A HIGHER-LEVEL LANGUAGE
FOR A LARGE PARALLEL ARRAY COMPUTER

by

Leonard Uhr
Computer Sciences Technical Report #354

May 1979

A Higher-Level Language for a Large Parallel Array Computer*

Leonard Uhr, University of Wisconsin

Abstract

This paper describes and discusses several pattern
recognition programs that have been coded for and test-run
on the CLIP parallel array computer. These programs were
coded wusing a first version of a "higher-level language"
whose compiler outputs object code for either CLIP3 (a 12 by
16 array of processors) or CLIP4 (a 96 by 96 array of pro-
cessors). It was possible to code in a few hours simple
programs with from 20 to 50 instructions that compiled into
CLIP programs with from 200 to 1100 instructions.

Descriptors: Parallel Computers, Pattern Recognition
Scene Description, Parallel Arrays
Higher-Level Languages

Introduction

This paper A) examines large, general—-purpose, pro-
grammable parallel array computers; B) describes a new
"higher-level” programming language (PASCALPL**) for one

such computer (CLIP, see Duff, 1976, 1978); and C) describes

several examples of pattern recognition programs coded in
that language. PASCALPL (Uhr, 1979) is a first version of a
higher-level language for parallel processing. Its com-
piler, which 1is coded 1in Snobol/Spitbol and was run on

University College London's IBM 360/65, output object code

* This research was partially supported by a UK NRC Senior

Research Fellowship, US NSF grant MCS76-07333, and a University
of Wisconsin Graduate School grant for research leave.

*% PASCALPL might
stand for:

PArallel PAttern
Array And
SCene
Cellular Co-occurrence
Analysis Array Automata
Logic
Programming
Language

cCoCD»OQW0n P U

(it was tested on about 8 different programs) that then as-

sembled without any errors when input to the CLIP assembler
(which inputs CLIP machine 1language code and outputs a
binary object deck). The assembled programs then executed
without error on CLIP3 (the 12 by 16 prototype CLIP system).

Because CLIP3 is too small an array to resolve more
than one very simple object, it was not possible to examine
extensively how well these programs ran. And they would
need additional work to develop sufficiently powerful and
properly adjusted sets of "transformations" - i.e.,

feature~detectors, compounding characterizers, and other

types of indicants of what might be in the scene. But these

programs were indeed able to recognize gimple obijects (e.q.

A, B, square, circle, (very simple) tree, chair) input with
a light pen on a scope face that discretized the patterns
into 12 by 16 binary images. And stepping through the pro-

grams indicated they were doing this in reasonable ways.

Large programmable general-purpose arrays of many
processors working in parallel (like CLIP4, with its 10,000
processors, and future similar but larger systems that it
would now be feasible to build with 1,000,000 or even more
processors) offer such great promise, especially for image
processing, pattern recognition, Scene analysis and descrip-
tion, and perceptual systems in general, that it seems im-
portant to develop the programming tools that will allow us

to use them effectively, and to begin to demonstrate their

usefulness,

A Brief Survey of Parallel Array Processors

Parallel array computers are designed with specific
kinds of tasks in mind, where large arrays of information
must be dealt with. The two types of task on which research
has focussed are a) image processing and pattern recognition
and b) the solution of large sets of equations. These have
typically led to quite different kinds of hardware - prob-
ably chiefly because numerical problems must work with large
numbers, at 1least 32 bits long, for reasonable precision,
whereas image processing and pattern recognition rarely work

with more than 4 or 8-bit values (e.g. for grey scale or

weights), and often work with only binary wvalues (for

black-on-white transformations of the raw image). And image

processing must contend with very large arrays, on the order
of 500 by 500 or 1,000 by 1,000 "pixels" (picture elements).
We will therefore ignore the very expensive super-

computers (e.g. ILLIAC-4, CRAY-1) that have been developed

for numerical problems (like weather forecasting and wind
tunnel analyses). But it is important to point out that all
of these computers are general-purpose. Because they are
designed to handle specific classes of problems efficiently
(as are all computers that are actually designed to compete
in the market place), they are often dismissed as "special-
purpose,” in contrast to networks of processors connected in
n-cube or other interconnection patterns. But the "more
general" networks have not today been built to contain more
than 10 or 20 processors, and plans for even a few hundred
are still quite vague, and excessively expensive (on the

order of $5,000 or more per processor). Even worse, the
._3...

problems of developing operating systems, programming

languages and efficient programs for such networks are
horrendous; and it seems likely that, say, 1,000 processors
connected 1in a "general" network pattern would not increase
throughput more than 5, 10 or 20 times (unless they were
re~configured into an array whose structure more suitably
mirrored the parallel structure of the processes being ef-
fected) .

