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by Bernard André Dion
Under tﬁe supervision of Assistant Professor Charles N. Fischer

ABSTRACT

A model of error correction is presented. Upon detec-
tion of a syntax error, a Jlocally least-cost corrector
operates by deleting @ or more input symbols and inserting a
terminal string that guarantees that the first non-deleted
symbol will be accepted by the parser. The total correction
cost, as defined by a table of deletion and insertion costs,

is minimized.

Previous work with the LL(l) parsing technique is sum-
marized and a locally least-cost error corrector for
LR(1)-based parsers is developed. Correctness as well as
time and space complexity are discussed. In particular,
linearity is established in the <case of a bounded depth

parse stack. Implementation results are presented.

" Attributed grammars can bé used to specify the
context-sensitive syntax of programming languages. A formal
presentation of Attribute-Free LL(l) parsing is given and a
locally least-cost error corrector for AF-LL(l) parsers is

developed for the case in which the attributes that control
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context-sensitive correctness have finite domains. The
algorithm is shown to have the same properties as its LL(1)

and LR(]) counterparts.



ACKNOWLEDGEMENTS

I wish to thank Professor Charles Fischer for his con-
stant encouragement and advice throughout my entire research
work. I would also like to thank Professors Marvin Solomon
and Robert Cook for their dedicated reading of the
manuscript and Professors Raphael Finkel and James Smith for

serving on the committee.

My fellow graduate students have made a variety of con-
tributions to this work. I am indebted to Donn Milton, Wil-

liam Cox and Stephen SkedzielewskKi.

I am grateful to the French Government, the Computer
Sciences Department at the University of Wisconsin and the

National Science Foundation for their financial support.

I want to show my deepest appreciation to my friend
Jane Henderson. Finally, I wish to express my gratitude to

my wife Annick, my son Sébastien and my parents.




to Sébastien



vii

TABLE OF CONTENTS

r 1: INTRODUCTION.coeovosssooscccsonasscosccascssaaos
] Programming ErrOrS...cccccoceseccccscsscccscnacscss
2 Syntactic Error Correction..ccccecsccccccccacee
3 Definitions and NotationS.eeececsocssccccscoccsss
4 An Error Corrector for LL(l) Parsers.ecccccceccss
5 Organization of the TheSiS...ccceccecocecoccccs

D) e
ROV ~d (WD »=et e

Chapter 2: AN INSERTION-ONLY ERROR CORRECTOR

FOR LR(])-BASED PARSERS:.:cccscececccscncscns 21
1 LR(l) ParSing.ccsceccecccccscscsccscsssacescncsnce 21
2 Immediate Error DetecCtiON....ccsceecscccscoaccss 28
3 Right Context of an IteM..cccceccccccacocccaccs 32
4 The Error COrreCtOleeeceececccscssscsacscnssoccnss 40
5 Properties of the Error Corrector....ccceeccee. 55
6 Testing Insert-Correctability..ccececcccocaancs 66

Chapter 3: A LOCALLY LEAST-COST ERROR CORRECTOR
FOR LR(1)~-BASED PARSERS..seeecsccccccocccccs 74
3.1 The Error COIrreCtOrcececceccsssccccscscsansasss 14
3.2 Properties of the Error Corrector....c.ceseccsecse 78
3.3 Implementation ResSultS..cecsccceccccccncccncscs 840

Chapter 4: CONTEXT-SENSITIVE ERROR CORRECTION..ccsaasoe 87
4.1 INtroducCtioN..eecececcceecaceeasscccssoanssonsas 87
4.2 Attributed GramMArS.eececececccssscsssasssesscass 88
4.3 Attribute-Free LL(l) Parsing...ceceececsscceess 182
4.4 The Error COrreCtOrleeececeecsccsssscssassscscace 187
4.5 Properties of the Error Corrector..cccecececese 118

Chapter 5: CoNCLUS IONSQ o © 9 © € 8 0 O O » & © 0 O o O © @ 9 0 8 & v 0 © ® O 0 O © L I 133
5.1 Summary'l-...I..'..l.....‘.‘.'...........'..'... 133
5.2 Directions for Future ResearChe.ceceecsscesssass 134

APPENDIXueoeocoososocecssasosssconcsossaassoscssssoencsscssss 137

A.l1 S and E Tables CalculatioN....ceeccecesccsccesas 137
2 CFSM Construction Algorithm...cceescecaseesosss 139
3 Bottom Up Stack Traversal LR Error Corrector... 140
4 PASCAL IC and DC FUncCtionS...cesscesscssccoacss 143
5 The SAF~LL(]) ParsSer..cesosscesscscccesoscccacsse 144
4 Attributed S and E Tables Calculation.....c.... 146

b ik i i i

BIBLIOGRAPHY.C.Q.0.'0.l'...l.O.......le‘..........l.o... 153




viii

TABLE OF FIGURES

1.4.1 function LL Insert..cccceccss R

2.2.1 Gy'S CESMuiueueunennensnennsasasnasasososnononasoe 29
2.3.1 closure graph constructioN.c.cececescecssccscosss 33
2.3.2 Gy'S CPSMuveeeeerccrocanoonss P 1
2.3.3 closure graph Cl(sg)eccccc... T )
2.3.4 procedure LocalContext...... eeseccsssssscecccscse 37
2.4.1 procedure LocalCorrection...cecoceecscsvencoscsscs 43
2.4.2 back-linking itemS...ceo.. cesssn cecevcascan R 1
2.4.3 error correction graph...;......................: 47
2.4.4 function LR _INSert..c.cceccessccaccccscccccancoes 5B
2.4.5 error correction graphe.c.... ..................:. 53

2.6.1 extended CFSM for G300‘...o.ct.oo.oo..toolho....- 72

3.1.1 procedure LR COrrectOr...cscsccccovcccscscscccccncs 17

3.3.1 PASCAL test program-c--...o..ol-oo-.Q......o.t.oo 84

4.4.]1 the SAF-LL(l) error correction tree.cceccocccscscss 112
4'4.2 function SAF-LLuInSert.....‘O....'.........‘.'I.. 114

4.4.3 procedure AF-LL CorrectOr..cccecccccccscsccccncess 115



Chapter 1 : INTRODUCTION

i.1 Programming Errors

A substantial portion of a programmer's time 1is spent
in correcting errors. These errors can be divided into

several categories. Syntax error: the program cannot Dbe

generated by the grammar rules that define the programming
language. We assume these rules to be defined by a grammar
that includes both the wusual context-free specification
(BNF) and context-sensitive restrictions, sometimes called

static semantics. Semantic error: the program is grammati-

cally correct but does not conform to certain restrictions
which, in general, can only be enforced at run-time (e.g.,

subscript out of range). Logical error: the program has a

run-time effect that is different £from the programmer's

intention.

Automatic detection and correction of program errors
can decrease the cost and enhance the quality of programs.
This thesis is exclusively concerned with the automatic

detection and correction of syntactic errors. However,




extensive research is currently under way in all three
domains. Detection of semantic errors has been studied for
a long time. Some problems are now well understood (e.g.
subscript checking); others were recently discovered and
require more elaborate solutions (e.g. tag checking in PAS-
CAL [FL 77]). Detection of logical errors can be achieved
by using formal program verification techniques. However,
it is not now possible to rigorously prove the correctness
of programs of substantial size and such proof may never be

common practice (see for example [DLP 77]).

Detection and correction of errors is not the only way
to deal with the complex task of program development. It is
also desirable to avoid having errors in the £first place.
structured programming technigues [DDH 72] are intended to
reduce the complexity of programming by restricting the pro-
cess of creating programs. Further, good language design
can provide mechanisms to minimize the presence of errors of

all three kinds.



1.2 Syntactic Error Correction

The problem of correcting context-free syntax errors
has received much attention. Let us distinguish between
error recovery and error correction. By error recovery, we
mean the process of restarting the parser in a valid confi-
guration after a syntax error has been discovered. By error

correction, we mean the process of transforming a syntacti-

cally incorrect program into a correct one.

Automatic correction of syntax errors is controversial.
The argument against it is that the programmer ought to
correct all errors, being the only one who knows what 1is
really wanted. However, we think error correction can be
very useful for several reasons. As noted by Holt and Bar-
nard [HB 76], the task of learning a programming language is
considerably easier when the compiler produces good diagnos-—
tics. Extensive experimentation has been done with the PL/C
compiler developed at Cornell University [CWw 73] and the
SP/k compiler developed at the University of Toronto
[HB 76]. These two student-oriented compilers have been
very successful in correcting syntax errors. They also try
to generate code, even in the presence of minor errors, soO

that execution can be started, giving the student a chance

to eliminate logical errors in initial runs.




Error correction can be useful in é production
environment too. Although no compiler can always guess the
programmer‘s intention, it should not skip large portions of
a source program to recover from errors. Error recovery, at
least, is needed to allow detection of most syntax errors in
a single compilation. As we will see later, the error
correction schemes we present in this dissertation can be
used silently (i.e., without generation of error correction
messages) to provide high quality recovery. Moreover, it
appears that many common syntax errors can be readily and

"correctly" repaired.

Since 1Irons [Iro 63] devéloped one of the first
grammar-based error correctors, a considerable amount of
work has been devoted to this domain. However, no entirely
satisfactory solution has yet been found. The place of
error correction within a compiler development project is
discussed by Aho and Ullman [AU 77; Chapter 11]. .The treat-
ment of lexical errors falls outside the scope of this
thesis. A survey of formal methods for correcting regular
languages can be found in [BAC 77j. Algorithms for correct-
ing spelling errors have been presented by Morgan [Mor 78].
We will assume that the input string has been preprocessed

by a scanner, providing a token stream to the parser.

The oldest recovery scheme 1is called panic mode



recovery. wWhen an error is detected, the parser skips input
symbols until a "safe" symbol such as "." or "end" is found.
The parse stack is then erased until the safe symbol can
follow the top of the parse stack. A more elaborate version

of this technique is the phrase level recovery described by

Leinius |[Lei 78] and James [Jam 72]. The construct (i.e.
phrase) currently being recognized is simply assumed to be
completed, and input symbols are skipped until a symbol
that can follow this construct is reached. Although they
are simple and efficient, these techniques suffer very seri-
ous drawbacks. Since portions of the input program are
skipped during error recovery, many compilations may be
needed to remove all syntax errors. Further, it is very
often the case that ill-chosen recovery induces a cascade of

errors, where in fact only one error was present.

