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ABSTRACT

We present fast algorithms for six NP-hard problems.
These algorithms are shown to be optimal or near-optimal
with probability one (i.e., almost surely).

First we design an algorithm for the Euclidean trav-
eling salesman problem in any k-dimensional Lebesgue set E
of zero-volume boundary. For n points independently, uni-
formly distributed in E, we show that, in probability, the
time taken by the algorithm is of order less than n o(n),
as n > 0, for any choice of an increasing function o (how-
eaver slow its rate of increase). The resulting solution
will, with probability one, be asymptotic, as n > ®©, to the
optimal solution.

In addition, by applying a uniform method, wa design
algorithms for five NP-hard problems: the vertex set cover
of an undirected graph, the set cover of a collection of
sets, the clique of an undirected graph, the set pack of a
collection of sets, and the k-dimensional matching of an
undirected graph. Each algorithm has its worst case run-
ning time bounded by a polynomial or a function slightly

greater than a polynomial on the size of the problem in-
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stance. Furthermore, we show, as corollaries of main
theorems, that each algorithm gives an optimal or near-
optimal solution with probability one, as the size of the

corresponding problem instance increases.
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Chapter T

Introduction and Summary

This introductory chapter begins with some basic defini-
tions in the area of design and analysis of algorithms, and some
of the motivations for this thesis. Section 2 contains a brief
review of previous work in the area, and a summary of our
results. Most of the details are left for later chapters. Sec~
tion 3 contains a description of notation and some basic concepts

in elementary probability theory.

1. Preliminary Definitions and Motivations

Algorithms can be evaluated by a variety of criteria. Fre-
quently, we are interested in the rate of growth of the time re-
quired to solve larger and larger instancesof a problem. More
specifically, let P be a computational problem, i.e., a collec-
tion of computational tasks each of which is called an instance
of P. With each 1instance I in P we assoclate an integer |11,
called the size of I. Generally speaking, we take the size |I| =
n to be correlated to the amount of information required to
specify 1. 1If, for all sufficiently large n, the time needed by
an algorithm A to solve instances of size n has a least upper-

bound proportional to f(n), we say that the worst case running

time of A is f£(n) or that A solves P in f-time. 1In particular,

when f(.) is a polynomial on n, we say A solves P 1in polynomial

time, and 1if f£(n) = Cp(n)’ where c is a constant and p(.) is a




polynomial, we say A solves P in exponential-time, and A is not

fast.
There is a general agreement that if a problem P cannot be
solved by a polynomial-time algorithm, then P should be con-

sidered intractable. Of course, in some applications, Jjust a

subset of all the problem instances is of interest and can be
shown to be tractable.

There is evidence that a certain class of problems, the
non-deterministic polynomial time complete problems ("NP-
complete" for short), is likely to contain only intractable prob-
lems (see, e.g., Aho, Hopcroft and Ullman([1975]). Many "classi-

cal" problems in combinatorics, such as the traveling salesman

problem, the Hamiltonian circuit problem, and integer linear pro-
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. All problems in the class can be shown
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"equivalent", in the sense that if one is tractable, then all are
tractable (Cook[1971], Karp[l1972]).
We will consider a second class of problems, called the

"Np-hard" problems, which are at least as hard to solve as the

NP-complete problems in the sense that the existence of a polyno-
mial time algorithm to solve an NP-hard problem implies that all
NP-complete problems can also be solved in polynomial time
(Cook[1971], Karp[l1972]).

Since many of the NP-complete and NP-hard problems have
been studied by mathematicians and computer scientists for de-
cades, and all known algorithms to solve any of them require at
least exponential time, it is natural to conjecture that no algo-
rithm requiring less than exponential time exists , and conse-

quently, to regard all the problems in these classes as being in-



tractable.
But in many real-world applications, exact solutions for
NP-hard problems are not required. As a result, some researchers

have developed approximation algorithms for these applications,

which attempt to guarantee near-optimal solutions to all in-
stances of a problem (cf. Garey and Johnson[1976]). The defini-
tional set-up is as follows. Consider a minimization(resp., max-
imization) problem which, for each problem instance I, asks for a
solution with minimum (resp. maximum) cost m(I). Consider an al-
gorithm A that, on problem instance I, produces a solution of
cost A(I). Then, given a real number r > 1, we say that A solves

the problem within ratio r if , for all I,

A(I) < r m(I) (1.1)
(resp., A(I) >(1/r) m(I) (L.2) )

This "guaranteed approximation" approach has yielded a number
of successes, particularly in connection with various packing
problems (cf. Garey and Johnson{1976al). However, some Iimportant
NP-hard problems seem to be not well suited to this approach.
For example, Garey and Johnson[1976] prove that it is NP-hard to
solve the coloring of a graph problem within a ratio r<2 (the
cost in this case is the number of colors). Moreover , ho
polynomial-time algorithm is known which solves the coloring
problem within any fixed ratio r. Another example is the problem
of finding the 1largest <clique (i.e., complete subgraph) in a
graph. Garey and Johnson [1976] suggest how to prove that the
following statements are equivalent (the cost here is the clique

size):




(a) for some r>1l, there is an polynomial-time algorithm to solve

the largest clique problem within r;

(b) for every r>l, there is a polynomial-time algorithm for solv-

ing the largest clique problem within r.

Recently, such negative results and the conjecture that all
NP-complete and NP-hard problems are intractable have motivated

the design of the so-called "probabilistic algorithms". 1In this

thesis we are interested in the design of a particular type of

probabilistic algorithms for NP-hard problems, those which are

fast and are guaranteed to give optimal o1 near~-optimal solutions

creases. This 1s the strongest type of probabilistic algorithm
we can look for {(cf. Feller [1968], or Chung[1974]).

To formulate what "probability one" means, a probabilistic
distribution over all problem instances is assumed. Let

{Ij, j > 1} be a sequence of problem instances  such that the

with—"probability-one";—as—the—size—of—theproblem—instance—in-—

size |I.] = 3, and {Ij, j > 1} is sampled incrementally according

)
to the probabilistic distribution assumed, in the sense that Ij
is obtained from Ij-l by adding one component or element of the

problem to Ij—l’ according to the ©probabilistic distribution.
For example, if the underlying problem structure is a graph, the
incremental change might be the addition of a new node and some
edges incident to it, with all the edges of the previous graph
unchanged. Using the same notation of (1.1) and (1.2), given a
real number r > 1, an algorithm A solves a minimization (resp.,

maximization) problem within ratio T with probability one iff for




every € > 0, we have (cf. Feller[1968] or Chung[1974])

A(I4)
lim Pr{ 1 < < r + €, for all j>n} =1
n > - m(Ij) -
(1.3)
A(I:)
(resp., lim Pr{ 1 > ] > 1/r — €, for all j>n} = 1)
n > - m (1) -

When r = 1, we will say that A is an optimal algorithm with

probability one, and when r > 1, we will say A is a near-optimal

algorithm with probability one.

2. Previous Work and Summary of the Thesis

One of the earliest results on probabilistic algorithms 1is
a fast algorithm by Solovay and Strassen [1977] and Rabin [1976]
for testing whether a number n is prime. This problem becomes
infeasible to solve for n larger than 1060. Rabin claims that
the probability of error (i.e., guessing that a composite number
is prime) is halved at each step of the algorithm, regardless of
the size of n.

Posa[1976], and Angluin and valiant{1977] give polynomial-
time probabilistic algorithms to find Hamiltonian circuits in
graphs. This problem is known to be NP-complete (Karp[1972]).
Their algorithms find a solution with probability tending to one,
as the size of the problem instance increases, if the graphs are
sufficiently dense.

Grimmett and McDiarmid [1975] describe a polynomial time

probabilistic algorithm to color a graph within any ratio r > 2
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with probability one. As we mentioned in Section 1 (Garey and
Johnson([1976]1), the coloring of a graph is an NP-hard problem.
They also have a polynomial-time algorithm to £find the largest
subset of the set of vertices of a graph such that no two ver-
tices in the subset are connected. This algorithm is near-
optimal (within r = 2) with probability one, as we comment in
Section 4.1 of Chapter III.

In this thesis, we study algorithms for three minimization
and three maximization NP-hard problems.

In Chapter II we give a fast algorithm to solve the k-
dimensional Euclidean traveling salesman problem (k~-TSP for

short) which is optimal with probability one. For the particular

case of k=2 (i.e., the TSP in the plane), Garey et al.[1976], and

Papadimitrioa 1977} proved that the TSP is NP=hard. The  best
known polynomial-time approximation algorithms for this problem,
by Christofides[1976], solves it within r = 3/2.

On the other hand, there has been some research on heuris-

tic methods for the solution of the 2-TSP. For example, computer

programs to find near optimal solutions for 2-TSP instances of up
to 300 points in an acceptable amount of time were described by
Krolak et al.[1970] and by Lin and Kernighan[1973]. Their pro-
grams seem to give good results but no rigorous analysis of the
algorithms are available.

Karp{1977] gives an algorithm whose expected running time
is bounded by n 1092 n. He claims it solves the 2-TSP within any
r > 1 with probability one, but, as we comment in Section 7 of
Chapter II, the proof of this claim is incomplete.

In Chapter III we give polynomial-time algorithms for two
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minimization NP -hard problems which are optimal with probability
one., The problems are the vertex set cover of an undirected
graph and the set cover of a collection of sets. The best known
polynomial-time approximation algorithm for the vertex set cover
problem, by Gavril (cf. Garey and Johnson [1978], p.134), solves
it within r = 2. Also in Chapter III we give polynomial-time al-
gorithms for three maximization NP-hard problems which solves
each of them within r = 2 with probability one. The problems
are: the clique of an undirected graph , the set pack of a col-
lection of sets, and the k-dimensional matching of a graph. So
far, no polynomial-time approximation algorithm is known to solve

any of these three problems within any fixed ratio r. All the

algorithms presented in Chapter III are derived from a central
algorithm , Algorithm C.

In Chapter IV we have new algorithms for the three maximi-
zation problems considered in Chapter III. These new algorithms
are optimal with probability one, but they require more running
time than the ones in Chapter III. The algorithms in Chapter IV

are also derived from a central algorithm, Algorithm D.

3. Notation and Background Material

This section contains a summary of notation and some ele-
mentary probability theory which will be used throughout the
remaining chapters. We intend to only provide a basis for the
terminology which we will propose and use later. Most of the ad-
ditional concepts and notations are defined when they arise na-
turally in later chapters.

When dealing with asymptotic behavior of functions, specif-
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ic notations are available to describe the relationships between
functions f(n) and g(n), all of which are based on the behavior
of the ratio f(n)/g(n), for all sufficiently large values of n.

We say that

f(n)

i
lo

(g(n)) 1iff £(n)/g(n) > 0;

f(n) =

|O

(g(n)) iff £(n)/g(n) < ¢, for some constant c;

f(n) =~ g(n) iff f(n)/g(n) > 1.

«Q

For the basic background material in elementary probability
theory, we will follow Feller[1968].
Let ) be the space of all possible outcomes of a random ex-

periment. £ is called the sample space of the experiment. A

function defined on a sample space is called a random variable.

E SN ¥ A B 3
L=

KA Le—a trandom varifable and Iet X1r X3y X3, ... be the values

o
A=

o

which it assumes. 1In general, the same value xj may correspond
to several sample points. This aggregate forms the event that X
= Xy; its probability is denoted by Pr{ X = X5 }. The system of
relations

Pr{ X = xj ] = f(xj), i=1,2,3, .... (3.1)

defines the probabilistic distribution of the random variable X.

Clearly,
f(xj) > 0, ;S f(xj) =1 (3.2)
If a value x is never assumed, we write Pr{ X = x } = 0.

If two or more random variables Xir Xgy on. (X, are defined
on the same sample space, their joint distribution is given by
the system of equations which assigns probabilities to all combi-

nations Xy = le, Xy = sz, etc.. The variables Xir .. X, are

called mutually independent if for any combination of values le,




Ixjnl

Pr{Xl=x X=X ceo 5 X =X

jl’ j2’ n "in

Pr{Xl=xj1} Pr{X2=xj

2} .ee Pr{Xn=x.

} o=

in

}

Let X be a random variable assuming the values x

with corresponding probabilities f(xl), f(xz), .
expected value of X is defined by
& X = ES Xy £(x) (3.4)

provided that the series converges absolutely.

The second moment of X is defined by

g x2 = Z x, > £(xy)

provided that the series converges absolutely.

(3.5)

2

var X = & X% - (&x)2 (3.6)

A sequence of random variables XrXgr onn

verge in probability to X iff for every € > 0, we have

lim Pr { [X, - X| >€ } =0

!
n-»> !

is said

(3.3)

1,X2,....

to

(3.7)

14

The

corn-
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Chapter IT

Euclidean Traveling Salesman Problem

1. Introduction and Summary

Given an integer k>2, the k-dimensional Euclidean Traveling
Salesman Problem (k-TSP) can be defined as follows: given a set

c . . . . . . : k
st points—distributed—in—the k—-dimensional Fuclidean space R ,

determine —a tour, i.,e., a closed path visiting each of the n

points exactly once, so that the tour is the shortest possible
one (we take the distance between two points to be the ordinary
Euclidean distance).

In Section 2 of this chapter we present Algorithm A , a

non-recursive, divide-and-conquer algorithm for the k-TSP, k>2.

In defining Algorithm A, we assume that a non-zero function § (n)
is chosen. Furthermore, in Sections 3, and 4 we will use the

following.

