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THE SOLUTIONS OF A MODEL NONLINEAR SINGULAR PERTURBATION PROBLEM
HAVING A CONTINUOUS LOCUS OF SINGULAR POINTS¥

Gershon Kedem(l), Seymour V. Parter(e) and Michael Steuerwalt(3)

1. Introduction

Consider the nonlinear boundary value problem

1.1) ey (6) = (v - £y (0, 1ct<o,
1.2) y(-1) = A, y(0) =B,
with € > 0. It is not difficult to prove that there exists at least one solution,
y{t,e). Moreover, if y(t,e) is a solution and A # B, then Iy'(t,s)l > Q.
The questions of interest are
(i) for € > 0, how many solutions are there?
(ii) what are the "limit solutions," i.e. functions Y(t) such that there are sequences
€ -+ O+ and solutions y(t,en) so that

y(t,cn) > Y (t), in some sense .

Again, it is well known that any such limit solution must satisfy the reduced
equation.
2 2.,
1.3) (Y () - £7)Y'"(t) =0 a.e.
In [ 3] F. Howes and S. V. Parter studied the case Y{t) Z constant. Consider the
case
1.4) 0<B<A<1.

Then, the only possible constant limit functions are (see [ 31])

1.5) Y(t) = A, Y(t) =B, Y(t) =

i

-
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In fact, computational results of Frances Sutton [10] imply that all three constant

limit functions occur if possible, i.e. if

B<-it<a.

V3
These computations of Sutton prompted G. Kedem [4,5) to apply a-posteriori estimates to

this problem. He took the special case
€ = B = .001, A= .9

and proved the existence of at least three distinct solutions.

In this paper we continue to study these questions of multiplicity of solutions
(for ¢ > 0) and limit solutions. In Section 2 we discuss some general facts about
the solutions of this problem. In particular we discuss the occurrence of maximal and
minimal solutions in the case where A > B.

In Section 3 we extend the results of [4,5] as follows: if B = .001, A = .96

and 0 < ¢ iﬂfg, then there exist at least three solutions of equations (1.1), (1.2).
In fact, there is a maximal solution yM(t,e) and a minimal solution ym(t,c) such

that: if y(t,e) is any solution, then

1.6) Ypltre) S yltie) <y lt,e) .
Moreover,
lim yM(t,s) = A, e=>0 ,
lim ym(t,s) = B, €E=>0 .

Finally, there is a function Y(t), not equal to A or B, ‘and there is a sequence
of solutions y(t,en) such that
€ > Y (t e - .
Y(tl n) ( ) as n 0
In Section 4 we consider the special case A =1, B = 0. In this case the function
1.7) Yo(tpe) = -t

is a solution for all ¢ > 0. Thus we may apply results from bifurcation theory. In
particular, we may apply a theorem of Paul Rabinowitz [7] to conclude that: if € is

small enough there are at least two distinct solutions uj(t,e), vj(t,e) which cross



yo(t,e) exactly j times in the interior: -1 <t < 0. A further analysis of the
limit behavior of these solutions then provides infinitely many step function limit
functions.

In Section 5 we extend the analysis of Section 4 to the case 0 <A # 1, B = 0.
We obtain necessary and sufficient conditions for the existence of solutions with
prescribed behavior near t = -1 having exactly Jj crossings of yo(t). The limit

behavior as € » 0+ is discussed. Once more, the limit functions are step functions.



2., Maximal and Minimal Solutions

In this scction we are concerned with the existence of maximal and minimal solu-

tions yM(t,e), ym(t,e) described by (1.6). Let € > 0 be fixed and let

2.1) U

i

{v(t) € cI[-1,0], min(A,B) < y(t) < max(A,B)}
Consider the mapping T which is defined by
| 1 S, 2 2 A ]
2.2a) e(Tv)" = (v - tT)(Tv)' ,
2.2b) (Tv)(-1) = A, (Tv)(0) =B .
Then, the maximum principle shows that T{U) C U. Moreover, for any te [~1,0]

t
() () = () Dexpls [ (wP(s) - shash .

t
Since
2.3a) min|(Tv)'(s)] < |a - B] ,
2.3b) Iv3(s) - s2| < max(|a]?,|B]?%) +1
we have
2.4) eyt )] < |a - Blexp{max(‘AP'iB‘z) z l} .

Thus, T is a compact mapping of U into itself. By the Schauder Fixed Point Theorem
[ 2] there is at least one solution y(t,€).
Moreover, we make the following observations.
Lemma 2.1: Let A > B > 0. Let v0 € U. Suppose that
. < .
2.5a) Tvo(t) “_vo(t)

Let vj(t), 3 =1,2,... be defined by

2.5b) vj(t) = ij—l' I=1,2,... .
Then

2.5c) vj+l(t) i_vj(t), J=1,2,0..
Similarly, if

2.6a) Tvo(t) 3_V0(t)

and vj(t) is defined by (2.5b), then

2.6b) vj+¥(t) Z'Vj(t) .

—l -



Proof: We consider only the first case. We observe that vé(t) <0 for j =-1,2,..

Suppose that

— j_l
Then
ev" = (v? - t7)v ’
j+1 3 j+1
(L 2 - 2 [
evj (vj__1 t7)v!
Hence
2 2 2 2
2.7 e(v, - v " = (v - t7) (v, - v.)' + (v - v, v
) ¢ j+l 3) ( J ) j+l J ( J j=1""3

Since the second term on the right hand side of (2.7) is positive, the maximum principle

asserts that

Thus, the lemma is proven.

