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ABSTRACT

It is shown that McCormick's second order sufficient optimality
conditions are also necessary for a solution to a gquadratic program
to be locally unique and hence these conditions completely characterize
a locally unique solution of any quadratic program. This result is
then used to give characterizations of a locally unique solution to the
linear complementarity problem. Sufficient conditions are also given
for local uniqueness of solutions of the nonlinear complementarity

problem.
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1. Introduction

In [11] where global uniqueness of a linear programming solution
was characterized, it was shown that, among other conditions,
McCormick's [8,3] second order sufficient optimality conditions were
also necessary for uniqueness and hence these conditions completely
characterized a unique solution to a linear program. Curiously, it
turns out that the same situation also holds locally for quadratic
programs. That is, McCormick's second order sufficeint optimality
conditions, which ensure that a solution to a quadratic programming
problem is Tocally unique, are shown to be also necessary for local
uniqueness. Thus again in the case of quadratic programming problems,
McCormick's conditions completely characterize Tocal uniqueness
(Theorem 2.1). This result is used then to characterize locally unique
solutions of the linear complementarity problem (Theorems 3.1 and 3.5).
This characterization of locally unique solutions of the linear com-
plementarity problem includes as a special case the local uniqueness
result of Murty [16] for nondegenerate matrices, that is those with
nonsingular principal submatrices. In addition, Robinson's strong
regularity condition [17], which among other things ensures the Tocal
uniqueness of a Tinear complementarity problem solution, implies
(Corollary 3.6) the hypothesis of one of our local uniqueness character-
izations (Theorem 3.5). We also extend Kaneko's [4] uniqueness result
for linear complementarity problems with positive semidefinite matrices
to a local uniqueness result for 1inear complementarity problems with

arbitrary matrices (Theorem 3.8). Finally in Section 4 of the paper we
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extend the results of Section 3 to the nonlinear complementarity prob-
Tem and give sufficient conditions for the local uniqueness of solutions
of the nonlinear complementarity problem. sufficient conditions for the
global uniqueness of solutions of the nonlinear complementarity

problem have been given in [1,5,13,14,15]. When the functions defining
the nonlinear complementarity problem are twice differentiable at the
solution point we show that these various sufficient conditions for
global uniqueness imply the hypothesis one of our sufficient conditions
for local uniqueness (Corollary 4.4). Similarly we show that Kojima's
[7] condition which ensures that a certain function is one-to-one and
which in turn guarantees the local uniqueness of a nonlinear complemen-
tarity problem solution, implies the hypothesis of another one of our
sufficient conditions for local uniqueness (Covollary 4.7).

We note that in [9] a slightly sharper second order necessary
optimality condition than that of McCormick [8,3] was shown to be also
sufficient for a point to be a local but not necessarily strict minimum
of a quadratic program. This characterization cannot, of course, be
used to establish the local uniqueness of a solution to either a

quadratic program or a linear complementarity problem.



2. Locally Unique Solutions of Quadratic Programs

We consider the quadratic program of finding an X in R"

will

that

minimize %—xQx + px subject to Ax £ b, Cx = d (2.1)

where Q, A and C are given nxn, mxn and kxn real matrices

respectively, with Q being symmetric, and p, b and d are given

k n

vectors in Rn, R™ and R“ respectively. A point x in R
satisfying the constraints Ax <b and Cx =d s called feasible.
A feasible point x in R such that %-RQZ + pi:i-% xQx + px for
all feasible x 1in some open Euclidean ball around x is called a

local solution of (2.1), and if equality holds only for x=Xx then

% is said to be a locally unique solution of (2.1). It is well

known [6,10] that if % is a local solution of (2.1) then there

m+k

exists (u,v) in R such that (X,u,v) satisfies the Karush-

Kuhn-Tucker conditions

G+AG+CV+p=0
) (2.2)
Ax < b, u >0, u(Ax-b) = 0, Cx = d
where the superscript T denotes matrix transposition, whereas
vectors are either row or column vectors depending on the context.
If we further define the constraint index sets
1= {ilAii=bi}

-~
I

- {ilU{—'O, A1X=b1} C I



where subscripts denote matrix rows or vector elements, then
McCormick's [8,3] second order sufficient optimality conditions

consist of (2.2) and the implication that

AiX=O, ied
AiX;O’ 'iEK

x# 0

These second order conditions (2.2)-(2.4) imply that [8,3] X fis a
Tocally unique solution of (2.1). We will now show that the converse

is also true.