Condition C:

[1] the points of a sequence P are distributed uniformly in the
k-dimensional unit hypercube Cj;

[2] the function §(n) satisfies

§(n) > % and §(n) es(n)/n—> 0 as n > ©0O,
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Let Bn denote the first n points of Pj; in Section 3 we

prove the following:

Theorem 1 : Under Condition C, if Algorithm A 1is applied

to a k-TSP instance E?, then Algorithm A runs in time

e6 (n)

Rn” A/2 n &(n) as n > ©, in probability,
where A is a constant
We are thinking in particular of very slowly increasing

functions & (n). We notice that, for example, if we let §(n) =

log log leg n in Theorem 1,we would have
R, ~ a/2 n(log log log n) (log log n), as n > ®, in probability.

Indeed, by choosing 6(n) = o log o(n), for any 0< « <1, we

obtain

Corollary TSP : Under the hypotheses of Theorem 1, we can find a

function &(n), such that, for any arbitrarily slowly increasing
function o(n) the running time of Algorithm A will be

Rn = o n o(n)), in probability

Let Tq(n) denote the length of an optimal solution for a
given k-TSP instance EP. And let T(n) denote the length of the
closed path given by Algorithm A for Bn. In Section 4 of this
chapter we characterize the asymptotic performance of Algorithm A

by the following
Theorem 2 : Under the hypotheses of Theorem 1, we have:

T(n)/TO(n)~9 1, with probability one, as n > .
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Finally, in Section 5, we consider Condition D, that
[1] the points of a sequence P are distributed uniformly and in-
dependently 1in a Lebesgue subset E ofcig, the k-dimensional hy-

percube of side d;
[2] the boundary of E is of zero k~dimensional Lebesgue measure;
[3] the function &(n) satisfies

§ (n)

§(n) > ®© and §(n)e /n> 0 as n > ™,

In this case, we apply Algorithm A to dC (instead of C, as

in Section 2) and obtain

Theorem 3: Under Condition D,

(1) Theorem 1 holds, with 8(n) replaced by 8 (n) dk/v(g), where

v(E) is the k-dimensional Lebesgue measure of E;

(Z) Theorem 2 hotds=s

2. Algorithm A

Algorithm A computes a closed path which visits some of the

points more than once. We will see later in this section that it
is easy to transform such a closed path into a tour with a short-

er length.
In specifying Algorithm A, we need a function §(.) and an

integer m defined as the amallest even integer greater than or

equal to

where n is the number of points of a k-TSP instance J in C.
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Now we are able to specify:
Algorithm A

(For an illustration for the case of k=2, see Figures 1 and 2

below)

[1] Divide each side of C into m equal parts, thus creating a

cubic lattice of mk cells (of side h) in C.

121 Let B be the set of cell-centers (mid-points of cells

created in [1]). Form the union B U J.

[3] For each of the mk cells, £ind the shortest tour through
the points of B U J in the cell by applying a dynamic programming

algorithm (Bellman[1962] and Held and Karpl1962]);

(4] Construct a basic tour through the points of B added in

step [2] above, using Algorithm B below.

[5] The closed path consisting of all the subtours constructed
in step [3] chain-connected by the basic tour built in step [4]

is the result of the algorithm.

To construct the basic tour, we have a cubic lattice of cu-
pic cells of side h, m in each coordinate direction, mk in all,
where m is a positive even integer. Suppose that, for a; € L =
{0,1,2,¢..,m=1}, 1§iﬁk' the cell containing the cell-center with
coordinates

((2al+l)h/2, (2a2+1)h/2, .« ,(2ak+l)h/2)
is identified by the vector

a = (al,az, o e ,ak).
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Let ej denote the unit vector in the 1i-th coordinate direction

and write

r. = ri(a) - (_1)l+a1+a2+...+a

{ i-1 , for 2<i<k. (3.1)

Algorithm B: Given cell a, find its successor b according to the

basic tour. (For an illustration, see Figures 3 and 4 below.)

[1] If there exists one value d such that

dZB, ad+rd e L and a; +ry g L for d+1 ﬁii k; (3.2)

then the successor of a is

b=a+r, e (3.3)

a
< <t

(i.e., for all i # 4, bi = a;. and bd = ad + r

d).

[2] Otherwise, if (3.2) cannot‘be satisfied by any d , the suc-
cessor is determined as follows:
b = a - ey if a; = 1, a, = 0,

or al>l, a, even; (3.4)

b= a+ ey, if a; = 0, a, = m-1,

or 0 < a1 <m-1, a, odd; (3.5)

i

b =a - ey if a, 1, a, even, a, # 0,

or a; = m - 1, a, odd; (3.6)

i

Having defined Algorithm B, we observe that the step [2] above is
axecuted only when
= ag = ... =a, = 0; and a; + a, is odd and ay = m-1,

or a; + a, is even and a3 = 0.
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This is so because step [2] is executed when
a; + ry €L for 3<i<k;

thus a5 + (-1) 1% ¢ 1,

whence a, + a, is odd and aj = m-1 (eodd),

or a; + a, is even and aj = 0 (even) .

1f a; + a, is odd, then

ry = (-1 =,
and a; = m - 1, whence ry = (~1)a3 ry = -1;
ay * 1y g L, whence a, = 0, 80 Ig = (—1)a4 Iy = Iy = -1;
ag + rg Z L, whence ag = 0, so rg = 1g = -1;
a, = 0.
Also, if a, + a, is even, then
ry = (_1)1+al+a2 = -1;

and ag = 0, whence ry = (—1)a3 I, = ry = -1;
a, = 0, whence re = 1, = -1;
ay = 0.
For k = 2, step [2] prevails and from the observation made

above it 1is easy to verify that (3.4) - (3.7) prescribe the en-

tire set of successors b of possible vectors a and is 1in accor-
dance with the basic tour in Figure 3. For k = 3, Figure 4 shows

+he basic tour as an illustration.




=

Figure 1l: An illustration of steps (1) - (3)

of Algorithm A
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Figure 2: An illustration of steps (4) - (5)

of Algorithm A and the final tour
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4
X2
(2m=1)h/2 ® ® &= ... ——P—
£ P oy &
% .»————&-——'&-—%——6—-————?
; i
5h/2 { 3 L = & 3
3h/2 % e ad & 4
'
h/2 & G o un ity K1
] h/2 3h/2 5h/2 (2m-1)h/2 X3
Figure 3:

The "basic tour" of cell-centers for

the case of k = 2.
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Figure 4:

The “basic tour" of cell-centers for the case of k=3 and
m=8. The dotted segments indicate the basic tour for k=2,
in the top layer of cells, illustrating Algorithm B.

} ]
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Now we want to show how the closed path constructed by Al-
gorithm A can be tranformed into a tour with a shorter length.

First, if any cell has no points of J, then the basic tour

can be shortened by connecting the previous cell-center to the

next one. This may be repeated until the basic tour contains

only cell-centers from cells containing points of J (without

changing the sequential order of cell-centers 1in the original

pasic tour). This does not affect steps [4] and [5] of Algorithm

k

A. Moreover, this can clearly be done in time proportional to m ,

i.e., 0 (n/8(n)).

Secondly, let Kj and Kj+1 be two consecutive cell-centers

and let pred(K) and succ(K) denote the predecessor and the suc-
cessor of a cell-center K, respectively, according to an order

assigned to the closed path. Then, if K. Z J and K. ZJ, re-

] j+1
place the edges

(pred(Kj), K:), (Kj, Kj+1)’ and (Kj+1’ succ(Kj+1)),

J



by the edge (pred(Kj), succ (K as illustrated in Figure 5.

j+l))'

If Kj € J and Kj+1 Z J, replace the edges

(Kj, Kj+l) and (Kj+l' succ(Kj+l)),
by the edge (Kj, succ(Kj+1)). Proceed similarly if Kj ¢ J and
Kj+l € J. After applying the procedure above to all pairs (Kj,
Kj+l) of cell-centers, we get a tour which is shorter than the

original closed path, since each replacement of edges always
shortens the length of the closed path. Moreover , this shorten-
ing procedure can be clearly executed In time proportional to mk,

i.e., O (n/6(n)).

3. Asymptotic Execution Time

Before giving the proof of Theorem 1, we want to state two
lemmas which will be useful in this section. Their proofs will

be given in Section 6.

Let S5, denote the time needed to compute the M = mk shor-

test tours through the points in each of the cells Cj constructed

in Algorithm A, and let (n)j denote n(n-1)...(n-j+1).

Lemma 3.1: Under Condition C, if Algorithm A is applied to

a k-TSP instance P s then there is a constant A such that

8Sn~An6(n) eﬁ(n) (1 -1/8(n)) , asn+o-
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Lemma 3.2: Under the same conditions as in Lemma 3.1, we have that

e e

2
2628(n) 11gns(n)3e®(M) + L} [140(1/6(n))]

var Sn < A )2

as n » o, where A is the constant in Lemma 3.1.

Theorem 1 : Under Condition ¢, if Algorithm A is applied

to a k-TSP instance Bn then Algorithm A runs in time

R~ A/2 n §(n) e8(n)  in probability,

where A"is a constant

Proof

We have three terms to consider for the execution time of Algorithm

A:

(1) the time to determine which points are in each of the
M= mk cells;
(ii) the time to compute the shortest tours through the points

in each of the M cells (step [3] of Algorithm A)

(iii) the time to construct the basic tour (Algorithm B).
We assume that 0(n) (on- or off-1ine) memory space is available
and a hashing technique may be used to determine the points in each
cell and term (i) is then O(n) (otherwise, a sorting requiring 0(n Tog n)
would be needed).

We estimate term (ii) as follows.
Since, for any € > 0 and for all sufficiently large n, by Lemma 3.1,

I&Sn - Ané(n)ed(n)| < %-Ané(n)e6(n)

3



we see, by the Chebyshev inequality with Lemma 3.2, for any e > 0 and

all sufficiently large n, that
prians(n)e M (1-e) <5 < Ans(n)e(M (14¢)]
= Pr[ISn~An6(n)e6(n)]=< £ Ana(n)es(n)]

> pri|s, -8 | < 5 Ans (n)e? M7

2 5 9

=1 - var Sn/% A™n 6(n)2e26(n)

o1 - e e(m)ed™ & s(n)™4y [140(1/6(n)1/e” > 1 as n o

Therefore, since n—]a(n)eS(n) +0 as n =+« (for example,

we might choose §&(n) = 0 (Tog n/log log n))

E]

S, “Ana(n)ea(n) in probability, as n -+« .

Finally, the basic tour can be constructed by using Algorithm B

M times so that the term (iii) is clearly

0(M) = 0( n/8(n)).

The proof is now complete, since the term (ii) dominates the others.

QED

4. Asymptotic Performance

Before proving Theorem 2, we need to prove three auxiliary lemmas.

First, let us establish a notation for some concepts used in this section

(following the notation in Beardwood, Halton, and Hammersley [1959]).
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e have already stated that P denotes a sequence of points, E?

denotes the first n points of P and g_denotes the unit hypercube. Let
E denote any bounded Lebesgue- -measurable subset of R (we shall suppose
that the boundary of E has zero measure); P E denote the subset of
p" which 1lies in E; N(EE) denote the (possibly infinite) number of

~

points of P in E; & Uiéz) denote the length of the shortest
tour through the points of RE= 5 JCJ, 9_2 ,... denote semiclosed hyper-
cubes (i.e., hypercubes open on their Tower-left faces and closed on

their upper-right faces) in different positions in Rk;and v(;) denote

the volume (k- d1mens1ona1 Lebesgue measure) of E . If £ is a positive

real number, we write gE for the set of all po1nts with coordinates

¥ )—such-that the (Xis X5aunes X,) are points of E.

(gx-] . aXz, ORI ) gl\k
Thus EE is a g-fold linear magnification of E, which leaves the origin

k

of RX invariant, and v(EE) = Ek v(E). We will use £ PE to denote

the magnification of PE, whereas PEE will denote the intersection

of the unmagnified P with the magnified E,

The phrase 'P € u(E)', where E is a Lebesgue set of strictly
positive measure, means that P = P]’PZ"" is a sample of random

points independently distributed over E with uniform probability
density.

The phrase 'P € wg' means that P = P],Pz,.. is a sample from a

Poisson process of density & over Rk; that is to say, for arbitrary

disjoint Lebesgue sets E., E s vues E
=1’=2 m

P N(P E.) =N.3;J=
Y'{ (~£J) NJ y J ];29-.-,m } -ﬂ— {E V E )} J exp{_gv(gj)}

=1
l..
qJ




Finally, we adopt the abbreviation g = 1 - 1/k, where k> 2.
With these notational conventions in mind, we are now able to
state and prove the following lemmas.
Lgmmg_ﬁLl: Let M = mk (where m is a positive even integer) be an

integer value (but not a function of n as in Algorithm A) and let

gj » J =1,2,...,M, be the cubic cells, congruent to (1/m) C, obtained
by dissecting C, as in Algorithm A. If P € wg » then
&2(p C;) ~ged/M , as E/M o (4.1)

where B is an absolute constant (independent of £,M and P; but
depending on k, the dimension of the space).

Proof: If ¢ is a positive real number, Lemma 5 of Beardwood, Halton,

and Hammersley [1959] says that
80 (P'E) ~B X V(E) as g oo, for P'EW. (4.2)
We notice that, by scaling, to each P'€ w] in cg corresponds

aPeW. in ;5"1/kg (and this correspondence is one-to-one)., By the

~ &

same scaling we have
epre/f e =g e i)
Thus, from (4.2) we have

ae(pece /i p) ~ e/ e vE) as . (4.3)

Let us take Qg’]/k==1/m and E = C, so that €, is a linear translation

of (1/m)C = z&” /¥, Then

25




v(E) = v(C) =1, Ck = E/mk = g/M. Thus, as ¢+, &/M+ow;

-1/k Kk . .
and § / ¢ = £9/M. Since wg is homogeneous in R¥ , so that trans-

lation of sets has no effect on the statistics, from (4.3) we get (4.1).