CLIP4 {(which, designed and built by M.J.B. Duff
(1976, 1978) and his associates at University College Lon-

don, should be running some time in 1979) 1is the largest

parallel computer in existence or near completion (or, so

far as 1 am aware, even in serious design phase) Its large

96 by 96 array of (roughly) 10,000 hardware processors was
possible only because a special chip was designed to contain
8 processors on each single chip. This has several impor-

tant consequences: A) Once such a chip is checked out and

produced in large quantities it will be relatively straight-
forward to build arrays still larger than 96 by 96. B)
Chips are cheap (the CLIP4 chip, which is rather large and
will be produced in relatively small quantities of a few
thousand, costs about $28; if it were produced in quantities
of hundreds of thousands or millions its cost would drop to
only $5 or $2). C) Therefore this type of computer will be
cheap (CLIP4 will be marketed for about $70,000). D) A
1,000 by 1,000 array could be built for $5,000,000 or less.
The only other large array of which the author is
aware 1is the Distributed Array Processor (DAP) designed and

built by Stuart Reddaway and his associates (see Flanders et
-

al., 1977), at England's ICL (Europe's largest computer
manufacturer). DAP is presently running in a prototype 32
by 32 processor version, and the first full machine (a 64 by
64 array) is to be delivered to Queen Mary College (of the
University of London) around July to November 1979. In con-
trast to CLIP4's price of $70,000, DAP (which was designed
primarily for numerical problems but, because of several
nice design features, 1including the large array size and
connections between each processor and 1its near-neighbors,
appears to be well suited for perceptual tasks) costs rough-

ly $1,000,000 and (at least at present) can be bought only

as an add-on to a large ICL computer that itself costs from

$2,000,000 to $6,000,000. (The great difference in price

results from a variety of factors, including much faster and
more expensive technologies and a much larger memory for
DAP, and also funding and marketing policies.)

CLIP and DAP are the only large arrays of parallel

processors that are truely parallel at the hardware level of
which this author is aware. Several small networks of 9, 16
or some similar small number of processors have been built
in an architecture that allows them to scan serially over a
larger array. These systems typically take from 1 to 10 mi~
crosecond per instruction, and need 5 or 10 instructions to
do what CLIP can do in 1 instruction. So where CLIP can
transform a 10,000 pixel array in roughly 11 microseconds
(its basic instruction time), these systems need from 10 to

100 milliseconds.

Two very powerful systems have been designed and

built, Bjorn Kruse's PICAP (1976, 1978) at the University of
.5.

Linkoping (Sweden) and Stanley Sternberg's Cytocomputer
(1978) at the Environmental Research Institute (Ann Arbor,
USA), to scan the array using only a single processor (or,
in the latter system, a pipeline). These systems need only
1 microsecond per pixel to effect a rather powerful
picture-processing instruction. Because of many additional
nice design features (e.g. that allow for matching on ine-
qualities 1in the former system and a pipeline in the latter
system) , one instruction can often do a good bit more than a
basic CLIP-like instruction. This means that PICAP can han-

dle a 64 by 64 (its scan size) in about 4 milliseconds and

the Cytocomputer can handle a 1,000 by 1,000 (its largest,

and preferred, scan size) in 700 milliseconds, or (to the

extent that the pipeline can be used fully) down to 10 or 20

milliseconds.

When all its processors can be used effectively (and

this is very frequently the case for image enhancement

tasks, and also for the "lower" and some of the "higher"
levels of scene analysis), CLIP4 can increase speeds by 4
orders of magnitude, due to its 10,000 processors, when com-
pared to a single processor built from the same technology.
Its crucial advantage is that it will continue to process
increasingly larger arrays of information in exactly the
same amount of time. In contrast, a scanner like PICAP or
the Cytocomputer needs 100 times more time for 1,000,000 as
opposed to 10,000 cells in the picture array.

To summarize: An array that 1is parallel at the
hardware level (like CLIP or DAP) takes no more time to pPro-

cess the entire image than to process one pixel. If the
-

processor must scan the image, it needs its basic picture-
processing instruction time multiplied by the number of pix-
els it must scan. By using 10 or 20 scanners we can cut
time down by one order of magnitude. By specially designing
a processor for pattern recognition purposes (which seenms,
essentially, to mean having it fetch small amounts of infor-
mation in parallel from nearest neighbors, and execute ap-
propriate logical operations) we can cut time by two orders
of magnitude. But by using increasing thousands of proces-
sors we can cut time by increasing thousands. Here CLIP be-

comes increasingly attractive, since the larger the number

of processors we use the cheaper and easier to build each

single processor must be.