2.1 Theorem (Characterization of locally unique solutions of
quadratic programs) The point x in R" s a locally unique
solution of the quadratic program (2.1) if and only if X and some

(u,v) in Rm+k satisfy the conditions (2.2)-(2.4).

Proof (Necessity) Because X is a local solution of (2.1), the

Karush-Kuhn-Tucker conditions (2.2) are satisfied [10]. We will now
show that if (2.4) does not hold then X is not a locally unique

solution of (2.1). If (2.4) does not hold then there exists an X
n

in R such that
A_iX = 0, i 6&] (2-5)
Aix <0, iek (2.6)
Cx =0 (2.7)
x # 0 (2.8)

xQx < 0 (2.9)



It follows then that

(XQ+p)x = =(UA+VC)X
= - Z u.A.x - Z WA.x - vCx = 0
ied 'V qek '
Define
_ A.X-b.
8 = minimum {-( ! 1), 1} >0

141, Ax >0 Agx

Then for 0 < § < §, it follows that X + 6x # x and

Ai(x+6x) - bs

Ai(§+6x) - b, <0 for iel (By (2.5) and (2.6))
C (x+8x) ~d =20 (By (2.7))
1

L(zeox) Q(Ra6x) + p(Reox) - (p Kkp)

N

<0 for ifI (By (2.11))

= 5(XQHp)x + 5 67x0x < 0 (By (2.10) and (2.9))

Hence for each 8¢(0,8], x +6x is a feasible point distinct from

x and

—

-

%(i+6x) Q (x+6x) + p(x+6x) = 5 XQx + pX

for ée(O,min{S,GO/HxH}), where 8, ~is the radius of the open

Euclidean ball around X for which x 1is a Tocal minimum of (2.1)

and IIxll is the Euclidean norm of x. It follows that X cannot be

a locally unique solution of (2.1).

(Sufficiency) See [8,3]. DO



3. Locally Unique Solutions of the Linear Complementarity Problem

We consider the linear complementarity problem [2,16] of finding

an x 1in R" such that
Mx +q >0, x>0, x(Mx+q) = 0 (3.1)

where M is a given nxn real matrix and g is a given vector in

R". A solution X 1is a locally unique solution of (3.1) if there

exists an open Fuclidean ball around X which contains no other
solution of (3.1). It is obvious that X is a solution of the

linear complementarity problem if and only if Mx +q >0, x>0 and
0 = X(Mx+q) = minimum {x(Mx+q) |Mx+q>0, x>0} (3.2)
The Karush-Kuhn-Tucker conditions for the quadratic program (3.2) are
MM)x +q - MG -7=0
M +q >0, 0> 0, u(Mx+q) =0 (3.3)

x>0, vV>0,vx=0
for some (u,v) in R It immediately follows from (3.2) that

u=Xx and Vv = Mx -

-+
L0

satisfy the conditions (3.3) by rendering them into
MX +q > 0, X >0, Xx(Mx+q) =0 (3.4)

which is precisely the linear complementarity problem (3.1) satisfied

by X. We can now apply Theorem 2.1 to obtain a local uniqueness



result for (3.2) and equivalently for (3.1). We first define the

index sets for u=Xx and V=Mx+q

I = {i|M;x+q;>0} = {i]v;>0}
J = {i]x;>0} = {i|u;>0} (3.5)
K =

{i|M,x+q,=0, X;=0} = {i]V;=0, U;=0}

We further define submatrices of M such as MJ as that submatrix

of M with rows Mi’ ied, and MJK as that submatrix of M with
elements Mij’ ied, jeK. Similarly we define the vector Xy as
that vector with elements Xy ied. The implication (2.4) when
applied to the quadratic program (3.2) and its optimality conditions

(3.3) becomes, upon recalling that u=X and V=Mx+q,
0
0
Xy = 0 = xMx >0
0
0

which is equivalent to

Myg¥g HMagX =

ki 20

XK;O

0

M +M

ka3 — X, (M, XM X)) > 0 (3.6)
KM 'KJ™d KKK :

(XJ’ XK) ?éo

Direct application now of Theorem 2.1 to the quadratic program (3.2)

gives the following characterization of locally unique solutions of



(3.2) and equivalently of (3.1).