QED
Lemma 4.2: Under the same conditions as in Lemma 4.1, we have
-2/k 2-2/K
var 2(PC;) = 2(1) & (E/M) ;
as E/M > oo, (4.4)

where 0(1) depends only on k.
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Proof: If ¢ is a positive real number and if E cC, Lemma 6 of Beard-

wood, Halton, and Hammersley [ 19591 impties that

var ¢(P'zE) = 0 (221 qoqf 1) L as T e
«for P' €W, (4.5)

We notice that

C2/k§_2/(k-]) 1092§ - E—Z/(k(k—])) ]0922 = o),

as ¢ » o, for all k=2,

Thus, from (4.5) we have that

o(1) C2k--2/k

var 2(P'g E) = ol , aS T > % . (4.6)



1f EfEW and we consider the set ¢ 5'1/kg; by scaling as in the

£
proof of Lemma 4.1 above, we have from (4.6) that

-1/k -2/k

var 2(P ¢&" 'E) = & var £ (P'TE) =

-2/k 2k-2/k (4.7)

= o(1) & 4 , @S g >,

As before, if z£= /¥ = Um and E = , then ¢ = (g/M)/" .

Thus, from (4.7) we have that

var &(P(1/m)C) = var (P _gj) =

2-2/K2

-2/ (gm) .

=0o(1) &

as E/M » oo,
QED

Let us now introduce Ug M a random variable conditional on &
and M as parameters with M>1:

M
= . S
Y. I 2R Cy) » RSN
3=
(sum of the shortest tours in each cell)

Then, by the independence of gewg in the disjoint g:j 's we have

from Lemmas 4.1 and 4,2 that

& U =
£,M

He~=

&sz(g_c___j)~sgq,as E/M > oo . (4.8)

j=1

CJ. a translation of (1/m)C.
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M
var Ug,M =jZ] var Q(E,ﬁj) = o(1) M

2
gm)22k

as E/M oo (4.9)

~2/k(

Lemma 4.3: Given any set E? of n points in C, let M] = m]k and M2 = mzk,

where m < m, and my,m, are positive even integers. Consider the

“lc, and into M,

dissections of C, into M] cells C ; congruent to m,

-1

cells £2j congruent to m, C, as in Algorithm A, Then

M, M,
2(p"c ) < 2(P"c. )
r 1/k(k-1)1-1/(k-1) ’)+ 0 |’M 1- Vk’} (4.10)

Proof: Since M,< M_, the cells C,.are smaller than the cells CH
i [~ ==t} =

(sides are mz;l and m]—], respectively); thus any Ce]]<E2j can contain

at most one corner of the dissection into cells C11 . Therefore, 225

contains all or part of at most 2k minimal cell-tours T (say) of P g]

We distinguish two cases: k=2 and K>Z,
Case (i): k=2. We form a tour of Png 3 as follows, Any pieces

of T, (i=1,...,M]) intersecting ng can be formed into a simple closed

polygon by tracing parts of the perimeter of CZJ (See Fig. 6) This

perimeter is of length 4m2'] = 4M2~1/2. Any T, contained entirely in

Co;

can be connected to the above polygon by a double chord of length
less than mz'] (See Fig. 7) Such included tours cannot be more than

4 in number. Since each part of every Ti will Tie in exactly one of the

C the sum of the tours constructed above will not exceed

=2j°
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Figure 6

Figure 7

/

Figure 8



Q(Eﬁg:l.) +gm /2 , and will not be less than the minimal sum

Q(P"gzj). This proves (4.10) for k=2,

J=1

30

Case (ii): k>3, The cell C j now has 2k faces (of k-1 dimensions),

-(k-1) _ Mg-(k—])/k .

of (k-1)-dimensional volume M, Various tours Ti

will cross a particular face (say) F times; and so, we may form a tour

of these F intersections by a polygon L, of length not exceeding

\ =17k 1-1/(k-1)
% k-1 "2 ~

ley [1959]; with u'k_]>=a k-1 independent of M,, F,or P"); and there-

M F (by Lemma 4 of Beardwood, Halton, and Hammers-

fore, all pieces of tours T, entering into sz by thegiven—face may

be_connected into a simple closed polygon by parts of such a polygon L,

rather as in Case (i), A1l 2k such paths belonging to gzj may then be

joined into a single simple closed polygon by 2k segments of total length

3/?'Mz']/k (Figure8 ), since the diagonal of C

not exceeding 2k o3 is

k1/2M -1/k

9 . As in Case (i), we see that there are at most Zk tours Ti

entirely contained in C jo and these can be incorporated into our tour

-1/k

of Eﬁg by double chords of length less than M2 . Again, each part

23
of every Ti will 1ie in exactly one giﬁ , and the sum of all the numbers
F of intersections of faces with tours cannot exceed 4n, since each point
of E? is connected to its successor, in its Ti’ by just one chord, and
this can only cross at most two faces of the finer dissection; and every

such intersection is counted twice.

Thus the sum of the tours constructed above cannot exceed
M

!

i=1

! Ay (k)

e(P"c.. )+ a'y M
~ =11 k-1 2 faces



TSl ALV LY LA

2 (4.117)

By Holder's inequality, since every face intersected at all will

1-1/k

be counted twice, and there are at most (MZ-MZ )2k such faces,

) (])]/(k—l) F]—T/(k-]) sg[:i (1):11/(k-1)[§ F :]1—1/(k—1)

faces
faces faces

[:4k(M2»M21‘1{k)]]/(k'1) (an)1-1/ (k1)

1

0 [Mz]/(k-1)n1-1/(k-1)]

Thus the upper bound given by (4.11) is

M
1

n 1/(k-1)-1/k _1-1/(k-1)
A AR + o[, n ]

o],

Since the sum of the tours constructed above cannot be Tess than
My
)) Q(EPEZj)' we obtain (4.10) for k=3,

J=1
QIE'D'

Finally, we are now able to proceed to:

Proof of Theorem 2:

First, assume the conditions of Lemmas 4.1 and 4.2,
From (4.8) we know that for all sufficiently large &/M and for any
arbitrary € >0 we have
-g g9 1 q;
&V, y-8E | <5 eBE

and then by Chebyshev's inequality, much as in the proof of Theorem 1,
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1
>1 - o(1) M E K Em® ) L  ene)’ (by (4.9))
=1 -0(1) 1 as & oo (4.12)
2 7 z° M
e 21K y1-2/k

Also, if N(P C) = s then by Chebyshev's inequality,

Pl |n-E|<eg} Bl—p—, (4,13)
eg

g

since & "g =var n_. = & .

g

Thus, from (4 .12) and (4.13) we have for all sufficiently large

g/Mthat
1-¢ Ug 1+e ] 1 |e?

Pri1 B < 3 < B —— =1 - +,_ .

() n? (1-¢)9 E2/k 12/ &

(4.14)
M n
Now, let V. .y = ) z(g,gﬁ) where n is a positive integer value
3 J‘='|

and P € u(C).

Next, define f(n,M) by

1 - £(n,M) = Yn o g —I*e_1  (4.15)
(1+e n9 (1-¢)9

Since the conditional probability distribution of UE M given "g =n

is the unconditional probability distribution of Vn M’ we have
3
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© n U
) et —%—,— [1-f(n,M)] = Pr|B e < WE’M < B 1te
n=0 - (1+¢)1 g (1-€)9
1 11 -2

= 1- € (4.16)

2 7t E
(2K 121k

for all sufficiently large §&/M.

Since 0< 1-f(n,M) <1, (4.16) gives us that

sup [-f(t,M)1 ) et g" + ) e % ¢"
Jt-gl< et n-gl<eg Nl |n-g|>et nT
1 11 -2
>1- | ———s+ 2| e . (4.17)
2/k1-2/k"

g

By observing that the first summation above is less than 1 and the second

summation is less than 1/(825), by (4.13), we have that

sup [1-f(t,M)] = 1- 21 5 + —52- 5'2 s
[t-gl< et 2/K"y1-2/k

for all sufficiently large &/M. (4.18)

Since by hypothesis M > 1, for all sufficiently large &/M we have

5
sup [1-F(t,M)] > 1-|—t + £ ] &7
|t-g|< ek £2/k El
2/Kk?
>1- Ct , (4.19)




for all sufficiently large &/M, where C 1is a constant (depending upon 34

e and k but not on M.)

The supremum in (4.19) is taken over the range:

(1-e) e <t < (14e) &

m
If &= —iliél;T , and if J_ s the set of integers t satisfying:
(-I_E:)m m
+1
.1:r__) " . (lie) " -
(]_E < t < 3% , m=1,2,..... » then Jm becomes the range

of the supremum in (4.19).
We observe that, for any M and for sufficiently large m, £/M can
be made as large as we like, and so can ensure that (4.19) above holds true.

In particular, if we let n be any membey of Jm’ for fixed e, and let

M = M(n) = n/8(n). We have

M(n) (]_g)m"‘]

£ \m o f 1
g . ey s(mro (rre)"
n =

Since 6&(+) ds an increasing function; for fixed & and for sufficiently
large m, &/M(n) can be made as large as we like; so that from (4.19) we

have

sup [1-F{e,M(n))]>1-¢ (32 , (4.20)

5

) -2m/ k"

ted 1-¢
m

for all sufficiently large m,
where C' = C(1—s)2/k2 is a constant (depending only on e and k).
That is, there is an integer m, (depending on e and k) such that (4.20)
holds for all m > my Further, since Iy contains only a finite number of

integers, it contains an integer n_ (depending on €, k and n) such that
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1—f(h ,M(n)) = sup [1-f(t.M(n)]; whence
m
ted
m
v
o n_,M(n)
§ {1-Pr B_.J.LEM < M < B__l_'*'_e__n
m=0 (1+e) ~ nmq 0 (1-e)9
mo—l : - e _Zm/kz
= ) f(nm,M(n))+ ) f(nm,M(n))_<_ my * Z c’ (—-————)
m=0 m=m, my
(4.21)

By the Borel-Cantelli lemma, (4.21) implies that, with probability

one, for any choices of n (and consequent values of M and n_) in

m
each J_,
m
l-e Vn ,M(n) Vnm,M(n) T+e
g ——— < 1im inf M - < lim sup —————<B—"7%°
(H-e:)q m-> o n m->o n 9 (1-e)q
m m
(4.22)
3 { t * 3 -
Next, for choices n',n, and n" 1n Jm-—]’ Jm’ and J+1> '€
spectively, write Wy = Mo \)'-n =Ny From the definition of Jm

and nm we have

-1 mt1
1+e m 1+e +>
(]"'E) < 11 < ‘l € \ <N K = ( €

C
G)
|l+
s
=
+
™~

(4.23)
. ‘ n T+e) " !
From (4.23), 0<n-u <n - NN
(12
2
B 1-¢

n [" TfrE>

= fe < 4en. (4.24)
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m+2
similarly, from (4.23), 0<v -n < — (”€> -n

(l_}—s>m 1-¢
1-€

=n 2 < 5en (4.25)
(1-€)
for sufficiently small e (< - 1 ).
5+/20
un CiN . . .
Thus (P )P consists of a set of not more than 4 € n points in

v
and P n (En)c consists of a set of not more than 5 e n points in C.

o

Now, if E denotes the closure of E, by Lemma 4 of Beardwood, Halton

and Hammersley [1959] there is an a such that 1im sup n ql(Eﬁi)

n-—>oc

< g vllkki) i.e. there is an a' such that

(vn) n"%(p"E) < o' v/K(E) (4.26)

where o and o' are absolute constants (depending on k), If

V
a; = N(E,"(E?)ng), by applying (4.26) to gﬂ we have

- v
(¥ag) 2™ yp ey e ) < aM(ny (4.27)

since V(gﬂ) = M(n)'].
From (4.25) we have

)

vn n.c -1/k
v (o2 (2 %,) + 2R M) 7] (4.28)

_ M%n
<V +
Vn,M(n) n:M(n) J_.__.]

-1/k
(vk M(n) /% s the diameter of gj).
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. M%") q VAL AT
Since a < M(n) y a (HoTder's inequality), from (4.27)
= J:]

J=1
we have
LIS S Mn) -1/k
} (e ")l < a% a'M(n)
j:] J j=]

(n)
conar vt 0]

<o (5en)% . (4.29)

From (4.28) and (4.29), we have
n Y Yy oM(n) < "V ey n"9[a’ (5en)+ 27K M(n)7]

=Wy +oet ()t 2R <‘§") (.50

and the last term in (4.30) is o(1), as n-=e. On the other hand, since

M(n) < M(n") and v;qr< n"9, by Lemma 4.3 we have that

1 1
1-
-q -q -q n k(k"1) k-1
v an,M(nu) <n an’M(n) +n lQQ’I(n ) v >

+91M(n")qi} . (4.31)

Since, by (4.25), v, < (1+5¢)n  and similarly n" < {(#5e)n, we have that
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1
o

1 1
“YJL—T 1= —
n_qoé("")k SR k“"h) <“+5€>r> k=1 ((145¢)n) kﬂ
- n

|
o
—
(o]
—
:—
\:
=~
—~
i1
t |
et
~

(4.32)
and also
n"SoM(n)) = 0 (57| o(1), as n~+w (4.33)
- = I\'n8(n"™) AR : .
We have from (4.30), (4.31), (4732 )5 and—{4-33)
=( -q v + .|IEﬁ\q + al1) [
\)n an ,M(n") B ] Vn’M(n) o 9E} AR as—n -

We see that, in this inequality, the independent variables are €, n
(iniJm, which determines m), and n" (chosen in Jm+1’ which determines

v, © Noe) - Applying (4.22), we thus get that

BO=€) < 1im inf a7V M)t a' (5¢)9,
(1) noe n,Hn
with probability one. (4.34)

3
Similarly, if bj = N(EP(R,”)ng), by applying (4.26) to Ed , we get

(1) b3 £("R MCy) < arhm (4.35)
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From (4.24) we have

M
ﬁn) [z(R“(Ru“)ng) + 27k m(m) V89 . (4.36)

v > v -
HgsM(n) nMn) 5

From (4.35) we have

- (n)
< a' M(n) V/k M(n)]/k .2: b%}q
J:

< o'(4en)d  (by (4.24)) . (4.37)

From (4.36) and (4.37) we have

n Vun,M(n) >n Yo M(n) ~ n:q[al(4€n)q+2/E M(n) ]
=nd Vo M(n) o' (4e)% + o(1), (4.38)
as n > «,

On the other hand, since M(n') < M(n) and n9< u;q , by Lemma

4.3 we have

1
-—(—-y 1
“;q Vun,M(n') + ”;q[g— (M(")k ! “n]‘ —E:—) + .Q(M(")q)]

uyMn) - | (4.39)




Since, by (4.24), , > (1-4e)n we have

1
u;‘q QQn)WW un]' T<1T> -

|
o

(4.40)
and also
: -1
-q o 0N
}.ln Q(M(n) ) = 9_ ——m-)'ﬁ—n——" = ‘(l(]), as n » oo, (4.41)
L= 71

40

We have from (4.38), (4.39), (4.40), and (441) that

-q

Mn

-q o q )
VunsM(n|)> n Vn,M(n) o (4€) + _O_(]), as n - .