Most of the early error correction methods were essen-
tially ad hoc. For example, error entries in a parse table
were often replaced by error actiéns, usually "insert a ter-
minal string" or "delete the next input symbol". This
scheme was introduced by Conway and Maxwell £for the CORC
compiler [CM 63] and later adapted to the Cornell PL/C com-
piler [CW 73]. Again, such techniques have major Ddisadvan—
tages: their implementation has to be done by hand, they can

fail on unanticipated errors, and they do not survive gram-




mar modifications.

Aho and Peterson introduced the first error correction

scheme based on a minimization model [AP 72]. Possible

corrections are insertions, deletions and replacements of
terminal symbols. A cost is associated with each possible
correction. The total correction cost is the sum of the
costs of correcting individual errors. Aho and Peterson
show how this total cost can be minimized. The underlying
parsing method is Earley's algorithm; errors are handled by

the automatic addition of error productions to the original

context-free grammar. (E.g. a —> € models a deletion

error.)

Whenever an error production is used, the cost of the
corresponding correction is recorded. This algorithm has
obvious disadvantages. Since Earley's algorithm is used for
parsing, its worst case running time is cubic in the size of
the input string. Similar ideas cannot be adapteé to prac-
tical parsing algorithms such as LL(l) or LR(l), because
the addition of error productions renders the grammar large
and ambiguous [AP 72]. However, this work has had a very
important theoretical impact. Because of the fact that a
minimization model is used, least-cost corrections can be
obtained, not merely plausible corréctions. Also, any

source program can be corrected and parsed, eliminating the



need for panic mode recovery that is used when the error

corrector fails (e.g. [CW 73]).

The minimization model used by Aho and Peterson can be
termed global, in the sense that the effect of a given
correction is weighted against the whole program. Consider-
ing the fact that such an approach seems to be inherently
complex, a local minimization model has been proposed by
Fischer, Milton and Quiring [FMQ 77]. Since our thesis is
an extension of this work to different parsing algorithms,

we will present it in detail in a later section.

1.3 Definitions and Notations

In this section we review some basic definitions
related to formal grammars, formal languages and parsers.
We also introduce some concepts that will be needed when we

discuss the correction of context-free languages.

An alphabet or vocabulary is a finite set of symbols.

A sentence over an alphabet is any string of finite length
composed of symbols of the alphabet. The empty sentence, €,

is the sentence consisting of no symbols. If [ is an alpha-

bet, r* denétes the set of all sentences composed of symbols




*
of I', including the empty sentence. Fk denotes the set of

*
all sentences over [ having at most k symbols. IfFxerl ,

|x| denotes the length of x.

Context-free Grammars

pefinition 1.3.1 : A context-free grammar (cfg) is a qua-

druple G = (V, Vt' P, S) where

\'/
n

v

We call V = Vn uv

tion

t

is a finite set of nonterminal symbols.

is a finite set of terminal symbols, disjoint from

V_.
n

*
is a finite subset of VnX(Vn u Vt) , whose elements

will be denoted A —> X;...Xp- A is called the

left-hand side (LHS) of the production and Xj...Xy

is called the right-hand side (RHS). For conveni-

ence, we assign an arbitrary but fixed numbering to
the productions so that we may refer to Pi’ LHS;,

RHSi' fOr i = 1’--0' ‘Plo

is a distinguished element of V., the start symbol;

it does not appear on the right-hand side of any

production in P. Xi

N the vocabulary of G. Any produc-

may have an empty right-hand side. Such productions



*
are written A —> €. If A, B, yev and A—> B € P, we

say that dAY directly derives dBY, denoted by gAYy == dBY.

The reflexive and transitive closure of => 1is denoted by

*
=>, and its transitive closure by ==j.

We designate by SF(G) the set of sentential forms
derivable from S, that is

SF@G) = {({d eV | S =>d}

*
The language generated by G is L(G) = SF(G) I Vo

A derivation S = d;} = dy =D...= dp is said to be

a rightmost derivation if at each step the production being

used is applied to the rightmost nonterminal in the senten-
%

tial form ;. We use the notations =?$ and =?$ for right-

most derivations. Leftmost derivations are defined in a

*
similar manner and will be denoted by =T$ and =T$.

A cfg is said to be unambiguous if w € L(G) implies w
has a unique rightmost (or leftmost) derivation. We say
that B is a phrase of a sentential form dBY if there exists

* .
a derivation S == JAY = dBY. B 1is a simple phrase if

dAY == qBY. A leftmost simple phrase of a sentential form

is called a handle.

To every sentential form there corresponds a derivation

tree. The root of the tree is 5. If A € V, is rewritten
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using A —> Xj...Xpy then A has Xj,...,X, as direct descen-
dants. If G is unambiguous, then every sentence in L(G) has

a unique derivation tree.

A cfg is said to be reduced if ¥V A€V,

* *
(1) s =>...A... and (2) Jw e Vt such that A ==$ We

Given a cfg G = (Vp, Vt' P, S), the corresponding

augmented grammar is G' = (V, u {s'}, Vv U {s}, P
u {s' —> $S$}, S'), where S' and $§ (the end marker) are new
symbols not in V. Let us denote V_u {$} by Gt and
v, u {s'} by ¥,- Also let ¥ = Vt u ¢ . From now on we will

assume, without explicit mention, that all grammars are

reduced and have been so augmented.

The set of terminal symbols that may £follow U €V in
some sentential form of G is given by
A *
Follow®(U) = { a € ¥_ | 8' = ...va... }
The set of terminal symbols that are a one-symbol (or less)
. A%k
prefix of a terminal string derivable from o € V is given
by
. G A]* * A*
First'(d) = { a € v | (d => aw, w € V,,

or (d => a and a = €)}

a € Vt)

In the case G is clearly understood, we use Follow(U) and

First(d) .



Unless otherwise specified, the

for

tion:

ay
A,

U,

naming

strings

C,-..
C’Qc.

W'...

are

are

are

11

following conventions

will be used throughout this disserta-

members
members

members

of V
of ¥

of V.

members of

Yoeoo

W,-..

are

d,

A%
vV .
%
are members of Vt'

u, Vv,

Context-free grammars have been studied in detail.

Properties of context-free grammars can be found in [HU 69]

and [AU 73]. A notation similar to that of PASCAL [Jw 75}

is rather extensively used to describe algorithms.

Context-free Error-Correcting Parsers

pefinition 1.3.2 : A parser is amn algorithm that given a

nk
Vt

(1) signals an error if w £ L(G)

cfg G and w €

X

(2) otherwise determines a derivation tree of w.

A left parse of w is the sequence of productions used

in a lefmost derivation of w. A right parse of w is the

reverse of the sequence of productions used in a rightmost

derivation 6f w. Either a left or a right parse can be used
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to uniquely specify a derivation tree.

In this dissertation, we restrict our attention to
parsers that can deterministically produce a left parse or a
right parse'by a single scan of the input, from left to
right. The LL grammars are those thaé can be parsed
"naturally" (i.e., in a single left-to-right parse using
fixed lookahead) by a deterministic left parser. The LR
grammars are those that can be parsed "naﬁurally“ by a
deterministic right parser. The theory of LL and LR parsers
can be found in [AU 73], with some additional material in

[DeR 71].

We now consider error-correcting parsers for a cfg G

that can be based on these classes of parsers. A correction
will be performed upon detection of a syntax error. Assume
w = Sxal...an$ is such that S° =3 $xy for some y € ?:, but
there is no z € VZ such that S' =3 $xajz, and an error is
detected by the left-to-right parser upon first 'seeing ays

termed the error symbol. The error corrector restarts the

L) » * . *
parsgr by deleting aj...aj, 8 .1 < n and inserting y € Vt

such that S' =3 $xyai+l... T . Such error correcting

parsers are capable of correcting and parsing any input

t The notation S ==$ Xoea. O ... € L(G) means there

. A*
is some y € V_ such that xy € L(G) .
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string if and only if the parser has_ the correct prefix

property, that is if the sequence of symbols to the left of
the erroneous symbol is always the prefix of some w' € L(G)
[LRS 76]. With such schemes, symbols that have been
accepted by the parser can be considered unchangeable, since
the error corrector does not tamper with the left-context.
Therefore, a one-pass compiler never has to "back up" for

semantic and code generation purposes.

In order for the error corrector to succeed, we require
a parser that will never make a (possibly incorrect) move
when an erroneous input symbol appears as the lookahead.

Such a parser is said to have the immediate error detection

property (IEDP) [FTM 78]. It is well-known that full LL(1)
and LR(1) parsers have the IEDP. However, practical varia-
tions such as Strong LL(!), SLR(l), LALR(1) do not. We will
investigate modifications to these algorithms so that the

IEDP holds.

We assume a given insertion cost function IC supplied
with IC(€) = 0 and IC(a) > 8 for all a € ?t. We introduce
a special symbol "2" such that IC(?) = 0. IC($) is assigned
an arbitrary but very large value (say, 18,089) because $
can never be inserted during error correction (it is always

correctly provided as an end marker). We intentionally

avoid setting IC($) to infinity to ensure that the concept
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of a least-cost string is always well-defined (e.qg.
| IC(a$) > IC($)). Also, let the deletion ,cost function
DC(a) > @ for a € V. t be the cost of deleting a. We
define IC(aj...ap) to be IC(a)) + ... + IC(a;) and
DC(aj...ay) to be DC(a;}) + ... + DC(ap) -« We now formally
define locally least-cost error correction as a minimiza-

tion problem.

Definition 1.3.3 : Given an input string $xaj...a,$ such

that $X... € L(G) but $xa1... g L(G), a locally

least-cost error corrector finds an optimal solution

(i,y) to

min { min {DC(al...ai,)+IC(y') I $xy'ai,+l... € L(G)}}

*
g<i'<n y'ev, X

Throughout this dissertation, we will only consider

locally least-cost correctors. The class of corrections we

include in our minimization model is kept intenticnally sim-
ple (replacements and transpositions are not considered).
More complete models seem to unduly complicate the correc-
tioﬁ process and do not appear necessary to obtain useful

error correctors.

t DC($) need not be defined since "$" will never be
involved in a deletion. »
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At times we will even consider a simpler model where a
correction is always done solely by insertion of a terminal

string.

pefinition 1.3.4 : Given an input string $xa... such that

$X... € L(G) but $xa... € L(G), an insertion-only

locally least-cost error corrector £finds an optimal

solution to
min { IC(y") | $xy'a... € L(G) 1}
+
L}
y'ev, X
This later model applies to a restricted class of gram-

mars termed insert-correctable cfg's for which it is

guaranteed that the optimal solution to the above problem is

never "?" [FMQ 771.