3.1 Theorem (Characterization of Tocally unique solutions of the
Tinear complementarity problem) A point x in R" is a locally
unique solution of the linear complementarity problem (3.1) if and
only if conditions (3.4)-(3.6) are satisfied.

The following corollaries are straightforward consequences of

Theorem 3.1.

3.2 Corollary (Characterization of Tocally unique nondegenerate
solutions of the linear complementarity problem) A nondegenerate
solution X of the linear complementarity problem (3.1) (that is
K in (3.5) is empty) is locally unique if and only if MJJ is

nonsingular, where J is defined in (3.5).

3.3 Corollary (Local uniqueness of the origin as a solution of
the linear complementarity problem) The origin in R" s a Tocally
unique solution of the linear complementarity problem (3.1) if and

only if q>0 and there exists no Xy such that

MKKXK=i 0, 0 # Xy > 0, X Myyxy = 0 (3.7)

where

K= {i !q1-=0}

If q>0 then the origin is a locally unique solution of the

Tinear complementarity problem.



Note that if implication (3.6) does not hold, then there exists

a partition {KO, K]} of K, that is KO u K 0

such that Xy =0 and

0
MagXa Mok, Xk, 0
M, x, +M x, =10
K]J J K]K] K]

(x5 XKl) # 0

Conditions (3.8) cannot be true if M has nonsingular principal
submatrices. Thus from Theorem 3.1 follows a corollary which is
also a consequence of Murty's result [16, Theorem 3.2] that the
number of solutions of the linear complementarity problem is finite

n

for all q in R’ if and only if M has nonsingular principal

submatrices.

3.4 Corollary (Murty [16]) If M has nonsingular principal sub-
matrices then each solution of the linear complementarity problem
(3.1) is Tocally unique.

We now state and prove a paraphrase of Theorem 3.1 which may
be more convenient at times. The hypothesis of this paraphrase is

jmplied by Robinson's strong regularity condition [17].

3.5 Theorem (Characterization of locally unique solutions of the

N §s a Tocally

linear complementarity problem) A point x in R
unique solution of the linear complementarity problem (3.1) if and

only if % satisfies (3.4) and for J and K defined by (3.5)

K, = K and Ky n K] = ¢,

(3.8)
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Mg
Columns of M are linearly independent (3.9)
KJ

and for each partition {KO, K]} of K the following system has a

solution (ujs uKO, UK])

T T T
M u, +M, u, +M =0
Jd d KOJ KO K1J K]
T T
M + M + M <0 (3.10)
S A
u >0
Ko

Proof We need to show that the implication (3.6) is equivalent to

the condition (3.9) and to (3.10) having a solution for each
partition {KO, K1} of K. The implication (3.6) is equivalent to
this: For each partition {KO, K]} of K the following system

has no solution

Mag %ot Mok, Xk, Mk kg O

Moo %ot Mgy MK, YKy 2 °
M 0% Mk Mg 0 (3.11)

xKO =0

XK1‘3 0

(xJ R XKO , 1)# 0
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This in turn is equivalent to the following system not having a

solution for each partition {KO, K]} of K and for each (cJ,cK )
1

M Xx.+ M

X =
Jd J JK] K]

M

K + M

v
o

X Xy
OJ J K0K1 h]‘-

M X,+ M X,
K]J J K]K] K]

>
7~
1A%
O

By Motzkin's theorem of the alternative [10] this is equivalent to

the following system having a solution for each partition {KO’Kl}

of K and for each (cJ, CK])

T T T
Ut MKOJ u, * MK]J Uy

M =
0 1

T

T T
3K, 19 ug M ¢

M
KoKy Ko KKy

+ M

A

u c
K K

1
u, >0
Kg=

Because the first equation of (3.13) is solvable for each

- . T T T
follows that the rows of (MJJ MKOJ ‘MK]

which is equivalent to (3.9). By taking in (3.13) cy = -M

T
c = =M, e - e where e
Ky KoKy Ko K Ko 1

€

T

Ko

it

ey
J kO

and eK are vectors of ones

(3.12)

(3.13)