Lemma 2.2: Let A > B > 0. Let v_ € U and suppose that (2.5a) holds. Let y = y(t,e)

0
be a solution and suppose that
2.8) y(t,e) j_vo(t) .
Then
2.9) ylt,e) < vy(t), §=1,2,00. .
Proof: Assume that
y(t,€) jvj_l(t) .
Then
evh = [(v )¢ - t2]v!
-1 3
ey" = (y2 - tz)y' .
Hence
2 2 2 2
elv, - "= (v, -ty (v, - y)' + (v, - y' .
(3 y) (3—1 )(J Y -1 vy

Once more the maximum principle implies that

v, - >0 .
J ¥z



Theorem 2.1: Let A > B > 0. There exists a solution yM(t,e) which satisfies
2.10a) yl{t,e) < yM(t,e)

for every solution yl(t,e). Moreover, there is a solution ym(t,e) which satisfies
2.10b) ym(t,s) < ylt,e)

for any solution y(t,eg).

Remark: Of course, it may happen that

Ym =Yy -
Proof: Let
vo(t) =A.
Then,
vl(t) iﬁvo(t) .
Thus
Bi%ﬂi%' j=0,1,2,...

and the functions vj(t) converge to a function yM(t,e). Since the estimate (2.4)
holds we also have
2
1 2 AT + 1

vi(t <—A |A-B —— .

T N e
Thus, the first derivatives also converge. Finally, the differential equation implies
that the second derivatives also converge. Thus, yM(t,E) is a solution of (1.1), (1.2).

The estimate (2.10a) follows from Lemma 2.2.

The proof of the existence of ym(t,a) follows in the same way.



3. fThe Case A = ,96, B = .00l

In {4,5] G. Kedem considered the special problem (1.1), (1.2) when

1
3.1) A= .9, B= .001, €= 1s °

Applying his theory (based on the Kantorovich Theorem and rigorous a-posteriori exror
bounds) he was able to prove that there are at least three solutions

1 1 1 . . .
YIII(t' 15) < yII(t’ 15) < yI(t, lS) - see Figure 1. Furthermore these solutions satisfy

1
3.2a) lyit-1, 5500 <a-B= .95,
1 1
3.2b) |Yi(ol E‘)l = maX‘Yi(t, 15 ) l >1,
1 1
] - = - ] .
3.3a) |y -1 350 | = maxlyp e g0 > 1,
3.3b) lyt. 0,£)] <a-B= .95
III ' 15 N
R N 1 :
Moreover, yI(t, 15), yIII(t, 15) have exactly one zero, where yI and Yir1 cross yo.
1- - I
IT
I1X
-1 0
Figure 1



The purpose of this section is to prove the following result.

Theorem 3.1: Let A = .96, B = .001 and let 0 < g < fg. Then, there are at least

three solutions yI(t,e), yII(t,s), yIII(t,e) of (1.1), (1.2). Furthermore

3.4a) yI(t,fg) jvyI(t,e) > A as € > 0+ ,

3.4b) Yy (6 3g) 2 ¥ (6) > B as € O+

In fact, if 0 < € < €, f_fg then

3.5) B f~yIII(t'El) f_yIII(t,sz) j_yl(t,ez) f-yl(t'sl) <A .

The proof follows from the following argument.

1
=), e.g. {3.2a),

_ 1 - -
Let vo(t) = yI(t,lS). Then using the properties of yI(t,15

(3.2b), we see that

3.6a) v, =V, >V, «

Thus, applying Lemma 2.1 we obtain a sequence vj(t) that increases to a solution

=

(t, 75

yI(t,e) having the same derivative properties. Similarly, if we set vo(t) = YIII

we find that

3.6b) ™V, =v, <V

and a similar argument gives us (t,e) with the same properties. Finally, a simple

Y111

“degree argument"” gives the existence of yII(t,E).

Hence, let vo(t) = yI(t,"l-) and let us construct vl(t) = Tv_. Let

15 0
1
3.7) R = z= 15(1 + ¢6), § >0.
Then
L - 2 - 2 '
3.8a) vy 151 + 6)(v0 t )v1
while
2 2
" = - '
3.8b) Vo lS(v0 t )vo .
Thus
vil vll
3.9a) ;%-= 1+ 8 ;2 )
1 o]



That is

3.9b) Ivi(t)] = Clv(')(t)ll+6 .

it

To evaluate the constant C Cc(8) we integrate (3.9a) and obtain (using the boundary

conditions (3.1))

0 0 1+6
3.10a) a-8=[ |vm]at = c) [ vyt et
-1 -1
3.10b) () = 3 (A - B) i
f lV(')(t) Il+<'Sdt
-1
Lemma 3.1: The following inequalities hold.
§
3.11a) c(d)lvé(O)l > 1,
3.11b) c:(‘5)|vc')(-,1)l‘S <1.
Proof: Using (3.2b) we have
0 0
) lvc')(t) ll+6dt | lvr lae
0
1 _ -1 < -1 |V' () lG
c{(3) A-B - A-B o] )

Thus, (3.1la) follows from the boundary conditions which imply that

0
a-8=[ |vierfat .

From Holder's inequality we have

0

; 0 1+8
+
(A - B)1 § [f |v6(s)|d;] < f !v‘(s)|l+5ds .
- 0
-1 -1
Thus, using (3.2a) we have
S 8 1
e - —
lvg D17 < @ - 8" < 55
which proves (3.11b).
In order to prove (3.6a) we consider the function
3.12a) F({t) = VO(t) - vl(t) .