Definition 1.3.5 : A cfg G is said to be

* A
insert-correctable if and only if Vv x € V_ and a € V,

such that $x... € L(G) but $xa... £ L(G) there exists

y € V] such that $xya... € L(G). X

Even if G is insert-correctable, the method of Defini-
tion 1.3.3 may vyield a lower cost correction than that of
Definition 1.3.4, but it will require a more complicated

corrector.
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1.4 BAn Error Corrector for LL(l) Parsers

LL(1) Parsing

LL(1) grammars are those for which a parser generating
a left parse can operate deterministically, assuming it is
allowed to look at one input symbol to the right of its
current input position. Informally, an LL(1) parser works
in the following fashion: given a left-sentential form wAdq
that occurs during the parse of wx (where w has already been
processed), the parser can always decide (by construction)
which production was used to expand A knowing only the first
symbol of x. The LL(1) parsing algorithm uses a push-down
stack and a parsing table t

Mo ¥, x ¢ —> {predict i | 1 <1< IP'I} U { error }

where M(A, a) = predict i says production P; has to be used
to expand A when "a" is the next input symbol. The parse
stack contains the part of the current left—senteﬁtial form
that has not yet been expanded (in the above case Ad). The

theory of LL(1) grammars can be found in [AU 73].

t Many models assume M is defined over T x Gt and

include pop and accept in the range of M. However, this

expanded table is not necessary in practice.
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LL(1) Error Correction

A locally least-cost error corrector using only inser-
tions for LL(l) parsers was presented by Fischer, Milton and
Quiring in [FMQ 77]. We will refer to it as the FMQ algo-

rithm.

The error corrector requires the immediate error detec-
tion (IEDP) property. Commonly used Strong LL(1) parsers
don't have the IEDP since productions may be erroneously
predicted when an error symbol is seen as the lookahead.
The FMQ algorithm uses a Full LL(l) parser, which guarantees
the IEDP. (The only difference between Strong and Full
LL(1) parsers is in the size and complexity of the parsing
tables.) However the IEDP can be obtained in Strong LL(!)

parsers as is discussed in [FTM 78].

As noted above the original FMQ algorithm operates by
insertion only. Just as parsers aré driven by precalculated
parsing tables, the error corrector is driven by error
correction tables that can be computed in advance given a
cfg G and IC, the insertion-cost function. Least-cost ter-
minal strings that can be derived from vocabulary symbols
are tabulated in S. Least-cost terminal prefixes that allow
an error symbol to be generated from vocabulary symbols are

tabulated in E.
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(1) For X € ¥, we define S(X) to be an optimal solution to

min  { IC(y) | X => v }

y € Vt

Also, we define IC(d)

IC(S(d)) and S(XL"'Xn) = 5(X;)

cee S(Xp) .

(2) For A € ¥ and a € Vt, we define E(A, a) to be a solution
to
. *
min { IC(y) | A => ya... }

V*
y € v,
*
If A= ...a... , we set E(A, a) = ? .

Both S and E tables (and variations of them) will be
used for all the error correctors we develop in this disser-
tation. Algorithms for computing these tables are given in

Appendix A.l .

The error corrector (see Figure 1.4.1) operates very
simply by considering the symbols on the parse stack. It
computes a least-cost string to be inserted to the immediate
left of the error symbol "a" to éllow "a" to be accepted by

the parser.
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function LL Insert(o, a): TerminalString;
o = X]...X,, the parse stack;
a € ﬁt' the error symbol;

begin
I Insert := €;
2 for i from I to n do
3 if E(Xj,2a) = ?
4 then Insert := Insert cat S(X;)
5 else return ( Insert cat E(X;,a) )
6  E£i
7 o4;
8 return( ? ) (* failure ¥*)
end LL Insert.

|

Figure 1.4.1 : function LL_ Insert

The return(?) statement in line 8 is needed only in the
case G is not insert-correctable. The procedure scans down
the stack until it finds the first 'stack symbol that can
generate the error symbol. LL_Insert does not necessarily
return the least-cost insertion (in the sense of Definition
1.3.4) since, in some cases, a lower cost correction can be
generated by considering symbols further down the stack.
Properties of LL_Insert are investigated in [FMQ %7]. In
particular, it is shown that parsing and correcting any

*
string in Vt can be done in time linear with respect to the
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length of this string. An extended FMQ algorithm is
presented in [FM 77]. It includes extended stack search and
deletions. This modified algorithm is a locally least-cost

error corrector as in Definition 1.3.3 .

1.5 Organization of the Thesis

This dissertation describes extensions of the FMQ error
corrector to various parsing algorithms. Chapter 2 contains
a brief summary of the theory of LR(1) parsing and then
develops a locally least-cost error corrector for LR(!)
parsers that operates by insertion only. Chapter 3 extends
the error corrector to include deletions as well. The pro-
perties of the algorithm are presented. In particular,
correctness is established and linearity is shown in cases
of special interest. Implementation results are discussed.
Chapter 4 introduces the notion of context-sensitive error
correction. A formulation of Attributed LL(l) grammars
(AF-LL (1)) that was developed by Watt [Wat 77al is presented
and a locally least-cost error corrector for a restricted
class of AF-LL(]1) grammars is developed. Chapter 5
discusses the significance of this work and gives directions

for future research.
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Chapter 2 : AN IKSERTIOR-OHLY ERROR CORRECTOR

FOR LR(1)-BASED PARSERS

In thié chapter, we briefly review the LR(1) parsing
techniques and we then develop a locally ieast—cost error
corrector for LR(1)-based parsers that operates only by
insertion. The class of LR(]l)-based parsers includes the
LR(8), SLR(l), LALR(l) and canonical LR(i) parsers. We
assume that all cfg's considered in this chapter are

insert-correctable, so that the model of Definition 1.3.4 is

applicable.

2.1 LR(1) Parsing

LR(l) grammars are those for which a parser generating
a right parse can operate deterministically assuming it is
allowed to look at most one input symbol to the right of its
current input position. More fbrmally, an augmented cfg G

is LR(1) if the conditions
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(1) §' => daw => dpw
(2) s =?; yBx == y6x = dBy
and (3) First(w) = First(y)

imply that 4 = ¥, A = B and x = Y.

Definition 2.1.1 : An LR(1)-based parser for an augmented

cfg G = (¥,, ¥ _, s', P') is a four-tuple (3, syr GOTO,

t'
PA) where

& is a finite set of states.

s is a distinguished element of S, the start state.

)

GOTO is the transition function, a mapping from 3 X v

into S u { error }.

PA is the parsing action function, a mapping from

sx U to { shift, accept, error } U { reduce i |

1<i<Ip'l}. DA

The operation of an LR(])-based parser can be charac-
terized by its action on parsing configurations. -\
p, Si e 5,
i=06,...,p, is a stack of states called the parse stack (sp

configuration is a pair (o, w) where o = S;S}...S

. Ak . .
is the top-most state) and w € Vt is the remaining 1input
string. The initial configuration is (sg, x) where x is the

input string. The parser moves from one configuration to
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the next by shifting or reducing. The transition relation

is denoted by F . Given some configuration (osp, aw) we

have :

(1) (csp, aw) b (ospsp+1, w) if PA(sp, a) = shift and
GOTO(sp, a) = sp+1.

(2) (s, aw) F (sﬂsl...sq, aw) if PA(sp, a) = reduce i.

sﬂsl...sq is obtained £from osp by removing IRHSiI

symbols from osp, giving Sgee-S and pushing

q-1'
Sq = GOTO(sq_l, LHS;) onto the stack. Production

number i is output as part of the parse of the input

string.

(3) (osp, aw) 1is an error confiquration if PA(sp, a) =

error. In this case error recovery has to take place

before the parser can be restarted. Recovery is done
by transforming osp and aw so that a valid configura-
tion (i.e. a configuration which does not yield

error) is obtained.

(4) (osp, $) is an accepting configuration if PA(sp, $) =
accept. In this case the parser halts and the output
generated is the right parse of the (possibly

corrected) input string. o
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A%
for s € 5, U;...U, €V and n > 1. We now consider the

construction of an LR(1)-based parser for a given augmented

cfg G. Following DeRemer [DeR 71], we first consider cases
where a parser can be denerated by constructing the

EB(Q)—machine or characteristic finite state machine (CFSM)

of G. The CFSM is a deterministic £finite automaton which
recognizes the viable prefixes of G. Y € V* is a viable
prefix of G' if there exists a derivation S' =?; dAw =?9 dBw
such that Y is a prefix of B (that is a prefix of a right

sentential form which does not extend past the handle).

We call & the set of states of the CFSM and

GOTO: § X ¥ —>» & its transition function. A state is a set

of LR(B)-items. An LR(@)-item for G is an object of the
form [A —> d6B] where A —> dB € P; B is called the

trailing part of the item. A production A —> € generates

only one item [A —> #]. An item of the form [A —> de] is

called a final item. Item [A ->'$1652] is valid for dB;, a

viable prefix of G, if there exists a derivation
* » 1

S! =?9 dAw =?> dB|Bow. For a right sentential form B, d&B

denotes this sentential form with o selected as. a viable

prefix (of dB). The start state sy contains an item

[S' —> $8S$]. (We assume that the left-end marker is con-

sumed in advance.)
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Considering a state s € 5, we partition' s into its

" basis and closure sets:

basis(s) = { I €s | I (A —> déB] and d # € }

closure(s) = { I €s | I = [B —> &Y] }

We will see that the parser will enter states
corresponding to item sets of the CFSM. The state indicates
which part of which productions may have been recognized.
(The part which may be recognized is to the left of the &.)
An algorithm that computes the CFSM is presented in Appendix

A.z o

The CFSM is then used to construct an LR(1)-based
parser, as will be outlined below. In fact, we only have to
compute PA, the parsing action function. All LR(1)-based
parsing technigues are alike in that they all use the PA and
GOTO functions in exactly the same way. Different schemes
have been devised for sub-classes of the LR(l) grammars.
Let us briefly discuss the LR(#), SLR(1), LALR(1) and full

LR(l!) grammars.