J) are linearly independent
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it follows that the system (3.10) has a solution for each partition
{K 0° K } of K. We have thus shown that (3.13) having a solution
for each partition of {KO, K]} of K and each (CJ, cy ) implies
1

that (3.9) holds and (3.10) has a solution for each partition

{KO,
partition of K and take any (c,, ¢, ). Let (U, Uy » u

J K] J ho

Kl} of K. We now show the converse. Let {KO, K]} be any

) be
Ky

a solution of the first equation of (3.13), which by the Tinear

M

independence of the columns of (&

JJ) must have a solution for each

Kd

Cge Because (3.10) has a solution for each partition {K

K.} of

OS
GK ) satisfying
0 M

]
K it follows that there exists (G], GK

T
Jd

T

~ T
M u M =

t
<o

0.+ M
J 0
.

JK

T o T
+ M
KOK K KlK

M ﬁJ+M

A
je)

1K1

a)

u >0
Ko

1 1

Hence for sufficiently large positive A, the point
(uJ+qu, U FAy 5 Uy AUy ) solves (3.13). O
0 0 1 1
We conclude by stating and proving a corollary to Theorem 3.5
which gives a sufficient condition for the local uniqueness of a
solution to the linear complementarity problem. Robinson's strong
regularity condition for the linear complementarity problem

[17, Theorem 3.1] is that MJJ is nonsingular and all the principal
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Myg Mok
subdeterminants of the Schur complement of M in Ml
JJ MKJ MKK

-1

that is M —MKJ JJMJK’ be positive. Robinson's condition implies

KK
among other things the local uniqueness of a solution of the Tinear
complementarity problem. It is obvious that Robinson's strong
regularity condition ensures the satisfaction of the hypothesis of

the following sufficient condition for Jocal uniqueness of a linear

complementarity problem solution.

3.6 Corollary (Sufficient condition for local uniqueness of a
linear complementarity problem solution) Let x be a solution of
the linear complementarity problem (3.1) and let J and K be
defined by (3.5). If MJJ and the principal submatrices of the

1

Schur complement MKK'"MKJIWJJMJK are nonsingular then X a locally

unique solution of (3.1).

Proof The nonsingularity of M,,; ensures the satisfaction of

EK,

condition (3.9). Condition (3.10) is satisfied by taking uy =
0 0

a vector of ones, and noting that

T T T
Mo, u, + M u, = -M e
Jd d K1J K1 KOJ K0
T -
M., u T I
JK, 79 + M u, = -e, -~ M, e
1 KlK] K] K1 kOK] KO
where ey is a vector of ones, has a solution for any K1c K
1

T T T \=1,T .
because MJJ and MK]K]"MJK](MJJ) MK1J are nonsingular. Hence by

Theorem 3.5, x is a locally unique solution of the linear

complementarity problem. [
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Corollary 3.6 can be stated in another equivalent and simpler

way as follows.

3.7 Corollary (Sufficient condition for local uniqueness of a
Tinear complementarity problem solution) Let X be a solution of
the linear complementarity problem (3.1), let J and K be defined
by (3.5) and Tet H=JuK. If all principal submatrices of MHH
containing MJJ are nonsingular then X is a locally unique
solution of (3.1).

Note that Corollary 3.7 is stronger then Corollary 3.4 because

in Corollary 3.7 MJ‘J itself need not have nonsingular principal

submatrices nor does MII’

We conclude this section by giving a characterization of unique-
ness when MJJ is nonsingular. This result follows easily from
Theorem 3.1 and extends a result of Kaneko [4] for positive semi-

definite matrices to arbitrary matrices.

3.8 Theorem (Characterization of Tocally unique sotutions in terms
of principal pivotal transforms) Let X be a solution of the Tinear
complementarity problem (3.1), let J and K be defined by (3.5) and
let MJJ be nonsingular. Then % is a locally unigue solution of
(3.1) if and only if xK==O is the only solution of the following

