On Testing for Insert-Correctability

In Context-Free Grammars

by

Charles N. Fischer
Bernard A. Dion

Computer Sciences Technical Report #355

June 1979

l. Introduction

Various context-free error recovery and error correction al-
gorithms employ a wide variety of repair operations. Such opera-
tions as insertion of a symbol, deletion of a symbol, replacement
of one symbol with another, transposition of two adjacent symbols
and condensation of a sequence of symbols to a new symbol are
commonly employed ([1}1,(5],(7],[81,[101,[11]1,[12]). Of these
operations, insertion and deletion are the most fundamental; that
is, all correction and recovery algorithms employ them.

However, recent research ([61,[7]) has shown that for a class

Oof coniteXt—1Iree languages termed insert—correctanxe, only inser-

""""""" —tion—operations—are—needed—to—correct—any—input—-—deletions——need

never be employed. Since an error correction or recovery algo-
rithm can often be simplified by restricting it to only insertion
operations, a means of deciding whether a context-free grammar

generates an insert-correctable language is of interest. In [7]

a—method—of —testing—whether—an—LL(l)—grammar —generated—an
insert—-correctable language was presented. Here we present a
more deneral algorithm which can test whether an LR(l) grammar
generates an insert-correctable language. Since LR(l) grammars
subsume virtually all context-free grammars used in practice
(SLR(1), LL(1), LALR(l), Simple Precedence, etc.) [3], the method
presented is very broadly applicable. 1Indeed, since every deter-
ministic context-free language can be generated by an Lé(l) gram-
mar (in fact an LR(O) grammar if endmarkers are provided) ([3],
Theorem 8.16), this method is applicable to any deterministic

parsing technique independent of the amount of lookahead used.

We then consider the general case of testing whether an arbi-
trary context-free grammar denerates an insert-correctable
language. This problem is shown to be recursively undecidable.
In what follows, the reader is assumed to be familiar with the
basic notions of context-free grammars and parsing. An excellent

introduction to these ideas may be found in [2].

2. Testing LR(l) Grammars for Insert-Correctability

In this section, we will present an algorithm which tests if

an LR(l) grammar, G , is insert-correctable. Without loss of

generality, we will limit our attention to augmented CEG's, in

which all terminal strings are terminated by an endmarker, §.

That is, all terminal strings may be written as x$, where x€V,_

~

and $$VT. Let V

r = VoU {$} be the augmented terminal vocabu-

lary. Similarly, V

VNU VT and V = VNU VT. Further, 1let €

denote the null or empty string.

A context-free language, L , 1is insert-correctable Iiff

VxGVT* and VaGGT such that x...€L and xa...¢L, 3 erT+ such
that xya...€L. Clearly, in an insert-correctable 1language any
syntax error (xa...) can be corrected into a prefix of a valid
terminal string (xya...) by the insertion of a suitable terminal
string. Multiple errors can be corrected by doing an insertion
each time a syntax error is discovered. A context-free grammar
is insert-correctable iff its language is insert-correctable.

We shall test LR(1l) grammars for insert—correctability by ex-
tending the LR(l) test presented in ([2] sec. 5.2,[4] Ch. 6). A
review of terminology is therefore in order. An LR(1l) item is a

pair [A—=>d.B,u] where A—>dB is a production and u 1is in VT.

For qu* First(d) = {a€§T|d==;a...}. A string Y 1is a viable
prefix iff there exists a derivation sequence S=%>dAw=?>d§w and
Y 1is a prefix of dp. Let dPl.sz denote a right sentential
form for which qu is selected as a viable prefix. [A—%d.?,u]
is valid for the right sentential form &d°Bpw if there is a
derivation S=%>6Aw=?>6d§w and either u€First(w) or (w=€ and
u=s). [A—éd.p,u] is valid for a viable prefix Pd iff it is
valid for some right sentential form Pd‘pv. LR(1l) operates by
creating a collection of distinct item sets, each of which con-
tains a number of LR(l) items. Each item set I can be parti-

tioned into two disjoint subsets: Basis(I), which contains the

basis items of I, and Cl(I), which contains the closufe”items

L. o m
L% ¥ 3 =t I3

o o= P | . .. 4 | 3} 3
el anad—Lontalns a SInglre DasTs

n

»
1
o<

of—I+—T1{&) iitiatl—dte
item [8'—.d5%,95] where S'—>ds is the augmenting production
which generates the endmarker. For any aqev , Xev, I(dX) is

computed from I(q). Basis (I (dX))

it

{[A—>dX.p,ul | [A>.XB,ul€I(d)}. For any item set I, C1(I)