A state s € S is Eg(g)—inadequate if it contains two

jtems of the form [A —> d¢] and [B —> Bs&] (a reduce-reduce

conflict) or two items of the form [A —> osad] and

[B —> ps] (a shift-reduce conflict). If % does not contain

any inadequate state, then G is LR(#) and PA is Ctrivially
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obtained from the item sets (see, for example, [DeR 711).
However it is very difficult to write an LR(#) grammar for

a realistic programming language.

When an LR(2)-inadequate state 1is entered, we don't
know which action to take. The Simple LR(l) technique gives
a solution to this conflict [DeR 71]. An augmented cfg G is
SLR(1) if and only if for all LR (%) -inadequate states we
have

(1) [A —> d6XB] € s and [3B —> Y8] € s implies
Follow(B) [ EFirst(XB cat Follow(A)) = g, where

*
EFirst(8) = { aev, | & = ax and Dw = W is

t
never a step in the derivation of ax}. In this
case we are able to resolve a shift-reduce con-

flict.

(2) [A —> de] € s and [B —> V8] € s implies
Follow(A) [ Follow(B) = g. 1In this case we are
able to resolve a reduce-reduce conflict.
The SLR(1) grammars are powerful enough to specify the syn-
tax of most common programming languages, such as PASCAL
[JW 75]. However, more flexibility is given at little extra

cost by the class of Lookahead LR(!) (or LALR(l)) grammars.

An LALR(l) parser constructor uses 1local " lookahead

information instead of First and Follow sets to determine
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PA. Starting with the CFSM as previously defined, a set of
valid lookahead symbols is attached to every item in every
state T . LALR(1) grammars are powerful enough to allow
for an easy specification of most, if not all, the context-

free aspects of common programming languages constructs.

Oon the other hand, a canonical LR(l) parser can be gen-
erated by constructing the LR(1)-machine where the lookahead
is built into the items [AU 73; Volume 1]. (An LR(1)-itew
is an object of the form [A —> d&B, al where a € @é*.)
Canonical LR(1) parsers are of theoretical interest only,
because of the size of the machine. Aan LALR(l) parser for a
language such as PASCAL may have 208 states; the correspond-
ing LR(1) parser may have several thousand states [AU 77].
A number of schemes for reducing the size of LR(l) parsing
tables have been developed [AU 73; Volume 2]. However these
are irrelevant in practice because LR(l)'s extra power is
not needed for common programming lénguages. Sincé the loo-
kahead component of an LR(l)-item is irrelevant to the error

correctors we will develop, it will simply be ignored in all

of the following discussions.

In summary, we have isolated a class of LR(1)-based

t See, for example, [AU 77] for a detailed construc-
tion. .
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parsers that only differ in the way the parsing action func-
tion is obtained from the LR(#) or LR(l)-machine. The error
correctors we develop in Chapters 2 and 3 are defined in the

same way for all LR(l)-based parsers.

2.2 Immediate Error Detection

It is a well-known fact that canonical LR(l) parsers
have the immediate error detection property [AU 73]. How-
ever none of the other LR(l)-based parsers we discussed have
the IEDP. Because of the use of approximations to exact
lookaheads, it is possible to do some incorrect reductions

when using an erroneous symbol as the lookahead.

Example 2.2.]1 : Consider the following grammar G, T

1. 8' _5 $ES 2. E —> TE®
3. B' —> *TE" 4. E' —> €
5. T —> b 6. T —> [ E ]

t G, generates all infix expressions using * as
operator, "b" as operand and [] as parentheses (e.g.
$[b*b] *b$) .
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Part of Gl's CFSM is as follows:

S2
S' —> S$6ES | T J E —> TeE'
E —> 8TE’ E' —> &TE'
T —> &b El S'—> SE&#S E'Y —> &

$
T —> &[E] ‘Eﬁ%
[ ]
s \
¢ l LQ{T_..W (e =]
S

.
.
.

1 S3

Now assume an SLR(1) parser constructor has been wused and

try to parse "$bl$". The parse is:

(sgr "bl$") F (sgsy "18") output (T —> b)
F (sgsy, "18") output (E' —> €)
F (sgspss3y "1s™) output (E —> TE')
F (sgsge "18™) error

It is now too late for an insertion-only error correc-

tor to do a correction; in fact at this point no insertion

at all is possible. The parser made an erroneous reduction

E' —> € because "]" € Follow(E'). Da

Assume (csp, aw) is an error configuration (that is,
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PA(sp, a) = error). We need to restore the parser configura-
tion to what it was at the time "a" first appeared as the
lookahead. It is clear that the only parser moves an error
symbol can induce are reductions. Therefore stack restora-

tion can be obtained in the following way:

Whenever a new symbol a € ﬁt is used as the looka-
head, initialize an auxiliary stack AS to aﬁ empty
stack. From now on record each reduction in the auxi-
liary stack. If a syntax error is detected while "a"
is the lookahead, restore the parse stack to the state
it had when "a" became the lookahead symbol, using
information kept in AS. Given o = sj...s; and reduce j
where Pj = (A —> Ul...Um), the reduction is undone by
making o = s}...s;_;s{...sp where s{ = GOTO(s;_,, Uyl
and sé = GOTO(sé_l, Up) for p = 2,...,m. (This opera-
tion will subsequently be denoted by "restore(o, AS)".)

If "a" is accepted by the parser (i.e., scanned), clear

the auxiliary stack AS for the next lookahead symbol.

In the above example the parser configuration would be
restored to (sgsy, "18"). aAfter stack restoration, the
recovered parse stack can be used to drive the error correc-
tion process, as will be detailed in the following sections.

We now discuss the efficiency of stack restoration.
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Theorem 2.2.1 : Assume an LR(1)-based locally least-cost

error correcting parser processes $x$. Then stack res-
toration requires at most O(lez) time and O(Ix|)

space.

Proof : At any time, the size of AS is bounded by a con-
stant times the size of the parse stack, whose maximum
height is O(lx|). Therefore, a given restoration can be
done in time O(lx|). Moreover the number of restorations
will be bounded by |x|. This is because every input symbol
is potentially erroneous and inserted symbols never cause
any invocation of restore (the inserted string 1is correct
and allows the error symbol to be accepted). The O(lxI)
space bound follows directly from the O(lx|) maximum height

of AS. xXa

In the worst case, stack restoration alone can render
the error correcting parser non-linear. However, in the
case of typical programming languages, there are strong rea-
sons to believe this algorithm will require at most a number
of steps bounded by a rather small constant: only right
recursion in a production (direct or indirect) can make
stack restoration at times require more than a constant
number of moves. However, right recursion is almost invari-
ably avoided in LR parsers (in favor of'left recursion) pre-

cisely because it increases the parse stack depth required
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to parse various constructs.

Moreover, in a later section we will prove linearity of

stack restoration in the case of a bounded depth parse

stack. This property is very desirable since a linear-time
error correcting parser for bounded depth parse stack,

LR(1)-based parsers having the IEDP will be developed.

2.3 Right Context of an Item

In order to be able to do a least-cost insertion to the
immediate 1left of an error symbol we need to know which
strings can appear to the right of the last accepted symbol.
This same problem is easier in the LL(l) error corrector
[FMQ 77] since, in that case, what we expect to see is

stored explicitly in the parse stack.

In the LR(1)-based case, the right context will be used

to characterize this set of strings.

Definition 2.3.1 : Consider an item I = [A —> Bj8B;] and

a parse stack o = sg...sp corresponding to a viable
prefix B, for which I is valid. The right context of

(I, o) is characterized by a set of strings R(I, o) in
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*
V such that
* *
(1) for all w € Vt’ s =?9 dB | Bow implies there exists
x .
Y € R(I, o) such that Y = w.

(2) for all 6 € R(I, o), we have §' = dBBo6. I

We now consider the problem of computing R(I, ). It
will be written as a regular expression over V. We first

consider the local right context, which 1is that part of

R(I, o) which can be obtained by considering only the pred-
ictions used in computing the closure set of the top stack

state sp (independently of the rest of o).

In order to compute the local right context, we define

the closure graph Cl(s) of a state s € 8. Nodes of Cl(s)

are items in s. If we obtain item Im [B —> &Y] from item

I, = [A —>deBB], we put an edge (Im, I,) in Cl (s) and label

it Con = B. B is that part of the local right context of

I, that comes from I, by making a prediction:

Figure 2.3.1 : closure graph construction
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Example 2.3.1 : Consider the following SLR(1) insert-
correctable grammar G,, which will be used in all the exam-

ples that follow t .

1. S —> SES$
2. E —>» E+7T 3. E~—> T

We first build part of G,'s CFSM, which will be needed in

later examples.

t G, generates all infix arithmetic expressions using
+ as operator, "a" as operand and () as parentheses.



Sg Sl
1. S —> $oES$ 1. T —> (8E)
2. E —> OE+T 2. E —> ®E+T
3. E —> oT ( 3. E —> T 3 (
4, T —> ®a > 4, T —> ®a
5. T —> &(E) 5. T —> &(E)
, >, E . i »
a
1. T —> an 1. S —> $Ee$
2. E —> E&+T
S3
52

Figure 2.3.2 : G,'s CFSM

We now build the closure graph of state sy.

[l. S —> $¢E$]

YA
+Td2. E —> OFE+T ' +T ‘ 3. E —> &T

€ €
[4. T —> ®a ] [5. T —> G(E)]

Figure 2.3.3 : closure graph Cl (sp)
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Definition 2.3.2 : 1lc(I, s) will denote the regular set

of all paths from I to any basis item in Cl(s) and
l1c(I, J, s) will denote the regular set of all paths
from item I to item J in Cl(s). Also, L(lc(I, s)) is
the set of all terminal strings derivable from members
of the regular set denoted by 1lc(I, s). L(lc(I, J, s))

is similarly defined. D

Let {I,, k = 1 to |s|} be the set of items in state s.
In order to compute lc(Iy, s), we need to consider all paths
between Iy and any item in basis(s). Each time an edge
(i,j) 1is wused on a path, cij is concatenated to the local
right context. We can use the "all paths" algorithm given
in [AHU 76; p.198] to compute 1C(Ii’ s), for all Ii's. In
lines 1-11 of the following procedure LocalContext(s), we
compute tgj for all 1 < i< lIsl, 1 £j < Is|l and 8 < k < n.
tEj is obtained by concatenation of the labels of all paths
from I; to Ij such that all nodes on the path, except possi-
bly the end points, are in the set {I],...,Ik} for k > 8.