The Architecture of CLIP-Like Parallel Array Computers

A CLIP array is a 2-dimensional array of cells R
rows by C columns in size. Each cell contains one processor

and attendant memory and accumulators. Each processor in

the array has a direct hardwired connection to each of its
nearest neighbors (Figure 1). An instruction specifies 1)
the subsets of its neighbors from which each processor will
get information passed to it, and which subset of informa-
tion in its own memory it should also use, 2) what operation
it must perform on this set of information, and 3) where 1in

its own memory it should store the results. Thus each Pro-

cessor (P;) has N Neighbors (Pil,Piz,...Pin) and W Words

(le,sz,...ij) of memory in which it can store information

(Figure 2). Each Processor can effect any Machine Language
Process in the computer's repertoire (with the SIMD restric-

-7 -

tion that all processors effect the same process at each mo-
ment) .

In any actual hardware embodiment, CLIP must assign
particular values to the above parameters. CLIP4's specifi-
cations are as follows (with CLIP3, the smaller machine that
has actually been built and run, given in Figure 3).

CLIP4 is a 96 by 96 array of processors, each
hardwired to its 8 nearest neighbors (with 6 neighbors, giv-
ing a hexagonal array, as a programmable option). One word
of information (in each processor's memory) can be passed in

one instruction cycle to these neighbors, and a second word

can also be accessed. (Each processor has two accumulators

(called the A-register and the B-register) into which it can

put two words of its own memory information, and therefore
also look at, and a D-register into which it puts its
results, in addition to the up to 8 words of information

passed into it by its neighbors (from their A-register).

Note that one of the two words from the processor's own
memory is the word passed to the neighbors.)

CLIP4 has 32 words of memory for each processor, and
each word contains 1 bit of information. Its machine
language operations are basically a logical "OR" over the
up—-to-ten bits of information, plus enough logical "AND" and
"exclusive-or" operations combining information from neigh-
bors with information from the processor's A and B registers
to make any logical function codable (as a sequence of in-
structions) and, it is hoped to make this coding relatively
convenient and efficient. (Here we have the same problems

any designer of a real-world machine, one that must be effi-
-8

cient and economical, must face. The constraints of packing
8 processors, including all their memories and interconnec-
tions, onto a single chip, to keep the total system down to
a manageable size (but CLIP4 still has over 1,000 LSI chips)
forced 1its designers to specify this relatively small
memory, word size, and hard-wired instruction repertoire.
Their success is best attested to by the fact that they are
building 10,000 processors for about 35,000 pounds ($70,000)
- the price for a mere handful, or even a couple, of more

conventional processors.)

Programming CLIP in PASCALPL

PASCALPL is a first attempt to develop a "higher-

level™ language for CLIP. It gives the programmer a varilety
of features that will only be mentioned in this paper. It
is directed toward pattern recognition and scene descrip-
tion, and tries to free the programmer from having to con-

tend with the details of the machine's architecture and the

machine language code. PASCALPL was developed because the
author's attempts to code pattern recognition programs for
CLIP (in contrast to the much shorter image processing pro-
grams that have typically been coded) were resulting in the
need for 1long sequences of hundreds, or thousands, of
machine 1language instructions to handle relatively mundane
feature detection and compound characterizing tasks. That
it served this purpose well is attested to by the fact that
a 48 statement PASCALPL program that was coded in a few
hours compiled to 1085 CLIP statements that would have taken
several weeks to code and debug.

-0

There are many variant possibilities for such a
language, and it is hoped that this first relatively hurried
and crude attempt will stimulate a variety of suggestions
for, and attempts at, improvement.

The flavor of the language can best be got by exa-
mining the following basic types of PASCALPL statements:

A) Nearest-Neighbor-Masking statements effect
processes that are functions of the (8 or 6) directly-
connected nearest neighbors. (These are much in the spirit
of CLIP's assembly language instructions, although they sim-

plify and regularize them in a number of ways. But a

simpler and more general format should be implemented here.

The programmer should be able to write any logical functions

he chooses, in a straightforward way, and the compiler
should then map them onto the equivalent CLIP instruction

or, when necessary, the required short sequence of CLIP in-

structions.)

B) Compounding statements effect processes that are
functions of more distant neighbors. (The programmer can
specify whatever number of such neighbors he chooses, from
whatever distance.) Thus, e.g., several different features,
such as the strokes, joins and ends of a letter, can be com-
pounded together, to determine whether a higher-level
feature is in the input.

C) Implication statements specify sets of possible
output names and weights that should be associated with them
if the feature that has just been searched for has indeed
been found. (At present these weights are simply added into

the sums of weights got so far, but it is expected that the
-10-

language will be augmented to give the programmer several
alternative options. And he can always code still other op-
tions directly if he so chooses).

Several other types of statements complete the
language:

D) A number of macro-like constructs have been ad-
ded to the language, so that frequently used sequences of
code can be specified very simply. The ones presently in
the system were chosen by the author because they were con-
venient for the kind of pattern recognition programs he was

coding, and it is not at all clear how generally useful they

might be. But this type of facility seems valuable, both to

build up a library of macros for a variety of users, and to

allow users to specify and code their own macros (each is
typically a straightforward set of Snobol code that gen-
erates the set of CLIP instructions the macro has been de-

fined to call).