{[C=>.Y,v]IC=>Y is a production, [A—=>d.CB,ulel and
veFirst(pu)}. By construction, I(d) contains exactly those
items valid for (. |

To construct our extended LR(l) item sets, we will add a

third component to each item. This component, a function

t:VT—>{True,False}, will be, in effect, an extended 1lookahead

function in which t(b) = True iff b can appear somewhere in

the extended lookahead of the item in question. More precisely,
given 1 = [A-%?l‘pz,u,t] in item set I , t will be defined so

as to satisfy the following condition (call it condition (*)):

For any aGVT , any viable prefix dpl and any item i =
[A—%pl'pz,u,t]el(dpl), t(a) = true iff_ i 1is valid for some

right sentential form dPl.sz where W = ...@¢00 o

We now present an algorithm to compute extended LR(l) item sets,
followed by a 1lemma that proves that the t-functions which are

computed satisfy condition (%*).

Algorithm 2.1. Extended LR(1l) item set computation.
[1] Basis(I(€)) = {[S—>.d$,$,t]} where
VaGVT t(a) = False

* ~
[2] For dev ,xev

Basis (I (dX))

{[A—>dx.§.u,t1l[A—»d.x§.u.t1e1(d)}

it

[3] For oev’, I(d) = Basis(I(d)) U Cl(I(d))
where Cl(I(d)) 1is the smallest set such that
If [A—>Y.CB,u,tleI(d), C—>5 is a

production and veFirst(pu)

Then [C—>.8,v,t]€CL(I(d))

where VaGVT t(a) = true 1if t(a) = true or

*
if p==>...a...

As an example, consider Gl which generates the skeletal

block structure of Algol 60.

G,;: PROG->BLOCK $

BLOCK—>BEGIN STMTLIST END

STMTLIST—>STMTLIST ; STMT

X1

STMTLIST—>STMT
STMT—>BLOCK

STMT—>S

Consider first 1I(€). We represent the t-table by a sequence of

t's and f's ' representing, in order, t (BEGIN),
£t (END) ,t(;),t(S),t($). Basis(I(€)) = { [PROG—>.BLOCK
$,8,(FE£E£E)1). From step [3] we then obtain Cl(I(€)) =

{ [BLOCK—.BEGIN STMTLIST END,S, (fE££ft)1]1}
Continuing, Basis(I(BEGIN)) =

{ [BLOCK—>BEGIN.STMTLIST END,$, (££££t)]}

Further, CL(I (BEGIN)) = -

{[STMTLIST—.STMTLIST;STMT,END, (£t£f£E)],

[STMTLIST—>.STMT,END, (ftfft)],
[STMTLIST—>.STMTLIST;STMT,;,(ttttt) 1,
[STMTLIST—>.STMT,;, (ttttt)],

[STMT—>.BLOCK,END, (ftfft)],

[STMT—>.S,END, (ftEft)],

[STMT—.BLOCK,;, (ttttt)],
[BTMT—>.8,;,(ttttt)],

[BLOCK—.BEGIN STMTLIST END,END, (ftfft)],
[BLOCK—>.BEGIN STMTLIST END,;, (ttttt)]}

The reader is invited to verify that the t-table does, 1in
fact, represent an extended lookahead, telling whether a given
terminal can ever appear in the remaining input of an item. We
now establish that condition (*) does correctly characterize

the items created by Algorithm 2.1.

Lemma g.g

Condition (*) holds for all extended LR(l) items created by

Algorithm 2.1.

Proof

An induction on the order in which items are created. (*)
trivially holds for the sole basis item of I(€). If I(dX) 1is
created from I(d) then (*) holds for each item
[A—%YX.S,u,t]eBasis(I(dX)) because it holds (by induction) for
[A—>Y.X6,u,t]el(d). Now consider closure items.

Assume 3 = [C—>.8,v,t] is created from i =

[A—>Y.CB,u,t1€I () .

