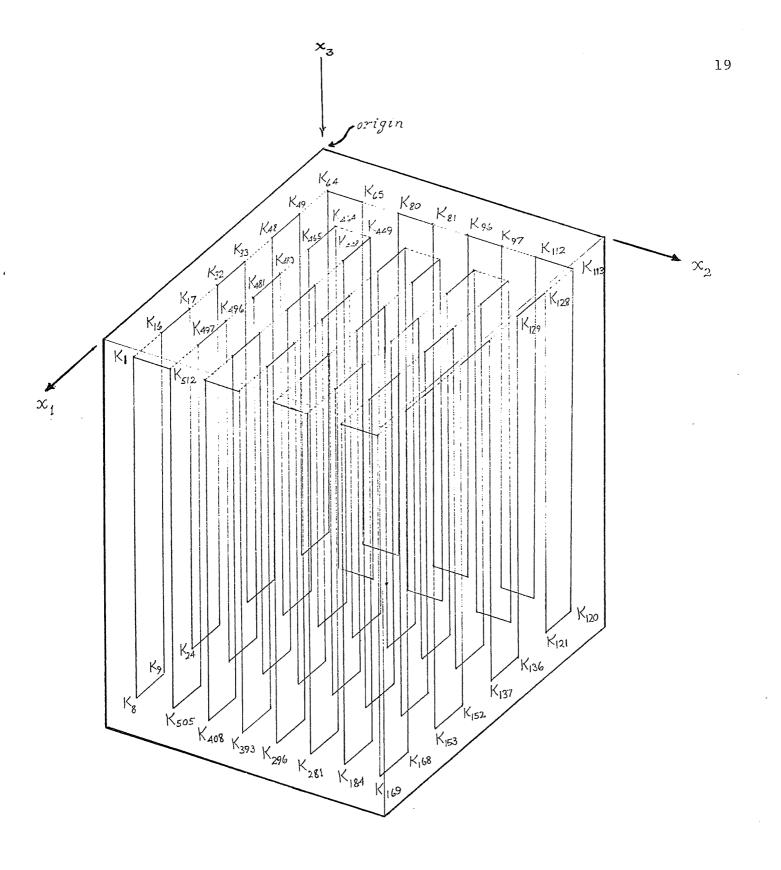


Figure 4:

The "basic tour" of cell-centers for the case of k=3 and m=8. The dotted segments indicate the basic tour for k=2, in the top layer of cells, illustrating Algorithm B.

Now we want to show how the closed path constructed by Algorithm A can be tranformed into a tour with a shorter length.

First, if any cell has no points of J, then the basic tour can be shortened by connecting the previous cell-center to the next one. This may be repeated until the basic tour contains only cell-centers from cells containing points of J (without changing the sequential order of cell-centers in the original basic tour). This does not affect steps [4] and [5] of Algorithm A. Moreover, this can clearly be done in time proportional to m^k , i.e., $O(n/\delta(n))$.

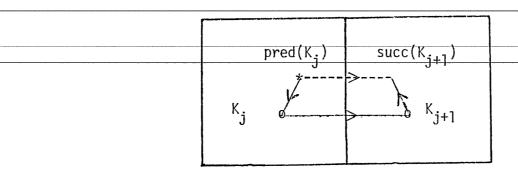


Figure 5

Secondly, let K_j and K_{j+1} be two consecutive cell-centers and let pred(K) and succ(K) denote the predecessor and the successor of a cell-center K, respectively, according to an order assigned to the closed path. Then, if $K_j \not\in J$ and $K_{j+1} \not\in J$, replace the edges

 $(pred(K_{j}), K_{j}), (K_{j}, K_{j+1}), and (K_{j+1}, succ(K_{j+1})),$

by the edge (pred(K_j), succ(K_{j+1})), as illustrated in Figure 5. If K_j \in J and K_{j+1} $\not\in$ J, replace the edges

 (K_{j}, K_{j+1}) and $(K_{j+1}, succ(K_{j+1}))$,

by the edge $(K_j, \operatorname{succ}(K_{j+1}))$. Proceed similarly if $K_j \not\in J$ and $K_{j+1} \in J$. After applying the procedure above to all pairs (K_j, K_{j+1}) of cell-centers, we get a tour which is shorter than the original closed path, since each replacement of edges always shortens the length of the closed path. Moreover, this shortening procedure can be clearly executed in time proportional to m^k , i.e., $O(n/\delta(n))$.

3. Asymptotic Execution Time

Before giving the proof of Theorem 1, we want to state two lemmas which will be useful in this section. Their proofs will be given in Section 6.

Let S_n denote the time needed to compute the $M=m^k$ shortest tours through the points in each of the cells C_j constructed in Algorithm A, and let $(n)_j$ denote $n(n-1)\dots(n-j+1)$.

Lemma 3.1: Under Condition C, if Algorithm A is applied to a k-TSP instance $P_{\rm n}$, then there is a constant A such that

&
$$S_n \sim A n \delta(n) e^{\delta(n)} (1 - 1/\delta(n))$$
, as $n \to \infty$.

 $\frac{\text{Lemma 3.2: Under the same conditions as in Lemma 3.1, we have that}}{\text{var } S_n \leqslant A^2 \mathrm{e}^{2\delta(n)} \; \left\{ 16 \mathrm{n} \delta(n)^3 \mathrm{e}^{\delta(n)} + \frac{n^2}{4\delta(n)^2} \right\} \left[1 + \underline{0} (1/\delta(n)) \right]$

as $n \to \infty$, where A is the constant in Lemma 3.1.

Theorem 1: Under Condition C, if Algorithm A is applied to a k-TSP instance p^n then Algorithm A runs in time

 $R_n \sim A/2 n \delta(n) e^{\delta(n)}$ in probability,

where A is a constant

Proof

We have three terms to consider for the execution time of Algorithm

A:

- (i) the time to determine which points are in each of the $M = m^k$ cells;
- (ii) the time to compute the shortest tours through the points in each of the M cells (step [3] of Algorithm A)
- (iii) the time to construct the basic tour (Algorithm B).

We assume that $\underline{O}(n)$ (on- or off-line) memory space is available and a hashing technique may be used to determine the points in each cell and term (i) is then $\underline{O}(n)$ (otherwise, a sorting requiring $\underline{O}(n \log n)$ would be needed).

We estimate term (ii) as follows.

Since, for any $\ensuremath{\epsilon}\xspace > 0$ and for all sufficiently large n, by Lemma 3.1,

$$|\mathcal{E}S_n - An\delta(n)e^{\delta(n)}| < \frac{\varepsilon}{2} An\delta(n)e^{\delta(n)}$$
,

we see, by the Chebyshev inequality with Lemma 3.2, for any $\,\epsilon > 0\,$ and all sufficiently large n, that

$$\begin{split} &\Pr[\mathsf{An}\delta(\mathsf{n})\mathrm{e}^{\delta(\mathsf{n})}(1\!-\!\epsilon) \leqslant \mathsf{S}_{\mathsf{n}} \leqslant \mathsf{An}\delta(\mathsf{n})\mathrm{e}^{\delta(\mathsf{n})}(1\!+\!\epsilon)] \\ &= \Pr[|\mathsf{S}_{\mathsf{n}}\!-\!\mathsf{An}\delta(\mathsf{n})\mathrm{e}^{\delta(\mathsf{n})}| \leqslant \epsilon \; \mathsf{An}\delta(\mathsf{n})\mathrm{e}^{\delta(\mathsf{n})}] \\ &\geqslant \Pr[|\mathsf{S}_{\mathsf{n}}\!-\!\&\mathsf{S}_{\mathsf{n}}| \leqslant \frac{\epsilon}{2} \; \mathsf{An}\delta(\mathsf{n})\mathrm{e}^{\delta(\mathsf{n})}] \\ &\geqslant 1 \; - \; \mathsf{var} \; \mathsf{S}_{\mathsf{n}}/\frac{\epsilon^{2}}{4} \mathsf{A}^{2} \mathsf{n}^{2} \delta(\mathsf{n})^{2} \mathrm{e}^{2\delta(\mathsf{n})} \\ &\geqslant 1 \; - \; \{64\mathsf{n}^{-1}\delta(\mathsf{n})\mathrm{e}^{\delta(\mathsf{n})} \; + \; \delta(\mathsf{n})^{-4}\} \; [1\!+\!\underline{0}(1/\delta(\mathsf{n}))]/\epsilon^{2} \; \rightarrow \; 1 \quad \text{as} \quad \mathsf{n} \; \rightarrow \infty \; . \end{split}$$

Therefore, since $n^{-1}\delta(n)e^{\delta(n)}\to 0$ as $n\to\infty$ (for example, we might choose $\delta(n)=\underline{0}$ (log n/log log n))

$$S_n \sim An\delta(n)e^{\delta(n)}$$
, in probability, as $n \to \infty$.

Finally, the basic tour can be constructed by using Algorithm B $\,$ M times so that the term (iii) is clearly

$$\underline{0}(M) = \underline{0}(n/\delta(n)).$$

The proof is now complete, since the term (ii) dominates the others.

QED

4. Asymptotic Performance

Before proving Theorem 2, we need to prove three auxiliary lemmas. First, let us establish a notation for some concepts used in this section (following the notation in Beardwood, Halton, and Hammersley [1959]).

We have already stated that \underline{P} denotes a sequence of points, $\underline{\underline{P}}^n$ denotes the first n points of $\stackrel{ extstyle e$ $\underline{\mathsf{E}}$ denote any bounded Lebesgue-measurable subset of R^k (we shall suppose that the boundary of $\underline{\underline{E}}$ has zero measure); $\underline{\underline{P}}^n$ $\underline{\underline{E}}$ denote the subset of \underbrace{P}^n which lies in $\underline{\underline{E}}$; $N(\underbrace{PE})$ denote the (possibly infinite) number of points of P in E; ℓ (PE) denote the length of the shortest tour through the points of $\stackrel{PE}{\sim}$; $\stackrel{C}{=}$ 1, $\stackrel{C}{=}$ 2,... denote semiclosed hypercubes (i.e., hypercubes open on their lower-left faces and closed on their upper-right faces) in different positions in R^k ; and $v(\underline{\underline{E}})$ denote the volume (k-dimensional Lebesgue measure) of E . If ξ is a positive real number, we write $\xi \underline{\underline{E}}$ for the set of all points with coordinates $(\xi X_1, \xi X_2, \dots, \xi X_k)$ such that the (X_1, X_2, \dots, X_k) are points of \underline{E} . Thus $\xi \underline{\underline{E}}$ is a ξ -fold linear magnification of $\underline{\underline{E}}$, which leaves the origin of \mathbb{R}^k invariant, and $v(\xi \underline{\underline{E}}) = \xi^k v(\underline{\underline{E}})$. We will use $\xi P \underline{\underline{E}}$ to denote the magnification of $\mathop{\mathbb{P}E}_{\sim}$, whereas $\mathop{\mathbb{P}\xi}_{\sim}$ E will denote the intersection of the unmagnified P with the magnified E. $\stackrel{\sim}{\sim}$

The phrase $'\underline{P} \in u(\underline{E})'$, where \underline{E} is a Lebesgue set of strictly positive measure, means that $\underline{P} = P_1, P_2, \ldots$ is a sample of random points independently distributed over \underline{E} with uniform probability density.

The phrase $'P \in W_{\xi}'$ means that $P = P_1, P_2, ...$ is a sample from a Poisson process of density ξ over R^k ; that is to say, for arbitrary disjoint Lebesgue sets $E_1, E_2, ..., E_m$,

$$\Pr\left\{ N(\underbrace{P}_{\underline{E}_{\mathbf{j}}}) = N_{\mathbf{j}} ; \mathbf{j} = 1, 2, ..., m \right\} = \frac{m}{\mathbf{j} = 1} \frac{\left\{ \xi \vee \left(\underbrace{E}_{\mathbf{j}}\right)\right\}^{N} \mathbf{j}}{N_{\mathbf{j}}!} \exp\left\{ -\xi \vee \left(\underbrace{E}_{\mathbf{j}}\right)\right\}$$

Finally, we adopt the abbreviation q=1 - 1/k, where $k \ge 2$.

With these notational conventions in mind, we are now able to state and prove the following lemmas.

Lemma 4.1: Let $M = m^k$ (where m is a positive even integer) be an integer value (but <u>not</u> a function of n as in Algorithm A) and let \underline{C}_j , $j = 1, 2, \ldots, M$, be the cubic cells, congruent to (1/m) \underline{C}_j , obtained by dissecting \underline{C}_j , as in Algorithm A. If $\underline{P}_j \in W_{\underline{E}_j}$, then

&
$$\ell(P \subseteq 1) \sim \beta \xi^{q}/M$$
, as $\xi/M \to \infty$, (4.1)

where β is an absolute constant (independent of ξ ,M and P; but depending on k, the dimension of the space).

<u>Proof:</u> If ζ is a positive real number, Lemma 5 of Beardwood, Halton, and Hammersley [1959] says that

&
$$\ell (P' \zeta E) \sim \beta \zeta^k v(\underline{E})$$
 as $\zeta \to \infty$, for $P' \in W_1$. (4.2)

We notice that, by scaling, to each $\underline{P}' \in W_1$ in $\zeta \underline{\underline{E}}$ corresponds a $\underline{P} \in W_{\xi}$ in $\zeta \xi^{-1/k} \underline{\underline{E}}$ (and this correspondence is one-to-one). By the same scaling we have

$$\ell(\underbrace{P}_{\sim} \zeta \xi^{-1/k} \underline{\underline{E}}) = \xi^{-1/k} \ell(\underbrace{P}_{\sim} \zeta \underline{\underline{E}}).$$

Thus, from (4.2) we have

&
$$\ell(\underline{P} \zeta \xi^{-1/k} \underline{E}) \sim \xi^{-1/k} \beta \zeta^k v(\underline{E}) \text{ as } \zeta \to \infty.$$
 (4.3)

Let us take $\zeta \xi^{-1/k} = 1/m$ and $\underline{E} = \underline{C}$, so that \underline{C}_{j} is a linear translation of $(1/m)\underline{C} = \zeta \xi^{-1/k}\underline{E}$. Then

 $v(\underline{E}) = v(\underline{C}) = 1 , \quad \zeta^k = \xi/m^k = \xi/M. \quad \text{Thus, as } \zeta \to \infty , \quad \xi/M \to \infty ;$ and $\xi^{-1/k} \zeta^k = \xi^q/M$. Since W_ξ is homogeneous in R^k , so that translation of sets has no effect on the statistics, from (4.3) we get (4.1).

QED

Lemma 4.2: Under the same conditions as in Lemma 4.1, we have

var
$$\ell(\underline{PC}_{j}) = \underline{o}(1) \xi^{-2/k} (\xi/M)^{2-2/k^2}$$
,

as $\xi/M \to \infty$, (4.4)

where o(1) depends only on k.

Proof: If ζ is a positive real number and if $\underline{\underline{E}} \subseteq \underline{\underline{C}}$, Lemma 6 of Beard-

wood, Halton, and Hammersley [1959] implies that

$$\operatorname{var} \ell(\underline{P}'\zeta\underline{\underline{E}}) = \underline{0} (\zeta^{2k-2/(k-1)} \log^2 \zeta), \text{ as } \zeta \to \infty,$$

$$\operatorname{for} \underline{P}' \in W_1. \tag{4.5}$$

We notice that

$$\zeta^{2/k}\zeta^{-2/(k-1)} \log^2 \zeta = \zeta^{-2/(k(k-1))} \log^2 \zeta = \underline{o}(1)$$
,
as $\zeta \to \infty$, for all $k \ge 2$.

Thus, from (4.5) we have that

var
$$\ell(\underline{P}'\zeta \underline{E}) = \underline{o}(1) \zeta^{2k-2/k}$$
, as $\zeta \to \infty$. (4.6)

If $\underline{p} \in W_{\xi}$ and we consider the set $\zeta \xi^{-1/k} \underline{\underline{E}}$; by scaling as in the proof of Lemma 4.1 above, we have from (4.6) that

$$\operatorname{var} \ell\left(\underbrace{P} \zeta \xi^{-1/k} \underline{E}\right) = \xi^{-2/k} \operatorname{var} \ell\left(\underbrace{P'\zeta} \underline{E}\right) =$$

$$= \underline{o}(1) \quad \xi^{-2/k} \zeta^{2k-2/k}, \text{ as } \zeta \to \infty. \tag{4.7}$$

As before, if $\zeta \xi^{-1/k} = 1/m$ and $\underline{\underline{E}} = \underline{\underline{C}}$, then $\zeta = (\xi/M)^{1/k}$.

Thus, from (4.7) we have that

var
$$\ell(\underline{P}(1/m)\underline{C}) = \text{var } \ell(\underline{P}\underline{C}_{j}) =$$

$$= \underline{o}(1) \xi^{-2/k} (\xi/M)^{2-2/k^{2}},$$
as $\xi/M \to \infty$.

QED

Let us now introduce $U_{\xi,\,M}$, a random variable conditional on ξ and M as parameters with M>1:

$$U_{\xi,M} = \sum_{j=1}^{M} \ell(P \subseteq j) , \qquad P \in W_{\xi}, \subseteq j \text{ a translation of } (1/m) \subseteq .$$

(sum of the shortest tours in each cell)

Then, by the independence of $P \in W_{\xi}$ in the disjoint $\subseteq j$'s we have from Lemmas 4.1 and 4.2 that

&
$$U_{\xi,M} = \sum_{j=1}^{M} \& (P C_{j}) \sim \beta \xi^{q}$$
, as $\xi/M \rightarrow \infty$. (4.8)

$$\operatorname{var} U_{\xi,M} = \sum_{j=1}^{M} \operatorname{var} \ell \left(\underset{\sim}{P} \subseteq j \right) = \underline{o}(1) \operatorname{M} \xi^{-2/k} (\xi/M)^{2-2/k^2},$$

$$\operatorname{as} \xi/M \to \infty. \tag{4.9}$$

<u>Lemma 4.3</u>: Given any set \mathbb{P}^n of n points in \mathbb{C} , let $M_1 = m_1^k$ and $M_2 = m_2^k$, where $m_1 < m_2$ and m_1, m_2 are positive even integers. Consider the dissections of \mathbb{C} , into M_1 cells \mathbb{C}_{1i} congruent to $m_1^{-1}\mathbb{C}$, and into M_2 cells \mathbb{C}_{2j} congruent to $m_2^{-1}\mathbb{C}$, as in Algorithm A. Then

$$\sum_{j=1}^{M_2} \ell\left(\underbrace{\mathbb{P}^n_{\underline{C}}}_{2j}\right) \leq \sum_{i=1}^{M_1} \ell\left(\underbrace{\mathbb{P}^n_{\underline{C}}}_{1i}\right) + \underbrace{0}\left[M_2^{1/k(k-1)}n^{1-1/(k-1)}\right] + \underbrace{0}\left[M_2^{1-1/k}\right]. \tag{4.10}$$

Proof: Since $M_1 < M_2$, the cells \underline{C}_{2j} are smaller than the cells \underline{C}_{1i} (sides are m_2^{-1} and m_1^{-1} , respectively); thus any cell \underline{C}_{2j} can contain at most one corner of the dissection into cells \underline{C}_{1i} . Therefore, \underline{C}_{2j} contains all or part of at most 2^k minimal cell-tours T_i (say) of $\underline{P}^n\underline{C}_{1i}$. We distinguish two cases: k=2 and k>2.

Case (i): k=2. We form a tour of $\sum_{i=2j}^{n}$ as follows. Any pieces of T_i (i=1,..., M_1) intersecting \underline{C}_{2j} can be formed into a simple closed polygon by tracing parts of the perimeter of \underline{C}_{2j} . (See Fig. 6) This perimeter is of length $4m_2^{-1} = 4M_2^{-1/2}$. Any T_i contained entirely in \underline{C}_{2j} can be connected to the above polygon by a double chord of length less than m_2^{-1} (See Fig. 7) Such included tours cannot be more than 4 in number. Since each part of every T_i will lie in exactly one of the \underline{C}_{2j} , the sum of the tours constructed above will not exceed

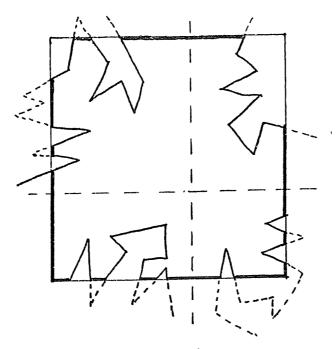


Figure 6

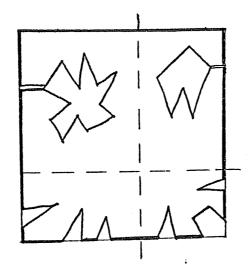


Figure 7

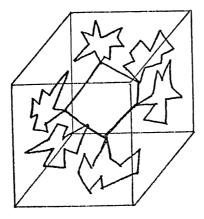


Figure 8

 $\sum_{i=1}^{M_1} \ell(P^n_{\subseteq 1i}) + 8 M_2^{1/2}$, and will not be less than the minimal sum $\sum_{j=1}^{M_2} \ell(P^n_{\subseteq 2j}).$ This proves (4.10) for k=2.

Case (ii): $k \ge 3$. The cell C_{2j} now has 2k faces (of k-1 dimensions), of (k-1)-dimensional volume $m_2^{-(k-1)} = M_2^{-(k-1)/k}$. Various tours T_i will cross a particular face (say) F times; and so, we may form a tour of these F intersections by a polygon L, of length not exceeding $a'_{k-1} M_2^{-1/k} F^{1-1/(k-1)}$ (by Lemma 4 of Beardwood, Halton, and Hammersley [1959]; with $a'_{k-1} \ge \alpha_{k-1}$ independent of M_2 , F, or P^n); and therefore, all pieces of tours T_i entering into C_2 by the given face may

be connected into a simple closed polygon by parts of such a polygon L, rather as in Case (i). All 2k such paths belonging to \subseteq_{2j} may then be joined into a single simple closed polygon by 2k segments of total length not exceeding $2k^{3/2}M_2^{-1/k}$ (Figure 8), since the diagonal of \subseteq_{2j} is $k^{1/2}M_2^{-1/k}$. As in Case (i), we see that there are at most 2^k tours T_i entirely contained in \subseteq_{2j} , and these can be incorporated into our tour of $P^0\subseteq_{2j}$ by double chords of length less than $P^{-1/k}$. Again, each part of every P^1 will lie in exactly one P^1 and the sum of all the numbers P^1 is connected to its successor, in its P^1 by just one chord, and this can only cross at most two faces of the finer dissection; and every such intersection is counted twice.