Using (3.9b) we have



1+6ds

.

t
3.12b) F(£) = v (t) = A+ C(8) / lv(')(s)l
-1

We wish to show that F(t) < 0. We have
3.13) F(-1) = F(0) = 0 .
Moreover

1+6 ' 8
F'(t) = vy(r) + cd) vy |7 = lvé(t)l[c(s)lvoml -1 .

Thus, (3.1la) and (3.11b) imply that
F'(-1) <0, F'(0) >0 .
Hence, if F(to) > 0 for some t0 € (-1,0), then F'(t) would have at least three

zeros. If F'(E) = 0, then

[

- 3
3.14) lvg®)] = (&) = (/O] -

However, if (3.14) has at least three solutions, then Rolle's theorem implies that
va(t) has at least two zeros. But, vg(t) = y;(t,fg) has exactly one zero. Thus,
we have proven (3.2a). By the argument sketched earlier, we have'cbtained yI(t,s). More-
overx, lyi(~1,e)l < A-B, lyi(O,e)‘==max|y'(t,e)|> 1 and y;(t,s) has exactly one zero.
In a similar way we obtain yIII(t,E).
In order to prove the existence of a third solution we follow the argument in [11, [9].

or [ 6}]. Roughly speaking, leta

Q = {y(t) € c[-1,0], B <y <A},
£ - L
Ql z {y(t) € c[~1,0], yI(t, 15) in.A} s
g, = {y(t) ¢ c[-1,0], B<y <Y t, =11
2" ATLOde B EY S ¥qprttras
= U .
93 9\(Ql 92)
Then
T: Q-+Q
T : 91 -> Ql
T = 92 > 92

-10-



and, in each case, T maps the boundary into the interior. Thus, if d(T,é) denotes
the degree of T relative to the region 5 we have (see [1,8])
a(r,Q) = d(T,Ql) = d(T,QZ) =1
since the degree is additive,
d(T,QB) = =1
and there is a solution yII(t,e) € 93.
In fact, the work of Amann [1] and Steuerwalt [9] shows that
) .

1
(t, 7

1
yn(t.s) b yI(t. 15), yn(t,e) £y 5

I11
These inequalities imply that any limit function Y(t) of yII(t,e) is truly distinct
from Y{t) = A or Y(t) = B.

Thus, we have proven Theorem 3.1.

-11-



4. A

ft
ot
w
il

0

il

Turning to the special case where A 1, B =0 we see that
yo(t,c) = -t

is a solution of (1.1), (1.2) for all €. Let

z(t,e) = y(t,e) + t;
then if vy(t,e) satisfies (1.1), (1.2) the function z(t,e) satisfies
4.1) ez" - z{z - 2£)z' + z(z - 2t) = O, -1 <t<©
4.2) z(-l,e} = z(0,e) =0 .
Moreover, zo(t,s) Z 0 is a solution for all €. In this situation it is natural to

apply a bifurcation analysis. Linearizing (4.1), (4.2) about the solution zo(t,s) =0

we have the linear eigenvalue problem

4.3) " + Altle =0, -1 <t<oO
4.4) ¢ (~1) =¢(0) =0
where
4.5) r=2 .
€

The eigenvalues and eigenfunctions of this problem are easily obtained. 1In fact,

o«

let {3 } be the positive zeros of the Bessel function J {(x), ordered so that
k,1/3 k=1 1/3
R < .
Ip.173 S k1,173
Let
2
3 3
k,1/3
4.6a) pk 3 [——‘5~“—} '
and
u3
k_9 .. 2
4.6b) Ak =372 (Jk,l/3) .

Then the Ak' k =1,2,... are the eigenvalues of (4.3), (4.4) while the corresponding

eigenfunctions are given by

4.6c) e (t) = [B-}Séil—} Jl/3[2{~lf—§ﬂ] ]

See [11, page 16].

-12~



The exact values of Ak and wk(t) are not of major importance here. The
important fact is the following:

Theorem 4.1: Let O < Ak < 2 . Then there are at least 2k + 1 solutions of the non-

€
linear problem (4.1), (4.2). Moreover, a special set of 2k +1 solutions may be

described in the following mannex. Of course, we have the trivial solution,

tH

4.7a) Zo(t,e) 0 .

+ - . . .
Then there are 2k solutions {Zj(t,e)},{zj(t,e)} , 3 =1,2,...,k which satisfy

a _+ d _-
4.7b) at Zj( l,e) > 0O, ac Zj( 1,e) <0

+ + -
and Z;(t,e) has exactly 3j interior nodal zeros. Moreover, Zj(t,E) and Zj(t,E)

.

have the same zeros, say tl'tz""'tj'

Proof: From the results of P. Rabino&itz [7] we find that there are two unbounded
continua, C;, C;, in (2Z,)\) space which meet at (O,Aj) and have no other points in
common with the (0,A) line. Each point on these continua represents a solution of
(4.1), (4.2) with exactly j interior zeros and the appropriate sign of 2'(-1). Since
the solutions 2{t) of {4.1), (4.2) are bounded (via the maximum principle applied to
(1.1), (L.2)) we see that these continua are bounded in zZ-space and hence unbounded in Al
Thus, we have established the existence of Z?(t,e) with interior nodal zeros ti.
However, if y(t,e) is a solution of (1.1), (1.2) then y'(t,e) < 0. Thus we may
consider its inverse function g(y) defined by

gly(t,e)) = t .
Finally, let

Gly) = -gly) .
A direct calculation now shows that: if y(t,e) 1is a solution of (1.1), (1.2) (with
A=1, B=0) then so is G(t,e) = G{t). Thus, for every Z+(t,e) there is a Z (t.€)