As in obtaining (4.34), we note that the independent variables in this

inequality are €, n (which determines m), and n' (which determines

T nm_]). Applying (4.22) again, we get

n

-q Vn,M(n) - G'(qﬁ)q ) (4.42)

with probability one.
Since e 1is arbitrary and n"d Vn M(n) does not depend on €,
(4.34) and (4.42) imply that

1im n79 Voum(n) = 85 with probability one. | (4.43)

n->w
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M(n)
- n : .
Now Tet X, w(n) ) Q(E,QjUKj) where K; is the singleton

=1
containing the cell-center of gj . Then we have

Xn,M(n)=< Vo) * Mn) - [2/k M(n)—1/k]

- Vn,M(n) * QLM(n)q]
~g %+ olnY/6(n)] (by (4.43))
=g nd+o(n?

nd + gﬂnq) , as n - o, with probability one.

Thus: Xn,M(n):g B
(4.44)

Since the basic tour has length M(n) h (there are M(n) cell centers
being connected by edges of length h), where h = 1/m = 1/M(n)]/k, we

have that the length of the closed path given by Algorithm A is, by (4.44)

T(n) = Xy ny * 2T
X + o(n9)
n,M(n) =
< gnd + _gﬂnq) , as n -+, with probability one. (4.45)

On the other hand, by Lemma 7 of Beardwood, Halton, and Hammersley

[1959], the length To(n) of the optimal tour is such that

To(n) ~gnd, as n=e, with probability one. (4.46)




From (4.45) and (4.46) we have

1< ) < nf+o(n)

T0(n5 "*gﬁq“'“‘

Thus .; n ~ 1 as n =~
On

(o]

9

with probability one.

QED

42
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5. A Generalization of the Results

As we mentioned in Section 1, Algorithm A can be applied to AC,
the k-dimensional hypercube of side A, instead of C. In this section,
we want to show how Theorems 1 and 2 can be modified so that, under Con-
dition D, Theorem 3 holds true.
Under Condition D, we partition AC into M= n/s(n) cubic cells,
__g_j say. Let us define index sets H;, H], H, as follows, for 1< J <M,
jeHy > iff C.cE
JeHy s iff C.cE

jeHy o iff J £ Hy and J £ H.

- _ _ . k
Let N(HO) = NO’ N(H]) = N], N(Hz) = N2, and M = V(L)M/}\ .
Since each cell is of volume Ak/M and E has volume v(E); under

Condition D, the probability of s points falling into gj is

K S k n-s
(';) {%(gl} {1—%} - (g) (/M) (1-1/m)"S (5.1)

if jeH]; while if jeHO, the probability is zero; and if jeHz, the
probability will have xk/M replaced by v(g:j_g_) < Ak/M.

Since the boundary of E has zero k-dimensional Lebesgue measure,
asymptotically, only M v(g)/kk cells contain some of the n points. More
precisely, we have

N]/M‘ -1 and NZ/Nl +0, as n-=>o, (5.2)




In the proof of Lemma 3.1(in Section 6)We have, under Condition D,

&S
n

yo+ ) 4 ) ::) g Pr [s points in gﬂ] tS
2

jeHO jeH] jeH s=0

J(g) mnaamT

() (1/Mj)s(1—1/Mj)"“S tg

+
o~
Ne~13>

j€H2 s=0

Ny p(M'n) + ] (ML),
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E) =M (5.3)

where, for each—j= HZ’ Mj = v{E)}/vC

Then the proof of Lemma (3.1) shows that
y(M,n) ~'A(n/M)2 e(n/M) (1-M/n), as n->=, (5.4)

Hence, if Mi =M, w(Mj,n) = 0[y(M',n)] . (5.5)

Applying (5.2) and (5.5) to (5.3) we have

& Sn = N] W(M‘sn) + _z W(Mj:n)
JeH2
~M'p(M',n) + M (_NJ; (NZ Ofw(M',n)]
M N]

~MyM',n), as n->ewg (5.6)



so that, by (5.4), we have, if §*(n) = n/M',
&.Sn ~'Ana*(n)eé*(n)[1-1/5*(n)]

k
= anfs(n)k/v(E) 1l MAVEI Ly (£) 76 (2"

as n - ®; (5.7)
j.e., Lemma 3.1 holds true under Condition D, after replacing each

s(n) by &*(n) = n/M'.

Similarly, if we denote by w](n/a(n),n) = w](M,n) the right-hand
side of (6.9)(in Section 6), and we denote by IJJZ(M,n) the expression

for &(tn t |i#j) in (&.11), and we denote by ¢3(M,n) the expression
i

for (&Sn)z/M2 in (6.12); then we have, under Condition D,

var Sn < N]w](M',n) + ng])w](M',n)
v N2 (Mn) + o(N2) O[v, (M'.n)]
1 Y2\ 0Ny ) BLvpiftss

- {N12¢3(M"“) o) 9£w3(M',n)]} by (6.9), (6.11)
and (6.12)).
-~ le] (MI ,n)

+ M'zwz(M‘,n)

- My (H,n) (by (5.2))
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= M'w](M'an) + M|2[w2(Mlsn) - w3(Mlan)]
2

< A2 {]6n6*(n)3 eB(‘S*(ﬂ) + __._ﬂ___é_ e?.(?*(ﬂ)} {1+0[1/8*(n)]} (5.8)
48*(n)

(by the paragraph following (6.13)); i.e. Lemma 3.2 holds true under
Condition D, when &(n) ds replaced by &*(n).

By (5.7) and (5.8), the proof of Theorem ] holds under Condition D
if we replace each &(n) by §*(n); so that the first part of Theorem 3
is proved.

Now we want to show that the second part of Theorem 3 is true.

"“““““““““““““‘“““K§“Tﬁ‘thé“pr00f“of-temma~4t%:~we~have~£%em~kemma-5—9£_8eardwaod,_muw__~m_________wm

————Halton; and-Hammersley-[1959]-that, for P eW

& o(pee V/¥er) ~ VK pchv(E!), as gt (5.9)/(4.3)*

for any bounded Lebesgue-measureable subset E' of Rk, with boundary of

zero measure.
1/k

Now, under Condition D, take ¢ =%

"1/kC). Then, as ¢ +», & —+o, and from

and E' =C. EcC; (note
that gﬂ is congruent to AM

(5.9), we have
& 2(RC,E) ~ BEN(GE), as £ . (5.10)/(4.1)*

As in the proof of Lemma 4.2, we have from Lemma 6 of Beardwood,

Halton, and Hammersley [1959] that, for gf;wg,

-2/k C2k—2/k

var 2(Pze” /KE") = 0(1)E as ¢ @, (5.11)/(4.7)*

uniformly in E' < {any set congruent to C}.



ATl

-1k and

Now, under Condition D, take ;g-]/k = A/M
E' = A']M]/k gd g:gbk']M1/k gﬂ (note that A']M]/k gd is congruent to

£E/M+ o, and from (5.11),

tozg). Then ck = Ag/M and thus, as ¢ » «,

we have
(5.12)/(4.4)*

2
var 2(RC; E) = g(l)i'z/k(E/M)z’z/k , as E/M=~» e,

uniformly in J.

Under Condition D, Ug M is defined as follows:

Then we have, as in Section 4, from (5.10) and (5.12), that

M M
&U., = ) &8(PC.E)~ pe? T v(CE)
E»M J=] ~=3= j___] =J=
= ped v(E), as &> (5.13)/(4.8)*
and, by the uniformity of (5.12) over J = 1,25..5M,s
M
var 2(PC.E) = ] var (PC.E)
2 2
= M o(1) EZQ-Z/k /M2—2/k
2q-2/k%  1-2/K2
=0(1) & /M , as EM > o, (5.14)/(4.9)*

As in the proof of Theorem 2, we have from (5.13) that, for sufficiently

large £ and for any e > 0,
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leu, , - 8ed v(E) |<>— esed v(E) 3
E,M -
and then, by Chebyshev's inequality,

Pri|U, - 8E7 vE)| <e 8e’ V()

1
> Pri|Ug - & U yl <7 e8e VED

2 2
> 12 (L2 Ky L es® V(D) (by 5.14))

= 1- 9‘;) L1, s Mo and £, (5.15)/(4.12)*
| andp-ai

Also, as in the proof-of Theorem— A —NPE)-= ng then

pr(|n,-ev(E) [<ev(E)) > 1-—— (5.16)/(4.13)*
g e“Ev(E)

since & nE = var ng = gv(E).

From (5.15) and (5.16), for sufficiently large &/M and £, we have

Pr |B ev(E) (=€) o P_g_sﬂ < edv(E) _(1+e)
()T (w0 e (-e)

= Pr [B(E)]/k (-e) < Eé_’_'\i < Bv (“)]/k (”E)]

= (1+e)d mgq (1-¢)9

] 1 -2 (5.17)/(4.14)*
>1- *
{:§2/k2M1—2/k2 ev® |

Ly



Under Condition D, Vn M is defined as follows:

3

where n is a positive integer value and P e u(C).

The remaining part of the proof of Theorem 2 holds true here if we
replace each occurrence of B8 by 6v(£)1/k (as (5.17) above suggests),
and if we replace each occurrence of the condition "sufficiently large
g/M* by ‘“sufficiently 1argé g/M and &".

The only additional point to observe is that, since we take
g = ———L— just before the definition of the sets J 1in the proof

of Theorem 2, the condition nsufficiently large &" is satisfied for

sufficiently large m.

49




6. Proofs of the Basic Lemmas

First we want to prove a remark which will be used in the proofs of

Lemmas 3.1 and 3.2.

Remark 1 (A)

If x, q > 0 are fixed ana M~ in such a way that M/n ~ 0,

2

2.2 ZMZ
..xn/M _ xn . 1 x'n 1 X" Xy N-q _ x(n-q)
Proof: e =1+ M + 5 -—~——~M2 +...F - —-—[—n—-+...., (1+M—) = 1+ LM&—
m
x"(n-q) x " (n-q)
+ Jé— 5 2 .+ 'r'nll'" - LU So exn/M (1+x/M)n g
M TM :
T 1M m m m m-1 m-1
= ¥ =% [n-(n-gq) 1. Now n" > (n-q) _>n -n y (itq)
m=] m! M m m i=0
= 0" - " L3 (n-1)+q)]

The first inequality holds because each factor of (n-q)m is less
than or equal to n, and there are m factors on each side; the second
is seen by induction: n-q = n]-noq (m=1). If true for m = h-1, then

(n-q), = (n-q), ; (n-g-ht1)> (1ot =2(h-1) [ (h-2)+a]} (n-q-h+1)

> o = )L (e2)vad - (o)™ = - bl (h-1)val and

induction is complete. Thus 0 < n" - (n-—q)m < nm'] m[-]z— (m-1)+q] , whence

o m
0 <M (1aym)" < Z] 'r}]'!— ﬁ_'ﬁ nm—]m[—]z— (m-1)+q]
o ] m ]nm“] Xq
< m§1 (m-1)! Mm—1 M
°§ 1 m an—z x2n
+
e m-2)T =2 o2

) ,
exn/M [Z(MQ_ 4+ anj .

ZM .
QED
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Remark 1 (B)

If x <0, q=>0 are fixed and M-+« in such a way that

M/n - 0, then

2 2
XN (4y) + 5 () < M ()™ < XD (urv) + 5 (u-v),
am aM
where u = /M , v=1/u= XM

Proof: As in Remark 1(A), we see that

ax) = &M Cgm)™ =7 X [ (n-a) 1,
and that
0 < nm-(n—q)m < ™! m[lz-(m-l)+q]-

The series for A(x) now alternates. By collecting positive terms only,

we obtain that

3 1 "1 h
A(X)< 22 -(—NT:TYT (%) 'ﬁ- E(m-])+§

m:

(m even)
pa 0 m-2 © m-1
_ xn 1 xn Xxq 1. (xn
S o ZZ 271 (M) W mzz m-T)! (M)
(m even) (m even)
51 59_m -1 1 (xn _ ]
Now mZO - (M) = 3 (u+v) and mz1 ~ Qﬁ) = E-(u—v)




2

Thus A(x) < AN (uvv) + %ﬁ-(u—v).

am?