Thus the sum of the tours constructed above cannot exceed $\sum_{i=1}^{M_1} \ell\left(P^n_{\sum_{i=1}^{m}i}\right) + \alpha'_{k-1} M_2^{-1/k} \sum_{faces} F^{1-1/(k-1)}$

$$+ 2k^{3/2} M_2^{1-1/k} + 2^k M_2^{1-1/k}$$
 (4.11)

By Hölder's inequality, since every face intersected at all will be counted twice, and there are at most $(M_2-M_2^{-1-1/k})2k$ such faces,

$$\sum_{\text{faces}} (1)^{1/(k-1)} F^{1-1/(k-1)} \leq \left[\sum_{\text{faces}} (1)\right]^{1/(k-1)} \left[\sum_{\text{faces}} F\right]^{1-1/(k-1)}$$

$$= \left[4k(M_2-M_2^{1-1/k})\right]^{1/(k-1)} (4n)^{1-1/(k-1)}$$

$$= 0 \left[M_2^{1/(k-1)}n^{1-1/(k-1)}\right]$$

Thus the upper bound given by (4.11) is

$$\sum_{i=1}^{M_1} \ell \left(\sum_{k=1}^{M_2} \frac{1}{i} \right) + \underline{0} \left[M_2^{1/(k-1)-1/k} n^{1-1/(k-1)} \right] + \underline{0} \left[M_2^{1-1/k} \right].$$

Since the sum of the tours constructed above cannot be less than $\sum_{j=1}^{M_2} \ \ell(\underbrace{P^nC}_{=2j}), \text{ we obtain (4.10) for } k \! \ge \! 3.$ Q.E.D.

Finally, we are now able to proceed to:

Proof of Theorem 2:

First, assume the conditions of Lemmas 4.1 and 4.2.

From (4.8) we know that for all sufficiently large ξ/M and for any arbitrary $\epsilon>0$ we have

$$|\& U_{\xi,M} - \beta \xi^{q}| < \frac{1}{2} \epsilon \beta \xi^{q};$$

and then by Chebyshev's inequality, much as in the proof of Theorem 1,

$$\Pr\{ | U_{\xi,M} - \beta \xi^{q} | \leq \epsilon \beta \xi^{q} \} \geq \Pr\{ | U_{\xi,M} - \& U_{\xi,M} | \leq \frac{1}{2} \epsilon \beta \xi^{q} \}$$

$$\geq 1 - \underline{o}(1) M \xi^{-2/k} (\xi/M)^{2-2/k^{2}} / (\frac{1}{2} \epsilon \beta \xi^{q})^{2} \qquad \text{(by (4.9))}$$

$$= 1 - \underline{o}(1) \frac{1}{\epsilon^{2}} \frac{1}{\epsilon^{2/k^{2}} M^{1-2/k^{2}}}, \text{ as } \frac{\xi}{M} \to \infty. \qquad (4.12)$$

Also, if $N(\underbrace{P}_{\leq} \underline{C}) = n_{\xi}$, then by Chebyshev's inequality,

$$\Pr \left\{ \mid n_{\xi} - \xi \mid \leq \varepsilon \xi \right\} \geqslant 1 - \frac{1}{\varepsilon^{2} \xi} , \qquad (4.13)$$

since $& n_{\xi} = var n_{\xi} = \xi$.

Thus, from (4.12) and (4.13) we have for all sufficiently large

ξ/M that

$$\Pr\left[\beta \frac{1-\varepsilon}{(1+\varepsilon)^{q}} \leqslant \frac{U_{\xi,M}}{n_{\xi}^{q}} \leqslant \beta \frac{1+\varepsilon}{(1-\varepsilon)^{q}}\right] \geqslant 1 - \left[\frac{1}{\xi^{2/k^{2}}M^{1-2/k^{2}}} + \frac{1}{\xi}\right] \varepsilon^{-2}.$$
(4.14)

Now, let $V_{n,M} = \sum_{j=1}^{M} \ell(\underline{P}^n\underline{C}_j)$ where n is a positive integer value and $\underline{P} \in u(\underline{C})$.

Next, define f(n,M) by

$$1 - f(n,M) = Pr \left[\beta \frac{1-\varepsilon}{(1+\varepsilon)^{q}} \leqslant \frac{V_{n,M}}{n^{q}} \leqslant \beta \frac{1+\varepsilon}{(1-\varepsilon)^{q}} \right]. \quad (4.15)$$

Since the conditional probability distribution of $V_{\xi,M}$ given $v_{\xi,M} = v_{\xi,M}$ is the unconditional probability distribution of $V_{\eta,M}$, we have

$$\sum_{n=0}^{\infty} e^{-\xi} \frac{\xi^{n}}{n!} \left[1-f(n,M)\right] = \Pr\left[\beta \frac{1-\varepsilon}{(1+\varepsilon)^{q}} \leqslant \frac{U_{\xi,M}}{n_{\xi^{q}}} \leqslant \beta \frac{1+\varepsilon}{(1-\varepsilon)^{q}}\right]$$

$$\geqslant 1 - \left[\frac{1}{\xi^{2/k^{2}}M^{1-2/k^{2}}} + \frac{1}{\xi}\right] \varepsilon^{-2}, \qquad (4.16)$$

for all sufficiently large ξ/M .

Since $0 \le 1-f(n,M) \le 1$, (4.16) gives us that

$$\sup_{|\mathbf{t}-\xi| \leqslant \varepsilon \xi} [1-f(\mathbf{t},M)] \sum_{|\mathbf{n}-\xi| \leqslant \varepsilon \xi} e^{-\xi} \frac{\xi^{\mathbf{n}}}{\mathbf{n}!} + \sum_{|\mathbf{n}-\xi| > \varepsilon \xi} e^{-\xi} \frac{\xi^{\mathbf{n}}}{\mathbf{n}!}$$

$$\geqslant 1 - \left[\frac{1}{\xi^{2/k_{M}^{2}1 - 2/k^{2}}} + \frac{1}{\xi} \right] \varepsilon^{-2} \cdot (4.17)$$

By observing that the first summation above is less than 1 and the second summation is less than $1/(\epsilon^2 \xi)$, by (4.13), we have that

$$\sup_{|\mathbf{t}-\boldsymbol{\xi}| \leqslant \epsilon \boldsymbol{\xi}} \left[\left[1-f(\mathbf{t},\mathbf{M}) \right] \right] \ge 1 - \left[\frac{1}{\boldsymbol{\xi}^{2/k} \mathbf{M}^{1-2/k^{2}}} + \frac{2}{\boldsymbol{\xi}} \right] \epsilon^{-2} ,$$
 for all sufficiently large $\boldsymbol{\xi}/\mathbf{M}$. (4.18)

Since by hypothesis M > 1, for all sufficiently large ξ/M we have

$$\sup_{|\mathbf{t}-\xi| \leqslant \varepsilon \xi} \left[\left[1-f(\mathbf{t}, M) \right] \right] \ge 1 - \left[\frac{1}{\varepsilon^{2/k^{2}}} + \frac{2}{\xi} \right] \varepsilon^{-2}$$

$$\ge 1 - C\xi^{-2/k^{2}}, \tag{4.19}$$

for all sufficiently large ξ/M , where C is a constant (depending upon ε and k but not on M.)

The supremum in (4.19) is taken over the range:

$$(1-\varepsilon)$$
 $\xi \leq t \leq (1+\varepsilon)$ ξ

If $\xi = \frac{\left(1+\epsilon\right)^m}{\left(1-\epsilon\right)^{m+1}}$, and if J_m is the set of integers t satisfying: $\left(\frac{1+\epsilon}{1-\epsilon}\right)^m \leqslant t \leqslant \left(\frac{1+\epsilon}{1-\epsilon}\right)^{m+1}, \quad m=1,2,\ldots, \quad \text{then } J_m \quad \text{becomes the range}$ of the supremum in (4.19).

We observe that, for any $\,M\,$ and for sufficiently large $\,m\,$, $\,\xi/M\,$ can be made as large as we like, and so can ensure that (4.19) above holds true. In particular, if we let $\,$ n $\,$ be any member of $\,$ J $_{m},\,$ for fixed $\,$ $\epsilon,\,$ and let

 $M = M(n) = n/\delta(n)$. We have

$$\frac{\xi}{M(n)} = \frac{(1+\varepsilon)^m}{(1-\varepsilon)^{m+1}} \frac{\delta(n)}{n} \ge \frac{(1+\varepsilon)^m}{(1-\varepsilon)^{m+1}} \frac{(1-\varepsilon)^{m+1}}{(1+\varepsilon)^{m+1}} \delta(n) = \frac{\delta(n)}{(1+\varepsilon)}$$

Since $\delta(\cdot)$ is an increasing function; for fixed ϵ and for sufficiently large m, $\xi/M(n)$ can be made as large as we like; so that from (4.19) we have

$$\sup_{t \in J_m} [1-f(t,M(n))] \ge 1-C'\left(\frac{1+\epsilon}{1-\epsilon}\right)^{-2m/k^2}, \qquad (4.20)$$

for all sufficiently large m, where $C' = C(1-\epsilon)^{2/k^2}$ is a constant (depending only on ϵ and k). That is, there is an integer m_0 (depending on ϵ and k) such that (4.20) holds for all m \geq m $_0$. Further, since J_m contains only a finite number of integers, it contains an integer $\,n_{_{\mbox{\scriptsize m}}}^{}\,$ (depending on $\,\epsilon,\,k$ and n) such that

$$1-f(n_m,M(n)) = \sup_{t \in J_m} [1-f(t,M(n))];$$
 whence

$$\sum_{m=0}^{\infty} \left\{ 1 - \Pr \left[\frac{1 - \varepsilon}{(1 + \varepsilon)^{q}} \le \frac{v_{m}, M(n)}{n_{m}^{q}} \le \beta \frac{1 + \varepsilon}{(1 - \varepsilon)^{q}} \right] \right\}$$

$$= \sum_{m=0}^{m_0-1} f(n_m, M(n)) + \sum_{m=m_0}^{\infty} f(n_m, M(n)) \leq m_0 + \sum_{m=m_0}^{\infty} C' \left(\frac{1+\epsilon}{1-\epsilon}\right)^{-2m/k^2} < \infty.$$
(4.21)

By the Borel-Cantelli lemma, (4.21) implies that, with probability one, for any choices of n (and consequent values of M and n_{m}) in each J_{m} ,

$$\beta \frac{1-\epsilon}{(1+\epsilon)^{q}} \leqslant \lim_{m \to \infty} \inf \frac{v_{n_{m}} M(n)}{n_{m}^{q}} \leqslant \lim_{m \to \infty} \sup \frac{v_{n_{m}} M(n)}{n_{m}^{q}} \leqslant \beta \frac{1+\epsilon}{(1-\epsilon)^{q}}.$$
(4.22)

Next, for choices n',n, and n" in J_{m-1} , J_m , and J_{m+1} , respectively, write $\mu_n=n_{m-1}$, $\nu_n=n_{m+1}$. From the definition of J_m and n_m we have

From (4.23),
$$0 \le n - \mu_n \le n - \frac{n}{\left(\frac{1+\epsilon}{1-\epsilon}\right)^{m+1}} \cdot \left(\frac{1+\epsilon}{1-\epsilon}\right)^{m-1}$$

$$= n \quad \left[1 - \left(\frac{1-\epsilon}{1+\epsilon}\right)^2\right]$$

$$= n \quad \frac{4\epsilon}{(1+\epsilon)^2} \le 4 \epsilon n. \tag{4.24}$$

Similarly, from (4.23),
$$0 \le v_n - n \le \frac{n}{\left(\frac{1+\varepsilon}{1-\varepsilon}\right)^m} \left(\frac{1+\varepsilon}{1-\varepsilon}\right)^{m+2} - n$$

$$= n \left[\left(\frac{1+\varepsilon}{1-\varepsilon}\right)^2 - 1\right]$$

$$= n \frac{4\varepsilon}{\left(1-\varepsilon\right)^2} \le 5\varepsilon n \qquad (4.25)$$

for sufficiently small $\epsilon \ (< \frac{1}{5+\sqrt{20}})$.

Thus $(\underline{p}^{\mu}\underline{n})^{c}\underline{p}^{n}$ consists of a set of not more than $4 \varepsilon n$ points in $\underline{\underline{c}}$ and $\underline{\underline{p}}^{\nu}\underline{n}$ $(\underline{\underline{p}}^{n})^{c}$ consists of a set of not more than $5 \varepsilon n$ points in $\underline{\underline{c}}$.

Now, if $\underline{\underline{\overline{E}}}$ denotes the closure of $\underline{\underline{E}}$, by Lemma 4 of Beardwood, Halton

and Hammersley [1959] there is an α such that $\limsup_{n\to\infty} n^{-q} \ell(\underline{\mathbb{R}}^n \underline{\underline{\mathbb{E}}})$

 $\leq \alpha - v^{1/k}(\underline{\bar{E}})$ i.e. there is an α' such that

$$(\forall \mathbf{n}) \ \mathbf{n}^{-\mathbf{q}} \mathcal{L}(\mathbf{p}^{\mathbf{n}}\underline{\mathbf{E}}) \leq \alpha' \ \mathbf{v}^{1/k}(\underline{\mathbf{E}}) \ , \tag{4.26}$$

where α and α' are absolute constants (depending on k). If $a_j = N(p^{\nu_n}(p^n)^c\underline{c}_j)$, by applying (4.26) to \underline{c}_j we have

$$(\forall a_{j}) \quad a_{j}^{-q} \underset{\mathbb{Z}_{j}}{\vee} n(\underline{P}^{n})^{c} \underline{\underline{C}}_{j}) \leq \alpha' M(n)^{-1/k} , \qquad (4.27)$$

since $V(\underline{\underline{C}}_j) = M(n)^{-1}$.

From (4.25) we have

$$V_{\mathbf{n},\mathsf{M}(\mathsf{n})} \leq V_{\mathbf{n},\mathsf{M}(\mathsf{n})} + \sum_{j=1}^{\mathsf{M}(\mathsf{n})} \left[\ell(\underline{p}^{\mathsf{n}})^{\mathsf{c}}\underline{\underline{c}_{j}} \right] + 2\sqrt{k} \, \mathsf{M}(\mathsf{n})^{-1/k}$$
 (4.28)

 $(\sqrt{k} \ \text{M(n)}^{-1/k})$ is the diameter of $\underline{\underline{\mathbb{C}}}_j$).

Since
$$\sum_{j=1}^{M(n)} a_j^q \le M(n)^{1/k} \left(\sum_{j=1}^{M(n)} a_j\right)^q$$
 (Hölder's inequality), from (4.27)

we have

$$\sum_{j=1}^{M(n)} [\ell(P^{n})^{c} \underline{C}_{j})] \leq \sum_{j=1}^{M(n)} a_{j}^{q} \alpha' M(n)^{-1/k}$$

$$\leq \alpha' M(n)^{-1/k} M(n)^{1/k} \left[\sum_{j=1}^{M(n)} a_{j} \right]^{q}$$

$$\leq \alpha' (5\varepsilon n)^{q}. \tag{4.29}$$

From (4.28) and (4.29), we have

$$n^{-q} V_{N_{n},M(n)} \leq n^{-q} V_{N_{n},M(n)} + n^{-q} \left[\alpha' (5\varepsilon n)^{q} + 2\sqrt{k} M(n)^{q}\right]$$

$$= n^{-q} V_{N_{n},M(n)} + \alpha' (5\varepsilon)^{q} + 2\sqrt{k} \left(\frac{M(n)}{n}\right)^{q}$$
(4.30)

and the last term in (4.30) is $\underline{o}(1)$, as $n\to\infty$. On the other hand, since M(n) < M(n'') and $v_n^{-q} \leqslant n^{-q}$, by Lemma 4.3 we have that

$$v_{n}^{-q} V_{v_{n},M(n'')} \leq n^{-q} V_{v_{n},M(n)} + n^{-q} \left[\underline{0} \left(M(n'')^{\frac{1}{k(k-1)}} \right)^{1-\frac{1}{k-1}} \right) + \underline{0} \left(M(n'')^{q} \right) \right]. \tag{4.31}$$

Since, by (4.25), $v_n \le (1+5\varepsilon)n$ and similarly $n'' \le (1+5\varepsilon)n$, we have that

$$n^{-q}\underline{0}\left(M(n'')^{\frac{1}{k(k-1)}}v_n^{1-\frac{1}{k-1}}\right) = \underline{0}\left[\frac{\left(1+5\varepsilon\right)n}{\delta(n'')}\right]^{\frac{1}{k(k-1)}}\frac{\frac{1}{k(k-1)}}{n^{1-\frac{1}{k}}}$$

$$= \underline{0} \left(\delta(n^n)^{\frac{-1}{k(k-1)}}\right) = \underline{0}(1), \text{ as } n \to \infty,$$

$$(4.32)$$

and also

$$n^{-q}\underline{0}(M(n'')^{q}) = \underline{0}\left[\left(\frac{(1+5\varepsilon)n}{n\delta(n'')}\right)^{q}\right] = \underline{0}(1), \text{ as } n \to \infty . \tag{4.33}$$

We have from (4.30), (4.31), (4.32), and (4.33)

$$\frac{-q}{v_n} v_{n,M(n'')} \leq n^{-q} v_{n,M(n)} + \alpha'(5\varepsilon)^{q} + \underline{o}(1), \text{ as } n \to \infty.$$

We see that, in this inequality, the independent variables are ε , n (in J_m , which determines m), and n" (chosen in J_{m+1} , which determines $v_n = v_{m+1}$). Applying (4.22), we thus get that

$$\frac{\beta(1-\epsilon)}{(1+\epsilon)^{q}} \leqslant \lim_{n \to \infty} \inf n^{-q} V_{n,M(n)} + \alpha'(5\epsilon)^{q},$$
with probability one. (4.34)

Similarly, if $b_j = N(p^n(p^{\mu}n)^{c}p_j)$, by applying (4.26) to p_j , we get

$$(\forall b_{j}) \quad b_{j}^{-q} \quad \ell(\underline{p}^{n}(\underline{p}^{\mu}_{n})^{c}\underline{\underline{c}}_{j}) \leq \alpha' M(n)^{-1/k} . \tag{4.35}$$

From (4.24) we have

$$V_{\mu_n,M(n)} \geq V_{n,M(n)} - \sum_{j=1}^{M(n)} \left[\ell(\underline{p}^n(\underline{p}^n)^c \underline{\underline{c}}_j) + 2\sqrt{k} M(n)^{-1/k} \right]. (4.36)$$

From (4.35) we have

$$\sum_{j=1}^{M(n)} [\ell(\underline{p}^{n}(\underline{p}^{n})^{c}\underline{\underline{c}}_{j})] \leq \sum_{j=1}^{M(n)} b_{j}^{q} \alpha' M(n)^{-1/k}$$

$$\leq \alpha' M(n)^{-1/k} M(n)^{1/k} \left[\sum_{j=1}^{M(n)} b_{j} \right]^{q}$$

$$\leq \alpha' (4\varepsilon n)^{q} (by (4.24)). \tag{4.37}$$

From (4.36) and (4.37) we have

$$n^{-q} V_{\mu_{n},M(n)} \ge n^{-q} V_{n,M(n)} - n^{-q} [\alpha'(4\epsilon n)^{q} + 2\sqrt{k} M(n)^{q}]$$

$$= n^{-q} V_{n,M(n)} - \alpha'(4\epsilon)^{q} + \underline{o}(1), \qquad (4.38)$$
as $n \to \infty$.

On the other hand, since $\, \text{M}(\text{n}^{\, \cdot}) \, < \, \text{M}(\text{n}) \,$ and $\, \text{n}^{-q} \leqslant \mu_{n}^{-q} \,$, by Lemma 4.3 we have

$$\mu_{n}^{-q} V_{\mu_{n},M(n')} + \mu_{n}^{-q} \left[\underline{0} \left(M(n)^{\frac{1}{k(k-1)}} \mu_{n}^{1-\frac{1}{k-1}} \right) + \underline{0}(M(n)^{q}) \right]$$

$$\geqslant n^{-q} V_{\mu_{n},M(n)}. \tag{4.39}$$

Since, by (4.24),
$$\mu_n \geqslant (1-4\epsilon)n$$
 we have

$$\mu_{n}^{-q} = \underline{0} \left(M(n)^{\frac{1}{k(k-1)}} \mu_{n}^{1-\frac{1}{k-1}} \right) = \underline{0} = \underbrace{\left[\left(\frac{(1-4\epsilon)^{-1}\mu_{n}}{\delta(n)} \right)^{\frac{1}{k(k-1)}} \frac{\mu_{n}^{1-\frac{1}{k-1}}}{\mu_{n}^{1-\frac{1}{k}}} \right]}_{\mu_{n}^{1-\frac{1}{k}}}$$

$$= \underline{0} = (\delta(n)^{\frac{-1}{k(k-1)}}) = \underline{0}(1), \quad \text{as } n \to \infty,$$

$$(4.40)$$

and also

$$\mu_{n}^{-q} \underline{0}(M(n)^{q}) = \underline{0} \left[\frac{(1-4\varepsilon)^{-1}\mu_{n}}{\delta(n)\mu_{n}} \right]^{q} = \underline{0}(1), \text{ as } n \to \infty.$$
 (4.41)

We have from (4.38), (4.39), (4.40), and (4.41) that

$$\mu_n^{-q} V_{\mu_n,M(n')} \ge n^{-q} V_{n,M(n)} - \alpha'(4\epsilon)^q + \underline{o}(1), \text{ as } n \to \infty$$
.

As in obtaining (4.34), we note that the independent variables in this inequality are ε , n (which determines m), and n' (which determines $\mu_n = n_{m-1}$). Applying (4.22) again, we get

$$\frac{\beta(1+\epsilon)}{(1-\epsilon)^{q}} \geqslant \lim_{n \to \infty} \sup_{n \to \infty} n^{-q} V_{n,M(n)} - \alpha'(4\epsilon)^{q}, \qquad (4.42)$$

with probability one.