For k = 8, we do not allow any intermediate node.
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procedure LocalContext(s);

begin
for i, j from 1 to Is| do

1

2t := if 3 (i,3) € Cl(s) then {cy} else 4;
3 od;

4 for i from 1 to |s| do

5 tgi e= tgi u {e}

6 od;

7 for k from 1 to [s] do

8 for i, j from 1 to |s| do

I A R APt AP
10 od

11 od;

12 for i from 1 to |s| do

.= Isl )
13 le(Iy,s) :=u { ti3 | I

J
14 od
end LocalContext.

€ basis(s) }

Figure 2.3.4 : procedure LocalContext

Note that, after execution of the for 1loop in lines

7-11, we have lc(Iy, Ij, s) = t;;l. In the above example we
obtain:

1C(Il’ sﬂ) = {e}

lc(I., sg) = (+T} cat ({$} for k = 2,3,4,5

*
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The right context R(I, 0) can now be obtained by conca-
tenating appropriate local right contexts for each state on

the parse stack:

(1) I£ 1T € closure(sp)
R(I, o) =u { 1lc(I, J, sp) cat R(J, o)

J € basi
] as;s(sp) }

(2) If T = [A —> dXeB] € basis(sp)

R(IIU)=_1£P=(D

then €
Theorem 2.3.1 : Given an item I = [A —> PB#B,] and a

parse stack o = sg...sp corresponding to a viable pre-
fix dp; for which I is valid, the above algorithm com-
putes a regular expression R(I, 0) corresponding to

Definition 2.3.2 .

Proof : (Outline) By construction of the local right con-

text, we know that 1lc(I, J, sp) is a regular expression.
Since R(I, o) is obtained by a finite number of applications
of steps (1) and (2) where union and concatenation operate
on lc expressions, it follows that R(I, 0) is a regular

0

expression.
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The proof that R(I, o) corresponds to Definition 2.3.2
is by induction on the number of times steps (1) and (2) are
applied. A similar proof is given in the next section for a

restricted case (see Lemma 2.5.1), so it is not detailed

here. X

Example 2.3.2 : Reconsider Example 2.3.1 . Now assume
we want to compute the right context of item I| = [T —> as]

in state sgj, assuming the parse stack is spgs3. We obtain:

R([T —> as], sgsj)

= R([T —> ®al, Sﬂ)

L]

le([T —> ®al, [S f‘) SGE$]: Sg)
cat R([S —> $8E$], sp)
= {+1}" cat {$} cat R([S —> $eES], sp)

(+1}" cat {$} DA

In the next section, we will only consider those
strings derivable from a right context that have a chance to
be used in a least-cost insertion. Higher-cost insertions

are of no interest for our purposes,
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2.4 The Error Corrector

We are now ready to present an error corrector for
LR(]l)-based parsers. Its input is a € Gt’ the error symbol
and o = sl...sp, the (restored) parse stack; its output is a
least-cost insertion string that allows the error symbol to
be accepted by the parser (Definition 1.3.4). Our algorithm
requires the computation of an error correction table for
each state s € 8. These tables can be computed at the time

the parser is generated.

Error Correction Tables

(1) Let Iy = [A —> d6B] € basis (s)

(a) If the error symbol a € Gt is not generable from B, we
may need to insert the least-cost string derivable

from B, so we need to tabulate S(B).

(b) The least-cost insertion that will allow a € Vt to be
generated via B = U;...Uy (n 2> G)_is S(Uj...U;) cat
E(Ui+l' a) where i minimizes IC(S(UI...Ui) cat E(Ui+1,

*
a)). Call this string Insert(B, a). If B =*...a...

then Insert (B, a) = ? .

(c) In the event no optimal insertion can be generated

from state s we will have to generate insertions
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based upon state s', an immediate predecessor of s.
Therefore we need to tabulate the list of possible
predecessors of I. Elements of this 1list will be
pairs (m, s') such that state s' is an immediate
predecessor of s in the CFSM and I € s' is the item
which produced Iy. Call this list Pred(Iy). It is
trivially obtained by extending procedure CFSM (Appen-

dix A.2).
(2) Let I, = [A —> 8Y] € closure(s)

(a) For such an item we need to tabulate the list of back-
pointers to all items in basis(s) that can be reached
from it in the closure graph, Cl(s). Each backpointer
is a pair (m,y) where I, € basis(s) and y is a least~-
cost terminal string that can be used to reach I from

I. Call this 1list B(Iy).

In Example 2.3.1 (Figure 2.3.3), we have
B(Ig) = {(1,$)}; basis item I| is the only one reach-
able from Ig in Cl(sg)., and the least-cost terminal
string that can be used along a path (Ig,...,I;) is
ngn

B(Ik) for all k such that Ix € closure(s) can be

obtained by wusing a shortest-path algorithm on Cl(s)




(b)

have

from

(I3,

I, €
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where the cost of using edge (i, j) is IC(S(ci.)).

We also need to tabulate the least-cost insertion that
can be used to generate the error symbol locally
(meaning using local right context only). This

insertion is a solution to

min { IC(y) | & > ya... and 6 € lc (I, s)}

*
y € Vt

Call this string T(I;, a). T(Iy, a) = ? means no

insertion is possible.

Example 2.4.1 : Using Example 2.3.1 (Figure 2.3.3), we

T(Ig4, (")) = "+(a" using path (I4, I3, Iy), getting €
(g, I3) and "+(a" as "+" cat E(T, M") from
I. DA

The following procedure computes T(Iy, a) for all

closure(s) and all a € Vt:
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Eroéedure LocalCorrection(s);

begin
1 for all I, € closure(s), all a € Vt do
2 T(I, a) 3= ? ;
3 for m, n from 1 to Is| do
4 (* let Sem be a least-cost terminal string obtained
5 when following a path from Iy to Ij (from min path
6 algorithm), if one exists, otherwise "2" . Also,
7 - "2% if no arc from m to n exists
8 *)
9 if IC(skm cat Insert(cmn, a)) < IC(T(Iy, a))
10 then T(Iy, a) := Sim cat Insert(cmn, a)
11 £i
12 od
13 od

end LocalCorrection.

Figure 2.4.1 : procedure LocalCorrection

Error Corrector Procedure

Assume stack restoration is done; LR _Insert will com-
pute a least-cost insertion string corresponding to error
symbol a € Gt‘ Before we exhibit the procedure 1let us

introduce the notion of an error correction graph. Let

o = sg...sp be the restored parse stack. We process the
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stack in a top-down fashion and, as we visit the states, we
create stages (Figure 2.4.3). A stage has the error cofrec-
tion table of the corresponding state s associated with it.
It alﬁo has one node labeled LC; for each item in basis(s).
The contents of LC; is a string in V: u {?} that is a

least-cost completor (as defined below) of item I in state

S.

Definition 2.4.1 : Let o = Sg---Sp be a parse stack

corresponding to some viable prefix. Assume

X
I =[A—> deB] € s4 (68 <i<p). Then w € Vt is a

completor of I in s; if and only if the parser when

i
restarted in some configuration (o, wx) can consume W
and reach configuration (sﬂ...si...sj, X) where

Sj = GOTO(Si, ?). N

Informally, a completor can be used to complete the
recognition of some item in a state 1in the parse stack. A

least-cost completor for I in state s is one such that there

exists no completor for I that has a lower insertion cost.
LC; is maintained to cover the possibility that the error
symbol will be generated by a predecessor of Ij (in a deeper

stack state).

Consider Figure 2.4.2; item I, € pasis(sk) is 1linked

to I_€ s the item that produced I, by a shift opera-

m k-1'
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tion. This item is known to be uniquely determined by I,

and It is given by Pred(I, ). WNow I is linked to

Sk‘-l L]
e basis(sk_l) (where v = v(m) > 1). These

Ib(l)'.l-'Ib(v)
are basis items of s, _, reachable from I, such that

(Im,...,I ""(Im""Ib(v)) are minimal cost paths 1in

Cl(sk—l) and are given to us by the backpointer list B(Ig).

Assume B(I;) = {(b(l),yl),...,(b(v),yv)}. A possible

value for (in the stage corresponding to Sk—l) is

Kb (1)
LC, cat y;- This value follows from the fact that we know

LC is the 1lowest cost insertion necessary to complete I

n
once parsing is restarted. Further, we know y; 1is the
lowest cost terminal string which links I  to Ib(i) (that

is, which completes Ib(i) given that I is completed). We

therefore assign LC, cat y; to ch(i) if no lower cost
insertion string 1is known (which might complete Ib(i)

through a different closure item).

This calculation of LC values corresponds to lines
14-24 of LR Insert. If Iy € basis(s _,), we just transfer
the LC, contents to LCy if no lower cost insertion string is

already known for LC, (lines 35-36).
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s, _; (PREDSTAGE) s, (CURSTAGE)
v (1) Ih(2) In

B—>6XB ]
(m, sk#l) e Pred(In)

Figure 2.4.2 : back-linking items

As we process the parse stack we don't need to keep
track of all stages at any given time, just the current
stage CURSTAGE and the previous stage PREDSTAGE are con-
sidered. STAGE(s) is a function that returns a painter to a
new stage corresponding to state s and initializes all LC;'s

to "?2". The following figure shows how stages of an error

correction graph are processed.
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stage p stage p~-1 ... stage 0

[ —— o ee— r————j
LCI s LC, . : LC;
LC, J | .

LC3 o o a
| SUPRRRRIEPORN | el

Figure 2.4.3 : error correction graph

We also want to keep track of INSERT, a least-cost
insertion string that can be obtained given that the error
symbol is generated by local context in a state already
examined. Starting with state Sp’ we initialize INSERT to

an optimal solution to
min { IC(Insert(B;, a)) | I; = [A; —> d;8B;] € basis(sp)}
This calculation corresponds to lines 3-8 of LR _Insert.

Now reconsider Figure 2.4.2; if I, € sg is linked back

to I € closure(sk_l), we want to set INSERT equal to a

m

string that minimizes

min { IC(INSERT), IC(LC, cat T(Ig, a))
I (m, s _;) € Pred(I) and I € closure(sk_l)}

I, € basis(sk)
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That is, we consider the possibility of obtaiﬁing a lower
cost value for INSERT by allowing the error symbol, a, to be
generated from the local right context of I, in s, _,.
T(I,, a) yields the lowest cost insertion needed to generate
"a" from I 's local right context; LC, is the lowest cost

insertion possible which will complete Ij. This computation

corresponds to lines 27-33 of LR_Insert.