Tinear complementarity problem

M~ Mg J) M) ¥ 20
Xy ;:0 (3.14)
1
Xy My =My g Myg M) X



-15-

Proof That (3.14) has only zero as a solution is a paraphrase of

implication (3.6) when MJJ is nonsingular. This theorem then

follows from Theorem 3.1. [
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4. Sufficient Conditions for the Local Uniqueness of Solutions

of the Nonlinear Complementarity Problem

The nonlinear complementarity problem [1] is that of finding an

" such that

x in R
F(x) >0, x>0, xF(x) =0 (4.1)

where F is a given function from R" dnto itself. A solution X

is a locally unique solution of (4.1) if there exists an open

Euclidean ball around X which contains no other solution of (4.1).
Locally unique solutions are required in the application of certain
computational algorithms such as Newton or quasi-Newton methods

[12]. We shall follow here the same approach as that of the previous
section and note that X is a solution of the nonlinear complementarity

problem (4,1) if and only if F(x) > 0, x >0 and
0 = XF(X) = minimum {xF(x)]F(x)>0, x>0} (4.2)

We can now apply McCormick's [8,3] second order sufficient optimality
conditions for the local uniqueness of X as a solution to (4.2) and
consequently obtain the equivalent local uniqueness of X as a

solution of (4.1). Because the problem (4.2) is not quadratic these
second order sufficient conditions are not necessary for local uniqueness
anymore. The Karush-Kuhn-Tucker conditions for the nonlinear program

(4.2) are

F(X) + X VF(X) - UvF(x) ~v=0
F(X) > 0, u > 0, uF(x) =0 (4.3)

>0, v>0, vx = 0

X1
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for some (u,v) in RZn’ where vF(X) ds the Jacobian of F at X,
row i of which is given by vFi(i). It follows from (4.2) that

U=% and v=F(X) satisfy (4.3) by rendering it into
F(x) >0, x >0, xF(x) =0 (4.4)

which is the nonlinear complementarity problem (4.1) satisfied by
X. We can now apply McCormick's [8,3] second order sufficient
optimality conditions to (4.2) and (4.3) with u=x and v=F(x)

to obtain a local uniqueness result. First we define the index sets

I= {i|F;(X)>0} = {i][v;>0}
J = {i]x;>0} = {i]u;>0} (4.5)
K= {i]F,(X)=0, x;=0} = {i]v;=0, u;=0}

We further define submatrices of the Jacobian vF(x) such as
VFJ(R) as that submatrix of VF(x) with rows vFi(i), ied.

We also define Vy FJ(i) as that submatrix of VF(X)

with elements aFi(x), ied, jeK, and vZFi(x) as the nxn Hessian
oX.
J

of F; at x. If we let L(x,u,v) denote the Lagrangian of the

minimization problem (4.2), that is

L(x,u,v) = xF(x) - uF(x) - vx

2n

with (u,v) 1in R™", then the nxn Hessian vuL(x,u,v) of

L(x,u,v) with respect to x is given by
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n
vub{x,u,v) = vF(x) + VF(X)T‘* Z

‘ (xi—ui) szi(x)
i

1
and consequently if we set x=X, u=u=x and v=v=F(x) we have

that

vl (5,0,7) = 9F(R) + vF(R)T

Note that this is an expression that does not contain second
partial derivatives of F. Now application of McCormick's second
order sufficient optimality conditions [8,3] to the nonlinear

program (4.2) gives upon noting that u =% and Vv=F(x)

VFJ(x)g =0

vFK(x)x >0
xp= 0 —s xVF(X)x>0
sz:O
x#0

which is equivalent to

VJFJ(Q)XJ-+VKFJ(§)XK==O

0

v

VJFK(Q)XJ-vaFK(R)x. _ ) .
. —_— xK(VJFK(x)xJ+VKFK(x)xK) 0 (4.6)

v

Xk

We thus have the following sufficient condition for the Tocal

uniqueness of x as a solution of (4.2) or equivalently of (4.1).
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4.1 Theorem (Sufficient conditions for Tocal uniqueness of
solutions of the nonlinear complementarity problem)  If a point X
in R" satisfies the conditions (4.4)-(4.6) and if F s twice
differentiable at X, then x is a locally unique solution of
the nonlinear complementarity problem (4.1).

The following corollaries and theorems follow from Theorem
4.1 in a very similar manner as the corresponding corollaries and
theorems of Section 3 follow from Theorem 3.1 and hence we shall

omit their proofs.