Since ϵ is arbitrary and $n^{-q} V_{n,M(n)}$ does not depend on ϵ , (4.34) and (4.42) imply that

$$\lim_{n\to\infty} n^{-q} V_{n,M(n)} = \beta, \text{ with probability one.}$$
 (4.43)

Now let $X_{n,M(n)} = \sum_{j=1}^{M(n)} \mathfrak{L}(\underbrace{\mathbb{P}^n}_{j} \subseteq_{j} \cup K_j)$ where K_j is the singleton containing the cell-center of $\underline{\mathbb{C}}_j$. Then we have

$$\begin{split} \chi_{n,M(n)} &\leq V_{n,M(n)} + M(n) \quad [2\sqrt{k} \ M(n)^{-1/k}] \\ &= V_{n,M(n)} + \underline{o}[M(n)^{q}] \\ &\sim \beta \quad n^{q} + \underline{o}[n^{q}/\delta(n)^{q}] \\ &= \beta \quad n^{q} + \underline{o}(n^{q}) \; . \end{split}$$
 (by (4.43))

Thus: $X_{n,M(n)} \le \beta n^q + o(n^q)$, as $n \to \infty$, with probability one. (4.44)

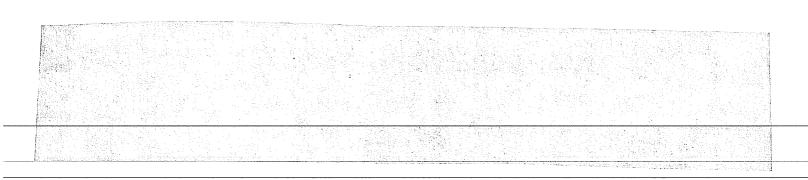
Since the basic tour has length M(n) h (there are M(n) cell centers being connected by edges of length h), where $h = 1/m = 1/M(n)^{1/k}$, we have that the length of the closed path given by Algorithm A is, by (4.44)

$$T(n) = X_{n,M(n)} + \underline{o}[M(n)^{q}]$$

$$= X_{n,M(n)} + \underline{o}(n^{q})$$

$$\leq \beta n^{q} + \underline{o}(n^{q}), \text{ as } n \to \infty, \text{ with probability one.} (4.45)$$

On the other hand, by Lemma 7 of Beardwood, Halton, and Hammersley [1959], the length $T_0(n)$ of the optimal tour is such that


$$T_0(n) \sim \beta n^q$$
, as $n \to \infty$, with probability one. (4.46)

From (4.45) and (4.46) we have

$$1 \leq \frac{T(n)}{T_0(n)} \leq \frac{\beta n^q + \underline{o}(n^q)}{\beta n^q}$$

Thus $\frac{T(n)}{T_0(n)} \sim 1$ as $n \to \infty$, with probability one.

QED

5. A Generalization of the Results

As we mentioned in Section 1, Algorithm A can be applied to $\lambda \underline{\mathbb{C}}$, the k-dimensional hypercube of side λ , instead of $\underline{\mathbb{C}}$. In this section, we want to show how Theorems 1 and 2 can be modified so that, under Condition D, Theorem 3 holds true.

Under Condition D, we partition $\lambda \underline{\underline{C}}$ into $M = n/\delta(n)$ cubic cells, $\underline{\underline{C}}_j$ say. Let us define index sets H_0 , H_1 , H_2 as follows, for $1 \leq j \leq M$,

$$\begin{split} &\mathbf{j} \in \mathsf{H}_0 \;, \quad \text{iff} \quad \underline{\mathbb{C}}_{\mathbf{j}} \subseteq \underline{\mathbb{E}}^{\mathbf{C}} \;; \\ &\mathbf{j} \in \mathsf{H}_1 \;, \quad \text{iff} \quad \mathbb{C}_{\mathbf{j}} \subseteq \underline{\mathbb{E}} \;\;; \\ &\mathbf{j} \in \mathsf{H}_2 \;, \quad \text{iff} \quad \mathbf{j} \not\in \mathsf{H}_0 \quad \text{and} \quad \mathbf{j} \not\in \mathsf{H}_1 \;. \end{split}$$

Let $N(H_0) = N_0$, $N(H_1) = N_1$, $N(H_2) = N_2$, and $M' = v(\underline{\underline{E}})M/\lambda^k$.

Since each cell is of volume λ^k/M and $\underline{\underline{E}}$ has volume $v(\underline{\underline{E}});$ under Condition D, the probability of s points falling into $\underline{\underline{C}}_j$ is

if $j \in H_1$; while if $j \in H_0$, the probability is zero; and if $j \in H_2$, the probability will have λ^k/M replaced by $v(\underline{C}_j\underline{E}) \leqslant \lambda^k/M$.

Since the boundary of $\underline{\underline{E}}$ has zero k-dimensional Lebesgue measure, asymptotically, only M $v(\underline{\underline{E}})/\lambda^k$ cells contain some of the n points. More precisely, we have

$$N_1/M^1 \rightarrow 1$$
 and $N_2/N_1 \rightarrow 0$, as $n \rightarrow \infty$. (5.2)

In the proof of Lemma 3.1(in Section 6)we have, under Condition D,

$$\mathcal{E} S_{n} = \begin{pmatrix} \sum_{j \in H_{0}} + \sum_{j \in H_{1}} + \sum_{j \in H_{2}} \sum_{s=0}^{n} & \text{Pr [s points in } \underline{C}_{j}] \ t_{s}$$

$$= N_{1} \sum_{s=0}^{n} \binom{n}{s} (1/M')^{s} (1-1/M')^{n-s} \ t_{s}$$

$$+ \sum_{j \in H_{2}} \sum_{s=0}^{n} \binom{n}{s} (1/M_{j})^{s} (1-1/M_{j})^{n-s} \ t_{s}$$

$$= N_{1} \psi(M',n) + \sum_{j \in H_{2}} \psi(M_{j},n) ,$$

where, for each
$$j \in H_2$$
, $M_j = v(\underline{\underline{E}})/v(\underline{\underline{C}},\underline{\underline{E}}) \ge M'$. (5.3)

Then the proof of Lemma (3.1) shows that

$$\psi(M,n) \sim A(n/M)^2 e^{(n/M)} (1-M/n), \text{ as } n \to \infty.$$
 (5.4)

Hence, if
$$M_{j} \ge M'$$
, $\psi(M_{j},n) = \underline{0}[\psi(M',n)]$. (5.5)

Applying (5.2) and (5.5) to (5.3) we have

$$\mathcal{E} S_{n} = N_{1} \psi(M', n) + \sum_{j \in H_{2}} \psi(M_{j}, n)$$

$$\sim M' \psi(M', n) + M' \left(\frac{N_{1}}{M'}\right) \left(\frac{N_{2}}{N_{1}}\right) \quad \underline{O}[\psi(M', n)]$$

$$\sim M' \psi(M', n), \quad \text{as} \quad n \to \infty ;$$

$$(5.6)$$

so that, by (5.4), we have, if $\delta^*(n) = n/M'$,

&
$$S_n \sim An\delta^*(n) e^{\delta^*(n)}[1-1/\delta^*(n)]$$

$$= An[\delta(n)\lambda^k/v(\underline{E})]e^{[\delta(n)\lambda^k/v(\underline{E})]}[1-v(\underline{E})/\delta(n)\lambda^k]$$
as $n \to \infty$; (5.7)

i.e., Lemma 3.1 holds true under Condition D, after replacing each $\delta(n)$ by $\delta^*(n) = n/M'$.

Similarly, if we denote by $\psi_1(n/\delta(n),n)=\psi_1(M,n)$ the right-hand side of (6.9)(in Section 6), and we denote by $\psi_2(M,n)$ the expression for $\&(t_{n_i}t_{n_j}|i\neq j)$ in (6.11), and we denote by $\psi_3(M,n)$ the expression for $(\&S_n)^2/M^2$ in (6.12); then we have, under Condition D,

$$= M'\psi_{1}(M',n) + M'^{2}[\psi_{2}(M',n) - \psi_{3}(M',n)]$$

$$\leq A^{2} \left\{ 16n\delta^{*}(n)^{3} e^{3\delta^{*}(n)} + \frac{n^{2}}{4\delta^{*}(n)^{2}} e^{2\delta^{*}(n)} \right\} \left\{ 1 + \underline{0}[1/\delta^{*}(n)] \right\}$$
 (5.8)

(by the paragraph following (6.13)); i.e. Lemma 3.2 holds true under Condition D, when $\delta(n)$ is replaced by $\delta^*(n)$.

By (5.7) and (5.8), the proof of Theorem 1 holds under Condition D if we replace each $\delta(n)$ by $\delta^*(n)$; so that the first part of Theorem 3 is proved.

Now we want to show that the second part of Theorem 3 is true.

As in the proof of Lemma 4.1, we have from Lemma 5 of Beardwood, Halton, and Hammersley [1959] that, for $\Pr_{\xi} \in \mathbb{W}_{\xi}$,

$$\& \ \ell(\underline{P}_{\zeta\xi}^{-1/k}\underline{\underline{E}}^{\cdot}) \sim \xi^{-1/k} \ \beta \zeta^{k} \nu(\underline{\underline{E}}^{\cdot}), \quad \text{as } \zeta \to \infty,$$
 (5.9)/(4.3)*

for any bounded Lebesgue-measureable subset $\underline{\underline{E}}'$ of R^k , with boundary of zero measure.

Now, under Condition D, take $\zeta = \xi^{1/k}$ and $\underline{E}' = \underline{C}_{j} \underline{E} \subseteq \underline{C}_{j}$ (note that \underline{C}_{j} is congruent to $\lambda M^{-1/k}\underline{C}$). Then, as $\zeta \to \infty$, $\xi \to \infty$, and from (5.9), we have

&
$$\ell(\underline{P},\underline{C};\underline{E}) \sim \beta \xi^{q} \nu(\underline{C};\underline{E}), \text{ as } \xi \to \infty$$
 (5.10)/(4.1)*

As in the proof of Lemma 4.2, we have from Lemma 6 of Beardwood, Halton, and Hammersley [1959] that, for $\sum_{\xi} \in W_{\xi}$,

var
$$\ell(P \zeta \xi^{-1/k} \underline{E}') = \underline{o}(1)\xi^{-2/k} \zeta^{2k-2/k}$$
, as $\zeta \to \infty$, (5.11)/(4.7)*

uniformly in $\underline{\underline{E}}' \subseteq \{\text{any set congruent to } \underline{\underline{C}}\}.$

Now, under Condition D, take $\zeta \xi^{-1/k} = \lambda/M^{-1/k}$ and $\underline{\underline{E}}' = \lambda^{-1} M^{1/k} \underline{\underline{C}}_{j} \underline{\underline{E}} \subseteq \lambda^{-1} M^{1/k} \underline{\underline{C}}_{j}$ (note that $\lambda^{-1} M^{1/k} \underline{\underline{C}}_{j}$ is congruent to

to $\underline{\underline{C}}$). Then $\zeta^k = \lambda \xi/M$ and thus, as $\zeta \to \infty$, $\xi/M \to \infty$, and from (5.11), we have

$$\operatorname{var} \ \ell(\underline{\mathbb{P}}\underline{\mathbb{C}}_{\mathbf{j}}\underline{\mathbb{E}}) = \underline{o}(1)\xi^{-2/k}(\xi/M)^{2-2/k^2}, \quad \operatorname{as} \quad \xi/M \to \infty, \qquad (5.12)/(4.4)^*$$

uniformly in j.

Under Condition D, $U_{\xi,M}$ is defined as follows:

$$U_{\xi,M} = \sum_{j=1}^{M} \ell(\underbrace{PC_{j}}\underline{E}) .$$

Then we have, as in Section 4, from (5.10) and (5.12), that

$$\mathcal{E} U_{\xi,M} = \sum_{j=1}^{M} \mathcal{E} \mathcal{L}(\underbrace{P}\underline{C}_{j}\underline{E}) \sim \beta \xi^{q} \sum_{j=1}^{M} v(\underline{C}_{j}\underline{E})$$

$$= \beta \xi^{q} v(\underline{E}), \text{ as } \xi \to \infty;$$

$$(5.13)/(4.8)*$$

and, by the uniformity of (5.12) over j = 1, 2, ..., M,

var
$$\ell(\underbrace{PC_{j}E}) = \sum_{j=1}^{M} \text{var } (\underbrace{PC_{j}E})$$

$$= M \underline{o}(1) \xi^{2q-2/k^{2}}/M^{2-2/k^{2}}$$

$$= \underline{o}(1) \xi^{2q-2/k^{2}}/M^{1-2/k^{2}}, \text{ as } \xi/M \to \infty. \qquad (5.14)/(4.9)*$$

As in the proof of Theorem 2, we have from (5.13) that, for sufficiently large $\,\xi\,$ and for any $\,\epsilon\,>\,0$,

$$|\& U_{\xi,M} - \beta \xi^{q} v(\underline{\underline{E}})| \leq \frac{1}{2} \epsilon \beta \xi^{q} v(\underline{\underline{E}});$$

and then, by Chebyshev's inequality,

$$\begin{split} &\Pr\{\left|U_{\xi,M} - \beta\xi^{q} \ v(\underline{E})\right| \leqslant \epsilon \ \beta\xi^{q} \ v(\underline{E})\} \\ &\geqslant \Pr\{\left|U_{\xi,M} - \& \ U_{\xi,M}\right| \leqslant \frac{1}{2} \ \epsilon \beta\xi^{q} \ v(\underline{E})\} \\ &\geqslant 1 - \underline{o}(1) \big[\xi^{2q - 2/k^{2}}/M^{1 - 2/k^{2}}\big]/\big(\frac{1}{2} \ \epsilon \beta\xi^{q} \ v(\underline{E})\big)^{2} \\ &= 1 - \frac{\underline{o}(1)}{\epsilon^{2}} \ \left[\frac{1}{\xi^{2/k^{2}}M^{1 - 2/k^{2}}}\right], \quad \text{as} \quad \xi/M \to \infty \quad \text{and} \quad \xi \to \infty. \quad (5.15)/(4.12)^{*} \end{split}$$

Also, as in the proof of Theorem 2, if $N(PE) = n_{\xi}$ then

$$\Pr\{|n_{\xi}^{-\xi v}(\underline{\underline{E}})| \leq \varepsilon \xi v(\underline{\underline{E}})\} \geq 1 - \frac{1}{\varepsilon^2 \xi v(\underline{\underline{E}})}, \qquad (5.16)/(4.13)^*$$

since $\& n_{\xi} = var n_{\xi} = \xi v(\underline{\underline{E}})$.

From (5.15) and (5.16), for sufficiently large ξ/M and ξ , we have

$$\Pr\left[\beta \frac{\xi^{q} v(\underline{\underline{E}})}{\xi^{q} v(\underline{E})^{q}} \frac{(1-\epsilon)}{(1+\epsilon)^{q}} \leqslant \frac{U_{\xi,M}}{n_{\xi}^{q}} \leqslant \frac{\beta \xi^{q} v(\underline{\underline{E}})}{\xi^{q} v(\underline{\underline{E}})^{q}} \frac{(1+\epsilon)}{(1-\epsilon)^{q}}\right]$$

$$= \Pr\left[\beta v(\underline{\underline{E}})^{1/k} \frac{(1-\epsilon)}{(1+\epsilon)^{q}} \leqslant \frac{U_{\xi,M}}{n_{\xi}^{q}} \leqslant \beta v(\underline{\underline{E}})^{1/k} \frac{(1+\epsilon)}{(1-\epsilon)^{q}}\right]$$

$$\geqslant 1 - \left[\frac{1}{\xi^{2/k^{2}} M^{1-2/k^{2}}} + \frac{1}{\xi v(\underline{\underline{E}})}\right] \epsilon^{-2}$$

$$(5.17)/(4.14)^{*}$$

Under Condition D, $V_{n,M}$ is defined as follows:

$$V_{n,M} = \sum_{j=1}^{M} \ell(\underline{P}^n C_j \underline{E})$$

where n is a positive integer value and $\overset{P}{\sim} \epsilon \ u(\underline{\underline{C}})$.

The remaining part of the proof of Theorem 2 holds true here if we replace each occurrence of β by $\beta v(\underline{E})^{1/k}$ (as (5.17) above suggests), and if we replace each occurrence of the condition "sufficiently large ξ/M " by "sufficiently large ξ/M and ξ ".

The only additional point to observe is that, since we take $\xi = \frac{\left(1+\epsilon\right)^m}{\left(1-\epsilon\right)^{m+1}} \text{ just before the definition of the sets } J_m \text{ in the proof of Theorem 2, the condition "sufficiently large } \xi^m \text{ is satisfied for sufficiently large } m.$

First we want to prove a remark which will be used in the proofs of Lemmas 3.1 and 3.2.

Remark 1 (A)

If $x, q \ge 0$ are fixed and $M \to \infty$ in such a way that $M/n \to 0$, then $0 \le e^{xn/M} - (1+x/M)^{n-q} \le e^{xn/M} \left[\frac{xq}{M} + \frac{x^2n}{2M^2}\right]$. $\frac{Proof}{n} : e^{xn/M} = 1 + \frac{xn}{M} + \frac{1}{2} \frac{x^2n^2}{M^2} + \ldots + \frac{1}{m!} \frac{x^mn^m}{M^m} + \ldots, (1+\frac{x}{M})^{n-q} = 1 + \frac{x(n-q)}{M}$ $+ \frac{1}{2} \frac{x^2(n-q)_2}{M^2} + \ldots + \frac{1}{m!} \frac{x^m(n-q)_m}{M^m} + \ldots \quad \text{So} \quad e^{xn/M} - (1+x/M)^{n-q}$ $= \sum_{m=1}^{\infty} \frac{1}{m!} \frac{x^m}{M^m} \left[n^m - (n-q)_m \right] \quad \text{Now} \quad n^m \ge (n-q)_m \ge n^m - n^{m-1} \sum_{i=0}^{m-1} (i+q)$ $= n^m - n^{m-1} m \left[\frac{1}{2} (m-1) + q \right] .$

The first inequality holds because each factor of $(n-q)_m$ is less than or equal to n, and there are m factors on each side; the second is seen by induction: $n-q=n^1-n^0q$ (m=1). If true for m=h-1, then $(n-q)_h=(n-q)_{h-1}$ $(n-q-h+1)\geqslant \{n^{h-1}-n^{h-2}(h-1)[\frac{1}{2}\ (h-2)+q]\}$ (n-q-h+1) $\geqslant n^h-n^{h-1}(h-1)[\frac{1}{2}\ (h-2)+q]-(q+h-1)n^{h-1}=n^h-n^{h-1}h[\frac{1}{2}\ (h-1)+q]$ and induction is complete. Thus $0\leqslant n^m-(n-q)_m\leqslant n^{m-1}m[\frac{1}{2}\ (m-1)+q]$, whence $0\leqslant e^{Xn/M}-(1+x/M)^{N-q}\leqslant \sum\limits_{m=1}^\infty \frac{1}{m!}\frac{x^m}{M^m}n^{m-1}m[\frac{1}{2}\ (m-1)+q]$ $\leqslant \sum\limits_{m=1}^\infty \frac{1}{(m-1)!}\frac{x^{m-1}n^{m-1}}{M^{m-1}}\frac{xq}{M}$ $+\sum\limits_{m=2}^\infty \frac{1}{(m-2)!}\frac{x^{m-2}n^{m-2}}{M^{m-2}}\frac{x^2n}{2M^2}$ $=e^{Xn/M}$ $[\frac{xq}{M}+\frac{x^2n}{2M^2}]$.

Remark 1 (B)

If x < 0, $q \ge 0$ are fixed and $M \to \infty$ in such a way that $M/n \to 0$, then

$$\frac{x^2n}{4M^2} (u-v) + \frac{xq}{2M} (u+v) \leq e^{xn/M} - (1+x/M)^{n-q} \leq \frac{x^2n}{4M^2} (u+v) + \frac{xq}{2M} (u-v),$$

where $u = e^{xn/M}$, $v = 1/u = e^{-xn/M}$.

Proof: As in Remark 1(A), we see that

$$\Delta(x) = e^{xn/M} - (1+x/M)^{n-q} = \sum_{m=1}^{\infty} \frac{1}{m!} \frac{x^m}{M^m} [n^m - (n-q)_m],$$

and that

$$0 \le n^{m} - (n-q)_{m} \le n^{m-1} m \left[\frac{1}{2}(m-1)+q\right].$$

The series for $\Delta(x)$ now alternates. By collecting positive terms only, we obtain that

$$\Delta(x) \leq \sum_{m=2}^{\infty} \frac{1}{(m-1)!} \left(\frac{xn}{M}\right)^m \frac{1}{n} \left[\frac{1}{2}(m-1)+q\right]$$
(m even)

$$= \frac{x^{2}n}{2M^{2}} \sum_{m=2}^{\infty} \frac{1}{(m-2)!} \left(\frac{xn}{M}\right)^{m-2} + \frac{xq}{M} \sum_{m=2}^{\infty} \frac{1}{(m-1)!} \left(\frac{xn}{M}\right)^{m-1}.$$
(m even)

Now
$$\sum_{m=0}^{\infty} \frac{1}{m!} \left(\frac{xn}{M}\right)^m = \frac{1}{2} (u+v) \text{ and } \sum_{m=1}^{\infty} \frac{1}{m!} \left(\frac{xn}{M}\right)^m = \frac{1}{2} (u-v).$$
(m even) (m odd)

Thus
$$\Delta(x) \leq \frac{x^2n}{4M^2} (u+v) + \frac{xq}{2M} (u-v)$$
.

Similarly, by collecting negative terms, we get

$$\Delta(x) \geq \sum_{\substack{m=1 \ (m \text{ odd})}}^{\infty} \frac{1}{(m-1)!} \left(\frac{xn}{M}\right)^{m} \frac{1}{n} \left[\frac{1}{2}(m-1)+q\right]$$

$$= \frac{x^{2}n}{2M^{2}} \sum_{\substack{m=3 \ (m \text{ odd})}}^{\infty} \frac{1}{(m-2)!} \left(\frac{xn}{M}\right)^{m-2} + \frac{xq}{M} \sum_{\substack{m=1 \ (m \text{ odd})}}^{\infty} \frac{1}{(m-1)!} \left(\frac{xn}{M}\right)^{m-1}$$

$$= \frac{x^{2}n}{4M^{2}} (u-v) + \frac{xq}{2M} (u+v).$$

QED

<u>Lemma 3.1:</u> Under Condition C, if Algorithm A is applied to a k-TSP instance \underline{P}^n then there is a constant A, such that

&
$$S_n \sim An\delta(n)e^{\delta(n)}[1-1/\delta(n)]$$
, as $n \to \infty$.