. + - .
with the same nodal zeros: 2 and 2 are reflections ¢f each other about ZO'

Consider the following situation. Let Jj be fixed and let € -+ 0+ and (without

loss of generality)

2
0<e <—.
k A
J

-13~



Let {Z?(t,ck)} be a sequence of solutions of (4.1), (4.2). Let
4.8) -1 < tl(gk) < tz(ek) < e tj(ek) <0
be the zeros of Z?(t,ek). Let
4.9) tee) =2z.(te) -t

: Yytees 300

+

be the corresponding solutions of (1.1), (1.2). Using the monotonicity of yg(t,ek)
and Helly's theorem [13] we know that we may choose subsequences ek, - which we now
call & ~ so that

4.10a) t (e

5(E) ™t o =1,2,.0003 4

k

+ x
4.10b) yj(t,ek) > Y (t), as Ek > Ot .

our first goal is to show that Yi(t) cannot coincide with the straight line
y = -t on any interval (¢,B). The exact form of our results is a strengthening of
the observations of [ 31].
Lemma 4.1: Let ~1 <a < B < 0. IlLet 10 be the smallest eigenvalue of the problem
4.11a) o" + Atle = 0, a<t<B
4.11b) v(a) =¢(B) =0 .
Let 9(t) = ¢{(t;a,B) be the correéponding eigenfunction normalized so that
4.11c) max ¢(t;a,B) =1 .

Suppose that

1l 1
4.12a) 0 <ec< 5-50 =
0
Set
4.12b) S S—
° Yo 2maxlv'(t)l -

Let vyl(t,e) be a solution of (1.1) on the interval (a,B) which satisfies

4.13a) y(t,e) + t >0, o <t<B ,
4.13b) yla,e) + a = y(s,e) +8=0.

Then

4.14) ylt,e) > v {t,a,B) - t, a<t<B.

-14-



Proof: Suppose the lemma is false. Then there is a function y(t,€) which satisfies
the differential equation (1.1) and also satisfies (4.13a), (4.13b) but not (4.14).

Nevertheless, there is a vy, 0 < vy j'YO' such that

it

w(t) = yoltia,p) - t < y(t,€)

and w(t) "justtouches" y(t,e). That is, either w'(-1l) = y'{(-1l,g), or

w'(0) = y'(0,€), or there is an interior point t_ € (-1,0) such that

0
W(to) = Y(tolﬁ)

However, we will show that

4.15a) wl = Tw > w, o <t <8§B
and

4.15b) wi(-l) > w'(-1)

4.15c) wi(O) < w'(0)

which, together with Lemma 2.2, contradicts the choice of y as "just touching." To

verify these facts we observe that

Thus
4.16a) ew" = w2 - 2w + E
where

E = yo[-2 —f—- le] - @le] + wrw' - DI .
0

By (4.12a), (4.12b) and the choice of Yy < Yo we see that E(t) > 0 for a < t < B.
Then, by the maximum principle we have (4.15a), (4.15b) and (4.15c).
Remark: The function ¢({t;a,B), the eigenvalue AO, and the value YO are all

continuous functions of the pair «a, 8.

15~



Lemma 4.2: Let t0 = -1 and tk+l = 0. Suppose (4.10a), (4.10b) hold. Let ¢ be

fixed, 0 < 0 <k, and suppose that

o+
N >
4.17a) yj(t,ek) + t o, to(ek) <t < t0+l(£k) .
We suppose that (4.10a), (4.10b) hold. Then
i = ~ ~ -~
4.17b) Yj(t) = to' to <t < t0+1 .
Similarly, if
+
N < < <
4.18a) yj(t,ek) +t <0, to(ek) t t0+l(ek) ’
then
4.18b vie) = -£ £ <e<t
-16b) j )E ot S — To+l
Proof: Consider the case when (4.17a) holds. If Ec = Ec+l there is nothing to prove.
Suppose then that
t0+l - tG =L >0 .

As we remarked above, €t ¢ (t;a,B) and Yo are continuous functions of (a,8). Hence

for € sufficiently small we have

<-l—s(a) '

4.19a) ek 5 €0 (&
1. 9,2 »
4.19b) 5 Yo(tc'to+l) < Yo(tg(ek)'tc+1(ek)) P
and
4.19¢) (tre) =S yo(t,t (e),t  (e)) - t <y (t,e,)
.19c w 'Ek =3 YO 'ty gt o+l ek __Yj 'Ek .
Let
. . tc+1(ek) , )
4.20) ¥i(tie) + to(e) = v{t)exp{- E,{ w(s,e) - s9)as} .
Then, the function v(t) satisfies
2 .2 2 .2 w2 - t%) 2 2
4.21a) ev' - [2{w” - t7) + (y" - tT)]v' ~ [y" - wlv=0,
4.21b) V(to(ek)) =0,
4.21c) v(to+1(ek)) = tc(sk) - tc+1(ek) .

-16-



Thus, the maximum principle implies that
lvior] <1
and
Eor1 (55!

|yi(t,sk) + tc(ek)' < exp{~ % / [wz(s,ek) - s?jas} .
t

(¢, )) we obtain (4.17b).