Similarly, by collecting negative terms, we get

© m
80 > L ot G § pte1)+]
(m odd)
2 ) m-2 oo m-1
1 1
Ly o @) R L wm (i)
(m odd) (m odd)
x°n Xxq
= 4M2 (u-v) + oy (utv).
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QED




Lemma 3.1: Under Condition C, if Algorithm A is applied to a k-TSP instance
En then there is a constant A, such that

& Sn - And(r‘)ea(n)[]"1/5(ﬂ)], as n > o «

Proof: Let t. denote the time needed to compute a shortest tour through
s points. From Bellman [1962] and Held and Karp [1962], we know there is

a constant A (roughly, half the time needed for one addition), such that

2A(s-1) [2573(s-2)+1]

o+
"

A[25'2(s)2—25’1s+25+25'1-2]= t*(s), for s =1, and ty = 0. (6.1)

If k,p, and q =0 are fixed, and n » o, we see that

n
I (%) amsa-mm™ ),

f(nsk.p,q) s
s=0

n
(mgmn® T (178 -k
s=q

(n)qn/M)q [1+(p-k)/M1" 9 . (6.2)

By Remark 1 (A) we have that, if p =k, q =0, then

2
G(H)qe(p"k)a(n)(]_ (pMk)q - (p'k% n)(]+gﬂ]/n))

2M

< f(n;k,p,q)

< 6§(n)9 o(P-K)8(n) (6.3)
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So f(n;k,p,q) “‘6(n)qe(p—k)a(n)[1+9ﬂ6(n)2/n)} . (6.4)

Now, if n denotes the number of points in cell gﬁ, we have

M
&s = & Jt =M&t (6.5)
n 21 ny
and, since ny has (binomial) probability (2) (1/M)S(1—1/M)n"S of
taking the value s,

& Sn

M
S

e~

() amra-m™ AL2572(s),

257V 4 2s 4 2571027 + MO1-1/m)"(3/2)A

AM[f(n31,2,2) - f(n31,2,1) + 2f(n;1,7,1)

L]

¥ (172) F(n:1.2,0) = ZF(m:T, 1,00 ¥ (3727 (1=17m)" ]
(6.6)
[Note that we use the general formula t*(s) in (6.1) for t, even
when s = 0. This incorrectly yields t*(0) = -(3/2)A; forcing us to

make the corresponding-correction, M(1-1/M)"(3/2)A, above.] Thus

gs. ~ A 3%%7-[5(n)2e5(") - 6(n)e5(") + 28(n)

+ (1/2)e5(")-2+(3/2)e'6(“>][1+g(5(n)2/n)] (by Reyark (A)
~ ans(meM1-1/800) + 1/28(m)% + 0(s(m)?/m)1,

as n » o, and the lemma fQllows , since

[s(n)2/n1/[1/6(n)] > 0, as n > .
QED
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Now we want to prove a second remark which will be used in the

proof of Lemma 3.2.

Remark 2

e2n/M J%(]+%¥) if k>0 1is fixed and

M

o< (112K = (e <
M -+ o 1in such a way that M/n ~ 0.

Proof: The first inequality above is true since clearly

(1m0 K (qaz/mynk

o1 21;k . (2n—k)(§n—k—1) g (2nek). @nokegr)
2M jimd
oy .22k (2n-2k)(2n-2k-2) (2n-2K)...(2n-2k-2+2) _
M G M
> 0

Now, the j-th term in the difference above is:

- (2n-k)...(2n-k-j+1) - (2n-2k). .. (2n-2k-2j+2)

k+j-1 . . .
Y e o et i e 5 )i
j!MJ i=k pairs triplets

fl

By induction on Jj, we want to show that

. k+j-1
T, < o~ )3 T . (6.7)
JIM i=k
)0 Y=
1.

Assume the inequality above is true

Il D~ %
==

(2n

|-

For j=1, T] = §-= i
; k
for j = h-1.




Then Thh!Mh

[(2n-k)...(2n-k-h+2)](2n-k-h+1)

- [(2n-2k)...(2n-2k-2h+4)] (2n-2k-2h+2)

Ty (h-1) T (2nkehel) + (20-2K). .. (2n-2k-2hea) (kehe1)

h"2 k+h"2
< (2n) Z i] (2n-k-h+1) + (2n~2k)...(2n-2k—2h+4)(k+h—1)
i=k
k+h-2
=175+ (2n)" T (keh-1)
i=k
)h"] k+h".|

Y1,

i=k

< (2n)

= (2n

56

and induction is complete.

1 j-1r1 . . 1
T < 3?&5'(2")J [5 (k+j=1) (ki) - 7 (k-1)K]

- —L ()3 § L2k (-1

JIM
so that
@ PN ol o D R TR T PO ol O DA W
T.< ¥ ) . (2n) + 55 ) T (2n)
T g GAT M e (G-
.k 20N, 1 G/

QED
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Lemma 3.2: Under the same conditions as in Lemma 3.1, we have that

2e26(n) BEd(n) ) n?

var Sn < A +
45(n)

16n8(n)

5 ¢ [1+0(1/8(n))]

as n ~oo, where A 1is the constant in Lemma 3.1.

s § ] Do 22l ]
Proof: &S °~ = & t t = & t + 2 t t
- n i=1 =1 M i=1 " i=1 j=i+1 M N
- Met 2+ M(M-1) & (.t |itd) (6.8)
ni ni nj

Since [(5),17 = (s)y *+ 4(s)y + 2(s)ya 5(s)y = ()3 + 2(s) and
52 = (s)2 + s, using (6.1) and (6.3), we see that

et 2=

Ny S

He~13

(&) ama-am'™ A2 (145%(s), + 457 (s)g
v 2.8572(s),1- 18571 (s) + 2.5 (s),] + [2°(s)

r 2511(s),1 + 457 (s), - 255, + 457 ()44 s

- [ZS+](S)2+2§+15] C 2,055 + 2515 4 [4(s),4s]

+ 25 gs + 4571 - 25ty - (9/a)AR(1-/m)"

[The last terms above is a correction similar to that in (6.6)]. So

gt °
n.

i

= A2[16f(n;1,4.8) + 8F(n31,2,3) +2f(n31,4,2)
-4f(n;1,2,2) + 4f(n31,1,2) -f(n31,4,1)
+4f(n31,2,1) - 4F(n31,1,1) + (1/4)f(n31,4,0)

-2f(n;1,2,0) + 4£(n31,1,0)-(9/4) (1-1/M)"]




< 20165(m% &30 4 gs(n)3 &8N
+ 26(n)2 e36(n) + 46(n)2 + 48(n) eG(")
+ (178) Mgy (6.9)

Just as in (6.2), we note that

v v-r
szo (\;) ps-q(s)q(v-s)r = (v)qﬂ‘ qu (\;:g-r) pSd
v
= W)Y = T (G P (s)glvs)y s

(6.10)

58

whence, by putting v s¥u, we get that

5y = Y IS8 (0 fo+d s+u n-s-u
&(tnitnjhm = SZO UZO (5+u)(s> (1/M)>"4(1-2/M) tt,

n \
- A I (5 (1/M)V(1-2/M)"‘V{

V= 5=0

i1 o~
——
<
N
1
N
<
1
S
—~
[72]
S
[p]
—
<
)
wn
S
[N ]

s(v-s)2 - 2V"Ss(v-s) + 4s(v-s)
3 (v-s), -2"78(v=s) + 2°(v-s)
wV2 oS . 2V'5'1(v~s)2 + 275 (v-s) -4(v-s)
_2V"S447 + 3(2V'2(v)2 _Zv-1V v ooy + zv—l_z%

+(9/8)A%(1-2/m)"



[The terms 3(2"~%(v),-2""]

end, above, are corrections for the use of t*(0) instead of t

similar to those in (6.6) and (6.9) above.]

n
Y v§0 (C) (/mY -2V v, o=t

_Z(V)ZBV"Z - 2V’3(V)32V"3 + 2V"2(V)22V'2

3V"3

3V=2 _pV2u0V=1 4 gy3vl 2(v),

—2(v)2

v-1

S2(v).3¥"2 + a(v), 2V + v3¥YTT —av2

2 2

+2v—3(v)22v—2_ 2v—2v2v-1 + v3v—1 +2v-22v
-3V - 2(n) 3V w3Vl -Vl -3V e g2V

n

322 (v) -2V Tyaava2¥"122)7 + (9/4)A%(1-2/M)

2
= A2[f(n32,4,4) - 2F(n;2,4,3) + 2f(n;2,4,2)

-f(n;2,4,1) + (1/4) f(n;2,4,0) + 4f(n;2,3,3)
-8f(n;2,3,2) + 6f(n;2,3,1) - 2f(n;2,3,0)
+7f(n;2,2,2) - 11f(n;2,2,1) + (11/2)f(n;2,2,0)

+6F(n32,1,1) - 6F(n;2,1,0) + (9/4)(1-2/m)"]

vi2vt2'"142) and  (978)A%(1-2/m)™ at the

0,
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Then,
Mz&(tnitnjli#j) - p2((m ) (e - 2((n) ) (1e2/M)"
+ 2((n)2/§2)(1+2/m)"‘2 - (e e ey aem)”
a8 "B ()

+ 6(n/M) (1+1/MMN 201 /M™ + 7(n) /M -11(n/M) + 1172

+ 6(n/M (-1 -6(1-1/m)" + (9/8)(1-2/M)"} (6.11)

On the other hand, from (6.6) we have that

&s_= ML((n), M) (14112 - (n/m) (141/m)"]

60

n

o 3

1"} Ak Y :-.\n 0.3, 7. 1.0 1 A
¥ on/M+ (72 (M) =2+ (372 =1/~ T

so (85)% = AL (n) 4 (n) #2(m) 101/ (11 2"

-2(n), n(1/M)3(1+1/M)2""3

+ [(n)n?1(1/m2 (11 /) >

- (a2 s (e aa A

b a1+ (3 (/MM M) (141" - (n/m) (11/m)"!

+ (1/2) 1M + a}-1)°

+-6(%-1)(1~1/Mf‘+-(9/4)(L4/M)2“}. (6.12)



Observing that, in (6.12), (n)2n = (n)3 + 2(n)2 and n2 = (n)2 +n,
from (6.11) and (6.12), using Remarks 1 (A) and 2 we have that

2, o
M“’(tn.tn_l‘ﬂ) (& S,

LN
- #A{( i Laszm™ -

)2

b ()40 L2052/ 3 (am) (/2 210 /) 2]
b (m) L2z ™2 -2ty ()t
+ (4 (/M3 (141 )28

+ (/M= (1+2/m 1= (17w (11 /) 202 (e m) A0

-+

(178) (1+2/m)"=(1/8) (1+1/M) 2"

4((n)y/M) (1173 ((n) %) (141 /)2

-+

o+

(3/8) (1-2/M)" -3((n) /M%) (1-1/8)" (141 /1) "2

4

3(n/M) (1-1/0) " (1+1/m Y - (372) (- ()

- (9/4)(1—1/M>2"}

< A2 {5( 64_1 24 (28(n)

28(n)pq4 oy 1+ o)

+5(n)§iﬂl ()

M (1 5y gt

[continued...

20n/M2) (117" = angn? + 3(n) /M2 =30 w3246 (n/0) (1-1/M)"
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v 2 A0 ) 4 55(n)? 4 372 4 (es(n)/m) [e7 M) (11/2m)
v 3 (snyr2)/am] + (9/8) L2 Mas(n)e? (M /3

+ 35(n)[1+6(n)e28 (M) au] }

3 5 + 1 + D

2 +
§n) " 252 2s(n)®  8s(n)°

= 2A né(n)3 e26(n) 1+

1 _-8(n) ne28(n) 3 3
T R Emﬁ+zam5

6
né(n)

s (=8 (M) (141 /72m)+e8 (B (5 (n)+2) 7am)

3

b 9 (20525 )

45(n)
+ 3 7 (]To(ﬁ)cza(n)/ﬂrM\ (6 13)
§(n) .y

From £ .8), (6.9) and (6.13) we have that
)2

i

2
var Sn & Sn - (& Sn

{y)

i

2
4 _ ] (& &
M&tni + M(M-1) & (tnitnjl1#3) (&s,)

< A2 {16n6(n)3 e35(n) + 2n8(n) e35(n) + (n/48(n)) e36(")

+ 8n6(n)2 ea(") + 4n eﬁ(n) + 4n8(n) + 4n/8(n)
+ 2n6(n)3 e25(n) + 6n6(n)2 e26(n> + 5n8(n) e26(n)

- e28(n) 4 D e26(n) ron e6(n) N n2 34 3 5
26(n)

[continued...]
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+ % =8 (1/2m) + 3 (s(n)+2)/am)

9 -268 28(n) 3 258(n)
+ QW (e () 4 s(n)e24Mmy + m(m(n)e /4M):l}

2
= p2 {16n6(n)3 30,

eza(n)+3n2E+6(n)2e5(n)/]2n+3e26(n)/4n
48(n)

"+a(n)e25‘")/4r]} (1+0(1/8(n)));  (6.14)

26(n -
but each of the terms in 3n2[1+6(n)2e6(n)/12n4‘3e26(n)/4n+-6(n)e ( )/4nJ

-28(n) §(n) increases faster

is gja(n)—3e28(n)); since G(n)3 e -0 (e
than any power of &(n)), é(n)5 e'é(")/n + 0 (similarly, 6(n)3/n > 0)

and 6(n)4/n-+ 0 (similarly). The lemma follows.

QED




7. Concluding Remarks

We presented a very fast algorithm for the Euclidean traveling
salesman problem which is optimal with probability one.
A similar algorithm was described by Karp [1977], but his

paper is incomplete in the following senmse.

In Karp [1977] the points of a 2-TSP instance are assumed to be
distributed in a region A according to a two dimensional Poisson dis-
tribution with density n. As is noted in Karp [1977], it 1is then
known that the expected number of points in A is n v(A), where V(A)

denotes the area of A.

But the algorithm = in Karp [1977], when apptied toa region—HA

with v(A) = 1, are analyzed as if the observed number of points in a

2.TSP instance were n, rather than considering n as the expected
number of points. We conjecture that one possible way to rescue this
part of the analysis in Karp [1977] 1is to prove that the observed number

of points in A is asymptotic to the expected number of points in A,

with probability one.