<u>Proof:</u> Let t_s denote the time needed to compute a shortest tour through s points. From Bellman [1962] and Held and Karp [1962], we know there is a constant A (roughly, half the time needed for one addition), such that

$$t_s = 2A(s-1) [2^{s-3}(s-2)+1]$$

= $A[2^{s-2}(s)_2 - 2^{s-1}s + 2s + 2^{s-1} - 2] = t*(s)$, for $s \ge 1$, and $t_0 = 0$. (6.1)

If k,p, and $q \ge 0$ are fixed, and $n \to \infty$, we see that

$$f(n;k,p,q) = \sum_{s=0}^{n} {n \choose s} (1/M)^{s} (1-k/M)^{n-s} p^{s-q} (s)_{q}$$

$$= (n)_{q} (1/M)^{q} \sum_{s=q}^{n} {n-q \choose s-q} (p/M)^{s-q} (1-k/M)^{n-s}$$

$$= (n)_{q} (1/M)^{q} [1+(p-k)/M]^{n-q}. \qquad (6.2)$$

By Remark 1 (A) we have that, if $p \ge k$, $q \ge 0$, then

$$\delta(n)^{q} e^{(p-k)\delta(n)} (1 - \frac{(p-k)q}{M} - \frac{(p-k)^{2}n}{2M^{2}}) (1 + \underline{0}(1/n))$$

 \leq f(n;k,p,q)

$$\leq \delta(n)^q e^{(p-k)\delta(n)}$$
 (6.3)

So
$$f(n;k,p,q) \sim \delta(n)^q e^{(p-k)\delta(n)[1+\underline{0}(\delta(n)^2/n)]}$$
. (6.4)

Now, if n_j denotes the number of points in cell $\underline{\underline{c}}_j$, we have

$$\& S_n = \& \sum_{j=1}^{M} t_{n_j} = M \& t_{n_j};$$
 (6.5)

and, since n_j has (binomial) probability $\binom{n}{s}$ $(1/M)^s(1-1/M)^{n-s}$ of taking the value s,

$$= AM[f(n;1,2,2) - f(n;1,2,1) + 2f(n;1,1,1)]$$

+
$$(1/2)$$
 f(n;1,2,0) - 2f(n;1,1,0) + $(3/2)(1-1/M)^n$] (6.6)

[Note that we use the general formula t*(s) in (6.1) for t_s even when s=0. This <u>incorrectly</u> yields t*(0)=-(3/2)A; forcing us to make the corresponding correction, $+M(1-1/M)^n(3/2)A$, above.] Thus

&
$$S_n \sim A \frac{n}{\delta(n)} [\delta(n)^2 e^{\delta(n)} - \delta(n) e^{\delta(n)} + 2\delta(n)$$

$$+ (1/2) e^{\delta(n)} - 2 + (3/2) e^{-\delta(n)}][1 + \underline{0}(\delta(n)^2/n)] \text{ (by Remark 1 (A) & (B))}$$

$$\sim An\delta(n) e^{\delta(n)} [1 - 1/\delta(n) + 1/2\delta(n)^2 + \underline{0}(\delta(n)^2/n)],$$

as $n \rightarrow \infty$, and the lemma follows

, since

$$\lceil \delta(n)^2/n \rceil / \lceil 1/\delta(n) \rceil \rightarrow 0$$
, as $n \rightarrow \infty$.

Now we want to prove a second remark which will be used in the proof of Lemma 3.2.

Remark 2

$$0\leqslant (1+1/M)^{2n-k}-(1+2/M)^{n-k}\leqslant e^{2n/M}\,\frac{n}{M^2}(1+\frac{kM}{n})\quad \text{if }\ k\geqslant 0\quad \text{is fixed and}$$

$$M\to\infty\quad \text{in such a way that}\quad M/n\to 0.$$

Proof: The first inequality above is true since clearly

$$(1+1/M)^{2n-k} - (1+2/M)^{n-k}$$

$$= 1 + \frac{2n-k}{M} + \frac{(2n-k)(2n-k-1)}{2M^2} + \dots + \frac{(2n-k)\dots(2n-k-j+1)}{j!M^j} + \dots$$

$$- 1 - \frac{2n-2k}{M} - \frac{(2n-2k)(2n-2k-2)}{2M^2} - \dots - \frac{(2n-2k)\dots(2n-2k-2j+2)}{j!M^j} - \dots$$

$$\geqslant 0.$$

Now, the j-th term in the difference above is:

$$T_{j} = \frac{(2n-k)...(2n-k-j+1) - (2n-2k)...(2n-2k-2j+2)}{j!M^{j}}$$

$$= \frac{1}{j!M^{j}} \begin{cases} k+j-1 \\ i=k \end{cases} (2n)^{j-1}i - 3 \sum_{pairs} (2n)^{j-2} ii' + 7 \sum_{triplets} (2n)^{j-3}ii'i''-... \end{cases}.$$

By induction on j, we want to show that

$$T_{j} \le \frac{1}{j!M^{j}} (2n)^{j-1} \sum_{i=k}^{k+j-1} i$$
 (6.7)

For j=1, $T_1=\frac{k}{M}=\frac{1}{M}$ $(2n)^0$ $\sum_{i=k}^{k}i=\frac{k}{M}$. Assume the inequality above is true for j=h-1.

Then
$$T_h h! M^h = [(2n-k)...(2n-k-h+2)](2n-k-h+1)$$

$$-[(2n-2k)...(2n-2k-2h+4)](2n-2k-2h+2)$$

$$= T_{h-1}(h-1)! M^{h-1}(2n-k-h+1) + (2n-2k)...(2n-2k-2h+4)(k+h-1).$$

$$\leq (2n)^{h-2} \binom{k+h-2}{\sum_{i=k}^{i} i} (2n-k-h+1) + (2n-2k)...(2n-2k-2h+4)(k+h-1)$$

$$\leq (2n)^{h-1} \sum_{i=k}^{k+h-2} i + (2n)^{h-1}(k+h-1)$$

$$= (2n)^{h-1} \sum_{i=k}^{k+h-1} i ,$$

and induction is complete.

From (6.7) we have that

$$T_{j} \leq \frac{1}{j!M^{j}} (2n)^{j-1} \left[\frac{1}{2} (k+j-1)(k+j) - \frac{1}{2} (k-1)k \right]$$

$$= \frac{1}{j!M^{j}} (2n)^{j-1} \frac{1}{2} \left[2jk+j(j-1) \right] ;$$

so that

$$\begin{split} \sum_{\mathbf{j}=1}^{\infty} T_{\mathbf{j}} \leqslant & \frac{k}{M} \sum_{\mathbf{j}=1}^{\infty} \frac{M^{-(\mathbf{j}-1)}}{(\mathbf{j}-1)!} (2n)^{\mathbf{j}-1} + \frac{2n}{2M^2} \sum_{\mathbf{j}=2}^{\infty} \frac{M^{-(\mathbf{j}-2)}}{(\mathbf{j}-2)!} (2n)^{\mathbf{j}-2} \\ & = \frac{k}{M} e^{2n/M} + \frac{n}{M^2} e^{2n/M} . \end{split}$$

QED

Lemma 3.2: Under the same conditions as in Lemma 3.1, we have that

$$\text{var } S_n \leqslant A^2 e^{2\delta(n)} \left\{ 16n\delta(n)^3 e^{\delta(n)} + \frac{n^2}{4\delta(n)^2} \right\} \left[1 + \underline{0}(1/\delta(n)) \right]$$

as $n \rightarrow \infty$, where A is the constant in Lemma 3.1.

Proof: &
$$S_n^2 = \sum_{i=1}^{M} \sum_{j=1}^{M} t_{n_i} t_{n_j} = \sum_{i=1}^{M} t_{n_i}^2 + 2 \sum_{i=1}^{M-1} \sum_{j=i+1}^{M} t_{n_i} t_{n_j}$$

$$= M et_{n_i}^2 + M(M-1) & (t_{n_i}^t t_{n_j} | i \neq j)$$
(6.8)

Since $[(s)_2]^2 = (s)_4 + 4(s)_3 + 2(s)_2$, $s(s)_2 = (s)_3 + 2(s)_2$, and $s^2 = (s)_2 + s$, using (6.1) and (6.3), we see that

$$\begin{array}{l} \& \ t_{n_{1}}^{2} = \sum\limits_{s=0}^{n} \binom{n}{s} \ (1/M)^{s} (1-1/M)^{n-s} \ A^{2} \ \{ [4^{s-2}(s)_{4} + 4^{s-1}(s)_{3} \\ \\ + \ 2.4^{s-2}(s)_{2}] - \ [4^{s-1}(s)_{3} + 2.4^{s-1}(s)_{2}] + \ [2^{s}(s)_{3} \\ \\ + \ 2^{s+1}(s)_{2}] + \ 4^{s-1}(s)_{2} - \ 2^{s}(s)_{2} + \ [4^{s-1}(s)_{2} + 4^{s-1}s] \\ \\ - \ [2^{s+1}(s)_{2} + 2^{s+1}s] - \ 2.4^{s-1}s + \ 2^{s+1}s + \ [4(s)_{2} + 4^{s}] \\ \\ + \ 2^{s+1}s - 8s + 4^{s-1} - \ 2^{s+1} + 4 \} - \ (9/4)A^{2}(1-1/M)^{n} \ . \end{array}$$

[The last terms above is a correction similar to that in (6.6)]. So

&
$$t_{n_i}^2 = A^2[16f(n;1,4,4) + 8f(n;1,2,3) + 2f(n;1,4,2)$$

$$-4f(n;1,2,2) + 4f(n;1,1,2) - f(n;1,4,1)$$

$$+4f(n;1,2,1) - 4f(n;1,1,1) + (1/4)f(n;1,4,0)$$

$$-2f(n;1,2,0) + 4f(n;1,1,0) - (9/4)(1-1/M)^n]$$

$$\leq A^{2} \{16\delta(n)^{4} e^{3\delta(n)} + 8\delta(n)^{3} e^{\delta(n)} + 2\delta(n)^{2} e^{3\delta(n)} + 4\delta(n)^{2} + 4\delta(n) e^{\delta(n)} + (1/4) e^{3\delta(n)} + 4\delta(n)^{2} + 4\delta(n) e^{\delta(n)}$$

$$(6.9)$$

Just as in (6.2), we note that

$$\sum_{s=0}^{v} {v \choose s} p^{s-q}(s)_{q}(v-s)_{r} = (v)_{q+r} \sum_{s=q}^{v-r} {v-q-r \choose s-q} p^{s-q}$$

$$= (v)_{q+r}(p+1)^{v-q-r} = \sum_{s=0}^{v} {v \choose s} p^{v-s-r} (s)_{q}(v-s)_{r};$$
(6.10)

whence, by putting v = s+u, we get that

$$\begin{split} & \{ t_{n_i} t_{n_j} | i \neq j \} = \sum_{s=0}^{n} \sum_{u=0}^{n-s} \binom{n}{s+u} \binom{s+u}{s} (1/M)^{s+u} (1-2/M)^{n-s-u} t_s t_u \\ & = A^2 \sum_{v=0}^{n} \binom{n}{v} (1/M)^{v} (1-2/M)^{n-v} \left\{ \sum_{s=0}^{v} \binom{v}{s} \left[2^{v-4} (s)_2 (v-s)_2 (v$$

[The terms $3(2^{v-2}(v)_2-2^{v-1}v+2v+2^{v-1}+2)$ and $(9/4)A^2(1-2/M)^n$ at the end, above, are corrections for the use of $t^*(0)$ instead of t_0 , similar to those in (6.6) and (6.9) above.]

$$= A^{2} \int_{v=0}^{n} {n \choose v} (1/M)^{v} (1-2/M)^{n-v} [2^{v-4}(v)_{4} 2^{v-4}$$

$$-2^{v-3}(v)_{3} 2^{v-3} + 2(v)_{3} 3^{v-3} + 2^{v-3}(v)_{2} 2^{v-2}$$

$$-2(v)_{2} 3^{v-2} - 2^{v-3}(v)_{3} 2^{v-3} + 2^{v-2}(v)_{2} 2^{v-2}$$

$$-2(v)_{2} 3^{v-2} - 2^{v-2} v 2^{v-1} + 2v 3^{v-1} + 2(v)_{3} 3^{v-3}$$

$$-2(v)_{2} 3^{v-2} + 4(v)_{2} 2^{v-2} + v 3^{v-1} - 4v 2^{v-1}$$

$$+2^{v-3}(v)_{2} 2^{v-2} - 2^{v-2} v 2^{v-1} + v 3^{v-1} + 2^{v-2} 2^{v}$$

$$-3^{v} - 2(v)_{2} 3^{v-2} + 2v 3^{v-1} - 4v 2^{v-1} - 3^{v} + 4 \cdot 2^{v}$$

$$+3(2^{v-2}(v)_{2} - 2^{v-1} v + 2v + 2^{v-1} - 2)] + (9/4)A^{2}(1-2/M)^{n}$$

$$= A^{2}[f(n;2,4,4) - 2f(n;2,4,3) + 2f(n;2,4,2)$$

$$-f(n;2,4,1) + (1/4) f(n;2,4,0) + 4f(n;2,3,3)$$

$$-8f(n;2,3,2) + 6f(n;2,3,1) - 2f(n;2,3,0)$$

$$+7f(n;2,2,2) - 11f(n;2,2,1) + (11/2)f(n;2,2,0)$$

$$+6f(n;2,1,1) - 6f(n;2,1,0) + (9/4)(1-2/M)^{n}]$$

Then,

$$M^{2} \mathcal{E}(t_{n_{1}} t_{n_{1}} | i \neq j) = A^{2} M^{2} \{ ((n)_{4} / M^{4}) (1 + 2 / M)^{n-4} - 2((n)_{3} / M^{3}) (1 + 2 / M)^{n-3} + 2((n)_{2} / M^{2}) (1 + 2 / M)^{n-2} - (n / M) (1 + 2 / M)^{n-1} + (1 / 4) (1 + 2 / M)^{n} + 4((n)_{3} / M^{3}) (1 + 1 / M)^{n-3} - 8((n)_{2} / M^{2}) (1 + 1 / M)^{n-2} + 6(n / M) (1 + 1 / M)^{n-1} - 2(1 + 1 / M)^{n} + 7(n)_{2} / M^{2} - 11(n / M) + 11 / 2 + 6(n / M) (1 - 1 / M)^{n-1} - 6(1 - 1 / M)^{n} + (9 / 4) (1 - 2 / M)^{n} \},$$

$$(6.11)$$

On the other hand, from (6.6) we have that

$$\varepsilon_n = AM[((n)_2/M^2)(1+1/M)^{n-2} - (n/M)(1+1/M)^{n-1}]$$

$$+ 2n/M + (1/2)(1+1/M)^{n} - 2+(3/2)(1-1/M)^{n}].$$
So $(\& S_n)^2 = A^2M^2\{[(n)_4+4(n)_3+2(n)_2](1/M)^4(1+1/M)^{2n-4}\}$

$$-2(n)_2 n(1/M)^3 (1+1/M)^{2n-3}$$

$$+ [(n)_2 + n^2](1/M)^2 (1+1/M)^{2n-2}$$

$$-(n/M)(1+1/M)^{2n-1} + (1/4)(1+1/M)^{2n}$$

$$+4(\frac{n}{M}-1+(3/4)(1-1/M)^n)[((n)_2/M^2)(1+1/M)^{n-2}-(n/M)(1+1/M)^{n-1}]$$

+
$$(1/2)(1+1/M)^n$$
] + $4(\frac{n}{M}-1)^2$

+
$$6\left(\frac{n}{M}-1\right)\left(1-1/M\right)^{n}$$
 + $(9/4)\left(1-1/M\right)^{2n}$. (6.12)

Observing that, in (6.12), $(n)_2^n = (n)_3 + 2(n)_2$ and $n^2 = (n)_2 + n$, from (6.11) and (6.12), using Remarks 1 (A) and 2 we have that

$$\begin{split} & \mathsf{M}^2 \& (\mathsf{t}_{\mathsf{n}_1} \mathsf{t}_{\mathsf{n}_3} | \mathsf{i} \neq \mathsf{j}) - (\& \mathsf{S}_{\mathsf{n}})^2 \\ & = \mathsf{A}^2 \mathsf{M}^2 \Big\{ ((\mathsf{n})_4 / \mathsf{M}^4) [(\mathsf{1} + 2 / \mathsf{M})^{\mathsf{n} - 4} - (\mathsf{1} + \mathsf{1} / \mathsf{M})^{2\mathsf{n} - 4}] \\ & + ((\mathsf{n})_3 / \mathsf{M}^3) [-2 (\mathsf{1} + 2 / \mathsf{M})^{\mathsf{n} - 3} - (4 / \mathsf{M}) (\mathsf{1} + \mathsf{1} / \mathsf{M})^{2\mathsf{n} - 4} + 2 (\mathsf{1} + \mathsf{1} / \mathsf{M})^{2\mathsf{n} - 3}] \\ & + ((\mathsf{n})_2 / \mathsf{M}^2) [2 (\mathsf{1} + 2 / \mathsf{M})^{\mathsf{n} - 2} - (2 / \mathsf{M}^2) (\mathsf{1} + \mathsf{1} / \mathsf{M})^{2\mathsf{n} - 4} \\ & + (4 / \mathsf{M}) (\mathsf{1} + \mathsf{1} / \mathsf{M})^{2\mathsf{n} - 3} - 2 (\mathsf{1} + \mathsf{1} / \mathsf{M})^{2\mathsf{n} - 2}] \\ & + (\mathsf{n} / \mathsf{M}) [- (\mathsf{1} + 2 / \mathsf{M})^{\mathsf{n} - 1} - (\mathsf{1} / \mathsf{M}) (\mathsf{1} + \mathsf{1} / \mathsf{M})^{2\mathsf{n} - 2} + (\mathsf{1} + \mathsf{1} / \mathsf{M})^{2\mathsf{n} - 2}] \\ & + (\mathsf{1} / \mathsf{4}) (\mathsf{1} + 2 / \mathsf{M})^{\mathsf{n} - 1} - (\mathsf{1} / \mathsf{4}) (\mathsf{1} + \mathsf{1} / \mathsf{M})^{2\mathsf{n}} - 2 \\ & + (\mathsf{1} / \mathsf{4}) (\mathsf{1} + 2 / \mathsf{M})^{\mathsf{n} - (\mathsf{1} / \mathsf{4}) (\mathsf{1} + \mathsf{1} / \mathsf{M})^{2\mathsf{n}} \\ & + 2 (\mathsf{n} / \mathsf{M}^2) (\mathsf{1} + \mathsf{1} / \mathsf{M})^{\mathsf{n} - 1} - 4 \mathsf{n} / \mathsf{M}^2 + 3 (\mathsf{n})_2 / \mathsf{M}^2 - 3 \mathsf{n} / \mathsf{M} + 3 / 2 + 6 (\mathsf{n} / \mathsf{M}^2) (\mathsf{1} - \mathsf{1} / \mathsf{M})^{\mathsf{n}} \\ & + (9 / \mathsf{4}) (\mathsf{1} - 2 / \mathsf{M})^{\mathsf{n}} - 3 ((\mathsf{n})_2 / \mathsf{M}^2) (\mathsf{1} - \mathsf{1} / \mathsf{M})^{\mathsf{n}} (\mathsf{1} + \mathsf{1} / \mathsf{M})^{\mathsf{n} - 2} \\ & + 3 (\mathsf{n} / \mathsf{M}) (\mathsf{1} - \mathsf{1} / \mathsf{M})^{\mathsf{n}} (\mathsf{1} + \mathsf{1} / \mathsf{M})^{\mathsf{n} - 1} - (3 / 2) (\mathsf{1} - \mathsf{1} / \mathsf{M})^{\mathsf{n}} (\mathsf{1} + \mathsf{1} / \mathsf{M})^{\mathsf{n}} \\ & - (9 / \mathsf{4}) (\mathsf{1} - \mathsf{1} / \mathsf{M})^{2\mathsf{n}} \Big\} \\ & \leqslant \mathsf{A}^2 \mathsf{M}^2 \left\{ \delta (\mathsf{n})^3 \ 2 \frac{\delta (\mathsf{n})}{\mathsf{M}} \ e^{2\delta (\mathsf{n})} \left[\mathsf{1} + \frac{3}{\delta (\mathsf{n})} \right] + \frac{1}{4} e^{2\delta (\mathsf{n})} \right\} \right. \\ & \left\{ \mathsf{continued} \dots \right\} \end{aligned}$$

$$+ 2 \frac{\delta(n)}{M} e^{\delta(n)} + 3\delta(n)^{2} + 3/2 + (6\delta(n)/M) \left[e^{-\delta(n)} (1+1/2M) + e^{\delta(n)} (\delta(n)+2)/4M \right] + (9/4) \left[e^{-2\delta(n)} + \delta(n) e^{2\delta(n)}/M \right]$$

$$+ 3\delta(n) \left[1 + \delta(n) e^{2\delta(n)} / 4M \right]$$

$$= 2A^{2}n\delta(n)^{3} e^{2\delta(n)} \left\{ 1 + \frac{3}{\delta(n)} + \frac{5}{2\delta(n)^{2}} + \frac{1}{2\delta(n)^{3}} + \frac{n}{8\delta(n)^{5}} + \frac{1}{\delta(n)^{3}} e^{-\delta(n)} + \frac{ne^{-2\delta(n)}}{2} \left[\frac{3}{\delta(n)^{3}} + \frac{3}{2\delta(n)^{5}} + \frac{6}{n\delta(n)^{3}} (e^{-\delta(n)} (1+1/2M) + e^{\delta(n)} (\delta(n)+2)/4M) + \frac{9}{4\delta(n)^{5}} (e^{-2\delta(n)} + \delta(n) e^{2\delta(n)}/M) \right]$$

$$+ \frac{3}{\delta(n)^{4}} (1 + \delta(n) e^{2\delta(n)} / 4M)$$

$$+ \frac{3}{\delta(n)^{4}} (1 + \delta(n) e^{2\delta(n)} / 4M)$$

$$(6.13)$$

From (6.8), (6.9) and (6.13) we have that $var S_n = & S_n^2 - (& S_n)^2$

$$= M&t_{n_{i}}^{2} + M(M-1) & (t_{n_{i}}^{t_{n_{i}}}|i\neq j) - (& S_{n})^{2}$$

$$\leq$$
 A² $\left\{16n\delta(n)^3 e^{3\delta(n)} + 2n\delta(n) e^{3\delta(n)} + (n/4\delta(n)) e^{3\delta(n)}\right\}$

+
$$8n\delta(n)^2 e^{\delta(n)} + 4n e^{\delta(n)} + 4n\delta(n) + 4n/\delta(n)$$

$$+ 2n\delta(n)^3 e^{2\delta(n)} + 6n\delta(n)^2 e^{2\delta(n)} + 5n\delta(n) e^{2\delta(n)}$$

+ n
$$e^{2\delta(n)}$$
 + $\frac{n^2}{4\delta(n)^2}$ $e^{2\delta(n)}$ + 2n $e^{\delta(n)}$ + $n^2 \left[3 + \frac{3}{2\delta(n)^2} \right]$

[continued...]

$$+ \frac{6}{n} \left(e^{-\delta(n)} (1+1/2M) + e^{\delta(n)} (\delta(n)+2)/4M \right)$$

$$+ \frac{9}{4\delta(n)^2} \left(e^{-2\delta(n)} + \delta(n)e^{2\delta(n)}/M \right) + \frac{3}{\delta(n)} (1+\delta(n)e^{2\delta(n)}/4M) \right]$$

$$= A^2 \left\{ 16n\delta(n)^3 e^{3\delta(n)} + \frac{n^2}{4\delta(n)^2} e^{2\delta(n)} + 3n^2 \left[1+\delta(n)^2 e^{\delta(n)}/12n + 3e^{2\delta(n)}/4n \right] + \delta(n)e^{2\delta(n)}/4n \right\}$$

$$+ \delta(n)e^{2\delta(n)}/4n \right\} \left(1+\underline{0}(1/\delta(n)) \right); \qquad (6.14)$$

but each of the terms in $3n^2[1+\delta(n)^2e^{\delta(n)}/12n+3e^{2\delta(n)}/4n+\delta(n)e^{2\delta(n)}/4n]$ is $\underline{o}(\delta(n)^{-3}e^{2\delta(n)})$; since $\delta(n)^3e^{-2\delta(n)} \to 0$ ($e^{\delta(n)}$ increases faster than any power of $\delta(n)$), $\delta(n)^5e^{-\delta(n)}/n \to 0$ (similarly, $\delta(n)^3/n \to 0$) and $\delta(n)^4/n \to 0$ (similarly). The lemma follows.