In general we do not need to process the stack down to
stage 1. If we are processing stage k and we have
IC (INSERT) < IC(LC;) for all i's, we know that INSERT has
the optimality property we are looking for, since
IC(T(Im, a)) > #. This fact dicéates the termination condi-

tion of the while loop in lines 11-4]1 of LR Insert.



function LR Insert(o, a) : TerminalString;

o = sg...sp, the (restored) parse stack;

a € V_, the error symbol;

t'
begin
1 (* initialization, using top-state info *)
2 k := p; INSERT := ? ; CURSTAGE := STAGE(SP);
3 for all i such that [Ai —_—> diapi] e basis(sp) do
4 CURSTAGE.LC; := S(Bj):
5 iﬁ IC(Insert(Bi, a)) < IC(INSERT)
6 then INSERT := Insert(B;, a)
7 fi
8 od;
9 (* now process stack, until no lower
10 cost INSERT possible *)
11 while 3 i such that
12 IC(CURSTAGE.LC;) < IC(INSERT) and k > 1 do
13 PREDSTAGE := STAGE(sk_l);
14 for all I, basis(sk) such that
15 IC(CURSTAGE.LCH) < IC(INSERT) do
16 (* link I, to predecessors in basis(s,_,) *)
17 let m be such that (m, Sk—l) ] Pred(In);
18 if I, € closure(s,_,)
19 then (* follow back-ptrs to basis items *)
20 for all (b(i),yj) € B(Ip) do
21 iﬁ IC(CURSTAGE.LCn) + IC(yi)
22 < IC(PREDSTAGE.LCb(i))
23 then PREDSTAGE.LC ;)
24 = CURSTAGE.LCn cat Yi
25 fi

26

49
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27 (* if lower cost INSERT can be

28 obtained, update INSERT ¥*)

29 if IC(CURSTAGE.LC) + IC(T (I, a))

30 : < IC(INSERT)

31 ‘ then

32 INSERT := CURSTAGE.LC, cat T(Ig, a)
33 fi

34 else (* we have Iy € basis(s,_;) *)

35 if IC(CURSTAGE.LC,) < IC (PREDSTAGE.LCy)
36 then PREDSTAGE.LC, := CURSTAGE.LC,
37 fi

38 fi

39 od;

40 CURSTAGE := PREDSTAGE; k := k - 1

41 end while;
42 return ( INSERT )
end LR Insert.

Figure 2.4.4 : function LR_Insert

LR_Insert may be used in the case G is not insert-
correctable. In this case it may return "2?", meaning there
is no possible insertion and have to announce failure (or

invoke a heuristic routine).

Example 2.4.2 : Now reconsider grammar G; gjyen in

Example 2.3.1 .

(1) Assuming all terminal insertion costs are set to one, we
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get the following error correction tables (the notation y:a

Py A%
where a € V and y € Vt means y is to be inserted to the

t
left of "a").

state sy
basis item I,
Pred(Il) = g (because sy is the initial
Insert (ES) = [a:$, €:a, az:+, €:(, (a:)]
S(E$) = "as"
closure items I,, I3, I4s Ig

B(I) = {(l, $)}, k=2%to5

T(Ik) [€:$, +:a, €:+, +:(, +(az)], k

(since lc(Ik, sg) = {+T}* cat {$}, k =

state s;
basis item I,
Pred(I;) = {(5, 8), (5, 1)}
Insert ("E)") = [?:$, €:a, a:+, €:(, a:)]
S("E)") = "a)"

closure items I,, I3, Iy, Ig

B(Iy)
T (Iy)

(since 1lc(Iy, s}) = {+T}* cat {)},

{(ll")“)}r k=2£9_5

[2:8, +:a, €:+, +:(, €2)], k =
k

state s,y

basis item I,

state)

=2 to 5

2 to 5)

2 to 5

2 to 5)
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Pred(I}) = {(1, 0)}
Insert($) = [€:$, 2:a, 2:+, 2:(, ?:)]
S($) =%

basis item I,

Pred(Iy) = {(2, 9)}

Insert (+T) = [?2:$, +:a, €:+,+:(, +(a:)]
S(+T) - ll+all
state s3

basis item I,
Pred(I;) = {(4, 0)}
Insert(€) = [?2:$, 2:a, ?2:+, 2:(, 2:)]

S(e) = €

(2) Assume an error-correcting LR(l)-based parser processes
"S((s". A syntax error is detected in configuration
(sgsisyr $)- Stack restoration 1leaves the configuration

unchanged. LR Insert produces the following error correc-

tion graph.
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stage 2 stage | stage @
G Ty o ———
LC, LC) LCy
‘a){ J]a))ll >|Ia))$‘
e e e

Figure 2.4.5 : error correction graph

This graph is obtained in the following way

(a) create stage 2
LCy := S("E)") = "a)" (line 4) wusing [T —> (¢E)] in

*
basis(s|). INSERT = ? since "E)" = ...%c00 o

(b) create stage 1
We have (5, 1) € Pred(Il) in state 1 -and
B(Ig) = {(1, ™)} 1in state 1 so that we link LC; in
stage 2 to LC; in stage 1 and set LC; in stage 1 equal to
"a))" (lines 23-24). No other path exists. There is no
local correction that can be obtained from Ig in stage 1

since T(Ig, $) = ? in state 1.

(c) create stage 0
in state 0 so that we link LC; in stage 1 to LC, in stage

@ and set LC; in stage @ equal to "a))s$" (line 24). No
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other possibility can be found. Also T(Ig, $) = € in
state 1, so that we obtain a correction by concatenating

"a))" and € (line 32):
INSERT := "a))"

We now exit the while loop (line 11) because we have reached
the bottom of the parse stack and we finally have corrected

"$(($" into "$((a))s".

In many cases LR Insert computes least-cost corrections
simply (and quickly) by considering only the top state on
the parse stack. For example, assume an input of "Saas$".
When an error is detected, we are in configuration
(sgSpr 2a$). Considering s, we obtain LC; = S($) = $ and
LC2 = S(+T) = +a. Further, INSERT = Insert(+T, a) = "+".
Since IC(+) is less than both IC(LCy) and IC(LC,), the com-
putation immediately terminates (line 11) with a correction
of "$aa$" into "$a+a$". The error corrector thus attempts
to find corrections using local context in the top stack
state. When necessary, however, it considers just enough
states to guarantee that the lowest cost correction possible

is calculated. i
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2.5 Properties of the Error Corrector

We now consider some of the most important properties
of the class of error-correcting parsers that we have intro-
duced. We first prove correctness: any input string can be
corrected and parsed. The following lemma establishes that

LR Insert computes LC values correctly.

Lemma 2.5.1 : During execution of LR _Imsert, if LC; in a

neitia J

stage corresponding to state s; contains a string other

than ?, then LCj is a completor for basis item Ij in

state Si-

Proof : We follow induction on the depth of s; in the parse

stack.
Basis step: s; 1s on top of the stack. Let
Ij = [A —> J&B]. Then LCj = S(B) is trivially a completor

Induction step: assume the Lemma true for state Si+17

consider s; immediately below it in the stack. Again let

1l

Ij = [A —> &B]. Now LCj can be assigned a value in one of

two ways. If Ij has an immediate successor in S+l then LCj
is assigned the LC value of the successor (line 36). Since
this LC value 1is a completor for Ij's successor, it must

also be a completor for Ij. Otherwise, LCj is assigned a
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value LC, cat y (lines 23-24). LC, is a completor for a

- closure item Iy in s;

i (because it is a completor for I;'s

successor in si+l) and y is derived from Y € le (I, Ij, Si) -
y can be written as Yie++Yn and Y as Yl...Yh where Yl,YZ,...
are labels on a path Iy, Ij,..., Ij in Cl(sj). and Y, ==$ Yir
ees 1 Y ==; ype It is easy to verify that LC, cat y; is a
completor for I; and thus by induction that LCp cat y is a

completor for Ij. X

Lemma 2.5.2 : Assume that after reading and processing

A%
some input prefix Sy € Vt an LR(1)-based parser invokes
LR_Insert with error symbol "a"., During the execution
of LR Insert, wherever INSERT contains any string

z # ?, it is the case that §' Ny $SyzZae... o

Proof : INSERT is assigned a value in only two places and
only when the new value has a cost less than the current
value (and thus a cost < IC(?)). 1In line 6, Insert (B, a) is
assigned to INSERT if the top stack state contains an item
[A —> déB]. 1In this case the desired result follows from
the definition of Insert. In line 32, an item

I. € closure(sk_l) is considered and INSERT 1is assigned a

m
value of the form u cat t. u is the LC value corresponding
to I 's successor in sp. By the previous Lemma, it 1is a

completor for this item and thus also for Ij. t is egual to
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T(I a) and may be written as t;t,. t is derived from a

m'

path of length > @ from I, to some item I, = [B —> &)Y] in

Cl(s t, is equal to Insert (8, a) where

k-1

Ip = [C —> PaBé] is an immediate successor of I, . By an

induction on path length it can be established that u cat t;

is a completor for I Thus after reading u cat t; the

n.
parser can reach a configuration in which the top stack
state contains an item [C —> PB@S] and tpa can clearly be

read from this configuration. DX

Theorem 2.5.1 : Assume that for some insert-correctable

tm————— . S ——

cfg, G, $%x... € L(G) but $xa... € L(G) for x € V*,

a € V.. Further assume that while attempting to parse

t
$xa... an LR parser invokes LR_Insert as soon as "a" is
encountered. Then LR Insert will return y € V: such

that y is an optimal solution to

min { IC(y) | s! =3 $Xya.eoe. }

+

Y € Vt

Proof : Since G 1is insert-correctable, some least-cost
insertion string y must exist. By Lemma 2.5.2, we know any
string assigned to INSERT is correct and a new value is
assigned to INSERT only if it is of a lower cost than the
current value. We need only therefore show that at some

point an attempt to assign a string of cost IC(y) must be
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made. This will be done by showing how the execution of
LR Insert traces the various ways "ya" may be recognized

once parsing is restarted.