Furthermore, we note that Karp [1977] quotes a result (as Theorem 5
in Section 4 of his paper) from Beardwood, Halton, and Hammersley [1959]
as if it held under the assumption of the Poisson distribution of the
points with density n. But, actually that theorem is proved in Beard-
wood, Halton, and Hammersley [1959] (as Lemma 7) only for the uniform
distribution of n points. The length of the proof of Theorem 2 in our
paper indicates that the connection between the two is far from trivial;
and, in fact, we do not believe that the results hold for the Poisson

distribution more strongly than in probability.
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Moreover, our Algorithm A is a significant improvement
upon Karp's algorithm in terms of its simplicity, its
dimensional generality and its running time (Theorem 1
and Corollary TSP). Karp has an upperbound for the
expected running time of his algorithm which cannot be

less than 0( n (log n)2 ).

In constructing the proof of Theorem 2, we had occasion to review
Beardwood, Halton, and Hammersley [1959]; and, in particular, to

check the proofs of the lemmas there.

In the proof of Lemma 7 of Beardwood, Halton, and Hammersley [1959],
equation (7.15) is not valid; because the n. depend on the corresponding
intervals Jm’ and these depend on the value of €.

However, the argument via (7.16)-(7.19) is valid, except that, in each
of (7.18) and (7.19), a factor of o should be inserted before (5en)9,
coming from Lemma 4 of that paper.

(7.20) now follows from (7.14) in the modified form

_B-e v(é)]/k < liminf n 3 e(P") + a(5€)q[vQ§)+e]]’q,
(1+e)q n->w ~

holding with probability one. (7.20)*
Similarly (7.21) and the next-following inequality (unnumbered) should
have a factor of o inserted before (Sen)q; and, again directly from

(7.14), we get a modified form of (7.22), holding with probability one:




(91
(9]

Bte 1/k
(]—e)q v(E) = 1im sup n"@ Q(E?) - a(SE)q[v(g)+g]1”q.
n > oo

(7.22)*

Now we observe that e is arbitrary and conclude that

Tim 079 g(p") = 8 V(£)1/k,

oo

establishing Lemma 7 of Beardwood, Halton, and Hammersley [1959].

Incidentally, equation (5.1) of the same paper should read

1./2_k k

.
—and

——
on
e

& a(PeE) ~ 8 k'"EV(E) = BE V(E) as &




67

Chapter III

Additional NP-hard Problems

1. Introduction

The main result of this chapter is Theorem 5 in Section 2
which characterizes a central algorithm that is near-optimal with
probability one. 1In Section 3 we consider two minimization NP-
hard problems: the vertex set cover of a graph and the set cover
of a collection of sets. 1In Section 4 we consider three maximi-
zation NP-hard problems: the clique of an undirected graph, the
set pack of a collection of sets, and the k-dimensional matching
of a graph. For each of these problems we present an algorithm,
derived from the algorithm of Theorem 5, with its worst case run-
ning time bounded by a polynomial on the size of the problem in-
stance. Furthermore, as corollaries of Theorem 5, we show that
each algorithm gives an optimal or near-optimal solution with
probability one, as the size of the corresponding problem in-
stance increases.

In the following sections, let I, = {1,2,...,n}. For a
finite set R, let random (R) be a function which returns an ele-
ment of R chosen at random with equal probability among the ele-
ments of R. Let log denote the natural logarithm function, let
(x1" and [x]_ denote the smallest integer not less than x (i.e.,
the ceiling of x) and the largest integer not greater than X

(i.e., the floor of x), respectively.
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2. Basic Lemmas and Theorems

Let A be a finite set, and let p CAx /A be an irreflexive
and symmetric relation defined on A. Let us say that a subset S

of A\ is a Q—subseg iff for any a, b € 8, a P b.

In this section we use the following condition.
Condition E: there is a fixed p, 0<p<l, such that for any a, b €
/A, we have a P b with probability p, independent of other pairs

of elements in A being related by p-

To prove Theorem 5, we need one lemma and one theorem as

follows.

For 0<p<l, n>0, 0<€<1l, and b(n)=[(1-€) log n/llog pll_ we have

that

b T
bin) {1 - 1/ n(1-e)yl /20 - o (1/n 2.
Proof:

We want to show that

l_e)}[ n/b(n)]+ -1

n? b(n) {1 - l/n( > 0, as n=> %, (2.1)

Consider the log of the left-hand side of (2.1) :

2 log n + log b(n) + {[n/b(n)1* -1} log (1 - 1/n(1-€)

< 2 log n + log b(n) + {In/b(n)1% -1} ( ~1/n(178) )

n€ llog pl

2 log n + logl(l1-€)log n/llog pll -
(1-€)log n

+ 1/n17€) (2.2)
since log(l-x) < -x, for 0<x<l.

Expression (2.2) tends to - €, as n=> 00 (the third term in-

creases faster than the other terms) so that (2.1) is true.
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Let M, denote the cardinality of the largest existing
-subset of A, for |Al = n. Our probabilistic model will be as-
P _

sumed to be incremental (cf. Section 1 of Chapter I) in the sense

that the sequence Mg,M; Myr... of random variables is sampled as
follows: [1] we increase |Al by one by augmenting A to get, say,
A' = Al {a} where a is not in A; [2] the relation p is also aug-
mented to get p CA" x A, P' =P L PO where p, c A x {a}l and

Po is sampled according to Condition E. Then, the following

theorem is proved in Matula[l1976].

Theorem 4 Under Condition E, if M, denotes the cardinality of the

largest existing P-subset of A

lim Mn/log n = 2/llog pl, with probability one.
n >
Theorem 5: Under Condition E, if |Al = n, there is an algorithm

whose worst case running time is O(q(n)n2) , where gq(.) is a po-

lynomial, such that

A 1
n
1> > ,as n > %, with probability one,

My 2

where A, denotes the cardinality of a P—subset of A <computed by
the algorithm, and M, denotes the cardinality of the largest ex-

isting Io-subset of A.

Proof:

Let us consider the following algorithm.
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Algorithm C
(Let S and T be sets. S is the output)
(1) S := empty; T := A

(2) while T is not empty do

(3) a := random (T); T := T - {a};

(4) if (for all bes, apb) or (S = empty)
(5) then s := s U {a} £i

(6) od

Assuming that there is an integer valued polynomial qg(.)
such that it takes at most g(n) number of steps to check whether

an on line (4) above, the worst case running time of Algorithm C

2)

is 0(q(n) n*), since in each iteration of the statements on lines

(2)-(6) the cardinality of T decreases by one and the cardinality

of o  increases at most by one. 1In each iteration also, it is

clear that S is a P—subset of A
Let SQQ,P) denote the output S when Algorithm C 1is applied
on p cC A x A. As in the statement of this theorem, let A =

ISQQ,P)I if |Al = m. Oour probabilistic model will be assumed to

be incremental in the sense that the sequence AO,Al,AZ,... of

random variables is sampled as follows: [1] we increase |[IAl by
one by augmenting A to get, say, A' = ALl {a} where a is not in
A, and a is the element chosen by the function random (at line
(3) of Algorithm C above) ; [2] the relation P is also augmented
to get P' CA' XA',P' =P1|P0,where POQAx{a} and  pg is
sampled according to Condition Ej; [31 if S(ﬁyP) Ll {a} is a
P-—subset of A, then by Algorithm C S(A',P') = S(A,P) I {a}l.
Otherwise, SQQ',P’) = S(AyP). Therefore, Ap,q -~ Ay < 1 for

m=0,1,2,...
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Let s; = min{ Al : lSQﬁ,P)l =i} = min{m : AL =i}, for
i=1,2,3,... , and let sy = 0. Since the sequence {A, + m>0} is
non-decreasing, the sequence {Si : i>0} is also non-decreasing.

We now observe that if Algorithm C, at some iteration of
the statements on lines (2)-(6) has [S] =1 (i.e., so far it has
found i elements of A which constitute a P—subset) then pi is the
probability that the next element to be examined by the algorithm
is related to all elements in S. Hence, (l-—pi)j"l for
j=1,2,3,... is the probability that each of the next (j-1) ele-

ments to be examined is not related to at least one element in S.

Thus we have, for all integers i,j>1,

Pr{sjs; —-s; = 1} = (l-pi)j'lpi, and s -sg = 1 (2.3)
From (2.3), for any positive integer value k we have
Pr{(sjsy; —-s;)< k} = zz Pr {(si+l -s;) = j}
1<j<k~-1
= 22 (1- pyI-1p?
1<j<k-1

(1-ph) - 1
=1 - (1 -phkt (2.4)
In the following, we want to show that, for any € > 0,
zz Pr{An < (1-€) log n/llog pl} is finite.

0<n< ®©

For any real X, A, < X implies A, <[x]_, since A, 1is an in-
teger value. Thus, for any arbitrary € > 0 we have

Pr{An < (1-€) log n/llog pl } < Pr{An < b(n)} (2.5)
where b(n) = [(l1-€) log n/ llog pl 1_ (2.5)

For any positive integer i, A < i implies s; > n (as we
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noted before, the sequence {si : i>0} is non-decreasing). Thus
we have
Pr{A_ < b(n)} < Pr{ s > n} (2.7)
n - = b(n) ~
Since s = ( s34 -s:) for b{(n) > 1, we have
b (n) EZ 1+l =i (r) 2 L
0<i<b(n)-1
Pris > n} < Pr{ Ll ( sj41 —Si) > n/b(n) }
b(n) ~ - ' -
0<i<b(n)-1
< z; Pr{(s;,; -5;) > n/b(n)} (2.8)
0<i<b(n)-1
For any real x, (Si+l —si) > x implies (Si+l —si) > [x]+

since (Si+l -si) is an integer value. Thus from (2.4) and (2.8)

N\ Pr{ (s
3

-s;) > n/b(n) }

P W
[ Alp S

0<i<b (n)-1

< ES Pr { (5147 -5;) > [n/B(M)TV 3}

- ES [ 1 - Pr{ (sjy] -5;) < [n/b(m1F 1

0<i<b (n)-1
. [ n/b(m)1t -1
- S; (1 -pt)
Lo
0<ig<b(n)-1
b + 1
< b(n) {1 - pb(nyy b /R

(1-€), ! n/b(n)1* -1

~ b(n) {1 - 1/n (2.9)

since pP(n) ~ (1-€) log n/llog pl - 1,,(1-€)

By Lemma 2.1, the last expression in (2.9) is o (1/n2 Yy so

that there exists a positive integer n,y such that
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zz pr{ A, < (1-€) log n/llog p| }
0<n< ©
N < Z b (n) (1—pb(“)][n/b(nH+ -
0<n<ny-1
+ z 1/n > < o (2.10)

ng<ng ®

By the Borel-Cantelli lemma, (2.10) implies that, with pro-
bability one, for any choice of € > 0,

Bp

lim inf > (1-€)/1log pl (2.11)
n > 00 log n

Since € is arbitrary, (2.11) implies that

B

lim inf
n % o log n

> 1/1log pl (2.12)

with probability one.

on the other hand, by Theorem 4, M_ is such that

n
My
lim e————— = 2/llog pl , with probability one. (2.13)
n > oo log n
From (2.12) and (2.13) we have

Ap 1
lim inf > , with probability one. (2.14)
n = 00 Mn 2

Since we know that An/Mn < 1, the theorem follows.

N.E.D.
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3. Minimization Problems

3.1 Vertex Set Cover Problem

Let G = (V, E) be an undirected graph (V is the set of ver-

tices, E is the set of edges). A vertex cover of G is a subset S

of V such that each edge of G is incident upon some vertex in S.

The vertex cover problem (VC) is to find the smallest vertex cov-

er of G. This problem 1is known to be NP-~hard (cf., e.9.,

Aho,Hopcroft, and Ullman([1975] ).

Algorithm VC

(Let V = 1 and let S, 8', and T be sets. S is the output)

nl

§ :=V; S' := V;

T := empty;
while S' is not empty do
v := random (S');

g' := 8' - {v};

if (for all u e T, u is ot connected—to V)

then T := T || {v}; 8 := 8 - {v} fi

od

Clearly, the worst case running time of Algorithm VC is
O(nz), and S is a vertex cover of G.

For the probabilistic analysis of Algorithm VC we assume
the following (as in Grimmett and McDiarmid [1975], Matula
[1976], Posa [1976], and Angluin and Vvaliant [19771).

Condition VC: there is a fixed p, 0<p<l, such that any

pair of vertices {v,v'} has probability p of being a member of E,
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independent of other pairs of vertices being members of E.

Corollary VC: Under Condition vC, 1let VC(n) denote the
cardinality of S computed by Algorithm VC, and let m, denote the
cardinality of the minimal vertex cover of G. Then

vC(n)
———— a1, as n > 00, with probability one.

For the vertex cover problem, the set A of Theorem 5 is in-
terpreted to be the set V, the statement a p b to mean a "not
connected to" b. Then Condition VC is equivalent to Condition E,
and the set T in Algorithm VC is a P_subset. Therefore, from

(2.12), since |V| = n, we have

Tl

> 1/11log pl, as n > o,
log n with probability one. (3.1)

In Algorithm VvC, S || T =V, and S and T are disjoint. Then

Is|] =n - |Tl, and (3.1) implies that, as n > 9%,
Is| n T
log n log n log n
n 1
i m—————— -
log n |log pl
n
< , with probability one. (3.2)
log n

On the other hand, if M, denotes the largest existing
P—subset of V, then Theorem 4 says that
M

L ~ 2/]log pl , as n > 0O,
log n with probability one. (3.3)
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Since my, + M, = n, (3.3) implies that

m. n
e ™ —eeeee 2/ 1109 pl, as n > 00,
log n log n with probability one. (3.4)

Then (3.2) and (3.4) imply that

sl

< 1 +0 (1) , as n=> o, with probability one. (3.5)
m
n
Since we know |S|/m, > 1, the corollary follows.