————————-———+9ﬂ%ﬂL44;ﬂ%}PE%%——;%6}——;;—4HHﬂ}—4==>——%%a}——:L—4HH%}———e§——ﬁ==;————————f**—

coeeBosos If t(a) = true then by (*¥*) and induction hy-
pothesis, 1 1is valid for PY.pr wherei Py = d and w =
.e.3... . But then j is wvalid for some PY.wa where
§==§x,w=...a... and veEFirst(xw). Similarly, if $==§ - I
then again j 1is valid for some PY.Sx'w' where x' = ...a... .

(If part) Assume j is valid for o.8w where W = ...8ee..

Since Jj was created from i , it must be that i 1is valid for
some PY.C?Z where o = PY, w = Xz, p==§x and VvEFirst(xz). Ei-
ther X T eesBese or Z = +4ee8ees =« In the former case,
p==§...a... and E(a) = true. 1In the latter case, by (*) and

the induction hypothesis, t(a) = true ==> t(a) = true.

X1

Let us call an item set I a shift set iff I = I(€) or I

= I (da) for qev*,aevT. Because an LR(l) parser never makes a

move when an invalid symbol is the lookahead, all syntax errors
are detected when a shift set is valid. That is, syntax errors
are always detected immediately after the last wvalid input (if
any) has been shifted. Call an item set safe iff VaeGT , J 1=
[A—éd.p,u,t]eBasis(I) such that p==§...a... or t(a) = true.
If I 1is safe then a syntax error detected when I 1is valid can
always be corrected by a suitable insertion. This observation
can be formalized in the following theorem which characterizes

insert-correctable LR(1) grammars.

Theorem 2.3

AN ente ammar G iz ingsert=correctable 1T all

—distinct—shift—sets—created by Algorithm2<l—aresafe:

Proof
(If part): Assume X has been read and reduced to Y when a
syntax error involving a as the lookahead is detected. As noted

above, all syntax errors are detected when shift sets are wvalid;

that is, just after the last valid input symbol (if any) has been
shifted. Thus I(Y), the currently valid item set, must be a
shift set. Since I(Y) is safe there must exist 1 =
[A—%d.ﬁ,u,t]@ Basis(I(Y)) for which either p==§ya... (yGVT*)
or t(a) = true., 1In the former case xya...€L(G). In the latter
case, by (*), S=%>6d'pw where 6 = ¥ and w = ...a;.. . Thus
==;Yﬁw==§xpw = XeoeBoos o

(Only if part): Assume a shift set I(p) is not safe Dbe-
cause of bGGT and that p==§x. For each 1 = [A—>Y.6,u,t]e

Basis(I(P)), 5=/=>*...b... and t(b) = false. Thus while at-

10

tempting to parse xb... a syntax error must be detected in
I(B) after reducing x to B. Since t(b) = false, by (*) no
right sentential form dY‘Sw for which w= ...b... can exist.
Also &=/=> ...b... . Therefore i can never participate in any
parsing move sequence which will allow b to be accepted. But

*
neither can any other item in Basis(I(B)). Thus 8=/=> x...b...

Theorem 2.3 gives us an effective method of testing whether

an LR(l) grammar 1is insert-correctable. We compute the finite

x|

~—————er—each—shift—setis safes—However—thisapproach—is not—espe-

set of dilstinct 1tem sets via Algorithm Z.1. we Then Test wheth-—

cially attractive as a large number of item sets may need to be
created and tested. Indeed, LR(l) parsers are known to create
thousands of distinct item sets éor grammars used to define pro-
gramming languages such as Algol 60. Clearly é means of limiting
the number of item sets which need to be created —and tested —is
needed. A way of doing this follows from the fact that LR(1)
parsers have the valid prefix property ([4] p.3%1). That is, |if

*

*
xGVT is accepted by an LR(l) parser then there exists ye‘VT

such that xy$€L(G). We can use this property as follows. If G

is insert—-correctable then for any error situation
(x...€L(G),Xa...¢L(G)) we can do a correction in two steps.
First insert yGVT* such that Xy$EL(G), then insert zeVT*
such that xyza...€L(G). Similarly 1if G is not insert-