Initial step: it may be that ya... is generated by the
trailing part of some basis item [A —> doPB] in the top
stack state. Then it must be that IC(Insert(p, a)) = IC(y)
(since y 1is 1least-cost) and Insert(B, a) is assigned to
INSERT in this case (line 6). Otherwise write "ya" as y;yja
and assume y; € V: is used to complete some basis item

I.

i = [B—> Ye8l. y; must be least-cost and thus

IC(yy) = IC(S(8)) = IC(LC;). If  IC(INSERT) > IC(LC;) =
IC(y)) we go on to the next step (otherwise a least-cost

solution has already been found).

Iterative step: we have Jjust completed processing a

basis item I in state 85 where IC(LC;) = IC(y;). We con-

tinue by tracing how yj,a might be recognized. I, I3

's
predecessor in S4-1 is considered. It may be the case that
ypa is fully recognized by items in sj—l' If this is so, a

sequence of items Iy, Im(l)' eee 5 I

m(n) (n > 1) in Cl(sj—l)

must exist where segments of yja are wused to complete in

turn and the remainder of the string is

recognized by the trailing part of Im(n)' Now it must be
the case that IC(T(Iy, a)) = IC(yp) since computation of T

(in procedure LocalCorrection) considers all possible paths
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from an item and, by assumption, ¥y, is least-cost. Thus in

line 32 INSERT can be assigned a string of cost
IC(yy)+IC(yy) = IC(y).

. *
Otherwise, write yj,a as z;zja and assume z; € V. is

used to complete items in sj—l‘ A sequence of items Iy,

Im(l)’ cesy Im(n) (n > 9) will be followed where

Im(n) € ba81s(sj_l) and segments of z; will be used to com-

plete, in turn Im(l)' cooy Im(n)' If n = 8 then I, = Im(ﬂ)

and LCm(n) can be assigned a string of cost IC(yl) (line 36)
and z) = e . 1f n> 4@ then IC(zl) = IC(V) where
(m(n), v) € B(Ik) (since 2z must be least-cost) and Lcm(n)
is assigned (in lines 23-24) a string of cost IC(yl)+IC(zl).

In either case LCm cannot contain a lower cost string

(n)
since, by Lemma 2.5.1, this could be used to complete Im(n)
and a lower cost insertion than y would result. If
IC (INSERT) > IC(LCm(n)) = IC(y1)+IC(zl) this step is
repeated on the next state down the parse stack.with Im(n)
renamed I;, Y|z renamed y; and zja renamed Yyoa. If

IC (INSERT) < IC(LC the algorithm may terminate but a

m(n))
least-cost INSERT must already have been found since

IC(LC, () & IC(Y) -

The iterative step is repeated until the state which
finishes the recognition of ya 1is -processed or until

IC (INSERT) is less or equal to the cost of all LC values.
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In either case a simple induction on the number of iterative
steps executed establishes that an INSERT value of cost

IC(y) must be obtained. Da

We now analyze the efficiency of our error correcting
parser. We first present a quadratic upper bound and later

show conditions in which linearity can be guaranteed.

Theorem 2.5.2 : Assume an LR(l)-based parser using
LR _Insert as an error corrector processes $x$ and
corrects it into $x'S. Then it 1is the case that

Ix'] = O(lxl).

Proof : We will charge each symbol inserted during error
correction to some input symbol and show that each input
symbol is charged for at most a constant number of inser-

tions.

For charging purposes we associate each state with an
input symbol. Assume that during normal parsing (when the
lookahead symbol is in x$), the stack height is h when sym-
bol "a" is first used as a lookahead. Any states added by
"a" at a height greater than h are charged to a; those at
height < h retain the association in effect when "a" was
first used. It is easy to establish that the number of
states so charged to "a" will be bounded by a constant and

will not increase as parsing progresses.
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Now assume LR Insert is invoked with error symbol "b"
and a stack o = sl...sj. Starting with sj, states are
visited until at state S (i < j), the final value of INSERT
is determined. (The fact that LR _Insert may have to do some
processing further down the stack to verify- optimality of

this correction is of no significance in this proof.)

INSERT can be written as LC cat LOCAL where LC is

determined by s ...sj and LOCAL is determined by S (and

i+l
of course "b"). The portion of LC contributed by each of
Si4] to sj can be bounded in length by a constant and is
charged to the input symbol associated with each such state.

By construction, LC is a completor for some closure
item [A —> &d] in sih (if i < j) and after LC is fully
parsed, the A-successor to s. 1is the stack top. Since

i

Si+l""’sj have been popped, they cannot be charged again
for any portion of an LC string. Then LOCAL is processed.
Its length can be bounded by a constant and it is éharged to
"pb", After LOCAL is parsed and just before normal parsing
is resumed with "b" as the lookahead, the number of states
above S5 in the stack can be bounded by a constant (deter-

mined by Sy A and LOCAL). Each of these states (created

during error processing) is charged to "b".
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We now observe that the total number of states charged
to a given input symbol and used to contribute a portion of
LC is bounded by a constant and thus so is the total number
of LC "symbols charged to that input symbol. So too, an
input symbol is charged at most once for LOCAL which 1is of

bounded length. The desired result is immediate. 4

Theorem 2.5.3 : Assume an LR(i)-based parser using pro-
cedure LR Insert as an error corrector processes $x$.

Then it requires at most O(lez) time.

Proof : Assume first a canonical LR(l) parser is used. It
is easy to establish that given a careful implementation of
procedure LR_Insert, the time required to process each stack
state during correction can be bounded by a constant. By
Lemma 2.5.2, at most O(|x]) states can be processed during
any invocation of the corrector and no more than {x| invoca-
tions are possible. The O(lez) time bound follows immedi-

ately.

In the case stack restoration 1is needed, procedure
restore requires at most O(lxlz) additional time in all

(Theorem 2.2.1). X

There is a strong reason to believe that the above gua-
dratic worst case will not be realized in practice. Cer-

tainly for common programming languages and most syntax
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errors, local context (derived from the wupper-most stack
states) will suffice. Even more important, LR(1l)-based

parsers that are used in practice invariably use a bounded

depth parse stack. For example, the University of Wisconsin

PASCAL compiler [Fis 77] uses a parse stack of maximal depth
1801 that has sufficed for even the largest of programs in
two years of operation. (The PASCAL compiler compiles

itself and has more than 40,000 tokens.)

For this very important special case, we can establish
linearity of our error correcting parser. We start by

establishing linearity of stack restoration.

Lemma 2.5.3 : Assume that a bounded depth parse stack

LR(l)-based parser using LR_Insert as an error correc-
tor processes $x$. Then procedure restore requires at

most O(|x]) time in all.

Proof : Let d be the viable prefii corresponding to the

parse stack just before buffering begins and let B be the

viable prefix corresponding to the parse stack when the

error 1is detected. By the correct prefix property, and the

fact that no shifts occured during buffering, we have for
A + * *
some d €V, S' = Bd... = (d... => yd... . Further

since |l and |B| are bounded by a constant, so is y (if it

A%
is chosen properly). By Theorem 2.5.2, there exists z € Vt
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such that ydz € L(G) and l|ydz| is bounded by a constant.
The total number of moves required to parse ydz is bounded
by a constant (and thus also is the total number of moves
buffered in the auxiliary stack AS in reducing  to B).
Therefore procedure restore requires only a constant time

per invocation and at most O(lx[) time in all. xXi

Theorem 2.5.4 : Assume a bounded depth parse stack
LR(l)-based parser using LR _Insert as an error correc-
tor processes $x$. Then the processing requires at

most O(lx|) time and O(lx|) space.

Proof : In the case a canonical LR(l) parser is used,
linearity is immediate since one invocation of LR_Insert can
process the entire (bounded depth) parse stack in constant

time, using an amount of space bounded by a constant.

In the case stack restoration 1is needed, procedure
restore requires at most O(lx]) additional time and O(lxl)

additional space (Lemma 2.5.3). o

We can also create a more general (but in practice less
useful) 1linear-bounded error corrector. To eliminate the
need for parse stack restoration, we will assume a canonical
LR(]) parser (which subsumes all LR (1) -based par%ing tech-

niques). A variant of function LR_Insert that performs a
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bottom-up rather than to -down parse stack traversal is used
to determine least-cost corrections (this function, named
BU_LR_Insert, 1is detailed in Appendix  A.3). Unlike
LR~InseEt, this function will always need to examine the
entire parse stack to determine a correction. Nevertheless,
it has the very useful property that a given parse stack
state will never need to be visited more than once for a
given terminal error symbol. This property results because
all intermediate information characterizing the state of the
error corrector while visiting some parse stack state s is
determined solely by those parse stack states below s in the
stack and the error symbol, a. This intermediate informa-
tion can be stored in the parse stack with s (or alternately
in a parallel stack). Distinct intermediate information may
be stored with a given stack state for each possible termi-

nal error symbol.

Now if we invoke the error corrector with an error sym-
bol b, and some parse stack states, during a previous error
corrector invocation, were already visited with error symbol
b, these states need not be revisited. Rather, using the
intermediate information previously stored, the error
corrector can be started at the state just above the last
state previously visited with b. Given a careful, but

straightforward, implementation of these ideas the following
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result can be established.

Theorem 2.5.5 : Assume an LR(l) error correcting parser

using an implementation of function BU_LR_Insert as
described above processes $xS. Then it requires at

most O(lx|) time and O(lx|) space.

Proof : Follows immediately from the fact that no parse
stack state needs to be visited more than Ith times for

error correction purposes. Da

In summary, LR _Insert appears to be a simple and effec-
tive automatic error corrector. For those bounded depth
parse stack, LR(l)-based parsers used in practice, correct-
ness and 1linearity can be guaranteed. Further, for any
LR(1)-based cfg an error correcting parser with a 1linear

worst case can be created.

2.6 Testing Insert-Correctability

LR_Insert may be used with any LR(1)-based parser that
is based on an insert-correctable cfg. Often we can deter-
mine insert-correctability directly from the properties of

the language the cfg specifies. However, in general a
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decision procedure can be obtained by extending the defini-
tion of LR(@)-items (or LR(l)-items, for that matter).

While building an extended CFSM, we consider items of the

form I = [A —> BoBy: t] where t : Vt —> {true, false} is

such that

v a € ﬁt, ¥ By for which I (in state s) is valid
t(a) = true if and only if I (in s) is valid for some
right sentential form oB|#p,w where w = ...a... . Call

this condition (*).