Thus, since w(s,ek) is continuous in (ta(sk), ta+1 "

A similar argument disposes of the case when (4.18a) is satisfied.
‘ " . + . . . R
Thus, we see thatwhen the tG are distinct Yj(t) is a step function with jumps
at Eo for odd values of o¢. If o is even, then

+ -~ -~ ~
Y. = -t <t<t .
j(t) o t5-1 o+l

Similarly, in the case of Y;(t), if the éc are distinct we see that Yg(t) is a

step function with jumps at tc for even values of O, and if ¢ is odd, then

1

- = - <1 .
¥, (e) t toy St Topp

We now turn our attention to the determination of the values of EG.

Consider the following situation., Let ¢ be fixed and consider the adjacent

intervals (t ,tG), (t_,t Y.

o-1 o’ o+l
+
Case l: yj(t,ek) +t > 0, to—l < t < to ’
and
+
Yj(t,Ek) + t < 0, tc <t < to+l ’ (see Fig, 2) .
Then
d  #
4.22a) at Yj (to_llak)] <1,
and
a =+
.22b —_— Y .
4.22b) at yj(tm,sk)l <1

-17-



Y (t) —

! y(t, e} ————
!
|
§
|
to-1 %o Eorl
Figure 2
+
Integrating (1.1) we have (y = yj(t,sk))
q a Y3 tc+1 2 tc+1 tG
Ek{?i? Yt €0 ~ 3% Y(to—l'ek)} =5 ! -ty (t) + 2 { ty(t)dt
g-1 o-1 o-1
toe1
+2 ] ty (t)dt .
5
Let Ek -+ O+. Applying Lemma 4.2 we find that
~3 ~3
t -t
o-1 g+l _ 2 ° "
4.23) 3 = tc(tc—l tc+1) .
-~ # ~
If tU—l t0+1 we have
A2 1 a2 ” o a2
. = = + + .
4-24) 85 =3 G * Somifon T So)

On the other hand, if tG—l = t0+l'

then (4.24) holds also. Hence, (4.24) holds in
the limit as Ek -+ 0 when starting from a triple to_l(ek), tc(ek), to+l(ek) as in
Case 1 above.

: +
. < < <
Case 2: yj(t,ek) +t <0, too1 <ty

i .
yj(t,ek) + £ >0, t0 <t < t0+1 ’ (see Fig. 3) .

&+
it is not difficult to show that (with y(t,e} = yg(t,e))

v 1
L —
4.25a) ly (tc_l,ak)l <
k

4.25b) ly* e e )| < 1,
o+l’ kT — g

-18-



Y {t) S———

y(t,e) —
to—l tc tc+l
Figure 3
In this case we divide by y'(t,e) and obtain
tcr+1 2 2
1] - 1) =3 -
ek{ln‘y (tU+1,ak)] n|y (tg_l,sk)l} { (y t)dt .
g-1
Applying Lemma 4.2 we have
A2 A - _1 -3 _ 3
teltoir ™ Bo2) T3 e

and once more (4.24) holds. We summarize our results in

Lemma 4.3: If the values tc(sk), g=1,2,-..,3 tend to limits ﬁc as

these limit values satisfy the gquadratic equations

Ek -+ 0 then

a2 1 ,s2 . a 2 .
T — + = . i
£ =3 Bor  Feertonn T Cor)? G = Lr2eecead oy
4.26) A i
to = ~1, tj+l =0 .

Finally, we show that {4.26) has one and only one solution,

-] <t <t < .-k, <O.
1 t t, tj 0

Lemma 4.4: The system (4.26) has one and only one solution Eo € [-1,0].

. 21 < < < eee<t.<0.
4.27) 1l tl t2 5
Proof: Consider the mapping t0 = FG(TO'TI""'Tj+l) given by
2 1 2 .
= o + + = 1,200
€0 3 (TU"I TG"ITU"'J» To+1)r ) ray v] 0
e
(¢} o]

«-19-
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(28]

where 1. =t =-1, 7 =

= 0. i i k th b -1 < < i
o o 341 341 0 This mapping takes e cube, 1 —‘TO < 0 into

jitself and is obviously continuous. Thus there is a "fixed point” which is a solution
of (4.26).
Let {EO}, 6 =0,1,...,3 +1 be a solution. in order to verify the "separation"

of the go' i.e. (4.27) we observe that the equations (4.26) imply that

a~ -~ a2 2 2
i t .
mln(to_l,tc+l) 5_t0 5_max(ta_1, 0+1)
£ £ £ < £ = £ . Th £ satisfies the ation
Suppose to-l' tc' t0+l <0 and to o-1 en o+l equ
~2 ~ on ~2
_— = Q
to t Etenn T %Yo
i.e.
1":U + 3 ti
o1 T T 2 :
Since EG <0 we have
X £ -3ty .
tor1 T T 7 "t

Thus, if two successive Ec are equal, they are all equal. But that is impossible.

Hence

-1 < tl < t2

and a straightforward inductive argument proves (4.27) .

Suppose Eo and éc are both solutions of (4.26). Let

w_= € - ; . w_ = £+ s .
o (5] o) c c g
Then
4.28a) w0 = 0, wj =0 ,
and
-1 1 + L 1
4.28b) Wy =3 0o * 5V Vo Y3 Mo 732 o+1) V-1

Let W be the tridiagonal matrix

Wi
=
+

(SR
=

1 1
[3 (w0+l + '5' wo._l) ’ -WU'

-20-



‘Clearly, W is irreducible. We will now show that

4.29) lw (Jw

1
ol 23 0+1l * |Wc-1l) :

Since éo' 50 are of the same sign, it suffices to show that (4.26) implies that

4.30) e, | 3_% ()t ) .

o+1I ¥ lto—ll

This estimate follows immediately from (4.26) and the well-known inequality

~ ~ a2 A2
. <
4-31) 26515041 S Fom1 T Yon1
Moreover, since the ineguality in (4.31) is strict unless Eo—l = E0+l we see that,
in fact,
1
> ——
IWUI 2 (lwd+l‘ * lWc—l‘)

and the matrix W 1is diagonally dominant. However, we have
Ww =0 ,
thus w = (wo) =0 (see [12]) and the lemma is proven.
Let us collect these results.