QED

7. Concluding Remarks

We presented a very fast algorithm for the Euclidean traveling salesman problem which is optimal with probability one.

A similar algorithm was described by Karp [1977], but his paper is incomplete in the following sense.

In Karp [1977] the points of a 2-TSP instance are assumed to be distributed in a region A according to a two dimensional Poisson distribution with density n. As is noted in Karp [1977], it is then known that the <u>expected</u> number of points in A is n v(A), where v(A) denotes the area of A.

But the algorithm in Karp [1977], when applied to a region A with v(A) = 1, are analyzed as if the observed number of points in a 2-TSP instance were n, rather than considering n as the expected number of points. We conjecture that one possible way to rescue this part of the analysis in Karp [1977] is to prove that the observed number of points in A is asymptotic to the expected number of points in A, with probability one.

Furthermore, we note that Karp [1977] quotes a result (as Theorem 5 in Section 4 of his paper) from Beardwood, Halton, and Hammersley [1959] as if it held under the assumption of the Poisson distribution of the points with density n. But, actually that theorem is proved in Beardwood, Halton, and Hammersley [1959] (as Lemma 7) only for the uniform distribution of n points. The length of the proof of Theorem 2 in our paper indicates that the connection between the two is far from trivial; and, in fact, we do not believe that the results hold for the Poisson distribution more strongly than in probability.

Moreover, our Algorithm A is a significant improvement upon Karp's algorithm in terms of its simplicity, its dimensional generality and its running time (Theorem 1 and Corollary TSP). Karp has an upperbound for the expected running time of his algorithm which cannot be less than $\underline{0}(n(\log n)^2)$.

In constructing the proof of Theorem 2, we had occasion to review Beardwood, Halton, and Hammersley [1959]; and, in particular, to check the proofs of the lemmas there.

In the proof of Lemma 7 of Beardwood, Halton, and Hammersley [1959], equation (7.15) is <u>not</u> valid; because the $n_{\rm m}$ depend on the corresponding intervals $J_{\rm m}$, and these depend on the value of ϵ .

However, the argument via (7.16)-(7.19) is valid, except that, in each of (7.18) and (7.19), a factor of α should be inserted before $(5\epsilon n)^q$, coming from Lemma 4 of that paper.

(7.20) now follows from (7.14) in the modified form

$$\frac{\beta-\varepsilon}{(1+\varepsilon)^{q}} v(\underline{\underline{E}})^{1/k} \leq \liminf_{n \to \infty} n^{-q} \ell(\underline{\underline{P}}^{n}) + \alpha(5\varepsilon)^{q} [v(\underline{\underline{E}})+\varepsilon]^{1-q},$$

$$(7.20)^{*}$$

holding with probability one.

Similarly (7.21) and the next-following inequality (unnumbered) should have a factor of α inserted before $(5\epsilon n)^q$; and, again directly from (7.14), we get a modified form of (7.22), holding with probability one:

$$\frac{\beta + \varepsilon}{(1 - \varepsilon)^{q}} \quad v(\underline{\underline{\varepsilon}})^{1/k} \geqslant \lim_{n \to \infty} \sup_{n \to \infty} n^{-q} \quad \ell(\underline{\underline{P}}^{n}) - \alpha(5\varepsilon)^{q} [v(\underline{\underline{\overline{\varepsilon}}}) + \varepsilon]^{1-q}.$$

$$(7.22)^{*}$$

 $\underline{\text{Now}}$ we observe that ϵ is arbitrary and conclude that

$$\lim_{n\to\infty} n^{-q} \ell(\underline{p}^n) = \beta v(\underline{\underline{E}})^{1/k},$$

establishing Lemma 7 of Beardwood, Halton, and Hammersley [1959].

Incidentally, equation (5.1) of the same paper should read

$$\underbrace{\& \ \ell(P\xi\underline{E}) \sim \beta_k \ k^{1/2} \xi^k v(\underline{E})}_{} = \beta \xi^k v(\underline{E}) \quad \text{as} \quad \xi \to \infty. \tag{5.1}*$$

Chapter III

Additional NP-hard Problems

1. Introduction

The main result of this chapter is Theorem 5 in Section 2 which characterizes a central algorithm that is near-optimal with probability one. In Section 3 we consider two minimization NP-hard problems: the vertex set cover of a graph and the set cover of a collection of sets. In Section 4 we consider three maximization NP-hard problems: the clique of an undirected graph, the set pack of a collection of sets, and the k-dimensional matching of a graph. For each of these problems we present an algorithm, derived from the algorithm of Theorem 5, with its worst case running time bounded by a polynomial on the size of the problem instance. Furthermore, as corollaries of Theorem 5, we show that each algorithm gives an optimal or near-optimal solution with probability one, as the size of the corresponding problem instance increases.

In the following sections, let $I_n = \{1,2,\ldots,n\}$. For a finite set R, let \underline{random} (R) be a function which returns an element of R chosen at random with equal probability among the elements of R. Let log denote the natural logarithm function, let $[x]^+$ and $[x]_-$ denote the smallest integer not less than x (i.e., the ceiling of x) and the largest integer not greater than x (i.e., the floor of x), respectively.

2. Basic Lemmas and Theorems

Let \triangle be a finite set, and let $\rho \subseteq \triangle \times \triangle$ be an irreflexive and symmetric relation defined on \triangle . Let us say that a subset S of \triangle is a ρ -subset iff for any a, b \in S, a ρ b.

In this section we use the following condition.

Condition E: there is a fixed p, $0 , such that for any a, b <math>\in \Delta$, we have a ρ b with probability p, independent of other pairs of elements in Δ being related by ρ .

To prove Theorem 5, we need one lemma and one theorem as follows.

Lemma 2.1:

For 0 , <math>n > 0, $0 < \theta < 1$, and $b(n) = [(1-\theta) \log n/|\log p|]_we have$

that

$$b(n) \{1 - 1/n(1-e)\} [n/b(n)]^{+} -1 = \underline{o} (1/n^{2}).$$

Proof:

We want to show that

$$n^2 b(n) \{1 - 1/n^{(1-\epsilon)}\} [n/b(n)]^+ -1$$
 $\Rightarrow 0, \text{ as } n \Rightarrow \infty.$ (2.1)

Consider the log of the left-hand side of (2.1):

2 log n + log b(n) +
$$\{[n/b(n)]^+ -1\}$$
 log $(1 - 1/n^{(1-\epsilon)})$

$$\leq$$
 2 log n + log b(n) + {[n/b(n)]⁺ -1} (-1/n^(1-\epsilon))

2 log n + log[(1-
$$\epsilon$$
)log n/|log p|] -
$$\frac{n^{\epsilon} |\log p|}{(1-\epsilon)\log n} + 1/n^{(1-\epsilon)}$$
(2.2)

since $log(1-x) \leq -x$, for 0 < x < 1.

Expression (2.2) tends to $-\infty$, as $n \to \infty$ (the third term increases faster than the other terms) so that (2.1) is true.

Let M_n denote the cardinality of the largest existing ρ -subset of \triangle , for $|\triangle|=n$. Our probabilistic model will be assumed to be incremental (cf. Section 1 of Chapter I) in the sense that the sequence M_0, M_1, M_2, \ldots of random variables is sampled as follows: [1] we increase $|\triangle|$ by one by augmenting \triangle to get, say, $\triangle'=\triangle\sqcup$ {a} where a is not in \triangle ; [2] the relation ρ is also augmented to get ρ C \triangle' X \triangle' , $\rho'=\rho\sqcup\rho_0$, where ρ_0 C \triangle X {a} and ρ_0 is sampled according to Condition E. Then, the following theorem is proved in Matula[1976].

Theorem 4 Under Condition E, if ${\rm M}_n$ denotes the cardinality of the largest existing $\rho\text{-subset}$ of \triangle

 $\lim_{n\to\infty} M_n/\log n = 2/|\log p|$, with probability one.

Theorem 5: Under Condition E, if $|\triangle| = n$, there is an algorithm whose worst case running time is $O(q(n)n^2)$, where q(.) is a polynomial, such that

$$1 \ge \frac{A_n}{M_n} \ge \frac{1}{2}$$
 ,as $n \to \infty$, with probability one,

where ${\bf A}_n$ denotes the cardinality of a ρ -subset of Δ computed by the algorithm, and ${\bf M}_n$ denotes the cardinality of the largest existing ρ -subset of Δ .

Proof:

Let us consider the following algorithm.

Algorithm C

(Let S and T be sets. S is the output)

- S := empty; $T := \triangle$; (1)
- while T is not empty do (2)
- $a := random (T); T := T {a};$ (3)
- if (for all bes, apb) or (S = empty) (4)
- then $S := S \sqcup \{a\} \underline{fi}$ (5)
- od (6)

Assuming that there is an integer valued polynomial q(.)such that it takes at most q(n) number of steps to check whether apb on line (4) above, the worst case running time of Algorithm C is $O(q(n) n^2)$, since in each iteration of the statements on lines (2)-(6) the cardinality of T decreases by one and the cardinality of S increases at most by one. In each iteration also, it is

clear that S is a $\rho ext{-subset}$ of Δ

Let $S(\triangle, \rho)$ denote the output S when Algorithm C is applied on ρ \subseteq \triangle x \triangle . As in the statement of this theorem, let A_m = $|S(\triangle,\rho)|$ if $|\triangle|=m$. Our probabilistic model will be assumed to incremental in the sense that the sequence A₀,A₁,A₂,... random variables is sampled as follows: [1] we increase $|\triangle|$ by augmenting \triangle to get, say, $\triangle' = \triangle \sqcup \{a\}$ where a is not in \triangle , and a is the element chosen by the function $\underline{\mathsf{random}}$ (at of Algorithm C above) ; [2] the relation ho is also augmented to get ρ' $C \triangle'$ $x \triangle'$, ρ' = $\rho \mid \mid \rho_0$, where $\rho_0 \subseteq \triangle \times \{a\}$ and ρ_0 is sampled according to Condition E; [3] if $S(\triangle, \rho) \sqcup \{a\}$ is a ρ -subset of \triangle , then by Algorithm C S(\triangle ', ρ ') = S(\triangle , ρ) \square {a}. Otherwise, $S(\triangle', \rho') = S(\triangle, \rho)$. Therefore, $A_{m+1} - A_m \le 1$ for m=0,1,2,...

Let $s_i = \min\{|\triangle| : |S(\triangle,\rho)| = i\} = \min\{m : A_m = i\}$, for $i=1,2,3,\ldots$, and let $s_0 = 0$. Since the sequence $\{A_m : m>0\}$ is non-decreasing, the sequence $\{s_i : i>0\}$ is also non-decreasing.

We now observe that if Algorithm C, at some iteration of the statements on lines (2)-(6) has |S|=i (i.e., so far it has found i elements of \triangle which constitute a ρ -subset) then p^i is the probability that the next element to be examined by the algorithm is related to all elements in S. Hence, $(1-p^i)^{j-1}$ for $j=1,2,3,\ldots$ is the probability that each of the next (j-1) elements to be examined is not related to at least one element in S. Thus we have, for all integers $i,j\geq 1$,

$$Pr\{s_{i+1} - s_i = j\} = (1-p^i)^{j-1}p^i$$
, and $s_1 - s_0 = 1$ (2.3)

From (2.3), for any positive integer value k we have

$$Pr\{(s_{i+1} - s_i) < k\} = \sum_{\substack{1 \le j \le k-1 \\ = \sum_{1 \le j \le k-1}} (1 - p^i)^{j-1} p^i$$

$$p^i (1-p^i)^{k-1} - 1$$

$$= \frac{p^{i} (1-p^{i})^{k-1} - 1}{(1-p^{i}) - 1}$$

$$= 1 - (1-p^{i})^{k-1} \qquad (2.4)$$

In the following, we want to show that, for any $\varepsilon>0$, $\sum_{n=0}^\infty \Pr\{A_n\leq (1-\varepsilon)\ \log\ n/|\log\ p|\}\ is\ finite.$

For any real x, ${\tt A}_n \le x$ implies ${\tt A}_n \le [x]_-$, since ${\tt A}_n$ is an integer value. Thus, for any arbitrary ${\tt E} > 0$ we have

$$\Pr\{A_n \leq (1-\epsilon) \log n / |\log p| \} \leq \Pr\{A_n \leq b(n)\}$$
 where $b(n) = [(1-\epsilon) \log n / |\log p|]_$ (2.5)

For any positive integer i, $A_n \leq i$ implies $s_i \geq n$ (as we

noted before, the sequence $\{s_i:i\geq 0\}$ is non-decreasing). Thus we have

$$\Pr\{A_n \leq b(n)\} \leq \Pr\{s_{b(n)} \geq n\}$$
 (2.7) Since $s_{b(n)} = \sum_{0 \leq i \leq b(n)-1} (s_{i+1} - s_i) \text{ for } b(n) \geq 1, \text{ we have }$

$$\Pr\{s \\ b(n) \ge n\} \le \Pr\{ \quad \bigcup \quad (s_{i+1} - s_i) \ge n/b(n) \}$$

$$0 \le i \le b(n) - 1$$

$$\le \sum_{0 \le i \le b(n) - 1} \Pr\{(s_{i+1} - s_i) \ge n/b(n)\}$$

$$(2.8)$$

For any real x, $(s_{i+1} - s_i) \ge x$ implies $(s_{i+1} - s_i) \ge [x]^+$ since $(s_{i+1} - s_i)$ is an integer value. Thus from (2.4) and (2.8)

$$\sum_{\substack{pr\{(s_{i+1}-s_i) \geq n/b(n)\}\\0\leq i\leq b(n)-1}} \Pr\{(s_{i+1}-s_i) \geq n/b(n)\}$$

$$\leq \sum_{0 \leq i \leq b(n)-1} \Pr \{ (s_{i+1} - s_i) \geq [n/b(n)]^+ \}$$

$$0 \leq i \leq b(n)-1$$

$$= \sum_{0 \leq i \leq b(n)-1} (1 - p^i)^{[n/b(n)]^+ - 1}$$

$$= \sum_{0 \leq i \leq b(n)-1} (1 - p^b(n))^{[n/b(n)]^+ - 1}$$

$$\leq b(n) \{1 - p^b(n)\}^{[n/b(n)]^+ - 1}$$

$$\leq b(n) \{1 - 1/n^{(1-e)}\}^{[n/b(n)]^+ - 1}$$

$$(2.9)$$

since $p^{b(n)} \sim p^{(1-\epsilon)} \log n/|\log p| = 1/n^{(1-\epsilon)}$

By Lemma 2.1, the last expression in (2.9) is o $(1/n^2)$ so that there exists a positive integer n_0 such that

$$\sum_{0 \le n \le \infty} \Pr\{ A_n \le (1-e) \log n / |\log p| \}$$

$$\le \sum_{0 \le n \le n_0 - 1} b(n) [1-p^b(n)]^{[n/b(n)]^+ - 1}$$

$$+ \sum_{n_0 \le n \le \infty} 1/n^{-2} < \infty$$

$$(2.10)$$

By the Borel-Cantelli lemma, (2.10) implies that, with probability one, for any choice of $\varepsilon > 0$,

$$\lim_{n \to \infty} \inf \frac{A_n}{\log n} > (1-\epsilon)/|\log p| \qquad (2.11)$$

Since € is arbitrary, (2.11) implies that

$$\lim_{n \to \infty} \inf \frac{A_n}{\log n} \ge 1/|\log p| \qquad (2.12)$$

with probability one.

On the other hand, by Theorem 4, \mathbf{M}_n is such that

$$\lim_{n \to \infty} \frac{M_n}{\log n} = 2/|\log p| , \text{ with probability one.} \quad (2.13)$$

From (2.12) and (2.13) we have

$$\lim_{n \to \infty} \inf \frac{A_n}{M_n} \ge \frac{1}{2}$$
, with probability one. (2.14)

Since we know that $A_n/M_n \leq 1$, the theorem follows.

Q.E.D.

3. Minimization Problems

3.1 Vertex Set Cover Problem

Let G = (V, E) be an undirected graph (V is the set of vertices, E is the set of edges). A <u>vertex cover</u> of G is a subset S of V such that each edge of G is incident upon some vertex in S. The <u>vertex cover problem (VC)</u> is to find the smallest vertex cover of G. This problem is known to be NP-hard (cf., e.g., Aho, Hopcroft, and Ullman[1975]).

Algorithm VC

(Let $V = I_n$, and let S, S', and T be sets. S is the output)

S := V; S' := V;

T := empty;

while S' is not empty do

v := random (S');

 $S' := S' - \{v\};$

if (for all u \in T, u is not connected to v)

then $T := T | | \{v\}; S := S - \{v\} \underline{fi}$

od

Clearly, the worst case running time of Algorithm VC is $O(n^2)$, and S is a vertex cover of G.

For the probabilistic analysis of Algorithm VC we assume the following (as in Grimmett and McDiarmid [1975], Matula [1976], Posa [1976], and Angluin and Valiant [1977]).

Condition VC: there is a fixed p, $0 , such that any pair of vertices <math>\{v,v'\}$ has probability p of being a member of E,

independent of other pairs of vertices being members of E.

Corollary VC: Under Condition VC, let VC(n) denote the cardinality of S computed by Algorithm VC, and let \mathbf{m}_n denote the cardinality of the minimal vertex cover of G. Then

$$\frac{\text{VC(n)}}{m_n}$$
 ~ 1, as $n \to \infty$, with probability one.

Proof:

For the vertex cover problem, the set \triangle of Theorem 5 is interpreted to be the set V, the statement a ρ b to mean a "not connected to" b. Then Condition VC is equivalent to Condition E, and the set T in Algorithm VC is a ρ -subset. Therefore, from (2.12), since |V| = n, we have

$$\frac{|T|}{\log n} \ge 1/|\log p|, \text{ as } n \to \infty,$$
 with probability one. (3.1)

In Algorithm VC, S | | T = V, and S and T are disjoint. Then $|S| = n - |T|, \text{ and } (3.1) \text{ implies that, as } n \to \infty,$

$$\frac{|S|}{\log n} = \frac{n}{\log n} - \frac{|T|}{\log n}$$

$$\leq \frac{n}{\log n} - \frac{1}{|\log p|}$$

$$\leq \frac{n}{\log n} \quad , \text{ with probability one.} \quad (3.2)$$

On the other hand, if \mbox{M}_{n} denotes the largest existing $\mbox{$\rho$-subset}$ of V, then Theorem 4 says that

$$\frac{M_n}{\log n} \sim 2/|\log p|, \text{ as } n \to \infty,$$
 with probability one. (3.3)

Since $m_n + M_n = n$, (3.3) implies that

$$\frac{m_n}{\log n} \sim \frac{n}{\log n} - \frac{2}{\log p}, \text{ as } n \to \infty,$$
with probability one. (3.4)

Then (3.2) and (3.4) imply that

$$\frac{|S|}{m_n} \leq 1 + \underline{o} (1) , \text{ as } n \Rightarrow \infty, \text{ with probability one.}$$
 (3.5)

Since we know $|S|/m_n \ge 1$, the corollary follows.

Q.E.D.

3.2 Set Cover Problem

Let n and k be positive integers such that $k = \max(3,n)$, and let $C = \{S_1, S_2, \ldots, S_n\}$ be a collection of sets of positive integers such that $|S_i| \leq k$ for $1 \leq i \leq n$. A set cover of C is a subcollection S_{i_1} , S_{i_2} , ..., S_{i_h} such that $\bigsqcup_{1 \leq j \leq n} S_j \cdot \sum_{1 \leq j \leq n} S_j \cdot \sum_{1$

The set cover problem(SC) is to find the smallest set cover of C. This problem is known to be NP-hard even if (i) $|S_i| \leq m$, for a fixed m>3, $1 \leq i \leq n$ (see e.g. Garey and Johnson[1978]); and (ii) if $s \in S_i$ for some i, $1 \leq i \leq n$, then there is at least one $j \neq i$, $1 \leq j \leq n$, such that $s \in S_j$ (see e.g. Aho, Hopcroft, and Ullman[1975]). Throughout this section we assume (ii).

Algorithm SC

<u>od</u>

(Let S, S', and T be collections of sets. S is the output) S := C; S' := C; $T := \underbrace{empty};$ $\underline{while} \ S' \ is \ not \ \underline{empty} \ \underline{do}$ $S_i := \underline{random} \ (S'); \ S' := S' - \{S_i\};$ $\underline{if} \ (for \ all \ R \ in \ T, \ R \ is \ disjoint \ from \ S_i)$ $\underline{then} \ T := T \coprod \{S_i\}; \ S := S - \{S_i\}$

Clearly, the worst case running time of Algorithm SC is $O(k^2n^2)$, and S is a set cover of C.

For the probabilistic analysis of Algorithm SC we assume the following:

Condition SC: there is a fixed p, $0 , such that given any pair of sets <math>S_1$ and S_2 in C, we have that $Pr\{S_1 \text{ and } S_2 \text{ are disjoint }\} = p$, independent of other pairs of sets in C.

Corollary SC: Under Condition SC, let SC(n) denote the cardinality of the set S computed by Algorithm SC, and let ${\rm m}_n$ denote the cardinality of the minimal set cover of C. Then

$$\infty$$
 1, as $n \to \infty$, with probability one.

Proof:

This proof is very similar to the proof of Corollary VC.

For the set cover problem, the set \triangle of Theorem 5 is interpreted to be the collection C, the statement a ρ b to mean a "disjoint from" b. Then Condition SC is equivalent to Condition

E, and the collection T in Algorithm SC is a ρ -subset. Moreover, an incremental sampling of an SC-instance, as described in the proof of Theorem 5, is feasible. Therefore, from (2.12), since |C| = n, we have

$$\frac{|T|}{\log n} \ge 1/|\log p|, \text{ as } n \to \infty,$$

$$\text{with probability one.} \qquad (3.6)$$

In Algorithm SC, S \sqcup T = C, and S and T are disjoint. Then |S| = n - |T|, and (3.6) implies that, as $n \to \infty$,

$$\frac{|S|}{\log n} = \frac{n}{\log n} - \frac{|T|}{\log n}$$

$$\leq \frac{n}{\log n} - \frac{1}{\log p}$$

$$\leq \frac{1}{\log n}$$
, with probability one. (3.7)

On the other hand, if \textbf{M}_{n} denotes the largest existing $\rho\text{-subset}$ of C, then Theorem 4 says that

$$\frac{M_n}{\log n} \sim 2/|\log p|, \text{ as } n \to \infty,$$
 with probability one. (3.8)

Since $m_n + M_n = n$, (3.8) implies that

$$\frac{m_n}{\log n} \sim \frac{n}{\log n} - 2/|\log p|, \text{ as } n \to \infty,$$

$$\text{with probability one.} \quad (3.9)$$

Then (3.7) and (3.9) imply that

$$\frac{|S|}{m_n} \leq 1 + \underline{o} (1), \text{ as } n \to \infty, \text{ with probability one.}$$
 (3.10)

Since we know $|S|/m_n \ge 1$, the corollary follows.