E) The inequalities have been regularized —and —ex

panded, so that the programmer has a wider variety at his
disposal than those offered in CLIP3 or CAP4 assembly
languages, in a somewhat more powerful, more general and, at
least to the neophyte programmer, more understandable form.

F) Similarly, arithmetic has been extended, and put
into a more generally usable and understandable form.

G) A number of control options have been given the
programmer. These allow him to replace code that would oth-
erwise be continually needed by a single control statement,

from which the Snobol translator then generates and plants

the needed code.
_.ll..

The following sections briefly describe the major
features of PASCALPL. Then several of the programs coded in
PASCALPL are informally described. The Appendix presents
some examples of code, to illustrate how the various con-
structs can be used. (See Uhr, 1979, for a complete
description of the language.)

The Compounding Statement

The compounding statement is coded 1in the general
form:

Compound = Part, pask)oPipParty(masky)

2)0P2

€.9.; TRIANGLE = SLOPEq (3,4)*SLOPE9(1,4)*SLOPE3(6,4)

Here SLOPE, gLoPE, and SLOPE3 each refer to the

_— particular word-in-each processor's memory that containsin-—

formation about whether that particular slope is present at

that processor's location. (This is information that would
have been got by previous nearest-neighbor-masking and com-

pounding instructions).

The star (*) is the logical "AND" (other operations
are + for "OR", @ for "EXCLUSIVE-OR" and - for "NOT").

The two numbers in the nearest-neighbor-mask
(separated by a comma) indicate a) the direction in which
the information is to be passed (Figure 1 shows the direc-
tions used by CLIP and PASCALPL), and b) the distance.

Thus, in the example above SLOPEl is passed 4 steps from the

Northwest to the Southeast.

The Nearest-Neighbor-Masking Statement

The nearest-neighbor-masking statement is the basic
CLIP statement, and can be quite complex. It fetches infor-

mation from one or two memory locations, passes one of these

1T

pieces of information to the 8 or fewer neighbors specified
in the instruction, computes a boolean function of all this
information, and stores the result in the specified memory
location. It can have a number of forms, but it will typi-
cally be of the following sort:
OQutput = Info,((mask)(op)(Infoz))
e.g.: IMAGE = IMAGE (2468)*-IMAGE
(equivalent CLIP3 code 1is:
LD 1 C1 (LoaD 1 into A-register, Clear B, store result in 1)
PR 0(2468)A,-A*P, S (PRocess A thru directions 2468,

call it P, "AND" with A, use Square array)

(the programmer must assign a D-level -~ in this case 1 - to IMAGE.))

Here IMAGE refers to the word 1in each processor's
memory. IMAGE is passed on (by the nearest-neighbor-mask)
to the 4 horizontal and vertical nearest neighbors (e.g. the

2 passes it from ©North to South). A logical "OR" (which

~need not be specifiedwithin-thenearest-neighbor-mask)—is———

effected over all these 4 passed-on pieces of information
about IMAGE. It is then logically and-ed with the negation
of the information (from the cell itself only).

A number of variations on such a command are Ppossi-
ble. For example, the output might be stored in a third
memory word, e.g.: SLOPE/dl1/u = IMAGE(15)+ FEATURE -
IMAGE)15)+FEATURE1)

NEWIMAGE = IMAGE*NEGATIVE (here no information 1is
passed to neighbors; rather, a simple logical function is
computed over two pieces of information fetched from the
(each) cell's own memory.)

T e R

Several more complex variants will only be mentioned
here. These include single and double negations within a
single instruction, and instructions that continue to pass
information, via "recursive propagation" over longer dis-
tances. Examples of actual CLIP code are given below.

The Implication Statement

Whenever a feature, compound, characteristic (or any
other type of information) implies possible alternatives an
Implication statement of the following sort can be written:

Feature == Implied) (y¢)Implied, (Wt,)...Implied (Wt)
e.d.: VERTICAL = POLE (5)TREE (4) LETTER~-

D(3)CHAIR(2)LETTER-I (4)

£

232 Yo 1
Uir—eaTiY oL

Phe—weight—{tin—parentheses)—associated—wi
the names is added into the total weight that the program is
accumulating for that object. (In CLIP3 up to 16 such ob-
jects weights can be handled; 1in CLIP4 up to 96 objects

weights will be handled.)

Several legal variants on this statement, that make
for more efficient programming and simpler code, will be

described later.