N + N s
Theorem 4.2: For € small enough, there exists {yj(t,e)} a family of solutions of

(1.1), (1.2) with exactly j interior turning points to(E)' i.e.

+ R
4,32a) yj(tc(s),a) = —tc(e), o= 1,2;,¢ces] ¢
and

a +
4.32b) e yj( 1,e) > -1 .
Then
4.33) to(e) - tc' 0= 1,2,00esd +

where the ﬁg are the unique solutions of (4.26). Moreover, y;(t,a) > Y(t), a step
function with jumps at Eo’ g odd, and

~

4.34) Y(t) = —tc, to—l <t < t0+1' o even .

Also, for € small enough, there exists {yg(t,e)} a family of solutions with J

interior turning points tq(e) and

4.35) a%y;(-d,s) < =1 .

-2}~



and to(e) > ﬁc as above. Moreover, y(t,e) - Y¥Y(t), a step function with

jumps at to' g even, and

4.36) Y(t) = -t _, t <t<t

c o-1 o1 @ odd .

Remark: The results of [3] are now seen to be a special case of the above results.

A

The number ﬁ? appears there in precisely the same way as the t0 occur above.



5. B=0, A% 1

Suppose we keep B = 0 and vary A. That is, let A = A(x) be a continuous
function of x with A(0) = 1. The question is, what happens to the solutions

+
yg(t,e)? For example, when 0 < A < 5? there cannot be a sequence €, + 0 with

ylte ) » = .
n V3
Thus, that family is lost as A decreases, While we cannot give a complete discussion
of the behavior of these solutions in terms of both variables A, e, an almost
complete answer is given by the following observation.

4
Suppose {y (t,e)} is a family of solutions of the differential equation (1.1)

on the larger interval [B(e),0] with B(e) < -1 which satisfy

(i) yi(BIE) = -
(i1) Lytee s, Sy <1,

and yi(t,e) has exactly Jj turning points on the interval B(e) < t < 0. (The
existence of such solutions is guaranteed by the discussion of Section 4.) Suppose
further that

yi-1,0) = a .
Then, if all of the turning points actually lie in the smaller interval (-1,0), we
have obtained the solutions we seek. As we shall see, this is essentially the only

way to obtain such solutions. This fact is the result of the following four theorems.

Theorem 5.1: Let O <A <1, B=0, Let j be a fixed positive integer. Let

t2,t3,...,tj+l be the solution of

5.1) =L@ vt 20, k=235,
5.2) £ = -, €j+1 =0 .
Let
t, - /1282 - 3€§
5.3) to = - 3 .
Then, there exists an EO = EO(A) such that for all €, 0 < ¢ 5‘20, there is a solu-
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tion y(t,e} of (1.1), (1.2) which has exactly 3 interior turning points,

- < < & s < = -
1 tl t2 < tj 0, (y(tj,c) tj) and

5.4) 0> y'(-1,8) > -

N |

if and only if

< -1 .
5.5) to 1

Moreover, if (5.5) holds then as € 7 O+ we have

5.6) tl(e) + -A = t1 ’
5.7) tk(e) - tk' k= 2,3,0c0¢]

while vy(t,e) - ¥Y(t), the step function given by

t £ <t<t kK =0,1,2,-.00K ,

5-8) Yt} = ~toryyr 2k Cok2’

where t. = -1 and E=%(j-—l).

Note: If j is even, then %k is a half integer and the last interval is actually

Theorem 5.2: Let 0 <A <1, B=0, Let j be a fixed positive integer. Let

-~

-~ ~
t 'tz""'tj be the solution of

1
22 1 72 > : °2 .
>-9) 8=3 G * Bt ¥ Beadr KT LRI
. £ = -1 £, . =0 .
5.10) % oY 0
Then, there exists an € = eO(A) such that for all €, 0 < € 2 g there is a solution

y(t, g} of (1.1}, (1.2) which has exactly Jj interior turning points

-1 < b <o < tj <0 (y(tj,e) = —tj) and
5.11) y'(-1,e) < =2

if and only if

5.12) -t <A
Moreover, if (5.12) holds then as € - 0+ we have

5.13) £ (e) > t kK =1,2,000,3

kl

while y(t,e) = Y(t) where v(t) is the step function given by (5.8).
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Theorem 5.3: Let 1 < A, B = 0. Let j be a fixed positive integer. Let

tl,t2,...,tj be the solution of (5.9) with

n "~
5.14) to = -A, tj+l =0 .

Then, there is an ¢, = eO(A) such that for all €, 0 < g < € there is a solution

0
y(t,e) of (1.1), (1.2) which has exactly Jj interior turning points tk(E)'

k=1,2,...,3 and
1
5-15) 0> y'(-1,e) > -5

if and only if
5.16) -1 < El <0 .
Moreover, if (5.16) holds then as ¢ - O+ we have

5.17) t () > £, kK =1,2,0043

while vy(t,e) = ¥(t), the step function given by

5.18a) ¥(e) =3, -l<t<fE
and
[a) ~ ~ -
. = - <t < = -
5.18b) Y(t) = oty Ey, eSSty 0, k= 120k

where k =

-

[Ng(Wh

Theorem 5.4: Let 1 <A, B= 0. Let 3j be a fixed positive integer. ILet

t. .t ,...,tj be the solution of (5.9}, (5.10)}). Let

1'%
£ - V12 - 3t

5.19) Eo - 5 L,

Then there exists an € = aO(A) such that for all &, 0 < € 5_80, there 1

solution y(t,e) which has exactly Jj interior turning points tl,tz,...,tj
5.20) yt{-1,e) < -2
if and only if

"

5.21) *to > A .