*®
correctable, then for some error situation «x...GL(G),VvGVT

Xva...8L(G)) we can again insert yevT* such that xy$€L(G). But

11

*
this time QzevT such that xyza...€L(G) {(otherwise G would
be insert-correctable). Thus we can restrict our attention to
parsing situations (and item sets) for which $ might be the

next input symbol. Call an item set I $-compatible iff Ji =

[A—>d.B,u,t]€l such that First(B) = $ or (B=€ and u=$%). T
is S$-compatible iff $ can be shifted in I or $ 1is a valid
lookahead for some configuration A—>d. in I . We can now

state and prove the following:

Theorem g.g

An augmented LR(1l) grammar G 1is insert-correctable iff all

distinct S-compatible shift sets created by Algorithm 2.1 are

~

Sdle.,

Proof
(Only if part): Follows immediately from Theorem 2.3.
(If part): As in the proof of Theorem 2.3 assume X has

been read and reduced to Y when a syntax error involving a as

a lookahead is discovered. I(Y) must be a shift set. If I(Y)
is not $-compatible then (by the valid prefix property) there ex-
ists a yGVT+ such that xy can be reduced to 9 and I(}) is
a S$-compatible shift set. It may be that a 1is a valid looka-

head in I(Y). Otherwise by the same arguments used in Theorem

2.3, since I(Y) 1is safe BZGVT+ such that =xyza...€L(G).

We now need a means of generating all reachable $-compatible

shift sets without the overhead of generating a large number of

extraneous item sets. This can be done by observing that a

1 X1

12

$-compatible item set I must have an item i =
[A—>d.§,$,t]eBasis(I). Further an item set I(dX) «can have
[B—>P.Y,$,t]eBasis(I(dX)) only if there exists an item i =
[C~>6.P,$,£]eBasis(I(d)). That is, items with a lookahead of §
are always created from other items with $-lookaheads and ulti-
mately all are propagated from Basis(I(€)). Thus starting with
I(€), we need only create, and test, those item sets I which

have an item [A—éq.p,s,t]eBasis(I). This leads to the following

algorithm.

Algorithm 2.5 Test if an LR(l) grammar is insert-correctable

———— —

[1] Create 1(€) wvia Algorithm 2.1.

£
-4

If I(e) is $=compatible and not——=sa

Then Return ('Not Insert Correctable')

Else Insert 1I(€) as unmarked inté an initially
empty item set collection Z.

[2] While Z contains unmarked item sets Do

[A] Select and mark an unmarked item set I(dA) from Z
[B] For each XGG Do
[i] Compute Basis(I(dX)) via Algorithm 2.1.
[ii] If an item [A—éd.?,S,t]GBasis(I(dX))
Then
(a) Compute TI(dX) via Algorithm 2.1.
(b) If TI(dX)&z
Then If I(dX) 1is a $-compatible
shift set and not safe

Then Return ('Not Insert Correctable')

Else Insert 1I(dX) an unmarked into 2

13

END{For}
END{While}

{3] Return ('Insert Correctable')

IX]
Theorem 2.6
Algorithm 2.5 correctly tests LR(l) grammars for insert-
correctability.
Proof
Algorithm 2.5 considers, in turn, all reachable item sets
which have a $-lookahead in a basis item. As noted above this
guaranteessthat a11~$—compat1b1e 1tem Ssets are considered and Dby
——Theorem—2+4—testing—only-these—item sets—is sufficient to deter=
mine insert-correctability.
X1

¢

Algorithm 2.5 is attractive in that it generates and tests

only a small fraction of all the item sets which Algorithm 2.1

can create. As an example, reconsider Gl' I1(€) is first com-
puted (see above) but is not $-compatible. From 1I(€), I(BLOCK)
and I (BEGIN) need to be considered. I (BLOCK) =
{ [PROG—>BLOCK.$,$, (ff£££) 1} is $-compatible but is not a shift
set. Its sole successor, I (BLOCK $) = { [PROG—BLOCK
$.,9,(£££££)]1} is also not a shift set (since $$VT). We then
consider TI(BEGIN) which was computed earlier. I(BEGIN) is not