4. Maximization Problems

4.1 Clique Problem.

Let G = (V, E) be an undirected graph. A <u>clique</u> of G is a complete subgraph of G (i.e., any pair of vertices in the subgraph is connected to each other by an edge). The <u>clique</u> problem (CL) is to find the largest clique of G. This problem is known to be NP-hard (cf., e.g., Aho, Hopcroft, and Ullman[1975]).

Algorithm CL

(Let n be a positive integer, let |V| = n, and let S and T be sets. S is the output)

Clearly, the worst case running time of Algorithm CL is $O(n^2)$, and S is a clique of G. By duality, Algorithm CL may be changed to find a feasible solution to the maximum independent set problem, i.e., the problem of finding the largest set S of vertices in G such that no two vertices in S are connected. For the maximum independent set problem, an algorithm which does not select the vertices at random was independently studied in Grimmett and McDiarmid[1975], assuming a sampling model which is not incremental. Their algorithm have the ratio between the computed solution and the optimal solution asymptotic to 1/2, with proba-

bility one, while our algorithm has ratio at least 1/2, asymptotically, with probability one.

For the probabilistic analysis of Algorithm CL, we assume Condition VC for the graph $G=(V,\,E)$.

Corollary CL: Under Condition VC, let CL(n) denote the cardinality of the set S computed by Algorithm CL, and let ^{M}n denote the cardinality of the maximal clique in G. Then

$$1 \ge \frac{CL(n)}{M_n} \ge \frac{1}{2}$$
 ,as $n \to \infty$, with probability one.

Proof:

For the clique problem, the set \triangle of Theorem 5 is interpreted to be the set V, the statement a ρ b to mean a "connected to" b. Then Condition CL is equivalent to Condition E, and the set S in Algorithm CL is a ρ -subset.

Then Theorem 5 directly implies this corollary.

O.E.D.

4.2 Set Packing Problem

Let k and n be positive integers such that $k = \max (3,n)$, and let $C = \{S_1, S_2, \ldots S_n\}$ be a collection of sets of, let us say, positive integers such that $|S_i| \leq k$ for $1 \leq i \leq n$. A <u>set pack</u> of C is a subcollection $S_{i_1}, S_{i_2}, \ldots, S_{i_h}$ of pairwise disjoint sets. The <u>set packing problem (SP)</u> is to find the largest set pack of C. This problem is known to be NP-hard, even if $|S_i| \leq m$, for a fixed $m \geq 3$ and for $1 \leq i \leq n$. (see, e.g., Garey and Johnson[1978]).

Algorithm SP

(Let S and T be sets. S is the output)

$$S := empty; T := C;$$

while T is not empty do

$$S_{i} := \underline{random} (T); T := T - \{S_{i}\};$$

if S; is disjoint from all sets in S

then
$$S := S \sqcup \{S_i\}$$
 fi

od

Clearly, the worst case running time of Algorithm SP is $O(k^2n^2)$, and S is a set pack of C.

For the probabilistic analysis of Algorithm SP, we assume Condition SC for the collection C.

Corollary SP: Under Condition SC, let SP(n) denote the cardinality of the set S computed by Algorithm SP, and let ^{M}n denote the cardinality of the maximal set pack of C. Then

$$1 \ge \frac{SP(n)}{M_n} \ge \frac{1}{2}$$
 ,as $n \to \infty$, with probability one.

Proof:

For the set packing problem, the set \triangle of Theorem 5 is interpreted to be the collection C, the statement a ρ b to mean a "disjoint from" b. Then Condition SC (as in the proof of Corollary SC) is equivalent to Condition A, and the collection S in Algorithm SP is a ρ -subset. Moreover, an incremental sampling of an SP-instance, as described in the proof of Theorem 5, is feasible.

Then Theorem 5 directly implies this corollary.

4.3 <u>k-Dimensional Matching Problem</u>

Let k and n be positive integers such that $k = \max(3,n)$, and let $A_1 = \{a_{11}, a_{12}, \dots, a_{1n}\}$, $A_2 = \{a_{21}, a_{22}, \dots, a_{2n}\}$,

be a subset of $A_1 \times A_2 \times \ldots \times A_k$, with |T| = n. A matching of T is a subset S of T such that no two elements of S agree in any coordinate. The <u>k-dimensional</u> matching problem (DM) is to find the largest matching of T. This problem is known to be NP-hard even if we have a fixed k = 3 (cf., e.g., Garey and Johnson[1978]).

Algorithm DM

(Let S and U be sets. S is the output)

S := empty; U := T;

while U is not empty do

 $u := \underline{random} (U); U := U - \{u\};$

 $\underline{\text{if}}$ S \bigcup {u} is a matching of T

then $S := S \coprod \{u\} \underline{fi}$

od

Clearly, the worst case running time of Algorithm DM is $O(k\ n^2)$, and the set S is a matching of T.

For the probabilistic analysis of Algorithm DM we assume the following:

Condition DM: there is a fixed p, $0 , such that, given any pair of elements <math>t_1$ and t_2 in T, we have that Pr $\{t_1 \text{ and } t_2 \text{ disagree in all k coordinates}\} = p$, independent of other pairs of elements in T.

Corollary DM: Under Condition DM, let DM(n) denote the cardinality of S computed by Algorithm DM, and let M n denote the cardinality of the maximal matching of T. Then

$$1 \ge \frac{DM(n)}{M_n} \ge \frac{1}{2}$$
 ,as $n \to \infty$, with probability one.

Proof:

For the matching problem, the set \triangle of Theorem 5 is interpreted to be the set T, the statement a ρ b to mean a "disagree in all k coordinates with" b. Then Condition DM is equivalent to Condition E, and the set S in Algorithm DM is a ρ -subset. Moreover, an incremental sampling of a DM-instance, as described in the proof of Theorem 5, is feasible.

Then Theorem 5 directly implies this corollary.

Q.E.D.

Chapter IV

Alternative Algorithms for the Maximization Problems

1. Introduction

This chapter presents new algorithms for the three maximization problems considered in Chapter III. These algorithms will give, following the notation used in Chapter III, ratio $A_n/M_n \sim 1, \text{ as } n \Rightarrow \infty, \text{ with probability one, but they will require more running time.}$

As in Chapter III, let \triangle be a finite set, and let ρ \subseteq $\triangle x \triangle$ be an irreflexive and symmetric relation defined on \triangle . Let us say that a subset S of \triangle is a ρ -subset iff for any a, b \in S, a ρ b. We will also use Condition E as stated in Section 2 of Chapter III.

2. Algorithm D and its Asymptotic Performance

In Algorithm D defined below, we assume that $|\triangle| = n$ and 0 . B and D denote collections of <math>p-subsets of \triangle , and Q and R denote subsets of \triangle . We assume that the elements in B,D,Q, and R are indexed with positive integers. If X denotes such an indexed set, <u>least</u> (X) denotes the element in X with the lowest index. The collection B will be the result of the algorithm.

Algorithm D

```
B := \{ \{a,b\} : a \neq b, a,b \in \Delta, a \rho b \};
(1)
        k(n) := [2 \log_{1/p} n]^{+};
(2)
        j := 3;
(3)
        while j < k(n) and B is not empty do
(4)
              D := B; B := empty;
(5)
              while D is not empty do
(6)
                   Q := least (D); D := D - {Q};
(7)
                   R := \triangle - Q;
(8)
                   while R is not empty do
(9)
                         r := least(R); R := R - \{r\};
(10)
                         if Q \bigsqcup {r} is a \rho-subset of \triangle
(11)
                             then B := B \coprod {Q \coprod {r} } \underline{fi}
(12)
(13)
                   od
(14)
               od;
          j := j+1
(15)
(16)
          od
          if B is empty then B := D
(17)
```

Algorithm D finds all the largest ρ -subsets of cardinality not greater than k(n). This is done iteratively starting from the ρ -subsets of cardinality two obtained in statement (1) above. At the j-th iteration of the statements (4) - (16), D contains all the ρ -subsets of cardinality (j-1), and B may contain ρ -subsets of cardinality j. The sets in B, if any, are found by adding the element r obtained on line (10) to the set Q of D if Q \sqcup {r} is a ρ -subset. If there is no ρ -subset larger than the sets in D, B will be empty after the execution of the statements

(6) - (14) and B = D after statement (17).

Since Algorithm D finds all p-subsets of \triangle of cardinality not greater than $k(n) = [2 \log_{1/p} n]^{+}$, an immediate corollary of Theorem 4 of Chapter III is that Algorithm D finds a p-subset of \triangle of cardinality k(n), as $n \to \infty$, with probability one. Therefore, we have the following.

Theorem 6:

Under Condition E, if A_n denotes the cardinality of a $\rho\text{-subset}$ of Δ computed by Algorithm D, and if M_n denotes the cardinality of the largest existing $\rho\text{-subset}$ of Δ , then

$$A_n$$
1, as $n \to \infty$,

M_n
with probability one.

3. Expected Running Time

First we need a lemma.

<u>Lemma 3.1</u> Under Condition E, if $|\Delta| = n$, and if j is a positive integer, and if N(n,j) denotes the number of p-subsets of Δ of cardinality j, then

&
$$N(n,j) = \binom{n}{j} p^{j(j-1)/2}$$
 (3.1)

Proof:

Let the index I = 1,2, ..., $\binom{n}{j}$ correspond to the $\binom{n}{j}$ subsets of \triangle of cardinality j. Let E_i denote the event that the ith. subset is a ρ -subset. Then $\Pr\{E_i\} = p^{j(j-1)/2}$, for $1 \le i \le \binom{n}{j}$ and N(n,j) is the number of E_i that occur in \triangle , so that (3.1) is true.

Now we want to find an upper bound for the expected running time of Algorithm D.

Theorem $\frac{7}{}$:

Under Condition E of Chapter III, if $|\triangle|$ = n, the expected running time E R_n of Algorithm D is such that

$$\mathcal{E}_{R_n} = o \left\{ h(n) \quad n^{3/2} \left[\frac{p e^2 n}{h(n)} \right] \right\}$$
 (3.2)

where $h(n) = \log_b n - \log_b \log_b n + 1$, and b = 1/p (3.3).

Proof:

Given a_1 , $a_2 \in \triangle$, let α denote the amount of time needed to check whether $a_1 \ \rho \ a_2$.

since this is the number of subsets of \triangle with cardinality two.

Let e_j denote the expected cardinality of D at the j-th iteration of statements (4) - (16). Since D, as we noted in Section 2, contains all the ρ -subsets of Δ of cardinality (j-1), e_j is equal to the expected number of ρ -subsets of Δ of cardinality (j-1). Then, by Lemma 3.1,

$$e_{j} = {n \choose j-1} p (j-1)(j-2)/2$$
 (3.5)

Since Q on line (7) is an element of D, |Q| = j-1 so that R on line (8) is such that |R| = n-j+1. Thus the statements (9) - (13) are iterated (n-j+1) times for each value of j. In each iteration of the statements (9) - (13), to check whether $Q \mid |\{r\}$ is a p-subset on line (11) will require time $Q \mid |Q| = Q((j-1))$.

Therefore, the statements (9) - (13) will require time (n-j+1)(j-1) for each value of j.

Since the statements (6) - (16) are executed |D| times, the expected running time of statements (4) - (16) is

$$\alpha \sum_{3 \le j \le k (n)} e_j (n-j+1) (j-1)$$
 (3.5)

From (3.4), (3.5), and (3.6) we have that

&
$$R_n = \alpha (n(n-1)/2 + \alpha) \sum_{3 \le j \le k(n)} {n \choose j-1} p^{(j-1)(j-2)/2} (n-j+1)(j-1)$$
(3.7)

where $k(n) = [2 log_{1/p} n]^{+}$.

Let a denote the j-th term of the summation in (3.7). It is easy to see that

$$\frac{a_{j+1}}{a_{j}} = p^{(j-1)} \qquad \frac{n-j}{j-1} = F(j,n) \qquad (3.8)$$

It is clear that F(j,n) decreases when j increases, with $3 \le j \le k(n)$. Moreover, for $j = [h(n)]^+$ where h(n) is as defined in (3.3) we have that

$$F([h(n)]^{+},n) \sim p \frac{\log_{b} n - \log_{b} \log_{b} n}{\left(\frac{n-h(n)}{h(n)-1}\right)}$$

$$= \frac{1}{n} \log_b n \frac{n-h(n)}{h(n)-1}$$

$$= \frac{1 - h(n)/n}{(h(n)-1)/\log_b n} \rightarrow 1, \text{ as } n \rightarrow \infty$$
 (3.9)

since $h(n)/n \Rightarrow 0$, and $(h(n)-1)/log_b n \Rightarrow 1$, as $n \Rightarrow \infty$.

Then we may conclude that, asymptotically,

$$F(3,n) \ge F(4,n) \ge ... \ge F([h(n)]^+,n) \sim 1$$
 (3.10)

Since by the definition of $F_{i}(j,n)$ in (3.8)

$$a_{j+1} = a_j F(j,n)$$
.

we have that, asymptotically,

$$a_{[h(n)]}^{+} = \max\{a_3, a_4, \dots, a_{k(n)}\}$$
 (3.11)

(for an illustration of (3.10) and (3.11), please see tables in Section 6 below)

From (3.7) and (3.11) we have that , for sufficiently large n_{\star}

&
$$R_n \le \alpha (n(n-1)/2 + \alpha (k(n)-2))^{-1} [h(n)]^{+1}$$

$$\sim \alpha (n(n-1)/2 + \alpha (2 \log_b n-2) (n) p^{(h(n)-1)(h(n)-2)/2}$$

$$(n-h(n)+1)([h(n)]^{+}-1)$$

$$\leq \alpha (n(n-1)/2 + \alpha (2\log_b n - 2) (n - h(n) + 1) \frac{n^h(n) - 1}{([h(n)]^+ - 2)!} pp^h(n) [h(n) - 3]/2$$

$$(3.12)$$

Since

$$p^{h(n)} = p^{\log_b n} (1/p)^{\log_b \log_b n} p$$
$$= p \log_b n / n$$

we have that the last expression in (3.12) is equal to

$$(n(n-1)/2 + (p(2\log_b n-2)(n-h(n)+1)) = \frac{n}{([h(n)]^+-2)!}$$

$$(p \log_b n / n) [h(n)-3]/2$$

$$= \alpha (n(n-1)/2 + \alpha p(2 \log_b n-2)(n-h(n)+1) \frac{n[h(n)+1]/2}{([h(n)]^+ -2)!}$$

$$(p \log_b n) [h(n)-3]/2$$

$$\sim \frac{2\alpha \left(p n^{1/2} (n-h(n)+1) (p n \log_b n) h(n)/2}{(\log_b n)^{1/2} ([h(n)]^+ -2)!}$$
(3.13)

By Stirling's formula,

$$[h(n)]^{+}$$
! ~ $(2\pi h(n))^{1/2} \left(\frac{h(n)}{e}\right)^{h(n)}$

so that the last expression in (3.13) is asymptotic to

$$\frac{2\alpha (p n^{1/2} (n-h(n)+1) h(n) (h(n)-1)}{(\log_b n)^{1/2} [2\pi h(n)]^{1/2}} \left[\frac{p e^2 n \log_b n}{h^2(n)} \right]^{h(n)/2}$$

(3.14)

Since

$$\frac{(h(n)-1)}{[\log_b n \ h(n)]^{1/2}} \Rightarrow 1, \text{ and}$$

$$\frac{\log_b n}{h(n)} \to 1, \text{ as } n \to \infty,$$

(3.14) is asymptotic to

$$\frac{2d(ph(n))}{(2\pi)^{1/2}} n^{3/2} \left[\frac{n p e^2}{h(n)} \right]^{h(n)/2}$$

(3.15)

(for an illustration of (3.15), please see tables in Section 6 below)

From (3.12) - (3.15), we conclude (3.2).

Q.E.D.

4. Worst Case Running Time

This section presents an upperbound for the running time of Algorithm ${\tt D.}$

Theorem 8:

If $|\triangle| = n$, and $0 , the running time <math>R_n$ of Algorithm D is such that

$$R_{n} = \underline{o} \left\{ (\log_{b} n)^{5/2} \left[\frac{e n}{2 \log_{b} n} \right]^{2 \log_{b} n} \right\}$$
(4.1)

where b = 1/p.

Proof:

As in the proof of Theorem 6, the time to execute statement (1) of Algorithm D is

$$d(n(n-1)/2)$$
 (4.2)

where α denotes the time needed to check whether a_1 ρ a_2 , for any given a_1 , $a_2 \in \Delta$.

As we noted in Section 2, D contains all the ρ -subsets of cardinality (j-1) at the j-th iteration of the statements (4) - (16). Hence, |D| can be at most (j-1).

As in the proof of Theorem 7, the statements (9) - (13) require time α (n-j+1) (j-1) for each value of j.

Since the statements (6) - (14) are executed |D| times, the running time of statements (4) - (16) is at most

$$\alpha \sum_{3 < j < k (n)} {n \choose j-1} \qquad (n-j+1) \quad (j-1)$$

$$(4.3)$$

From (4.2) and (4.3) we have that

$$R_n \le \alpha (n(n-1)/2 + \alpha \sum_{3 \le j \le k(n)} {n \choose j-1} (n-j+1)(j-1)$$
 (4.4)

where $k(n) = [2 log_{1/p} n]^+$.

Let b; denote the j-th term of the summation in (4.4). It is easy to see that

$$\frac{b_{j+1}}{b_{j}} = \frac{n-j}{j-1} = G(j,n)$$
 (4.5)

G(j,n) clearly decreases when j increases, but for the interval $3 \le j \le k(n)$ being considered, G(j,n) = 1 occurs only for finitely many values of n. This is so because G(j,n) = 1 implies j=(n+1)/2 and $(n+1)/2 \le k(n)$ only for finitely many values of n. Therefore, for sufficiently large n,

$$G(3,n) \ge G(4,n) \ge ... \ge G(k(n),n) > 1$$
 (4.6)

so that

$$b_{k(n)} = \max\{b_3, b_4, \dots, b_{k(n)}\}$$
(4.7)

From (4.4) and (4.7) we have that, for sufficiently large n,

$$R_n \le \alpha (n(n-1)/2 + \alpha (k(n)-2) {n \choose k(n)-1} (n-k(n)+1) (k(n)-1)$$

$$\leq \alpha (n(n-1)/2 + \frac{\alpha n^{k(n)-1}}{(k(n)-1)!} (n-k(n)+1)(k(n)-2)(k(n)-1)$$

$$\sim \alpha (n (n-1)/2 + \frac{\alpha (n k(n)-1)}{k(n)!} (n-k(n)+1)k^3(n)$$
 (4.8)

By Stirling's formula,
$$k(n)! \sim [2\pi k(n)]^{1/2} \left(\frac{k(n)}{e}\right)^{k(n)}$$

so that (4.8) is asymptotic to

$$\alpha = \frac{\frac{n^{-k(n)}k^{3}(n)}{(2\pi^{-k(n)})^{1/2}} \begin{bmatrix} e \\ k(n) \end{bmatrix}^{k(n)}$$

$$= \frac{\alpha^{k^{3}(n)}}{(2\pi^{-k(n)})^{1/2}} \begin{bmatrix} e \\ k(n) \end{bmatrix}^{k(n)}$$

$$\alpha = \frac{\alpha^{k^{3}(n)}}{(2\pi^{-2}\log_{b}^{n})^{1/2}} \begin{bmatrix} e \\ e \\ k(n) \end{bmatrix}^{k(n)}$$

$$\alpha^{k(n)} = \frac{\alpha^{k^{3}(n)}}{(2\pi^{-2}\log_{b}^{n})^{1/2}} \begin{bmatrix} e \\ e \\ 2\log_{b}^{n} \end{bmatrix}^{2\log_{b}^{n}}$$
(4.9)

From (4.9) we conclude (4.1)

Q.E.D

5. Applications of the Main Results

In this section, we want to present new algorithms for the three maximization problems studied in Section 3 of Chapter III. These new algorithms are derived from Algorithm D and their asymptotic behavior will be established as corollaries of Theorems 6, 7, and 8.

5.1 Clique Problem

For the clique problem, as defined in Section 4 of Chapter III, we have the following algorithm.

Algorithm CLl

(Let n be a positive integer, and let |V| = n, where V is the set of vertices in the undirected graph G = (V, E))

This algorithm is identical to Algorithm D, except for the following:

- (i) replace " \triangle " by "V", in statements (1) and (8), and "a ρ b" by "a connected to b" in statement (1);
- (ii) replace "Q \bigsqcup {r} is a p-subset of \triangle " by "Q \bigsqcup {r} is a clique of G" on line (ll).

As an immediate consequence of Theorems 5, 7, and 8, we have

Corollary CL1:

Under Condition VC, if |V| = n, then

(i)
$$\frac{\text{CLl(n)}}{\text{M}_{\text{p}}} \sim 1, \text{ as } n \rightarrow \infty, \text{ with probability one,}$$

where CLl(n) denotes the cardinality of a clique of G = (V, E) computed by Algorithm CLl, and M_n denotes the cardinality of the maximal clique of G;

- (ii) the expected running time $\&R_n$ of Algorithm CLl will satisfy (3.2);
- (iii) the running time R_{n} of Algorithm CL1 will satisfy (4.1).

5.2 Set Packing Problem

For the set packing problem, as defined in Section 4 of Chapter III, we have the following algorithm.

Algorithm SP1

(Let n be a positive integer, and let |C| = n, where C is the collection of sets, as defined in Section 4 of Chapter III)

This algorithm is identical to Algorithm D, except for the following:

- (i) replace " \triangle " by "C", in statements (1) and (8), and "a ρ b" by a disjoint from b", in statement (1);
- (ii) replace "Q \bigsqcup {r} is a p-subset of \triangle " by "r is disjoint from all sets in Q", on line (11).

As an immediate consequence of Theorems 6, 7, and 8, we have

Corollary SPl:

Under Condition SC, if |C| = n, then

(i)
$$\frac{\text{SPl(n)}}{M_n} \sim 1, \text{ as } n \to \infty, \text{ with probability one,}$$

where SP1(n) denotes the cardinality of a set pack computed by Algorithm SP1, and M_n denotes the cardinality of the maximal existing set pack of C;

- (ii) the expected running time & R_n of Algorithm SP1 will satisfy (3.2) with $n^{3/2}$ replaced by $k^2n^{3/2}$, where k is as defined in Section 4 of Chapter III. (This is so because the proof of Theorem 7 will hold for Algorithm SP1 with α replaced by α α α .
- (ii) the running time R_n of Algorithm SPl will satisfy (4.1) with $(\log_b n)^{5/2}$ replaced by k^2 $(\log_b n)^{5/2}$, where k is as defined in Section 4 of Chapter III. (Because, again, α is replaced by α k² in the proof of Theorem 8 for Algorithm SPl).