Moreover, if (5.21) holds t (e) » £, k =1,2,...,3 while y(t,e) > Y(&),
function given by (5.8).

The proofs of these theorems follow.

-25—
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Lemma 5.1: Let 0 =B < A. Let y(t,en), en ¢ 0+ be a sequence of solutions of
(1.1}, (1.2) which also satisfy (5.11) and have exactly 3 interior turning points
1< t(e) < ty(e)) < v ty(e) < 0. Then the points ty(c.) > € k= 1,203
where the Ek satisfy (5.9), (5.10) and y(t,e) » ¥(t), the step function given
by (5.8).

Proof: This lemma follows from the arguments of Section 4. The distinction is simply
that in Section 4 we have Theorem 4.1 to assure the existence of certain special
solutions.

Lemma 5.2: Let O =B < A, Let y(t,gn), €, 4 0+ be a sequence of solutions of
(1.1), {1.2) which also satisfy (5.4) and have exactly Jj interior turning points
=1 < tl(g) < vt < tj(g) < 0. Then the points tk(en) 4~€k, k=1,2,00e,3. If

~ ~

0 < A <1 the points tk satisfy (5.1), (5.2) and if A > 1 the points tk satisfy
(5.9), (5.14). Moreover, the functions y(t,en) cohverge to the functions Y(t)
described in Thecrem 5.1 and Theorem 5.3 respectively.

Proof: As in the lemma above, this lemma follows from the arguments of Section 4.
Lemma 5.3: 0 =B <A <1, Let y(t,an) be a sequence of solutions of (1.1), (1.2)
which also satisfy the hypotheses of Lemma 5.2. Then y(t,en) may be continued back-
wards in t < -1 until y(t,sn) crosses the curve y = =t., Let this first turning
point less than -1 be called to(en). Conceivably to(an) = - fo? all €
However, this is not the case. In fact, let gk be the solutions of (5.1), (5.2}

and let t0 be given by (5.3):; then

5.22) to(en) +.to .

Proof: Since y'(t,en) < 0 the backward continuation of y(t,en) is above A for
all t < -1. Therefore yl{t,e) is bounded: A < y(t,e) < -t as long as y(t,e)
does not cross y Z -t. Thus y(t,en) may be continued backwards at least until
such a crossing.

As en -+ 0+ we have

T e " t -
tl(e) >t A, tz(e) >t Yy (tz(en),en) < -2 .
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Moreover,

t. (e )
- , R I T
y' (e (e ), ) =y (e (e ) e dexp T [ (v* - £5)aer .
t (e )
2 n
Since
tl(en) , , ,
/ (v° - t9at > ~(t, (e ) -t ()
- n 1 n
t. (e )
2 'n
we have
1 2
5.23) Iy'(t2(gn),€n)| > 2 expl- T It (e ) = t (e )17} .

Suppose y(t,en) remains below -t for % < -1. Then on any finite interval

B<tz2t,le) we would have

P A
o >
[aeed
-

ylt,e) > A B <t

[A
(s

y'(tee ) >0, B <t

However, in that case, if B < -1 we have

2 +E1—-'(1—A2)lsl} ]

L] 3 - ——— -
|Y (B,en)! > 1im 2 exp{ e (t, t)) -

Thus, if |B| is large enough

ly'(B,en)l > 4o,

Therefore, there must be a finite crossing to(en). Moreover, this argument shows

that for €, small enough

2(E, - t.)
legte )| < ———=——+1.
1
Let tO be any limit point of the to(en). An argument similar to the arguments

of Section 4 shows that the values tk(e), k=1,2,...,7 must converge to the

"~

solutions of ({5.9) with to = to. But the results of Lemma 5.2 determine the limits
of the tk(en). Thus, tO must be given by (5.3).

Corollary: Since by construction, to < -1, we have established one-half of

Theorem 5.1.
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le ] -1
Lemma 5.4: Suppose 0 = B < A <1 and (5.5) holds. For every §, 0 < § < ~—£L?E——— ’
there exists an € = E(é) such that for all €, 0 < € j_E, there is a point

T=1(€), to -8 <1< t0 + 6§ and a function y(t;T,e) which satisfies

5.24a) ey" = (y2 - Ay, TIt=20,
5.24b) y(t1;1,€) = -1, y(0;t,e) =0 ,
5.24c) y(-1;1,e) = A

and y(t;t,e) has exactly Jj turning points tk(e), k=1,2,...,3 with -1 < tk(s) < 0.

Proof: For every T, to -8 < T= to + &, let Tl,Tz,...,Tj be the solutions of
2 1 2 2
5.25 T, =~ = s
a) k=3 Tpoy * TpedTirr * Ty k=1s200.003
5.25b) Ty = Tr Tj+l =0 .,
Since Tl is uniquely determined by ro and TO is uniquely determined by T when

we consider the equations (5.25a) with Tj+l given, we see that Ti is a

monotone function of T Thus, if we choose 1. < t and let y(t;ro,s) be a

o’ 0 0

solution of (5.24a), (5.24b) with exactly 3J turning points and y'(TO;TO,a) < -1,

whose existence is guaranteed by (a simple modification of)} Theorem 4.1, then for €

sufficiently small

y(—l;ro,s) <A and -1 < tl(e) .