Brief Descriptions of Some Programs Coded in PASCALPL

The programs that have been coded in PASCALPL to
date were all designed to recognize and describe objects in-
put to the array, rather than simply to enhance or pre-
process the image. They all followed a general procedure of
getting simple, local features, then compounding these, and
continuing to compound them, to give successively higher-
level and more global features, characterizing compounds,

parts of objects, and objects.
14—

These programs tended to follow the parallel, lay-
ered, converging "cone"-"pyramid" discipline that the author
(Uhr, 1972, 1976, 1978; Uhr and Douglass, in press), and a
number of other researchers (e.g. Hanson and Riseman, 1974;
Klinger and Dyer, 1974; Levine, 1978; Tanimoto, 1976, 1978)
have been programming on serial computers. This led to the
need for large numbers of compounding operations, and even
larger numbers of shifting operations to move the several
features into position as nearest-neighbors so that they
could then be compounded together.

Therefore the programs take on an unusually simple

structure. They begin with nearest-neighbor masking opera-
o 1 ' cr 1 And 2] 1 | | a3 PP I I B]
CTomrTs T UIratTelrtet U lneT s Il TOW=TICveT Pre—proctsoTITg (S8 191
local edge-detection functions. (Many of these were re-

placed by simple macros, e.g. to #EDGE#, i.e., get 4 local
edges.) Then a sequence of compounding statements shifts and

compounds lower-level features and characteristics into suc-

cessively higher~-level ones. Each of these implies one or
more possible names, each with its associated weight. If
the feature 1is found, anywhere, these weights are combined
into the total weights for these names. Finally, the pro-
gram chooses the most highly implied name. (If the array
were large enough, as it will be when CLIP4 1is wused, the
program would also have to find the region where that named
object was implied, eliminate the object, and continue on to
find other highly-implied objects in other regions of the
scene.)

This is only one approach to Scene analysis. But it

is an approach that is highly parallel, and can take advan-
] &

tage of the potential great increases in speed offered by a
parallel computer 1like CLIP. PASCALPL was designed to ex-
pedite programs that take this approach, especially 1in its
major Compounding and Implication statements. But it is a
general-purpose language for a general-purpose computer, so
any kind of scene analysis or pattern recognition program
could be coded in it. On the other hand, there 1is 1little
point in wusing a parallel computer for a serial program.
The important questions are: what 1s the range of parallel
programs that people would like to code; how commonly can

serial programs be replaced by equivalent parallel programs;

and what kind(s) of language(s) would best serve the kinds

o

of pPrograms peopte—would Hke—to—code?

The author found it convenient to set wup a code
sheet in the form of a transition matrix whose column labels
were the possible names of objects and whose rows were la-

belled with the features and characteristics to be looked

for. First, one would write a feature-name (e.g. "vert" or
"L-angle" or "window") as the row label, or simply draw the
feature. Then the weights with which this feature implied
each possible object would be put in the object's column for
this feature-row. Finally, the actual PASCALPL <code, for
near-neighbor-masking or compounding, would be written for
that row. The code for Impication statements would already
be present, in the cells of the array!

This turned out to be extremely simple for the au-
thor to use, and reasonably easy to teach and get somebody
else to use. (Only one other person beside the author was

asked to code a program in PASCALPL. He spent about two
16

hours learning the language and one hour coding a program,
one with about 20 statements that compiled into over 200
CLIP statements, and executed without bugs.) It is probably
too narrow and constraining a discipline, but it seemed to
be a simple way to start. And it is not as constraining as
it might appear, since a very wide variety of programs can
be coded in this way. 1In any case, PASCALPL offers many ad-
ditional constructs, and can be used in a very large number
of different ways.

About 8 programs were coded 1in PASCALPL, ranging

from roughly 15 to roughly 50 statements in length, but gen-

erating CLIP3 object code ranging from roughly 200 to 1100

—_— 0 Statements—in—length— These programs—attenpted to recognize —
from among 4 up to 15 different objects. They used roughly
10, 20, or 30 different features and characterizers. Shift-
ing characterizers into near-neighbor position and merging

weights into position and adding them took the bulk of the

(object code) instructions and computing time. Finding the
object-name with the highest weight took strikingly little
time, since it could take advantage of parallel ©processing,
as follows: A bar of 1s was shifted down the columns that
stored the combined weights, and and-ed at each shift. This
gives a 1 in the column(s) with the highest non-zero bit(s).
The procedure continues recursively if more than one 1 |is
found. This is a small example of the power of a parallel
computer such as CLIP. Far more important is the parallel
computer's ability to find a feature or characteristic

everywhere, simultaneously.

-17 -

APPENDIX: Examples from CLIP Programs Generated from PASCALPL Code

The following presents some actual PASCALPL
program-segments, and the CLIP code into which the Snobol
compiler translated themn.