ND.E.D.

3.2 Set Cover Problem

Let n and k be positive integers such that k = max(3,n),

and 1let C = {81,82, .o ,Sn} be a collection of sets of positive

PO, PR S0 PPN S B o | 1 £ 1
n—ehat—o S i A—set—cover of a 15 a

3 3oy tn ey EV- S 4
LITLTUTL o ouitid i] N A\ S i X

subcollection S; , S: , «.., Sih such that

LJ Si- = U Sj .
1<j<h 3 1<3j<n

The set cover problem(SC) is to find the smallest set cover of C.

This - problem —is known to be NP-hard even if (i) |83 < m, for a
fixed m>3, 1<i<n (see e.g. Garey and Johnson[19781); and (ii) if

s € 5; for some i, 1<i<n, then there is at least one j#i, 1<3<n,

such that s € Sj

Throughout this section we assume (ii).

(see e.g. Aho, Hopcroft, and Ullman[1975]1).



77

Algorithm SC

(Let S, S', and T be collections of sets. S is the output)

S = C; 8' = C;
T := empty ;

while §' is not empty do
s; := random (S'); S' := 8' - {s;}:

if (for all R in T, R is disjoint from Sj)
then T := T Ll {8;}; s := 5 - {s;}
fi

od

—

Clearly, the worst case running time of Algorithm SC 1is
O(k2n2), and S is a set cover of C.

For the probabilistic analysis of Algorithm SC we assume
the following:

Condition SC: there is a fixed p, 0<p<1, such that given
any pair of sets Sl and So in C, we have that Pr{ Sy and S8, are

disjoint } = p, independent of other pairs of sets in C.

Corollary SC: Under Condition 8C, 1let SC(n) denote the
cardinality of the set S computed by Algorithm SC, and let m,

denote the cardinality of the minimal set cover of C. Then

SC(n)

~ 1, as n-> 0, with probability one.
m

n

Proof:
This proof is very similar to the proof of Corollary VC.
For the set cover problem, the set A of Theorem 5 is inter-

preted to be the collection C, the statement a p b to mean a

"disjoint from" b. Then Condition SC is equivalent to Condition
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E, and the collection T in Algorithm SC is a P-subset. Moreover,
an incremental sampling of an SC-instance, as described in the
proof of Theorem 5, is feasible. Therefore, from (2.12), since
Ic] = n, we have

Tl

> 1/llog pl, as n > o,
log n with probability one. (3.6)

In Algorithm SC, Sl T = C, and S and T are disjoint. Then

Is] = n - |T], and (3.6) implies that, as n > 90,
sl n | T
log n log n lcg n
n
£ — - 1/11log pl
log n
n
< - , with probability one. (3.7)
Tog™n

on the other hand, if M, denotes the largest existing

P-subset of C, then Theorem 4 says that

Mh
~ 2/1log pl , as n > O,
log n with probability one. (3.8)
Since my 4+ M= ny (3+8) implies-that
m, n
~ - 2/llog pl, as n = 00,
log n log n with probability one. (3.9)

Then (3.7) and (3.9) imply that

S|

—— <1 4+ 0 (1), as n=> with probability one. (3.10)

My

Since we know |S|/m, > 1, the corollary follows.

D.E.D.
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4. Maximization Problems

4.1 Clique Problem.

Let G = (V, E) be an undirected graph. A clique of G is a
complete subgraph of G (i.e., any pair of vertices in the sub-

graph is connected to each other by an edge). The clique problem

(CL) is to find the largest clique of G. This problem is known

to be Np-hard (cf., e.g., Aho, Hopcroft, and Ullman[1975]).

Algorithm CL
(Let n be a positive integer, let |Vl = n, and let S and T be
sets. S 1s the output)
S := empty; T := V;
while T is not empty do
v:= random (T); T := T - {v};
if s ] {v} is a clique
then s := s Ll {v} fi

od

Clearly, the worst case running time of Algorithm CL is
O(nz), and S is a clique of G. By duality, Algorithm CL may be
changed to find a feasible solution to the maximum independent
set problem, 1i.e., the problem of finding the largest set S of
vertices in G such that no two vertices in S are connected. For
the maximum independent set problem, an algorithm which does not
select the vertices at random was independently studied in Grim-
mett and McDiarmid[1975], assuming a sampling model which is not
incremental. Their algorithm have the ratio between the computed

solution and the optimal solution asymptotic to 1/2, with proba-
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bility one, while our algorithm has ratio at least 1/2, asymptot-
ically, with probability one.

For the probabilistic analysis of Algorithm CL, we assume

Condition vVC for the graph G = (V, E).

Corollary CL: Under Condition VvC, 1let CL(n) denote the
cardinality of the set S computed by Algorithm CL, and let M,
denote the cardinality of the maximal clique in G. Then

CL(n) 1

1> > ,as n > 9, with probability one.

M 2

Proof:

For the clique problem, the set A of Theorem 5 is inter-

preted to be the set V, the statement a P h to mean a "connected

to" b Then Condition CL is equivalent to Condition E, and the

set S in Algorithm CL is a P—subset.
Then Theorem 5 directly implies this corollary.

N.E.D.

4.2 Set Packing Problem

Let k and n be positive integers such that k = max (3,n),
and let C = {Sl, Sos ... Sp} be a collection of sets of, let us
say, positive integers such that Is;| < k for 1<i<n. A set pack

of C 1is a subcollection Sj_ ,S5j_r «++ r Sj of pairwise disjoint

12 *h
sets. The set packing problem (SP) is to find the largest set

pack of C. This problem is known to be NP-hard, even if [S;| <

m, for a fixed m > 3 and for 1<i<n. (see, e.g., Garey and John~

son[19781) .
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Algorithm SP
(Let S and T be sets. S is the output)

S := empty; T := C;

while T is not empty do
; := random (T); T := T - {s;};
if s,

i 1s disjoint from all sets in S

then S := s |J {s;} £i
od
Clearly, the worst case running time of Algorithm SP is
O(k2n2), and S is a set pack of C.

For the probabilistic analysis of Algorithm SP, we assume

Condition SC for the collection C.

Corollary SP: Under Condition SC, let SP(n) denote the
cardinality of the set S computed by Algorithm SP, and let M,
denote the cardinality of the maximal set pack of C. Then

SP(n) 1

>=—— ,as n > 0, with probability one.

My 2

1>

Proof:

For the set packing problem, the set A of Theorem 5 is in-
terpreted to be the collection C, the statement a p b to mean a
"disjoint from" b. Then Condition SC (as in the proof of Corol-
lary SC) 1is equivalent to Condition A, and the collection S in
Algorithm SP is a P—subset. Moreover, an incremental sampling of
an SP-instance, as described in the proof of Theorem 5, is feasi-
ble.

Then Theorem 5 directly implies this corollary.
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4.3  k-Dimensional Matching Problem

Let k and n be positive integers such that k = max(3,n),

and 1et Al = {all'alzynuolaln}, A2 = {azl,azz,o-.,azn}'

ceer B = {akl,akz,...,akn} be pairwise disjoint sets, and let T
be a subset of Ay x Ay X ... X Ay, with |T| = n. A matching of T

is a subset S of T such that no two elements of S5 agree in any

coordinate. The k-dimensional matching problem (DM) is to find

the largest matching of T. This problem is known to be NP-hard
even if we have a fixed k = 3 (c¢f., e.g., Garey and John-
son[19781) .

Algorithm DM

(Let S and U be sets. S is the output)

S := empty; U := T;

while U is not empty do

]

u random (U); U := U - {u};

if s |4 {u} is a matching of T

then S := S || {u} fi

od

P ]

Clearly, the worst case running time of Algorithm DM is
O(k n2), and the set S is a matching of T.

For the probabilistic analysis of Algorithm DM we assune
the following:

Condition DM: there is a fixed p, 0<p<l, such that, given
any pair of elements t, and t, in T, we have that Pr {tl and t,
disagree in all k coordinates} = p, independent of other pairs of

elements in T.




83
Corollary DM: Under Condition DM, let DM(n) denote the
cardinality of S computed by Algorithm DM, and let M, denote the
cardinality of the maximal matching of T. Then
DM(n) 1

1> > ,as n > 00, with probability one.

M, 2

Proof:

For the matching problem, the set A of Theorem 5 is inter-
preted to be the set T, the statement a P b to mean a "disagree
in all k coordinates with" b. Then Condition DM is equivalent to
Condition E, and the set S in Algorithm DM is a

P—subset. Moreover, an incremental sampling of a DM-instance,
as described in the proof of Theorem 5, is feasible.

Then Theorem 5 directly implies this corollary.
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Chapter IV

Alternative Algorithms for the Maximization Problems

1. Introduction

This chapter presents new algorithms for the three maximi-
zation problems considered in Chapter III. These algorithms will
give, following the notation used in Chapter III, ratio

A/My, ~ 1, as n > o, with probability one, but they will require

more running time.

As in Chapter IIT, let A be a finite set, and let p C AXA
be an irreflexive and symmetric relation defined on A. Let us
say that a subset S of A is a P—subset iff for any a, b € S,

ap b. We will also use Condition E as stated in Section 2 of

Chapter III.

2. Algorithm D and its Asymptotic Performance

In Algorithm D defined below, we assume that |IAl = n and
0<p<l. B and D denote collections of P-subsets of A, and Q and R
denote subsets of A. We assume that the elements in B,D,Q, and R
are indexed with positive integers. If X denotes such an indexed
set, least (X) denotes the element in X with the lowest index.

The collection B will be the result of the algorithm.
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Algorithm D

(1) B := { {a,b} : a # b, a,b €A, a P b };

(2)  k(n) := [2 logy,, nl";

(3) j = 3;

(4) while j < k(n) and B is not empty do

(5) D := B; B := empty;

(6) while D is not empty do

(7) Q := least (D); D := D -{0};

(8) R :=A - Q;

(9) while R is not empty do

(10) r := least (R); R:= R-{rl;
(11) if ol {r} is a P—subset of A
(12) then B := B |J {o U {r} } fi
(13) od

(14) od;

(15) j o= g+l

(16) od

(17)  if B is empty then B := D

Algorithm D finds all the largest P—subsets of cardinality
not greater than k(n). This is done iteratively starting from
the P—subsets of cardinality two obtained in statement (1) above.
At the j-th iteration of the statements (4) - (15), D contains
all the P—subsets of cardinality (j-1), and B may contain

P—subsets of cardinality j. The sets in B, if any, are found by
adding the element r obtained on line (10) to the set Q of D if
old {r} is a P—subset. I1f there is no P—subset larger than the

sets in D, B will be empty after the execution of the statements
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(6) - (14) and B = D after statement (17) .

Since Algorithm D finds all P—subsets of A of cardinality
not greater than k(n) = [2 logl/pn]+ , an immediate corollary of
Theorem 4 of Chapter III is that Algorithm D finds a P—subset of
A of cardinality k(n), as n-> 9, with probability one. There-

fore, we have the following.

Theorem 6 :
Under Condition E, if A denotes the cardinality of a
P—subset of A computed by Algorithm D, and if M, denotes the

cardinality of the largest existing p-subset of A, then
P

" I as T =00;
M with probability one.

3. Expected Running Time

First we need a lemma.

Lemma 3.1 Under Condition E, if IAl = n, and if j is a positive

integer, —and if N(n,j) denotes the number of P—subsets of A of

cardinality j, then
; nyoLiG-1 /2
& N(n,j) = (3) P (3.1)

Proof:
n n
Let the index I = 1,2, ... (j) correspond to the (j) sub-
sets of A of cardinality j. Let E; denote the event that the i-
th. subset is a P-subset. Then Pr{ E; } = pj(j'l)/z, for
n
1<1iX< (j) and N(n,j) is the number of E; that occur in A, so

that (3.1) 1is true.
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Now we want to find an upper bound for the expected running

time of Algorithm D.

Theorem 7 :
Under Condition E of Chapter III, if IAl = n, the expected

running time E R, of Algorithm D is such that

) h(n)/2
P e“ n
&R, =oir(n) n¥2 [—— (3.2)
h(n)
where h(n) = logy n - logp logp, n +1, and b = 1/p (3.3).

Given aj, ag € A, let d denote the amount of time needed to
check whether a; p as-

The time to execute statement (1) of Algorithm D is

d n(n-1)/2 (3.4)

since this is the number of subsets of A with cardinality two.

Let €5 denote the expected cardinality of D at the j-th
iteration of statements (4) - (l1A). Since D, as we noted in Sec-
tion 2, contains all the P—subsets of A of cardinality (j-1), e
is equal to the expected number of P—subsets of A of cardinality

(j-1). Then, by Lemma 3.1,

n (3-1) (j-2)/2
j-1
Since O on line (7) is an element of D, [Q] = j-1 so that R
on line (8) is such that |R| = n-j+l. Thus the statements (9) -
(13) are iterated (n-j+1) times for each value of 7J. In each

iteration of the statements (9) - (13), to check whether 01l {r}

is a P—subset on line (11) will require time dlQl = do(3-1).
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Therefore, the statements (9) - (13) will require time

o (n-j+1) (j-1) for each value of j.