$-compatible. Only one successor, I(BEGIN STMTLIST) =

{ [BLOCK—>BEGIN STMTLIST.END,S, (f£££t)],

14

[STMTLIST—>STMTLIST.;STMT,END, (£t£ft)],

[STMTLIST—>STMTLIST. ;STMT,;, (ttttt)]1}

has a $-lookahead in a basis item. This set is not a shift set.
Again, only one successor, I (BEGIN STMTLIST END) =
{ [BLOCK—>BEGIN STMTLIST END.,S$,(f££ft)]}, has a $-lookahead in a
basis item. This set is a $-compatible shift set. Further it is
not safe since, e.q., $=/=>* BEGIN and ¢t(BEGIN) = False. Thus
L(Gl) is not insert-correctable. The reason L(Gl) must be re-
jected is obvious from I(BEGIN STMTLIST END) -- once the outer-

most BEGIN-END pair is matched, no more symbols in VT can be-

read. Indeed if a full grammar for Algol 60 is tested, Algorithm

2.5 will test essentialy the same item sets as it does for Gl'

This is because the additional structure is enclosed within the
BEGIN-END delimiter and thus is shielded for the $-lookahead Al-
gorithm 2.5 concentrates on.

The interested reader is invited to verify that the following

modification of G, 1is in fact insert-correctable.

£

G!: PROG->BLOCKLIST §

L}

1
BLOCKLIST—>BLOCKLIST;BLOCK
BLOCKLIST—>BLOCK
BLOCK—>BEGIN STMTLIST END
STMTLIST->STMTLIST; STMT
STMTLIST->STMT
STMT—>BLOCK

STMT—>5

If we extend this structural modification to Algel 60, so that

15

programs are composed of a sequence of blocks rather than a sin-
gle block, then this slightly extended Algol is also insert-
correctable. This suggests strongly that insert—correctable
context-free languages are of practical interest and could actu-
ally be used to simplify error correction or recovery algorithms.

Because we never actually use the item sets produced by Algo-
rithms 2.1 and 2.5 to do parsing, there is a temptation to try to
use Algorithm 2.5 to test non-LR(l) grammars. This fails because
Theorem 2.3 depends crucially on the fact that an item set con-
tains all the items which are valid at a given point in a parse.

Item sets created for non-LR(1l) grammars don't always contain all

*

vatid—items+—Consider G, which generates {a} $, an obviously

- insert-correctable languages

GZ: S—>s81 §
S1—> als2

S2—>S52 ale

Now I(a) = {[Sl—>a.,$,(ft)]}. This is a $-compatible shift set
which is unsafe since t(a) = false. Thus Algorithm 2.5 would in-
correctly label L(GZ) as not insert-correctable. The problem
of course 1is that since G2 is ambiguous, an a could also be
generated from S2 a and 1I(S2 a) is safe.

We might try to extend Algorithm 2.5 somehow so that all
context-free 1languages can be handled. As we shall show in the
next section no such extension is possible -- the problem of

testing whether an arbitrary context—free language is insert-

correctable is undecidable.

16

3. Testing Context-Free Languages for Insert-Correctability

—

In the following lemma, we show that if we could test an ar-
bitrary context-free language (CFL) for insert-correctability,

then we could test for arbitrary CFL's, Ll and L2 whether

Without 1loss of generality, we assume L, and L are

L,CL 1 2

1="2°
over the same vocabulary, VT‘

Lemma é'l

Let L and L be arbitrary CFL's and assume #,S@VT. Let

1 2
*
LA = Ll{#$}. LB = LZ{#}(VTU{#}) {$} and L3 = LAU LB.
Then ngpz iff L3 is insert—-correctable,
Proof
ngLz iff L3 is IC (insert-correctable) is equivalent to
NOT(ngpz) iff L3 is not IC which is equivalent to Ll—L2 £ ¢

iff L3 is not IC.

1. (Ll—L2#¢==>L is not IC): Let V, =

3
V., U{#} and 1let x€(L,-L.).

Now x#$GLA since xGLl.
But x#...@LB since x$L2.

but x##@LB. Further

Thus

X#o o ‘GLB

$ye§T+ such that x#y#...GL3==
L

3 1s not IC.

2. (L not IC==>LIL2#¢):

3
Note that L,-L, % ¢ iff Ll{#}—Lz{#} + d.

Since L3 is not IC, assume x...GL3,

xa...$L3 and $y such that Xya...€Ly

~ * ~

17

==>x...eLA or x...eLB.