Figure 4 shows the start of the program as it re-
sides in CLIP, with the statements shown as comments (start-
ing with ";") numbered 1 to 54 showing the input source code
in PASCALPL. PASCALPL-generated comments also indicate that
the control modes specified at the start of the program com-
manded that CLIP3 code for a SQUARE (i.e., 8-neighbor) array

be generated, with the integers 0, 1, ... being used by the

programmer to ditrectliy specity the D=Ilevels:

~The—program—outputs—+that—the —programmer—must——

remember to use T and F for True (1) and False (0) rather
than 1 and 0, which might be confused with any 1 and 0
specified for the D-levels (this 1s not necessary if the
programmer names the D-levels with alphanumeric letter-

stri ng.s)

Figure 5 shows the start of the program, up to out-
put statement 56 (numbered at the right), which was generat-
ed by input statements 1 through 10 and part-way through 11
(numbered at the left 1in Figure 4, and repeated, as com-
ments, each starting with "IN= ", Jjust before the output
code generated in Figure 5). (This listing is the output of
the CLIP assembler, which numbers the code, but not the com-
ments, in octal, starting with location 200).

The first instruction, #INSCOPE#, generates CLIP3

output code numbered 1 through 5 to establish the loop need-

ed to input with a light pen, plus 6-7 to set D-level 15 to
~18-—

contain all 0s (to initialize weights, which will be accumu-
lated in D15).

The second input instruction (which comes immediate-
ly after CLIP3 instruction 7 and has the comment "CONTOUR"
at its far right) generates CLIP3 statements 8 and 9. (D~
level 0 1is set to equal 1 if the center cell contains a 1
and any of the eight neighbor cells contains a 0). Next
come sStatements dgetting the 4 local straight edges, each
followed by the pair of CLIP3 statements it translates into.
(Note that the system's printers print an underline or

left-arrow instead of the circumflex used to indicate the

center cell). Without teaching CLIP3 programming (which can

be got from CLIP internal technical reports—at—University
College London), I should mention that whereas PASCALPL gets
the "AND" of the center cell and its two neighbors, thus
forming the straight 1line, CLIP3 code must negate the two

neighbors, "OR" the negation, negate again, and "AND" the

result with the center cell. Thus PASCALPL allows for much
simpler and more straightforward logical operations (which
it then converts to the actual operations needed at the
machine hardware level, where only the "OR" but not the
"AND" of the neighbor cells is wired into the hardware).
Next comes the macro ERASE 1,2,3 and 4. Macros
could have been used to effect #CONTOUR# and #EDGES# (for
the 4 edges) and they would have generated exactly the same
code. It seems obvious that such macros are easier to learn
and use. But they may well be too easy, allowing a program-
mer to code with only the vaguest idea of what his program

is doing. And they may well be too specific to my personal
~-19-

way of doing things (though I have found them quite wuseful
and convenient), and lead the programmer into a narrow set
of practices.

After statement 39 comes a new type of implication
statement. Here the 1 to the left of the equal sign speci-
fies the D-level to be tested. 1If it contains at least one
instance of the feature it stores (that is, if not all of
its cells are 0) then the weights specified are added into
the weights of the names 1,2,..., the first integer added to
the first name (1), the second integer to the second integer

to the second name (2), etc. The hash mark ("#") indicates

'chop the ordered set of integers that follow'. The letters

A throuah E indicate negative weiahts the dots indicste no
J J g S £ SN at-e—h

weight (i.e. zero weights, so nothing need be added or sub-
tracted for that name.) The code that follows gets and
tests the specified D-level and, if it contains the feature,

sets up the sub~routine calls to be made if the feature is

found. (Note how 5,7 and 10 (octal) are ignored, and how
6,11 and 13 are given negative weights to be added in to the

total weights.)

_References

Duff, M. J. B., CLIP4: a large scale integrated circuit array
parallel processor, Proc. IJCPR-3, 1976, 4, 728-733.

Duff, M. J. B., Review of the CLIP image processing system, Proc.
National Computer Conf., 1978, pp. 1055-1060.

Flanders, P. M., Hunt, D. J., Reddaway, S. F. and Parkinson, D.,
Efficient high speed computing with the distributed array
processor. In: High Speed Computer and Algorithm
Organization, New York: Academic Press, 1977, pp. 113-128.

-2 -

Kruse, B. The PICAP picture processing laboratory, Proc.
IJCPR-3, 1976, 4, 875-881.

Kruse, B. Experience with a picture processor in pattern recog-
nition processing, Proc. National Computer Conference, 1978.

Hanson, A. R. and Riseman, E. M., Pre-processing cones: a compu-
tational structure for scene analysis, Tech. Rept. 74C-17,
Univ. of Mass., 1974.

Klinger, A. and Dyer, C. Experiments on picture representation
using regular decomposition, TR Eng. 7497, UCLA, 1974.

Levine, M. D. A Knowledge-Based Computer Vision System, 1In:
Computer Vision Systems, A. R. Hansen and E. M. Riseman
(eds.) New York: Academic Press, 1978, pp. 335-352.

Sternberg, S. R. Cytocomputer real-time pattern recognition, Pa-
per presented at: Eighth Annual Automatic Imagery Pattern
Recognition Symposium, National Bureau of Standards, ~Gaith-
ersburg, Md., April 3-4, 1978.