5.3 k-Dimensional Matching Problem

For the k-dimensional problem, as defined in Section 4 of Chapter III, we have the following algorithm.

Algorithm DMl

(Let n be a positive integer, and let |T| = n, where T is a collection of sequences, as defined in Section 4 of Chapter III)

This algorithm is identical to Algorithm 3.1, except for the following:

- (i) replace " \triangle " by "T", in statements (1) and (8), and "a ρ b" by "a disagree in all k-coordinates with b", in statement (1);
- (ii) replace "Q \bigsqcup {r} is a $\rho\text{-subset}$ of \triangle " by "Q \bigsqcup {r} is a matching of T" on line (11).

As an immediate consequence of Theorems 5, $\,$ 7, and $\,$ 8, we have

Corollary DMl:

Under Condition DM, if |T| = n, then

(i)
$$\frac{DMl(n)}{M_n} \sim 1, \text{ as } n \rightarrow \infty$$
 with probability one,

where DMl(n) denotes the cardinality of a set pack computed by Algorithm DMl, and M_n denotes the cardinality of the maximal existing matching of T;

(ii) the expected running time & R_n of Algorithm DM1 will satisfy (3.2) with $n^{3/2}$ replaced by $kn^{3/2}$, where k is as defined in Section 4 of Chapter III. (This is so because the proof of Theorem 7 will hold for Algorithm DM1 with α replaced by α k).

(ii) the running time R_n of Algorithm DM1 will satisfy (4.1) with $(\log_b n)^{5/2}$ replaced by k $(\log_b n)^{5/2}$, where k is as defined in Section 4 of Chapter II. (Because, again, α is replaced by α k in the proof of Theorem 8 for Algorithm DM1).

6. Some Numerical Tables

In order to illustrate some of the intermediate results obtained in the proof of Theorem 7, we want to show here some numerical tables. (.XXXXXXXX+DDD is equal to .XXXXXXXX 10 in the tables).

Tables 1 - 5 show, for some values of p and n, the corresponding values of h(n) as defined in (3.3), P(j) = p^{j-1} , Q(j) = (n-j)/(j-1), F(j) = P(j) Q(j), and $a_{j+1} = F(j)$ a_j as defined in (3.8). Next we have the values of (3.7) (without the constant factors) and the final bound (3.2).

The fact that the relative differences between the values of (3.2) and (3.7) (as shown in Tables 1-5) increase, as n increases, suggests that the bound (3.2) is very coarse.

In fact, Tables 6 - 10 show that at least for the interval $10^5 \le n \le 10^{10} \, \text{, the upper bound}$

h(n)
$$n^{3/2}$$
 $\left[\begin{array}{c} p e^2 n \\ \hline h(n) \end{array}\right]$ (h(n)-2)/2 (6.1)

for (3.7) is tighter than (3.2).

In tables 6 - 10, we have the following correspondence between values and expressions:

column (1) = expression
$$(3.7)$$
 (without the constant factors);

column (4) =
$$\frac{\text{col.(2) - col.(1)}}{\text{col.(1)}}$$

column (5) =
$$\frac{\text{col.(3)} - \text{col.(1)}}{\text{col.(1)}}$$

$$column (6) = (h(n) - 2)/2$$

$$column (7) = h(n)/2$$

					100
		Table 1		26611551+003	
1	(1/P) = 20	0(3) 3320000+003 -24875000+003 -19880000+003 -16550000+003	112387500+003 11000000+003 94900000+002 99418172+002 75340154-002 75341437000002 61437500+002 57764706+002 57764706+002 577764706+002 575000009+002	.44478762+016 SUM)/SUM ≥ ,2661	
	a 2 LOG N/LOG(1/P)	P(J) P(J) P(J) P(J) P(J) P(J) P(J) P(J)	930550000000000000000000000000000000000	(FINAL BOUND =	
	1111NG OF H(N) W	#15500000+002 *15546875+002 *62125000+001 *24459375+001		1509+014 **3/2)*(P E E N/H(N)) 44312247+016 , AND	
	5488009+001 58244005+00	. 49950000+006 . 49850100+009 . 70687791+011 . 32167051+012 . 199812051+013 . 57206493+013	\$27681462+013 \$57439161+011 \$57439161+011 \$50584664+008 46834664+008 \$2011767+004 \$7744853605 \$16683405 \$16683405 \$16683405 \$1668342	10 0 10 0 10 0 10 0 10 0 10 0 10 0 10	-
,	N) = N	A A (A (10) H A (11) H A (11) H A (11) H A (12) H A (13) H A (16) H A (16) H A (16) H A (16) H A (19) H A (19) H A (19) H A (19) H A (20) H A (20	SUM OF A(J)' FINAL BOUND FINAL BOUND	

CI -- 201 Tru2002001 F10

LOG(1/P) B 1249996 620996		CEILING OF H(N) B	<u>e</u>			
(3) # (2.0996 (3) # 62.0996 (13.0206	.378631	137+002 CEILING	0 OF 2 LOG N/LOG(1/P)	(1/P) = 38		
130000 1300000 1300000		E (1)	P(J)	(۲) و		
(3) = .624996 (4) = .130206	75+01		•			
02021° = (7	25+01	1000	000000000000000000000000000000000000000	40041144444		
	51+02	20833167+005	000100000000	**************************************		
1017 B(S)	52+07		100.000000000	100+0000000		
(6)= 317879	20+60	. 5124467+00¢	1::::::::::::::::::::::::::::::::::::::	02113147		
A(7)= .413900 A(8)= .230967	45+035	.13020651+004.	*78125000*002	71427429+005	Table 2	
	1		5745454067	49998900+005		
11)1 .29473	C (FOOTED ACCES	45454005		
	- C	101722424002	24414063-003	41645783+005		
77700 = (51		٣.	12207031-003	38460462+005		
14) 14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		21797616+001	61035156-004	35713214+005		
16) = 1020	0+62	10172201+001	30517578-004	.33332267+005		
		: :		100 - L 100 - C - L		
7)8 33477	Ç	176	#00##60/#6261°	200110704000		
18) = 75118	3 + 0 4	000+040405000	200=24647447	27776722+005		
C>S+/* = (0!)	20+76		19073486=005	26314737+005		
7:77	2042		95367432-006	24998950+005		
33,52	1044	_	47643716-006	23808476+005		
1020	17+03	·u	.23841858-006	*22726227+005		
A(24)= 151823	\$46+033	259	11920929=006	.21778087+005		
			000-12007-10	************		
" "	524+006	#100#12012CC1	100-1025-1000	14100000000		
52)=	100+00	14	21281064-009	15623969+005		
25)2	000000	-	11641532=009	15150485+005		
1 () 1 ()	710000	A5593509=006	.58207661-010	14704853+005		
- (', ', ', ', ', ', ', ', ', ', ', ', ', '	10 A = () > 3	1	29103R30-010	.102AG686+005		
24.75	020*020	5	14551915-010	1.3887861+005		
A(38)# ,50174759	750-037	98316279-007	,72759576=011	,13512486+005		
a Si (i') v au Mis	22015874+045	1+045				
						i
FINAL BOUND # H(N)	4 (N*#3/2)*(P	- 1	E E N/H(N))**(H(N)/2) #	.33314224+050		
1		e de	e Callog Lanyan	SUM)/SUM B 15131	.15131811+006	
FINAL BOUND - SUM	C C C . H	1				1
						0
						1

# (N)	ე ა• ¤			or decidence of the state two	·			**************************************
4	.1971412+002	CETLING OF	H(M) H	20				
z/fu)u	.9857060+001	***************************************	The second secon				es e unimante de samiglam dem oranza e marca esta esta postar una marca de marca de la companya del proceso de	
2 LDG N/LOG(1/	3(1/P) = .4	P20699+0A	CEILING	0F 2 LOG	N/L06(1/P)	1/P) = 47		
		1	F(J)) d	12	(5)0		
A(2)#	10+6666667	₹ -						1
(4)	20833340	7		25000	ç	.3333332+007		
	32552nu+6	356	900+661	1125000	100			
:	7798177+0	2604		562500	0	1666		
£	913140+0			812500	ê	142451	Table 3	
	0262179+0	1 45	200+200	6103516	200	16+00		
(91	0540050	5 .203	200+205	3051758	700	.6664654+006		
(17)	19191+0	953	727+001.	1525079	000	00+69	The same of the contract of th	
(8)	96	700.	173+001	7814697		00+51		
A(19) =	4170706+06	7	3866+001	1907349-005	500			
		•	,					
A(21)=	1998280+06	476	352+000	445444	0 0	4761894+006		
(SC)	4917254	HU	718+000	344186		- 27		
(54)	2548413+	45.51	. 100-000	1192093				
(25)	+2855259	2 248	521-001	5940464			THE REAL PROPERTY AND THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON	
(52)	7545371+	, r		4				
$\sim c$	193305+	יי ליי ליי ליי ליי ליי ליי ליי ליי ליי	200-191	7450581				
		! !						
• 0	,61469AU+0	00 44640	4057-006	1818989-011		2564092+00	٠,	
41)	1402204-0	929 9	727-906		200	00+0100506	· · · · · · · · · · · · · · · · · · ·	
~ -	2 4 4 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	7114	5.46=007	7273737	200	239042+006		
(77)	0-1665767	9 .266	700-R4B		-015	2325571+00		
(5)	2875743-0	12.	R90-007		-013	2272717+00		
(97)	816293-n	4 .631	906-00R		-013	22212+00		
(74	5611076-0	3. 307	302-008		-013	_		
				and an abush any on a tribut				
SUM OF A(J)	'S B .153	2615+06A						^ •
ON SION SON	T II	343/2) + (P+E	E*E*N/H(N))*	**(H(N)/2	10	.4226339+074		
	H WINS	0	dNA , 4	(FINAL BO	ONO B	9UH)/SUH = 3171462+007	02	
The state of the s								a dags i manuale de representation à campair
					_			

1142 LOG(1/P)			23			
LOG M/LOG(1/P)	2170+002					Concession to the same of the
3)# 500	= .53150	185+002 CETLING	OF 2 LOG 4/LOG(1/P)	1/P) = 54		
2)= .50 (3)= .50 (4) = .20		F(J)	P(J)	9(3)		
000 1000	000			-		and the second s
0 K H C K	20+2000	` -	1250000+000	.33333334008		
	4008+04P	1562500+007	6250000-001			
000	4505+04	N.	3125000-001			
7)= 25	A180+04	2604166+006	1562500-001	1666667+008	•	
PS. =(A)	57+05	_	200-0052182	.1u2A571+008	rabie 4	
	9.0	=	7629795-005	5882352+007		
t) "	74440	2119276+002	3814697=005	5555554+007		
	80498606		1907349-005	5263157+007	And the second of the second o	
200	98321+08		9536743-006	100+6666667		
25) = 45	37493+08	N	4168372-006	.4761904+007		
(23)=49	17375+08	-	5384186-006-	4545453+007	AM AND	
	00100	u	900-2602611	10347825+007		
. Ja	29714408	Ň	5960464-007	41646664007	A STATE OF THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER. THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER.	The same and the same of the s
75	45407+08	1195055+000	29A0232-007	200+6666666		
27.1	74549+	5731214-001	.1490116-007	.3846153+007		
2832	93344+08	N	7450581-00B	.3703703+007	·	
293= 15	87702+08	2	372529n-00A	3571428+007		
30)= 10	19767+0A	97	. 1802645#008	3448275+007		
. 31	65773+07	310	9313226-009	.333332+007	and the second of the second o	
	:		5 0 1 M 0 0 1 C 1 1	24770124077		
47)= 5	11644-0	/ II () = C (5 A A A S)	2102/2012#1	7177454007		
(44) H	00000		1552710=010	2083332+007		
1691	7176176		1776357-014	2040415+007		
	107645 14676 14676	í -	SBA1784-015	1999999+007		
4 1 LC	70.00000	8707627-009	4440892-015	1960783+007		
74 = 175 1	20070070	7	.2220446-015	1923076+007		
. II	49456=06	2004759-009	.1110223-015	1886791+007		
E 91 (1) 4 30 Miles	151775A	A+0.80				
	•	;				-
FINAL BOUND # HC	(N) * (N**3/2)	2) * (P*E*E*N/H(N)) * 4 (H(N)/2))**(H(N)/2) E	960+6920900		.10
į			E HISTORIA - UNITED INVESTIGATION	•	1268151+008	3
FINAL BOUND - SI	Silk a	002621096	TANK UKKUK		M. Market Brown and Control of the C	

						A CANADA SAN SAN SAN SAN SAN SAN SAN SAN SAN SA		And the second design of the second s					AND AND ADDRESS OF THE PERSON ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON ADDRES		The same of the sa		AND THE PERSON NAMED IN COLUMN TO				-								10	4		
	-			The second secon				Table 5																		AND THE REAL PROPERTY AND ADDRESS OF THE PROPERTY				3355123+009		•
		1/P) = 60	(5)0	:	333333400	00+00000	1666667+009	285714	000000	4761905+	44747474	1656674	+0000000	24+00	3703704+00	3571424400	3400	3225406+00	*3125000+009	•	1923077+008	1851952		1785714	1724138	164691	!		,7599492+121	SUM) ZBUM # 335'		
	26	F 2 LOG M/LOG(1/P)	P(J)		200	3125000=0	1562500	7812500-0	9536743-00	4768372	00-100601	2960464-00	2940232-00	1116-00	7450591-00	31,552.5	3226-00	0656613-00	2328306-009	00011	2220446-015	4551115-01	2775558-01	7779-01	3459447=01	34723-01			# (H(N)/2) =	CFINAL BOUND .		
	TLING OF H(N) #	71+002 CETLING OF	F(J)	:	166667+008 .	1562500+008	2604167+007	1116071+007	4768371+002	. 7270653+002	1083721+002	กกั	1192093+001	5731216+000	2759474+000	1330461+000	6422914m001	1502133-001	200-7202457	300-161125	42700A8-00A	10279841008	5046468-009	247A176-009	121/350=009	0		+113	2)*(P*E*E*N/H(N))**(H(N)/2	99492+121 AND (
05. =q 01	599541+nn2 CE •1299770+002	TueTe2. = (9/1)		50000000+018	208333403	325570A+04	29A191+05	5913159+06	1998325+10	4537503	4917387+11	2394684411	545531+11	1154544+11	193352+11	1587708+11	019771+11	4755434+10	3460033+104	. 1220609+10	1503512-00	514444161	633862-03	4048997-04	4929045=05	0.00 0.00 0.00		*S # .2265041	H(N) # (N##3/	27. E MUS =	•	
N= 1,000,000,000	H(N) H .2	2 LOG W/LOG(:	2)=	(F)	5,	(2	. B. B.	213	22	(23)	7	(26)	(76	(2A)	(62)	30)	32)		34)=	53.1	(- 54)	(26)	(75)	28)	609		SUM OF A(J)	FINAL BOUND	FINAL BOUND		

z	3	(2)	3	(7)	(2)	(9)	S,
5000000+004	.1805983+020	.1302394+020	,2488338+023	-,2788448+000	.1376830+004	3834284+001	.4834284+001
-500+00000	100000000000000000000000000000000000000	1529260+023	5352462+026.	2006180+000		.4277845+001	5277846+001
.150000000051	.1487488+025	\$50+38+025	.6298578+028	-,1535139+000	,4233373+004	.4539250+001	\$5539250+001
200000000000	3703A29+026	.3261050+026	.2104276+030	1195463+000	.5680352+004	4725505+001	.5725505+001
500+00000		4372233+027	3439576+031		7134993+004	.4870395+001	5870396+001
300+00000005	.4111798+028	,3820045+028	3534772+032	**7095518*001	.8595657+004	.4989041+001	5989041+001
35000000+005	9503465+029	.2467373+029	.2619678+033	=.5227349=001	.1006128+005	5089531+001	. 6089531+001
50v+0v00v	0\$0+00000+0001319890+030	1272372+030	1522110+034	3600187=001	-1153110+005	\$176706+001	+6176706+001
*4500000+005	.5631474+030	0204224039	.7324047+034	- ,2158252-001	.1300456+005	.5253695+001	,6253695+001
	.2093189+031	.2075120+031	,3031405+035	8632047-002	a144A123+005	.532263A+001	. 6322638+001
5200+0000055*	6949372+031	.6949372+0316971n86+031		.3124553-002	.1596078+005	5385063+001	6385063+001
. 60000000000005	\$204524602	.2128792+032	,3662570+036	4,1389133-001	.1744292+005	.5442101+001	.6442101+001
500+0000054.	5856279+032	\$5995799+032	11085011037	.2382390=001	.1892743+005	.5494610+001	. 5494610+001
. 200+0000007.	.1525008+033.	.1575400+033.		3304373-001			6543260+001
.75000000+005	.3741117+033	.3896925+033	8194461+037	.4164741-001	2190278+005	.5588581+001	.6588581+001
. 9000000008.	.8709372+033	.9142342+033	.2037499+038	. 4971308-001	.2339333+005	5631000+001	.6631000+001
500+00000	.8500000+0051935742+034	.2046669+034	4817406+038	. 5730483-001	\$2488561+005		. 6670868+001
500+00000006*	.4126270+034	.43944444034	.1089059+039	.6447590=001	.2637953+005	.5708476+001	6708476+001
95000000005	.8483813+034	.9088463+034	.2364946+039	.7127099-001	.2787498+005	5744066+001	, 6744066+001
10000000+0006	1686107+035	1817165+035	.4952580+039	.7772802-001	.2937188+005	.5777846+001	6777846+001

*70000000+007 ,13R0P56+065 ,8507160+065 ,1219240+072 ,6521606+000 ,2368925+007 ,8615916+001 ,750000+007 ,5196806+065 ,8507350+065 ,1219240+072 ,6511481+400 ,2559162+007 ,8705153+001 ,87061615+001 ,1775079+066 ,29495281+066 ,44884340+072 ,6611481+400 ,2599162+007 ,870615+001 ,9700000+007 ,1719173+066 ,9509130+066 ,1531833+073 ,6775773+000 ,2689571+007 ,878579+001 ,900000+007 ,49000000+007 ,4900000+007 ,4900000+007 ,4900000+007 ,4900000+007 ,49000000+007 ,49000000+007 ,4900000+007 ,49000000+007 ,4900000+007 ,49000000+007 ,49000000+007 ,49000000+007 ,49000000+007 ,49000000+007 ,490000000+007 ,49000000+007 ,49000000+007 ,49000000+007 ,490000000+007 ,49000000+007 ,490000000+007 ,490000000+007 ,4900000000+007 ,490000000+007 ,4900000000+007 ,4900000000+007 ,4900000000+007 ,49000000000+007 ,49000000000000000000000000000000000000