Since the statements (6) - (l16) are executed |D| times, the
expected running time of statements (4) - (15) is
d 22 ey (n-3+1) (3-1) (3.5)
3<j<k (n)

From (3.4), (3.5), and (3.6) we have that

(3-1) (§3-2)/2
) p (n-3+1) (3-1)
1

n
& Ry = d n(n-1)/2 + d za (

-
3<j<k (n)
(3.7)
_ +
where k(n) = [2 logl/p n] .
Let aj denote the JT=thtermof—tire summationr—in— 37— I&
is—easy—to—see—that
8341 .- n-7j
= p(J ) PSR = F(j,n) (3.8)
aj j"’l

It is clear that F(j,n) decreases when j increases, with

3 <3J < k(n). Moreover, for j = [h(n)]+ where h(n) is as defined

in (3.3) we have that

1ogbn - logblogbn

F((h(n)1" ,n) ~ p n-h (n)
h(n)-1
1 n-h(n)
n h(n)-1
1 - h(n)/n
= > 1, as n=> o (3.9)

(h(n)-1)/logpn
since h(n)/n > 0, and (h(n)-1)/log, n > 1, as n > 00,

Then we may conclude that, asymptotically,
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F(3,n) > F(4,n) > ... > F([h(m)1F,m) 71 (3.10)
since by the definition of F(j,n) in (3.8)
a4+1 = aj F(j,n).
we have that, asymptotically,

= max{ay, agr ~-- s } (3.11)

a a
th(n)1¥ k (n)
(for an illustration of (3.10) and (3.11) , please see tables in

Section 6 below )

From (3.7) and (3.11) we have that , for sufficiently large

n,
R, < -1 k -
& Ry < d n(n-1)/2 +d (k(n)-=2) a Lo+
n h(n)-1) (h(n)-2)/2
~ o n(n-1)/2 + d (2 logyn=2) ( ) p(Rm -1 (h(n)=2)/
[h(n)]*-1

(n-h(n)+1) ((h(n)1* -1)

nh(n)~—l.

< o n(n-1)/2+d (2logyn-2) (n-h(n)+1) pph (1) [ (n)=31/2
([h(n)1*-2)1

(3.12)

Since

h (n) logwn
= p 29" (1/p)

P 1ogbn /n

1ogblogbn .

T
!

i

we have that the last expression in (3.12) is equal to
h(n)-1
n

d n(n-1)/2 + p(21ogbn—2)(n—h(n)+l)
([h(n)1t-2)1

th(n)-31/2
(p logpn /n)




= d n(n-1)/2 + o p(2 logbn—Z)(n—h(n)+l)

[h(n)-31/2
(p 109bn)

29 p nl/2 (n-h(n)+1) (p n logpn)

90

Llh(n)+11/2

(logy,m) /2 (th(m)1* -2)1

By Stirling's formula,

h(n))1/2 |

th(m)1t 1+~ (2%

e

so that the last expression in (3.13)

h
(n) )

(Th(n)]1t -2)!

h(n)/2

(3.13)

h(n)

is asymptotic to

- h(n)/2

Since

(h(n) -1)

and

> 1,
[logyn h(n)]l/2

(3.14)

logbn

> 1, as n > 09,

h (n)

(3.14) is asymptotic to

P h(n)/2

2 p h(n) npe

n3/2 [
h{n)

(3.15)
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(for an illustration of (3.15), please see tables in Section 5
below )

From (3.12) - {(3.15), we conclude (3.2).

4. Worst Case Running Time

This section presents an upperbound for the running time of

Algorithm D.

Theorem 8 :
I1f IAl = n, and 0<p<1l, the running time R, of Algorithm D

is such that

2 logp n
R = o (logy m¥? |—= 0

2 logy n
® (4.1)
where b = 1/p.

As in the proof of Theorem 6, the time to execute statement

(1) of Algorithm D is
d n(n-1)/2 (4.2)

where o denotes the time needed to check whether a; p ass for any
given a;, a, € A

As we noted in Section 2, D contains all the P-subsets of
cardinality (j-1) at the j-th iteration o£ the statements (4) -
(16) . Hence, |D| can be at most ( jil ).

As in the proof of Theorem 7, the statements (9) - (13) re-

quire time d (n-j+1) (j-1) for each value of j.
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Since the statements (5) - (14) are executed ID|] times, the

running time of statements (4) - (1) is at most

n
q Z ( ) (n-3+41) (j-1) (4.3)

j~-1
3<j<k (n)
From (4.2) and (4.3) we have that

n

R, < d n(n-1)/2 + z; ( ) (n-j+1) (3-1)
j-1

3<j<k (n) (4.4)

where k(n) = [2 logl/p n]+.

Lekt h] denote the j=th term of the summation in (4.4). 1t

is easy to see that

= — = G(j,n) (4.5)

G(j,n) clearly decreases when j increases, but for the in-

terval 3 < j < ki(n) being considered, G(j,n) = 1 occurs only for

finitely many values of n. This is so because G(j,n) = 1 implies

j=(n+1)/2 and (n+1)/2 < k(n) only for finitely many values of n.

Therefore, for sufficiently large n,
G(3,n) > G(4,n) > ... 2 G(k(n),n) > 1 (4.5)
so that

bk(n) = maX{ b3, b4, v oo ’bk(n) }

(4.7)
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From (4.4) and (4.7) we have that, for sufficiently large

n,

n
R, < d n(n-1)/2 + d (k(n)—2)( ) (n-k(n)+1) (k(n)-1)
k (n)-1
q n K(mM-1
< dq n(n-1)/2 + (n=k (n)+1) (k(n)-2) (k(n)-1)
(k(n)-1)!
o n k(m-1
~ g n (n-1)/2 + (n-k (n)+1) k3 (n) (4.8)
k(n)!
By Stirling's formula,
k(n) g
k(n)t ~ [2m k(m1Y/2 e
e
so that (4.8) is asymptotic to
k
n k()3 l" . (n)
o -
(2n k(n))1/2 |
k
ak3 (n) e n (n)
(2w k(n))l/2 k (n)
2 1
dk3(n) e n °9p"
~ (4.9)
(2w 2 1ogbn)1/2 2 logyn

From (4.9) we conclude (4.1)
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S. Applications of the Main Results

In this section, we want to present new algorithms for the
three maximization problems studied in Section 3 of Chapter III.
These new algorithms are derived from Algorithm D and their
asymptotic behavior will be established as «corollaries of

Theorems 6, 7, and 8.

5.1 Clique Problem

For the clique problem, as defined in Section 4 of Chapter

I1I, we have the following algorithm.

Algorithm CL1

(Let n be a positive integer, and let |Vl = n, where V is the set

of vertices in the undirected grapit G =(V,E))

This algorithm is identical to Algorithm D, except for the
following:
(i) replace "A" by "vV", in statements (1) and (8), and "a P b" by

"5 connected to b" in statement (1);

(ii) replace "Q |J {r} is a P-subset of A" by "0l {r} is a clique

of G" on line (11).

As an immediate consequence of Theorems 5, 7, and 8, we

have

Corollary CL1 :

Under Condition vC, if |V] = n, then

CL1 (n)
(i)

1, as n > O,

M with probability one,
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where CL1{n) denotes the cardinality of a clique of G = (V, E)
computed by Algorithm CLl, and M, denotes the cardinality of the

maximal clique of G;

(ii) the expected running time & R, of Algorithm CL1 will satisfy

(3.2);

(iii) the running time R, of Algorithm CL1 will satisfy (4.1) .

5.2 Set Packing Problem

For the set packing problem, as defined 1in Section 4 of

Chapter III, we have the following algorithm.

Algorithm SP1

(Let n be a positive integer, and let |Cl| = n, where C 1is the

collection of sets, as defined in Section 4 of Chapter III)

This algorithm is identical to Algorithm D, except for the

following:

(i) replace "A" by "C", in statements (1) and (8), and "a P b" by

a disjoint from b", in statement (1) ;

(ii) replace "Q Ll {r} is a p~subset of A" by "r is disjoint £from

all sets in Q", on line (11).
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As an immediate consequence of Theorems 6, 7, and 8, we

have

Corollary SP1

Under Condition sC, if |C| = n, then
SP1(n)
(i) —eeee ], @S n > 0,
Mp with probability one,

where SP1(n) denotes the cardinality of a set pack computed by
Algorithm SPl, and M, denotes the cardinality of the maximal ex-

isting set pack of C;

(ii) the expected running time & R, of Algorithm SP1 will satisfy

(3.2) with n3/2 replaced by k2n3/2, where k is as defined in Sec-

tion 4 of Chapter III. (This is so because the proof of Theorem

7 will hold for Algorithm SP1 with o replaced by kz).

(ii) the running time R, of Algorithm SP1 will satisfy (4.1) with

5/2

(l<:>qbn)5/2 replaced by k2 (logbn) , where k is as defined in

Section 4 of Chapter III. (Because, again, o is replaced by d k2

in the proof of Theorem 8 for Algorithm SP1l).
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E,Q"EfDimensional Matching Problem

For the k-dimensional problem, as defined in Section 4 of

Chapter I1I, we have the following algorithm.

Algorithm DMl

(Let n be a positive integer, and let |T] = n, where T is a col-

lection of sequences, as defined in Section 4 of Chapter 1II)

This algorithm is identical to Algorithm 3.1, except for

the following:

(i) replace "A" by "T", in statements (1) and (8), and "a P b" by

"a disagree in all k-coordinates with b" , in statement (1);
(ii) replace "Q |J {r} is a P-subset of A" by "0 | {r} is a match-
ing of T" on line (11).

As an immediate consequence of Theorems 4, 7, and 8, we

have

Corollary DML

Under Condition DM, if |T| = n, then
DM1(n)
(1) —_— ~ 1, as n > ©
M with probability one,

n

where DM1(n) denotes the cardinality of a set pack computed by
Algorithm DM1, and M, denotes the cardinality of the maximal ex-

isting matching of T;
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(ii) the expected running time & Ry of Algorithm DMl will satisfy
(3.2) with n3/2 replaced by kn3/2, where k is as defined in Sec-—
tion 4 of Chapter ITI. (This is so because the proof of Theorem

7 will hold for Algorithm DMl with o replaced by d k).

(ii) the running time R, of Algorithm DM1 will satisfy (4.1) with

(ZLogbn)S/2 replaced by k (logbn)s/2 , where k is as defined in
Section 4 of Chapter II. (Because, again, ( is replaced by d Kk

in the proof of Theorem 8 for Algorithm DM1) .

6. Some Numerical Tables

—

In order to illustrate some of the intermediate results ob-

tained in the proof of Theorem 7, we want to show here some nu-

+DDD
merical tables. (.XXXXXXX+DDD is equal to .XXXXXXX 10 in the
tables).
Tables 1 - 5 show , for some values of p and n, the

corresponding values of h(n) as defined in (3.3), P(j) = pj_l,

0(3) = (n=3)/(3-1), F(3) = P(3) Q(3), and aj,; = F(j) ay as de-

fined in (3.8). Next we have the values of (3.7) (without the
constant factors ) and the final bound (3.2).

The fact that the relative differences between the values
of (3.2) and (3.7) (as shown in Tables 1-5) increase, as n in-
creases, suggests that the bound (3.2) is very coarse.

In fact, Tables 6 - 10 show that at least for the interval

105 < n < 1019, the upper bound

p e” n (h(n)-2)/2

h{n)
(6.1)



for (3.7)

In tables 4 -

99

is tighter than (3.2).

10, we have the following correspondence

between values and expressions:

column

column

column

column

column

column

column

(1)
(2)
(3)

(4)

(5)

(5)
(7)

il

expres

expres

expres

col.

sion (3.7) (without the constant factors) ;
sion (6.1);

sion (3.7);

(2) - col. (1)

col.

col. (1)

(3) = col. (1)

(h (n)

h(n)/2

col. (1)

- 2)/2
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Conclusions and Open Problems

Several algorithms for NP-hard problems have been shown to
give optimal or near-optimal solutions with probability one.

By designing and analysing algorithms for many different
NP-hard problems, we intend to provide some insight on a uniform
and general probabilistic approach to solve all the NP-hard prob-
lems derived from NP-complete problems, in spite of their dif-

ferent structural characteristics (derived in the sense that, for

example, 1if the NP-complete problem is to answer the question

"given a positive integer Kk and a graph with nvertices—(k<n) i-s

there a clique of size k?", the derived NP-hard problem would be
"given a graph find the largest clique of the graph"). To some
extent, we were successful in devising a uniform method to derive
fast probabilistic algorithms to solve different NP-hard prob-

lems.

For the problems studied in this thesis, we have been un-
able to find in the literature any result stronger than our algo-
rithms and the corresponding theorems on their probabilistic per-
formances.

Some of the algorithms presented are simple, but thelr ana-
lyses are often difficult. Heuristics may occur to the reader
that would improve the performance of the algorithms. But intro-
duction of heuristics seems to introduce probabilistic dependen-

cies that are very difficult to analyse. However, if they can be
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shown not to reduce the accuracy of the algorithms, they may
still be used in practice without weakening the results.

One theoretical conjecture is that an algorithm which is
optimal with probability one for one NP-hard problem is "polyno-
mially translatable™ (in the sense of Karp[1972]) to another al-
gorithm to solve a second NP-hard problem, preserving the proba-
pilistic properties.

In addition to the general observations above, there are
other questions of varying degrees of importance which could be
explored in an extension of this work or which remain as open

problems. The following is a partial iist.

(1) Find experimental results by implementing the algorithms

presented;

(2) By experimentation, measure possible improvements of the al-

gorithms by adding some heuristics;

(3) As a consequence of (1) above, get an accurate value of the

universal constant ﬁ of Theorem 4;

(4) Extend the algorithms and the results of Chapter II to any

normed space;

(5) Design algorithms for the problems considered in Chapter IV,
faster than the ones presented, but still optimal or within a ra-

tio r, 1<r<2, with probability one;

(6) Find bounds for the variance of the running time of Algorithm

D;

(7) In connection with (), find a function f£(n) such that the
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running time of Algorithm D is asymptotic to f(n) in probability

or with probability one;

(8) By applying the uniform method presented in Chapters III and

Iv, find fast algorithms for additional NP-hard problems which

are optimal or near-optimal with probability one;

(9) Consider another probability distribution for the problems
studied in this thesis, and develop uniform methods to design al-
gorithms which are optimal or near-optimal with probability one

under this new distribution.
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