Similarly, if t0 < T, We will obtain (for e sufficiently small) a function

y(t;to,e) which is a solution of (5.24a), (5.24b) having exactly J turning points and

Y(‘l;'roye) > A4, -1 < tl(E) .

Thﬁs, there is an intermediate T which solves the problem,

Proof of Theorem 1l: In the light of Lemma 5.2 and Lemma 5.3 it is only necessary to

establish that (5.5) is a sufficient condition to guarantee that, for e small
enough, there is a solution of (1.1), (1.2) which has exactly Jj interior turning

points. This result follows immediately from Lemma 5.4.
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Proof of Theorem 5.2: The necessity of (5.12) follows immediately from Lemma 5.1

and the maximum principle, which implies that all solutions of (1.1), (1.2) satisfy
B <yl(t,e} £A.

Suppose (5.12) holds. Let

(5.26) £, =- < -1 .

The proof of Theorem 5.2 now follows precisely as in the proof of Lemma 5.4, We

~ lad

choose T < t_1 and L > t__1 and obtain the desired solutions which pass through

(-1,3) and are very steep at that point.

proof of Theorem 5.3: If yl(t,e) is a solution of (1.1), (1.2) which satisfies (5.15)

then it certainly can be continued backward until it crosses y I -t. The reason is
that y"(t,e) < O between t = -1 and any such crossing. Thus, moving backward

|y'(t,e)| gets smaller and y(t,e) crosses y E ~t at a value t-l(E) which satisfies

-2a 4+ 15t (e) <-1,

Furthermore, as € =+ 0, t_l(e) + -A, Looking at these solutions and applying the
arguments of Section 4, we see that (5.16) must hold.
The sufficiency of (5.16) follows from the argument of Lemma 5.4.

The proof of Theorem 5.4 now follows the same lines as the proof of Theorem 5.3.
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6. Remarks

The discussion of the case when B # 0 appears to be much more difficult., As
long as B = 0 and we enlarge our basic interval by moving to the left we may
continue to employ the theoxrem of Rabinowitz and general sturm-Liouville theory.
When we attempt to enlarge the interval to include some positive t the linearized
equation (4.3) is no longer correct (-t ¥ lt‘) and the general Sturm-Liouville
theory becomes more delicate. We have not attempted a complete mathematical discus-
sion of this case.

For this reason, the results of Section 3 and further computational results are
particularly interesting. The graphs which follow are computational results for
%-= R = 150 and the two sets of boundary conditions
6.1) A=1, B=20,

6.2) A= .96, B .001 .

We find the "CASE 5" curves especially interesting.

These calculations were performed at the University of Rochester on the CDC 6600.
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YOT)'Y = Rl Y(T)x%2-(T-1)mx2)xY(T)"
A= .96 B=-.001 R=150.0 CASE= 1

i |

KL IRV R Y MY Y Y .)

F AR NN Y . .. L2 L= Ly [ (5] [ - v

T

YOT)®' = Re(Y(T)Ixx2-(T-1)%x2)xY(T)"
A=1.00 B=.000 R=150.0 CASE= 1

|

S N R R R N S N T

S FTRNNE NI ) o [ L Weas . fan £ L vae

T
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YOT)'Y = Re(Y(T)xe2-(T-1)ux2)xY(T)"
A= .96 B=.001 R=150.0 CRSE= 2

1

!

[
Panaen *
——

‘F P T T T Y
]

< - LX) L&) [ - o s rA) dan S e

7

YOT)'' = Re{Y(T)Iwx2-(T-1)%x2)xY(T)"®
A=1.00 B=-.000 R=z150.0 CRSE= 2

P AN S AW Gm OB SM WM S AW e AW e

* e fa o o .. - a L&) (5 [ s e

T
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YOTI'Y = RelYOT)Iww2-(T-1)wx2)xY(T)"
A= .96 B=.001 R=z150.0 CASE= 3

W tw e

!
t
b
2
b
s
2

- S e (2] [ - o’ - - am L2 . -

7

YOT)'Y = Re(Y(T)xx2-(T-1)xx2)xY(T)"
A=1.00 B=.000 R=150.0 CRSE= 3

L] 148

C R LI R Y BT T R I NN )

C TN WER ) [ m (2] [ L) LA s L) 1an
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Y(T)® ' = Re(Y(T)x=2-(T-1)wx2)=Y(T)"
A- .96 B=.001 R=150.0 CASE= 4

L nd [ +. A

[ ]

[T

238 o R oW ___am 4w

M S . L) Ce) n 2 . - .. .- . ]

7

YOT) "' = Re(Y(T)=x2-(T-1)%xx2)=xY(T)"
A=1.00 B=.000 R=150.0 CASE= 4

L [ e .49

5.9

a

48 M _ym QW R L®m  tm 4w ¢
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YOT)'Y = Re(Y(T)Ixw2-0T-1)x=2)xY(T)"®
A= .96 B=.00l R=150.0 CRSE= 5

4.8 L. L2 o0

: ] z. am L) !-‘

h2 WS W e dus m [2 [ [ LA - £ s

7

YOT)'Y = Re(Y(T)xx2-(T-11x%x2)xY(T}"
A=1.00 B=.000 R=150.0 CAHSE= S5

458

R N Y N SR N S Y W N Y WY
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