\$9360634001 \$1036664366 \$1036664068 \$10356664068 \$1123861668 \$10386064078 \$10386064078 \$10386064078 \$110396064077 \$10386064078 \$10386064078 \$10386064078 \$10386064078 \$11238637074 \$10386064078 \$10386064078 \$10386064078 \$10386064078 \$10386064078 \$10386064077 \$10386064078 \$10386064078 \$10386064077 \$10386064078 \$10386064077 \$10386064078 \$10386064078 \$10386014007 \$10386064078 \$10386014007 \$1038	3	(2)	(3)	(4)	(5)	(9)	(2)
*2255188+068 *4226339+074 *6923031+000 *3171462+007 *6857060+001 *7068401+071 *1938606+078 *769281+000 *4783962+007 *9131620+001 *2454135+074 *878038+080 *78587+000 *6403488+007 *94364801 *2454135+074 *878038+080 *8215099+000 *6403488+007 *947814001 *2933178+079 *1772450+084 *8474577+000 *965801+007 *947814001 *503435976640 *3479367+084 *8474577+000 *1128899+008 *97057844001 *6418049+081 *4904658+088 *96545800 *11458132+008 *994978941001 *503437178+082 *3479367+084 *96243847000 *1458132+008 *99497894001 *503437178+084 *3399818+091 *9408040+000 *1448132+008 *1022554+002 *1943718+085 *2133440+089 *958374000 *17402489+008 *1022554+002 *1784274+086 *1184837+093 *9694354+000 *2442489+008 *1022554+002 *178251+086 *386700495 *958348+000 *2442489+008 *1038691+002 *25097371719+086 *1184837+095 *9694354+000 *2442489+008 *1038691+002 *2782524037 *1086284+095 *9694354+000 *2772423+008 *1038691+002 *2782534174+086 *11480804+095 *10132631+001 *2775423+008 *1038671+002 *3958744088 *41480804+095 *1005419+001 *329356+008 *1038671+002 *3958744088 *41480804+095 *1005419+001 *329356+008 *1038671+002 *3968774+088 *41480804+095 *1020119+001 *329354008 *1038671+002 *3968774+088 *41480804+095 *1020119+001 *329354008 *1038671+002 *30689494968 *41480804996 *1020119+001 *329354008 *1038671+002 *30689494968 *41480804996 *1020119+001 *329354008 *10421179+002 *30689494968 *41480804996 *1020119+001 *329354008 *10421179+002 *10401170+001 *10401170+001 *10401111111111111111111111111111111	.24663n0+062	.3936063+062	.3872152+068	000+58265650	.1570024+007	.8388768+001	9388768+001
. 2434135+074 ,87803840F0 . 37892281+000 ,6403488+007 ,9326486+001 ,2434135+074 ,87803840F0 . 3789587+000 ,6403488+007 ,9326486+001 ,2434135+074 ,87803840F0 . 3821599+000 ,8028165+007 ,9478140+001 ,2935178+079 ,1772450406 ,8694555+000 ,9656011+007 ,9478140+001 ,2935178+079 ,1772450406 ,8694555+000 ,11268940+008 ,97975434001 ,641804966 . 3479367408 ,9644367000 ,14261324008 ,97975434001 ,641804966 . 3479367408 ,9644367000 ,14261324008 ,97975434001 ,641804966 . 3317844009 ,9205646400 ,12207991408 ,97975434001 ,9641804966 . 318484506 ,979497694008 ,10204254002 ,193864709 ,97949789700 ,1426132408 ,9949769400 ,10204254008 ,10014254002 ,1938718408 ,97949789700 ,1948777408 ,10014254002 ,1948777409 ,194877409 ,194877409 ,10178524002 ,10775727408 ,10775727009 ,194877409 ,107785400 ,1077854000 ,1077854000 ,1077874	.1332615+068	2255188+068	4226339+074	6923031+000	.3171462+007	8857060+001	9857060+001
1356146+676	.4052302+071	.7088401+071	.1938606+078	.7492281+000	4783962+007	.9131620+001	.1013162+002
13561484076. 24702384076. 1088738+084 ,8474577+000 ,9656901+007 ,9601978+001 , 11238657+077 ,11238657+078 ,5874580+084 ,8474577+000 ,9656901+007 ,9601978+001 , 11238657+078 ,1123867+078 ,1123867+078 ,1123867+078 ,11248774874 ,11248744874 ,112487474 ,112487474 ,112487474 ,112487474 ,11	.1371133+074	.2454135+074	.8780038+0PO .	,7898587+000	.6403488+007	.9326688+001	1032669+002
*,1570070+077 .;123A614-078 .\$6745A0+084 ,8694565+000 ,112A699+008 .9706744+001 . *,1570070+079 .\$2935178+079 .;1772450+086 ,86943656+000 ,112A699+008 .9706744+001 . *,2592192+080 .\$6293914062 .\$313840+087 .\$885570+000 .\$1456132+008 .99949469+001 . *,325A8794081 .\$6418040+081 .\$9004565+080 .\$1456132+008 .\$9949469+001 . *,2592192+081 .\$6418040+081 .\$9004565+090 .\$1456132+008 .\$9949469+001 . *,17447714-084 .\$336727+084 .\$336727+084 .\$9492731+000 .\$1784245+008 .\$1001425+002 . *,10129554-085 .\$1983716+085 .\$2140445+092 .\$942731+000 .\$113069+008 .\$1018254002 . *,2018794-085 .\$1983716+085 .\$2140445+091 .\$94086400 .\$2113069+008 .\$1028554+002 . *,2018794-085 .\$1983716+086 .\$11848374-093 .\$960456+000 .\$2402489+008 .\$1028554+002 . *,101729554-085 .\$1983716+085 .\$2807009+093 .\$960456+000 .\$2402489+008 .\$1028554+002 . *,101729554-085 .\$269943+086 .\$10862844+090 .\$207396+008 .\$1038671+002 . *,10172951-086 .\$269943+088 .\$1479270+096 .\$1005419+001 .\$2937562+008 .\$1038671+002 . *,10172861-089 .\$266949408 .\$1479270+096 .\$1020710+001 .\$268151+008 .\$10487170+002 . *,10172861-089 .\$2669949408 .\$10202653+004 .\$1020710+001 .\$268151+008 .\$10487170+002 . *,10172861-089 .\$2669949408 .\$10026634096 .\$1020710+001 .\$268151+008 .\$10487170+002 .		2470238+076	1088738+083	8215099+000	.8028165+007	.9478140+001	1047814+002
.155707704070	.6083297+077	.1123863+078	.5874580+084	08474577+000	.9656901+007	.9601978+001	.1060198+002
.336A2794080	.1570070+079	.2935178+079	.1772450+086	.8694565+000	.1128899+008	.9706744+001	.1070674+002
.336A2794081	2692192+080	5084359+080	3479367+087	8885570+000	.1292391+00B.	9797543+001	.1079754+002
*\$2501879454082	.3368279+081	.6418049+081	880+8598068	,9054387+000	.1456132+008	,9877668+001	.1087767+002
*,1744771+084 *,5036947+083 *,4646265+090 *,9342731+000 *,1744245+006 *,1007351+002 *,1744771+084 *,339618+091 *,9468040+000 *,1948576+008 *,1007351+002 *,1012955+085 *,1983718+085 *,21400445+092 *,9583463400 *,2113069+008 *,1012853+002 *,2201879+085 *,1024274+086 *,1184837+093 *,9790173+000 *,2277710+008 *,1017852+002 *,1010746+087 *,2019723+087 *,2635417+094 *,9883548+000 *,22077710+008 *,1022554+002 *,1010746+087 *,2019723+087 *,1086284+095 *,9971344+000 *,22077742423+008 *,1022554+002 *,10120835108 *,263547408 *,1479270+095 *,1005419+001 *,3102807+008 *,1034984+002 *,4767521+088 *,3026949+089 *,49602634-096 *,1020710+001 *,3268151+008 *,1042170+002 *,112728408 *,1042170+001 *,3268151+008 *,1042170+002 *,112728408 *,1042170+001 *,3268151+008 *,1042170+002 *,112728408 *,1042170+001 *,3268151+008 *,1042170+002 *,112728408 *,1042170+001 *,3268151+008 *,1042170+002 *,112728408 *,1042170+001 *,3268151+008 *,1042170+002 *,112728408 *,1042170+001 *,3268151+008 *,1042170+002 *,112728408 *,1042170+001 *,3268151+008 *,1042170+002 *,112728408 *,1042170+001 *,3268151+008 *,1042170+001 *,4142808 *,1042170+001 *,4142808 *,1042170+001 *,4142808 *,1042170+001 *,4142808 *,1042170+001 *,4142808 *,1042170+001 *,4142808 *,1042170+001 *,4142808 *,1042170+001 *,4142808 *,1042170+001 *,4142808 *,1042170+001 *,4142808 *,1042170+001 *,4142808 *,1042170+001 *,4142808 *,1042170+001 *,4142808 *,1042170+001 *,4142808 *,10428170+001 *,4142808 *,10428170+001 *,4142808 *,10428170+001 *,4142808 *,10428170+001 *,4142808 *,10428170+001 *,4142808 *,10428170+001 *,4142808 *,10428170+001 *,4142808 *,10428170+001 *,41428808 *,41428808 *,41428808 *,41428808 *,41428	.500000000000 .3279965+082	.6299391+082	.5313840+089	.9205666+000	.1620090+008	100+6916066	1094937+002
.1744771+084 .3396727+084 .3399818+091 .99468040+000 .2113069+008 .1007351+002 .1012955+085 .1983718+085 .2140445+092 .9583463+000 .2113069+008 .1017852+002 .5201879+085 .1024274+086 .1184837+093 .9690456+000 .2277710+008 .1017852+002 .2402061+086 .4753721+086 .5867009+093 .9790173+000 .2442489+008 .1022554+002 .1010746+087 .2019723+087 .1086284+095 .9971344+000 .2607396+008 .1036953+002 .3918177+087 .7825126+087 .1086284+095 .1005419+001 .2937562+008 .1034984+002 .4767521+088 .9598274+088 .4148086+095 .1005419+001 .3768151+008 .1034984+002 .4767521+088 .2831818+088 .44780263+096 .1020710+091 .3268151+008 .1038671+002 .4767521+088 .28306949+089 .4960263+096 .1020710+091 .3268151+008 .10349170+002	.5500000+0008	5036947+083	4646265+090	9342731+000	1784245+008	1001425+002	1101425+002
.1012955+n85 .1943718+085 .2140445+092 .9583463+000 .2113069+008 .1012803+002 .52077710+068 .1017852+002 .5201879+n85 .1024274+086 .1184837+093 .9690456+000 .2277710+068 .1022554+002 .2402061+084 .4753721+086 .5867009+093 .9790173+000 .2442489+008 .1022554+002 .1010746+n87 .20009723+087 .2655417+094 .0983548+000 .2607396+008 .1022554+002 .3918177+087 .7825126+087 .1086284+095 .9971344+000 .2772423+008 .1031086+002 .1412083+088 .2831818+088 .4148080+095 .1005419+001 .2937562+008 .1038671+002 .4767521+n88 .9598274+088 .1479270+096 .1013263+001 .3102805+008 .1038671+002 .1517758+089 .3066949+089 .4960263+096 .1020710+001 .3268151+008 .1042170+002 .1517758+089 .306949+089 .4960263+096 .1020710+001 .3268151+008 .1042170+002	.60000000000000000000000000000000000000	.3396727+084	,3399818+091	. 9468040+000	.1948576+008	,1007351+002	,1107351+002
.5201879+085 .1024274+086 .1184837+093 .9690456+000 .2277710+008 .1022554+002 .2402061+086 .4753721+086 .5867009+093 .9790173+000 .2442489+008 .1022554+002 .1010746+087 .20109723+087 .2655417+094 .9883548+000 .2607396+008 .1026953+002 .3918177+087 .7825126+087 .1086284+095 .9971344+000 .2607396+008 .1031086+002 .4767521+088 .2831818+088 .41480804+095 .1005419+001 .2937562+008 .1038671+002 .4767521+088 .9598274+088 .1479270+096 .1013263+001 .3102807+008 .1038671+002 .1517758+089 .3066949+089 .4960263+096 .1020710+001 .3268151+008 .1042170+002 .1517758+089 .3066949+089 .4960263+096 .1020710+001 .3268151+008 .1042170+002	.6500000+000B .1012955+085	.1983718+085	.2140445+092	.9583463+000	.2113069+00B	.1012803+002	.1112803+002
.2402061+086 .4753721+086 .5867009+093 .9790173+000 .2402489+008 .1022554+002 .1016746+087 .260739408 .1026953+002 .1016746+087 .260739408 .1026953+002 .2918177+087 .7825126+087 .1086284+095 .9971344+000 .2772423+008 .1031086+002 .1412083+088 .2831818+088 .4148080+995 .1005419+001 .2772423+008 .1034984+002 .4767521+088 .9598274+088 .1479270+096 .1013263+001 .3102807+008 .1038671+002 .1517758+089 .3066949+089 .4960263+096 .1020710+001 .3268151+008 .1042170+002 .1517758+089 .3066949+089 .4960263+096 .1020710+001 .3268151+008 .1042170+002		1024274+086	.1184837+093	000+9570096	\$2277710+008	1017852+002	1,117852+002
.1010746+087 .2009723+087 .2655417+094 .0885548+000 .2607396+008 .1026953+002 .3918177+087 .1086284+095 .9971344+000 .2772423+008 .1031086+002 .1412083+086 .2831818+088 .4148080+095 .1005419+001 .2937562+008 .1034984+002 .4767521+088 .9598274+088 .1479270+096 .1013263+001 .3102807+008 .1038671+002 .1517758+089 .3066949+089 .4960263+096 .1020710+091 .3268151+008 .1042170+002 .	.7500000+000A .2402061+086	4753721+086	.5867009+093	000+110010	.2442489+008	.1022554+002	,1122554+002
.3918177+087 .7825126+087 .1086284+095 .9971344+000 .2772423+008 .1031086+002 .14120835086 .2831818+088 .4148086+995 .1005419+001 .2937562+008 .1034984+002 .4767521+088 .9598274+088 .1479270+096 .1013263+001 .3102807+008 .1038671+002 .1517758+089 .3066949+089 .4960263+096 .1020710+001 .3268151+008 .1042170+002 .1517758+089 .3066949+089 .4960263+096 .1020710+001 .3268151+008 .1042170+002	.80000000+098 .1010746+087	.2009723+087	.2635417+094	. 9883548+000	\$2607396+008	.1026953+002	.1126953+002
.14120A3+0A8 .2A31A18+0A8 .4148080+095 .1005419+001 .2937562+008 .1034984+002 .4767521+0A8 .9598274+0A8 .1479270+096 .1013263+001 .3102807+008 .1038671+002 .1517758+0A9 .3066949+0B9 .4960263+096 .1020710+001 .3268151+008 .1042170+002	.85000000+008\$918177+087	7825126+087	1086284+095	. 9971344±000	2772423+008	1031086+002	.1131086+002
.4767521+088 .9598274+088 .1479270+096 .1013263+001 .3102807+008 .1038671+002 .	.9000000+008 .1412083+088	.2831818+088	.4148080+095	.1005419+001	.2937562+008	.1034984+002	.1134984+002
.1517758+089 .3066949+089 .4960263+096 .1020710+001 .3268151+008 .1042170+002	.9500000+008 .4767521+088	.9598274+088	.1479270+096	,1013263+001	.3102807+008	.1038671+002	1138671+002
o	.1000000000000000000000000000000000000	*3066949+089	4960263+096	. 1020710+001	.3268151+008	£1042170+002	.1142170+002
o							
			l o				
			o				

			•		,			
	(1)	(5)	(3)	(4)	(5)	(9)	(7)	
.500000000008	3279965+0A2	.6299391+082	.5313840+0B9	.9205666+000	,1620090+008	49949369+001	1094937+002	
***************************************	.1517758+089	\$80+6969905	4960263+096	.1020710+001	.3268151+008_	1042170+002	211,42170+002	
	.1625939+093	.3381594+093	.8009628+100	.1079779+001	,4926155+008	.1069848+002	.1169848+002	
	.1346102+096	.2A56299+096	.8871480+103 +	.1121903+001	.65904944008	1089506+002	1189506+002	
.25000000+009	.2667064+098	.5746717+098	220285A+106	1154697+001	8259485+008	a1104765+002	1204765+002	
•3000000000	.21111496+100	.4606377+100	.2097170+108	1181570+001	.9932149+008	.1117240+002	.1217240+002	
•35000000000	. AB12673+101	20149192010	.1022961+110	. 1204344+001	.11607A5+009	.1127792+002	1227792+002	
600000000000000000000000000000000000000	.2291970+103.	5097595+103		1224111+001	.1328612+009	.1136935+002	.1236936+002_	
	.4141546+104	.9283596+104	.6198502+112	.1241577+001	.149664+009	,1145005+002	.1245005+002	
\$000+0000000S*	.5603961+105	1264940+106	,9330113+113	.1257226+001	.1664914+009	1152224+002	.1252224+002	
	-5991907+196	1361002+107	.1098521+115	-1271401+001	1833342+009	1158757+002	a1258757+002	
\$00+0000009*	.526A954+107	.1203617+108	.1054808+116 .	.1284357+001	.2001931+009	.1164722+002	,1264722+002	
•65nnnn0+009	3928464+10B	.9020892+108	. A527384+116	.1296290+001	-2170656+009	1170211+002	. 1270211+002	
-7000000000000	.2543376+109	5968457+109	s5950324+117	1307349+001	£339537+009	1175294+002	1275294+002	1
.7500000+009	.1457239+110	.3377377+110	.3655532+118	1317655+001	+2508533+009	.1186027+002	.1280027+002	
*R0000000+0009	7503366+110	.1746261+111	2009136+119	1327304+001	.2677646+009	.1184455+002	1284455+002	
	3516141+111	. A215023+111	1000999+120	1336375+001	\$8446867+009	A1188615+002	1288615+002	
\$00+000000 \$.1515363+112	3553427+112	04570625+120	.1344934+001	.3016191+009	.1192538+002	,1292538+002	
600+0000056	.605949A+112	.1425822+113	.1930321+121	1353037+001	,3185611+009	1196249+002	1296249+002	1
.1000000+010		5347148+113	7599492+121	1360729+001	\$355123+009	1199770+002	1299770+002	
			Table 9					108

z	(3)	. (2)	(3)	(7)	(5)	(9)	(3)
50000000000	.5603961+105	.1264940+106	,9330113+113	1257226+001	1664914+009	.1152224+002	1252224+002
-1000000+010	.2265041+113	.5347148+113	7599492+121	1360729+001	.3355123+009	1199770+002	.1299770+002
.1500000+010	. A641567+117	.2092741+118	.4367789+126	.1421715+001	.5054395+009	. 1227621+002	1327621+002
2000000+010	1763510+121	.4347367+121	.1192037+130.	.1465178+001	,6759456+009	.1247397+002	.1347397+002
.25000000+010	.,7038609+1231758949+124	1758949+124	\$5960839+132	100+10061+001	-8468774+009	.1262746+002	.1362746+002
3000000+010	. 9878881+125	.2496103+126	,1005814+135	.1526706+001	.1018146+010	1275292+002	,1375292+002
.3500000+010	.6692256+127	.1706645+128	.7961723+136	.1550179+001	01189695+010	1285904+002	1385904+002
000000000000000000000000000000000000000	4000000+010 25088266+129 6807496+129	-,6807496+129.	3605547+138	1570549+001		1295099+002	1395099+002
,4500000+010	.6930470+130	.1793982+131	.1062763+140	1588544+001	.1533464+010	.1303212+002	.1403212+002
5000000+010	.1305243+132	.3402322+132	.2227974+141	1604562+001	.1705635+010	,1310471+002	91410471+002
000000000000000000000000000000000000000		.4937519+133		.1619261+001	.1877970+010	1317039+002	.1417039+002
.69000000+010	.2179796+134	.5738539+134	. 4469567+143	1632603+001	.2050452+010	.1323037+002	1423037+002
6500000+010	22090938+135	.5530301+135	. 4648301+144	1644890+001	,2223070+010	.132855+002	,1428555+002
	1709480+136	4540850+136	4095593+145	1956275+001	.2395812+010	1333664+002	41433664+002
	.1217148+137	3245991+137	,3126449+146	,1666884+001	.2568669+010	, 1338422+902	.1438422+002
80000000+010	.7674R2A+137	.2055748+138	.2105527+147	,1676815+001	.2741633+010	1342873+002	014428734002
000000000	_8500000+0104356167+138	1170133+139	.1269691+148	.1686152+001	*2914698+010	1347054+002	.1447054±002
.9000000+010	.2247854+139	.6057876+139	.6941052+148	1694960+001	.3087858+010	.1350997+002	91450997+002
9500000+010	.1065816+140	.2A81217+140	.3475737+149	.1703298+001	.3261106+010	1354727+002	01454727+002
			03173718073	17112134001	1444438+010	1358267+002	1458267+002

Table 10

Conclusions and Open Problems

Several algorithms for NP-hard problems have been shown to give optimal or near-optimal solutions with probability one.

By designing and analysing algorithms for many different NP-hard problems, we intend to provide some insight on a uniform and general probabilistic approach to solve all the NP-hard problems derived from NP-complete problems, in spite of their different structural characteristics (derived in the sense that, for example, if the NP-complete problem is to answer the question "given a positive integer k and a graph with n vertices $(k \le n)$ is there a clique of size k?", the derived NP-hard problem would be "given a graph find the largest clique of the graph"). To some extent, we were successful in devising a uniform method to derive fast probabilistic algorithms to solve different NP-hard problems.

For the problems studied in this thesis, we have been unable to find in the literature any result stronger than our algorithms and the corresponding theorems on their probabilistic performances.

Some of the algorithms presented are simple, but their analyses are often difficult. Heuristics may occur to the reader that would improve the performance of the algorithms. But introduction of heuristics seems to introduce probabilistic dependencies that are very difficult to analyse. However, if they can be

shown <u>not</u> to reduce the accuracy of the algorithms, they may still be used in practice without weakening the results.

One theoretical conjecture is that an algorithm which is optimal with probability one for one NP-hard problem is "polynomially translatable" (in the sense of Karp[1972]) to another algorithm to solve a second NP-hard problem, preserving the probabilistic properties.

In addition to the general observations above, there are other questions of varying degrees of importance which could be explored in an extension of this work or which remain as open problems. The following is a partial list.

- (1) Find experimental results by implementing the algorithms presented;
- (2) By experimentation, measure possible improvements of the algorithms by adding some heuristics;
- (3) As a consequence of (1) above, get an accurate value of the universal constant β of Theorem 4;
- (4) Extend the algorithms and the results of Chapter II to any normed space;
- (5) Design algorithms for the problems considered in Chapter IV, faster than the ones presented, but still optimal or within a ratio r, 1 < r < 2, with probability one;
- (6) Find bounds for the variance of the running time of Algorithm D;
- (7) In connection with (6), find a function f(n) such that the

running time of Algorithm D is asymptotic to f(n) in probability or with probability one;

- (8) By applying the uniform method presented in Chapters III and IV, find fast algorithms for additional NP-hard problems which are optimal or near-optimal with probability one;
- (9) Consider another probability distribution for the problems studied in this thesis, and develop uniform methods to design algorithms which are optimal or near-optimal with probability one under this new distribution.

References

- A.V. Aho, J.E. Hopcroft and J.D. Ullman [1975]: "The Design and Analysis of Computer Algorithms", Addison Wesley.
- D. Angluin and L.G. Valiant[1977]: "Fast Probabilistic Algorithms for Hamiltonian Circuits and Matchings", 9th. A.C.M. Symp. on Th. of Comp., 30-41.
- J. Beardwood, J.H. Halton and J.M. Hammersley[1959]: "The Shortest Tour Through Many Points", Proc. Cambridge Philos. Society 55, pp. 299-327.
- R.E. Bellman[1962]: "A Dynamic Programming Treatment of the Traveling Salesman Problem", Journal of the A.C.M. 9.
- N. Christofides[1976]: "Worst Case Analysis of a New Heuristic for the Traveling Salesman Problem" in "Algorithms and Complexity", ed. by J.F. Traub, Academic Press.
- S.A. Cook[1971]: "The Complexity of Theorem Proving Procedures", 3rd. Annual A.C.M. Symp. on Th. of Comp.
- K.L. Chung[1974]: "A Course in Probability Theory", Academic
 Press.
- W. Feller [1968]: "An Introduction to Probability Theory and its Applications", Wiley.

- M.R. Garey and D.S. Johnson[1976]: "The Complexity of Near-Optimal Graph Coloring", Journal of the A.C.M., 23:1.
- M.R. Garey and D.S. Johnson[1976a]: "Performance Guarantees for Heuristic Algorithms", in "Algorithms and Complexity", ed. by J.F.Traub, Academic Press.
- M.R. Garey and D.S. Johnson [1978]: "Computers and Intractability", Freeman.
- G.R. Grimmett and C.J.H. McDiarmid [1975]: "On Colouring Random Graphs", Math. Proc. Cambridge Philo. Soc., 77:313-324.
- J.H. Halton and R. Terada [1978]: "An Almost Surely Optimal Algorithm for the Euclidean Traveling Salesman Problem", Tech.

 Rept. CS 335, Univ. of Wisconsin-Madison.
- M. Held and R.M. Karp[1962]: "A Dynamic Programming Approach to Sequencing Problems", SIAM Journal Comp. 10.
- R.M. Karp[1972]: "Reducibility among Combinatorial Problems", in "Complexity of Computer Algorithms", ed. by R.E. Miller, Plenum Press.
- R.M. Karp [1977]: "Probabilistic Analysis of Partitioning Algorithms for the Traveling Salesman Problem in the Plane", Math. Op. Res., 2:3, 209-244.
- P.D. Krolak, W. Felts and G. Marble[1970]: "Efficient Heuristics for Solving Large Traveling Salesman Problems". 7th. Intr. Symp. on Math. Programming
- S. Lin and B.W. Kernighan[1973]: "An Effective Heuristic Algo-

- rithm for the Traveling Salesman Problem", Op. Res. 21.
- D.W. Matula [1976]: "The Largest Clique Size in a Random Graph", Tech. Rept. CS 7608, Southern Metho. Univ..
- C.H. Papadimitriou[1977]: "The Euclidean Traveling Salesman Problem is NP-Complete", Theoretical Comp. Sci. 4.
- L. Posa [1976]: "Hamiltonian Circuits in Random Graphs", Discr. Math., 14, 359-364.
- M. O. Rabin [1977]: "Probabilistic Algorithms", in "Algorithms and Complexity", ed. by J.F. Traub, Academic Press, 21-39.
- R. Solovay and V. Strassen[1977]: "A Fast Monte-Carlo Test for Primality", S.I.A.M. Journal on Computing 6:1, pp. 84-85.
- R. Terada[1979]: "Polynomial Time Algorithms for NP-Hard Problems which are Optimal or Near-Optimal with Probability One", Tech. Rept. CS351, University of Wisconsin-Madison.
- B. Weide[1978]: "Statistical Methods in Algorithm Design and Analysis", Carnegie -Mellon Univ., 78-142.