If x...€Ly then x...€L,{#} (Otherwise

X = X.X where xleLz{#}. But

172
*

X,8...€ (VTU{#}) $ for any a and

thus xlxza...eLB, a contradiction).

Now x...eLZ{#}==>§W such that xyeLz{#}

==>xya...eLB, a contradiction.

It must then be that x...GLA==>3y such that

xyeL, = Ll{#}. But xy€L,{#} since

(from above) x...GLZ{#} leads to a contradiction.

Thus Ly{#} - L,{#} # 0.

X1

We can now establish our desired result.

Theore@ 2’3

.

If 1is undecidable if an arbitrary CFL, L is insert-

correctable,

Proof

If this were decidable then, by Lemma 3.1, we could decide
for arbitrary CFL's, Ll and L2 whether ngL
is known to be undecidable ([4] p. 230).

¢ But this problem

IX|

It is interesting to note that insert-correctability testing
has decidability results analogous to that of a similar problem -
testing if a CFL generates VT*. In both cases, the problem is

solvable for deterministic CFL's but undecidable for arbitrary

18

CFL's.

4, Conclusion

A simple and efficient means of testing insert-correctability
for LR(1l) grammars has been presented. Since LR(1) grammars sub-—
sume virtually all common grammar classes (SLR(1), LALR(1l), Sim-
ple Precedence, etc.), the technique can be readily used to test
those CFG's used in practice. Further, since all deterministic
CFL's have an LR(l) grammar, all such languages can be tested for
insert-correctability. The general problem of testing an arbi-
'tréry CFL for insert-correctability has been shown to be undecid-

able.

Because insert-correctable languages allow for very simple

"ilnsertion-only" error correction and recovery algorithms, the
technique presented is of practical interest. This is especially
true in the case of error-recovéry techniques, where simple and
efficient methods which allow a parser to be restarted after any

syntax error are required. Certainly the ability to decide which

error repair operations are necessary and which are optional is
fundamental when dealing with syntax errors. The insert-
correctability test presented above can therefore be viewed as a
basic (and most useful) tool in designing syntactic error-

handling routines.

19

References

Aho, A.V., Peterson, T.G.: A minimum distance error-correcting

parser for context-free languages. SIAM Journal of Computing

1,4, 305-312 (1972).

Aho, A.V., Ullman, J.D.: The theory of parsing, translation
and compiling, Vol. 1. Englewood Cliffs, N.J.: Prentice-Hall

1972.

Aho, A.V., Ullman, J.D.: The theory of parsing, translation
and compiling, Vol. 2. Englewood Cliffs, N.J.: Prentice-Hall

1973.

Aho, A.V., Ullman, J.D.: Principles of compiler design

Reading, Mass.: Addison-Wesley 1977.

Dion, B.A.: Locally least-co&t error correctors for context-
free and context-sensitive parsers. University of Wisconsin,

Ph.D. Thesis (December 1978).

Dion, B.A., Fischer, C.N.: An insertion-only error corrector
for LR(1), LALR(1l), SLR (1) parsers. Computer Sciences
Department, University of Wisconsin, Report No. 315

(February 1978).

Fischer, C.N., Milton, D.R., Quiring, S.B.: Efficient LL (1)
error correction and recovery using only insertions. 1In:
Proc. 4th ACM Symposium of Principles of Programming

Languages 1977. To appear in Acta Informatica.

10.

11.

20

Graham, S.L., Rhodes, S.P.: Practical syntax error recovery.

Comm. ACM 18, 639-650 (1975).

Hopcroft, J.E., Ullman, J.D.: Formal languages and their

relation to automata. Reading, Mass.: Addison-Wesley 1969.

Penello, T.J., DeRemer, F.L.: A forward move algorithm
for LR error recovery. In: Proc. 5th ACM Sym. on Principles

of Programming Languages 1978.

Poplawski, D.A.: Error recovery for extended LL-Regular

parsers. Purdue University, Ph.D. Thesis (August 1978).

12.

Tai, K.C.: Syntactic error correction in programming languages.

1bkkE Trans. on Software Eng. SE-4,5, 414-425 (1978).