4.2 Corollary (Sufficient conditions for Tocal uniqueness of
nondegenerate solutions of the nonlinear complementarity problem)
A nondegenerate solution %X of the nonlinear complementarity
problem (4.1) (that is K in (4,5) is empty) is Tocally unique

if F s twice differentiable at x and VJFJ(Q) is nonsingular,

where J is defined in (4.5).

4.3 Corollary (Sufficient conditions for local uniqueness of the
origin as a solution of the nonlinear complementarity problem) The
origin in R" is a locally unique solution of the nonlinear com-
plementarity problem (4.1) if F s twice differentiable at the

origin, F(0) > 0 and there exists no Xy such that
VKFK(O)XKio’ 0#xg20, xKvKFK(O)xK=0 (4.7)

where

K = {i|F,(0)=0)
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If F is coninuous at the origin and F(0) > 0 then the origin is

a locally unique solution of the nonlinear complementarity problem.

4.4 Corollary Let X be a solution of the nonlinear complemen-
tarity problem (4.1) and let F be twice differentiable at x. If
vF(X) has nonsingular principal submatrices then x is a locally
unique solution of the nonlinear complementarity problem (4.1).

Megiddo and Kojima [13, Proposition 3.6] show that each of the
sufficient conditions for global uniqueness of Cottle, Karamardian
and Moré [1,5,14,15] implies one of their conditions [13, Theorem 3.4],
which in turn imples that vF(X) has positive principal subdetermi-
nants. Hence under the assumption that F is twice differentiable
at X% all these conditions imply the weaker local uniqueness condi-
tion of Corollary 4.4 that vF(x) has nonsingular principal
submatrices.

In [12] local uniqueness of a solution X to the nonlinear
complementarity problem (4.1) is implied by a nondegeneracy
assumption, that is X +F(x) >0 and nonsingularity of the principal
submatrices of vF(X). Corollary 4.4 replaces the nondegeneracy

assumption by the twice differentiability assumption of F at x.

4.5 Theorem (Sufficient conditions for Tocal uniqueness of solutions
of the nonlinear complementarity problem) Let X be a solution of
the nonlinear complementarity problem (4.1), let F be twice

differentiable at X, let J and K be defined as in (4.5), let
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V)F](i)

Columns of oY be Tinearly independent (4.9)
vJFK(x)

and for each partition {KO, K1} of K let the following system

have a solution (ud, uKO, uKl)

o\ T
(x) Uy -FVJFK

-7
v.F(X) u,+v,F
J J J J K0 0 1

-7
(x) UK] 0

T “\T T
) u Vg FK (x) g +V )

v, F.(x
Ky 90 7 Ky Ky 0

: Uy <0 (4.10)

F, (x
Ky K 1

u, >0
Ko

Then X is a locally unique solution of the nonlinear complemen-

tarity problem (4.1).

4.6 Corollary Let %X solve the nonlinear complementarity problem
(4.1), let F be twice differentiable at X and let J and K
be defined by (4.5). If VJFJ(R) and the principal submatrices of

the Schur complement
- U, | -
vKFK(x)-vJFK(x)vJFJ(x) VKFJ(x)

are nonsingular then x 1is a locally unique solution of the non-

linear complementarity problem (4.1).

4.7 Corollary Let % solve the nonlinear complementarity problem
(4.1), let F be twice differentiable at X, let J and K be
defined by (4.5) and let H=JuK. If all the principal submatrices
of VHFH(i) containing vJFJ(i) are nonsingular then X fis a

locally unique solution of the nonlinear complementarity problem (4.1).
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We note that Kojima's Theorem 5-6(b) [7] shows that a certain
function is locally one-to-one which in turn guarantees that a
solution to the nonlinear complementarity problem is locally unique.
Kojima's theorem requires that all the principal subdeterminants of
Vi FH(i) containing V, FJ(i), as defined in Corollary 4.7, be
positive. This is a stronger requirement than that of Corollary 4.7

which requires that these same subdeterminants be nonzero.

4.8 Theorem Let X be a solution of the nonlinear complementarity
problem (4.1), let J and K be defined by (4.5) and let vy FJ(i)
be nonsingular. Then X is a locally unique solution of (4.1) if
xK==O is the only solution of the following linear complementarity
problem

v

0
0

(VF () = TyF(R) VF (07195 (0) %,
XK

v

x (TR (R) = Ty (8) 7P (K71, F () xy = 0.
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