Tanimoto, S. L. Pictorial feature distortion in a pyramid, Comp.
—— . Graphics Image Proc., 1976, 5, 333=352

Tanimoto, S. L. Regular Hierarchical Image and Processing Struc-
tures in Machine Vision, In: Computer Vision Systems, A. R.
Hansen and E. M. Riseman (eds.), New York: Academic Press,
1978, 165-174.

Uhr, L. Layered "recognition cone" networks that preprocess,
classify and describe. IEEE Trans. Computers, 1972, 21,
758-768.

Uhr, L. "“Recognition cones" that perceive and describe scenes
that move and change over time, Proc. IJCPR-3, 1976,
287-293.

Uhr, L. "Recognition Cones," and Some Test Results; The Imminent
Arrival of Well-Structured Parallel-Serial Computers; Posi-
tions, and Positions on Positions. In Computer Vision

Systems, A. R. Hansen and E. M. Riseman (eds.), New York:
Academic Press, 1978, 363-378.

Uhr, L. PASCALPL: A language for programming scene description
and pattern recognition systems on a parallel array comput-
er. Univ. of Wisconsin Computer Sciences Dept. Tech.

Report, 1979.

Uhr, L. and Douglass, R. A parallel-serial recognition cone sys-

tem for perception: some test results, Pattern Recognition

[4
in press.

-2 -

Figure 1. An Overview of CLIP Architecture

1 234567 ... C

O2] 15 (UV]

QY U > W N
~1 |00 i~

A 6 row by 7 column sub-array of a CLIP array of R
rows by C columns. Each cell contains one processor and its
assoclated memory words and accumulators. In sguare mode
(as shown here, and embodied in CLIP3 and CLIP4) the proces-

sor de oconnoactad biz diroct vrl venes 4w 3 de o
— o R - TETT e A M‘l A SR M W e ey ey L L=)

wi-res iHes—8—rmearest—reighborss
Which of these neighbors passes information to the processor
is determined by the process instruction being executed

Neighbors are designated by integers from 1 to 8 (as shown

for cell 4-3 above).

~-22-

Figure 2. The Basic CLIP Process Instruction

g

0

HIIHZI

QY U > W N -

2 L]

A single CLIP cell. The Processor (P) computes a
boolean function whose arguments can include any 2 of the W

A-register and B-register, plus the 8 words of information
that are simultaneously fetched into the A-registers of its

8 nearest neighbors. The results are placed in the D=
register, and then can be stored in the word of memory
designated by the instruction.

-23-

Figure 3. Specifications of CLIP3, CLIP4, and Possible Future CLIPS

System: CLIP3 CLIP4 CLIP?A CLIP?B
Overall Specs:
Array Size 12x16 96%96 500x20 1000x1000
Number of

Processors 192 9216 10,000 1,000,000
Each Processor:
Number of

Memory Words

(D-Levels) 16 32 256 512
Size of

Memory Words 1 bit 1 bit 1 bit 4 bits
Number—of

Neighbors 8 or 6 8 or 6 8 or 6 8 or 5

The two conjectured future CLIP arrays are merely
illustrations of how CLIP might be expanded.

-20~

Figure 4. The Beginning of an Example PASCALPL Program

s ICTL MODES= CLIP3, SQUARE.,
ICTL INAMES= 8
2: PASCALPL PROGRAM FOR 15 DBJECT-NAMES
3: OBJECTS ARE =# ABCOUCTTRFSTPDF
ICTL DHAMES= B
:T AND F MUST BE USED FOR 8.1 IN BLN EXPR
:DON'T PUT INTEGER MAME OF B IM MASK EXCEPT AFTER ~+7

4 START #INSCOPE# :

35 B = ~B(1 B340 : » CONTOUR

i6 | = BCKk1He) » ¢ 4 EDGES

37 2 = BOk2BE)

:8 3 = BKEPEY

:9 4 = Bkd4Be)

: 18 %?EPQSE'WI 2.3.,4.,

1t {1= 1i11.0A. ﬂ A2a21

12 L1l <2=# 12...222222.201 :

13 Liz2 {F=4 ..111.119Q92Q21 H

» 14; 4 SQUARE AMGLES

315 L13 {h=d 21...2.2B2222081

316 SOANGLS 5 = + 4(#12,2)*2(#54,2) 3

218 L27 6 = + 2(#34,2)m4(KS 2)

;19 =gk 1.BA....C22.2B :

20 -39 7 **“*Zt 2 2N G622y

- =k SR~ N ko M B

;122 L51 18 = b 2(%?8ﬂ2)m4(#32ﬁ2) H

3 23: SQUARE~EDGED COMPOUNDS

124 =ik 1...B212022.28B :

125 LG54 11 = + 5C8#1,307 (7,3 : : SOUARE
126 =4k ..B.A..1B23.B.. :

327 .80 11 = + 645,33 %18 (#1,.3) : @ SRUARE
328 =4 ..B.A..1823.8B.. :

:29 L9G 11 = -+ 3(%1,3)m1(#3,3) : oz ¢ CINYVERTED W
;38 =4k 2.A.B.218..3.3. :

331 L1112 12 = + 1(4 ?,Z)V”(¥5.3) I Y

132 =4 A.A.1..1B....3. :

33 128 12s +'12(6}4§*IT{%2,4TWM}'f”ﬁTﬁMDND
: 34: 3 LONG EDGES

;35 =4 .B1..11BBB.B5. :

:36 L148 12 = 1(1 8ik1cay

237 =k E,RH ,,,,,,, 1.1 :

138 1.168 13 = 2¢2.832(0) ;

239 =4k 12AR.23.332B28A

148 L1772 14 = 3(3,8)x3(8)

241 =k 2.0A8...1...1.18 :

142 L184 11 =+ 1182, 6)"12(3%4 Ayw1A(#31,) wd(6,4) ;
143 = 1(5) : & IMPLIES A~-LETTER STROMGLY
344 1.231 11 = 4+ 13(8,.3)%5(543,3) @ :FLAG~PART
245 =4 11..B1...3.B.B. :

146 L.246 11 = + 2(8. ?‘29f4 23 : @ PARALLEL VERTS
247 =dk 1.A.13.2m11.0..

;48 L256 11 = + 1(84p234a(u4 23%13(84.1) : :POLE+BRANCHES
: 49; CURYES ~ LDCAL + SHIFTED

:568 =g 1.B...53.Bucuecs :

51 L2708 11 = BOkl-41-0 2

252 12 = 4 1(#3,2)%4(823,.2) :

:53 11 = 11+12 ;

154 =ik 22,118

—25-

Figure 5. Continuation of the Example PASCALPL Program

P S

:CLLIP PROGRAM STARTS HERE.

:IN= GHOWS INPUT SOURCE CODE AND COMMENTS
+SUBROUTINES NEEDED AMD ADDED ARE -

: UPWT. DMWT . MAX.

b IN=
piEIN= 2z PASCALPL PROGRAM FOR 15 DRJECT-NAMES
saeEpEIM= 3 : OBJECTS ARE =% ABCOUCTTRPFSTRPDF
PR IN= GTART #INSCOPE# ;
p2606 START: LD @8D. 8p, B, S S
a2m81 PR A 5 2
v282 HI 5B ;3
8203 EG 8 : 4
gz284 BR 8., 4, START ;5
8285 LD ., €. 15 : 6
p2e6 PR A ;7
3 TN = 8 = -g(l-Byxp 32 CONTOUR
6207 L.D B, C, B : 8
92168 PR B8¢1-8)-A, PR, S5 : 9
Ak [N = I = 8(x15%) :: 4 EDGES
8211 LD B, C,. 1 ;1B
B212 PR BUISI-A. -PxA, S & 11
2kt [N = 2 = BOKRAGEY
B213 LD a, C, 2 ;12
B214 PR B(26)~A., PR, § : 13
R A 1rn-lN 5 = @(/k.f)(G) H
8215 LD a, C. 3 : 14
8216 PR 837~ ; ~P¥A, 8§ = 15
;%###1N= 4 = (*48&) :
G217 |2 1 716
6228 PR 8(48) . ~P4ﬁ S : 17
s AR TN = #ERASE®1,2,3,4, :
g221 Lp ¢, C. 16 : 1B
p222 PR 1 ;19
8223 LD 18, C. 16 : 28
Br24 PR B(2)Y4.PxA, § ;21
B225 LD 1a. C. 16 5 23
8226 PR 8(DA.PHA, S ;3 24
B227 LD 16, C. 16 : 26
D236 PR B{(&IA,.PxA, § ;27
8231 L 18, L, 16 : .29
B232 PR B(8XA.PxA, S ;3B
8233 LD 1. 16, 1 ;32
B234 PR P ;33
8235 LD 2, 16, 2 ;34
B236 PR AP : 35
B237v LD 3. 16, 3 ;36
0248 PR AP : 37
8241 LD 4, 16, 4 ;3B
B242 PR AxP : 39
8243 LD B, 16, B ;48
B244 PR AP : 41
eI N= {l=% 1111.68..0.A2R21 ;
8243 Lb 1. C. 1 42
B246 FR A ;43
az4y PR # -1 ;44
B258 BR 1. P, L11 45
8251 LR 1 (D ;46
0252 LR 1 (2 HE-
6253 BS UPWT ;48
B254 LR 2 (D ;49
B255 LR 1 2 ;58
8256 BS LPWT : 51
Bz2s¢ LR 3 (D ;92
B268 LR 1 (2 53
az261 BS UPWT : 54
8262 LR 4 (1) ; 55
B263 LR 1 (2 ;596

-26-