We now outline an algorithm that computes the extended
CFSM, followed by a lemma showing that the t-tables that are

computed satisfy (*).

(1) The basis of the initial state is {[8' —> $eS§, tﬂ]}

where ty(a) = false for all a € Vt.

(2) The basis of the X-successor s' of state s 1is obtained
as follows:
basis(s') := g;
for all [A —> B|6XBy, t] € s do
basis(s') := basis(s') u [A —> B |XeB,, t]

od

(3) For a closure item I = [A —> oY, t|l € s we set

ty(a) = true if and only if




68

(a) t(a) = true for any basis item I' € s which is a
descendant of I in Cl(s).

or (b) ...a... € L(lc(I,s)). D

Lemma 2.6.1 : (1) Let I = [A —> B BB, t] be a basis
item in state s and let dB;#BB,w be any right senten-
tial form for which I (in s) is  valid. If
J=[C —> 8y, t'] is a closure item in s then J is

valid for deQYvw where v € L(1lc(J, I ,s)).

(2) Let J = [C —> &Y, t] be a closure item in state s
and assume J (in s) 1is valid for deYyz. Then there
exists a basis item I = [A —>B8BB,, £t'] in s such
that I is valid for &P;6BB,w where 8B = o and z = vw

for some v € L(1lc(J, s)).

Proof : Part (1) may be proved by a simple induction on

path length from J to I in Cl(s).

Part (2) follows from a simple induction on path length
from J to I in Cl(s), using the observation that if closure
item J is valid for a right sentential form, this sentential
form must have a predecessor in the derivation for which

some immediate successor of J in Cl(s) is valid. a
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Lemma 2.6.2 : If condition (*) holds for all basis items

of state s, it holds for all closure items.

Proof : Consider closure item J = [C —> 88, t], any a € Vt
and any Qiable prefix ¥ such that J (in s) is valid for Y.
1f t(a) = true, then by construction of the‘ extended CFSM
either step (3a) or step (3b) must hold. If (3a) holds, let
the basis item I' be [A —> B;6BB,, t] where Y = aBj - By
(*) since t(a) = true, I' is valid for dB|eBB,w where
W = eood... . But by Lemma 2.6.2 (l), we know J is valid
for dplﬁévw as required. If (3b) holds, let I' be as above
and assume V = ...8... € L(lc(J, I', 8)). Then for all
dB&Bpw for which I' is valid, we know (by Lemma 2.6.2 (1))

that J is valid for qplaévw = Yedvw as required by (*).

I1f J is valid for Y#8z where z = ...a... then by Lemma
2.6.2 (2), for some basis item I = [A —> B;®BB,, t;], it is
the case that I is valid for B |#BR,w where dB; = Y and
z = vw for some v € L(lc(J, s)). If w = ...a... then (since
(*) holds for I), tj(a) = true and thus t(a) = true by con-
struction. Otherwise ...a... = v.& L(lc(J,s)) and again, by

construction, t(a) = true. xXi

Lemma 2.6.3 : Assume we construct an extended CFSM as

outlined above. Then condition (*) holds for every

item in every state.
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Proof : An induction on the order in which states are
created: (*) trivially holds for the sole basis item of sy
and by Lemma 2.6.2 then holds for all of sg. 1In like manner
(*) holds for the basis items of any state that is added
because it holds for the (already existing) items from which
the basis items were created (by a successsor operation).
By Lemma 2.6.2, (*) then holds for all items of the newly

created state. Da

Definition 2.6.1 : A state s of the extended CFSM

corresponding to an augmented LR(l) grammar G is safe

if and only if for all a € Vt there exists a basis item
*

I = [A —> By#By, t] in s such that B, = ...a... or

t(a) = true.

Theorem 2.6.1 : An augmented LR(!) grammar G is insert-
correctable if and only if all states of the extended

CFSM corresponding to G are safe.

Proof : (If part) Assume x has been read and reduced to
viable prefix Y. Assume further we are in state s. Since s
is safe, for any a € Vt theré exists a basis item
I =[A—> BjeBy, t] for which Bo ==$ vya... or t(a) = true.
Clearly for the former case S' ==$ Xya... » In the latter
case, by (*) 8! =%o dB B where w =....a... and Y = ap; -

+
Thus S'" = X.eeW = XeoeBoso o
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(Only if part) Now assume S is not safe and assume the
items in s are valid for § where & = x € ?:. Choose any
basis item I = [A —> B6By, tl in state s. Since s is not
safe By =#$ cecBooce o Further by (*) no sentential form
dBj®Bow in  which w = ...a... can  exist (otherwise
t(a) = true). Thus item I cannot participate in any parse
which will evéntually allow "a" to be accepted. But neither
can any other basis item, so G cannot be insert-

correctable. )4

Example 2.6.1 : Consider the following LR(l) grammar

Gj

S' —> $58§

S —>» (8) | a

Figure 2.6.1 shows part of the extended CFSM for Gg, indi-

cating t-table values for the terminal symbol ")" only.
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Sﬂ Sl
S' —> $85$, false S —> (#S), false
S —> &(S), false ( S —> &(5), true
. S —>»8a, false ’LS —> ®a, true
S

[ S —>» (S)e, false‘L ) S —> (S8), false }
J\

L

53 52

Figure 2.6.]1 : extended CFSM for Gj

The reader may easily verify that states sy,s; and s,
are safe w.r.t. ")" and that state s; is not safe. There-
fore grammar Gz is not insert-correctable. For example, an
input of $(a))$ will cause LR Insert to fail on the second

ﬂ)ll‘ m

Finally, it should be noted that the class of insert-
correctable LR languages is large and interesting. Surpris-
ingly enough, a language such as ALGOL 60 is insert-
corréctable after a very minor modification: one has to
allow a program to be a sequence of blocks rather than a
single block [FMQ 77]. Otherwise, LR _Insert would fail on
an input string of the form "begin ... ‘end end" (for the

same reason as in the above example).
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Concatenation of program segments to form a larger pro-
gram segment is a very common and almost universal means of
building programs. If we allow whole programs to be c¢onca-
tenated to form valid programs, then insert-correctability

is immediate.
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Chapter 3 : A LOCALLY LEAST-COST ERROR CORRECTOR

FOR LR(1)-BASED PARSERS

In this chapter we extend the error corrector of
Chapter 2 to accomodate deletions as well as insertions.
The error corrector we develop corresponds to the model of
Definition 1.3.3 . It is able to correct any LR(l)-based

cfg.

3.1 ‘The Error Corrector

Assume the input string 2z = $xaj...a;$ is such that
$X... € L(G) but $xaj... g L(G). We are looking for a solu-

tion (i, y) to T

min { min { DC(al...ai.)+IC(Y')

| $xy'ai.+1--. € L(G) } } (*)
*

P<i'<n y'ev,

t rThis problem (*) was previously stated in Defini-
tion 1.3.3 .
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This minimization model <could be impiemented very
easily by calling LR Insert repeatedly with error symbols
ajr @gs oo until we reach a situation where the cumulative
deletioﬁ cost DC(al"'ai+1) is larger than IC(y)+DC(a1...ai)
where y is the insertion string - computed by
LR_Insert(o, aj). However, this procedure has a O(Izlz)
worst case running time because during each of O([zl|) possi-
ble invocations of the error corrector, we may need to exam-
ine all of the remaining input symbols to determine a

locally least~cost correction.

Now assume that, upon detection of the first syntax
error, we do the following préprocessing of the remaining
input string aj...ap$. We maintain a vector

First_Occurence : ¥, —> {1, ..., n+1} u {absent}
where First Occurence(a) points to the first occurence of
"a" in aj...a,$, if any. Also, each position in the input

string aje..ag’$ is labeled with D such that

D(i) = DC(al...ai_l) for 1 < i < n+l, D(absent) = 00 and

D(8) = #. We now consider ¢ € Qt which is a solution to
min { D(First_Occurence(c'))+IC(LR_Insert(o, c')) } (**)
c' e ¥

t

Problems (*) and (**) are equivalent in the sense that

their solutions correspond to the same correction values
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(i.e., c = a1 and y = LR _Insert(o, c)). This is because,
if we delete input symbols up to symbol b, then we need only
delete up to the first occurence of b in the remaining input
string (deleting up to a later occurence cannot lead to a
lower cost insertion). This second problem (**) was first
introduced by Fischer and Milton [FM 77] for the modified
FMO LL(]) corrector. The following procedure LR Corrector
gives a straightforward solution to problem (**). Upon

return from the procedure, w 1is the corrected remaining

input string.
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procedure LR Corrector (o, w) ;
o, the parse stack;
W = aj...a¥, the (preprocessed) remaining input string;

begin
1 restore(o); (* if necessary *)
2 y:=2?2 ;1i:=290;
3 for all c & ¥, do
4 if First Occurence(c) # absent then
5 j := First Occurence(c);
6 z := LR _Insert(o, C);
7 if D(J)+IC(z) < D(i)+IC(y)
8 then y := 2z; i := 3
9 £i
19 fi
11 od;

12 w = yai-ooan$
13 (* that is, delete aj...a;_; and then insert y *)
end LR Corrector.

Figure 3.1.]1 : procedure LR Corrector

Since we have the correct prefix property, we can
guarantee some correction for which y € V: or 1 <i < n (or
both) will be found. By construction the y and 1 chosen
will define a locally least-cost correction. Also note that
in order to maintain First_Occurence efficiently we need to
link every preprocessed symbol in the remai;ing input

string to its next occurence.
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These links are used to update First Occurence when
symbols are read and/or deleted. The details of this pro-

cess are left to the interested reader.

3.2 Properties of the Error Corrector

The following theorems summarize the properties of

LR_Corrector.

Theorem 3.2.1 : Assume that for some cfg G and some input
string z = $xaj...a,$, $x..; € L(G) but $xaj... € L(G).
Further assume that while attempting to parse 2z an
LR(l)-based parser invokes LR Corrector as soon as aj
is encountered. Then LR Corrector will choose correc-

tion values y and i as specified by problem (*).

Proof : Follows immediately from the equivalence of prob-
lems (*) and (**) and the correctness of LR Insert (Theorem

2.5.1). I

Theorem 3.2.2 : Assume an LR(l)-based parser using

LR Corrector as an error corrector processes $x$. Then
it requires

(1) at most O(lez) time and O(|x|) space in the gen-
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eral case.

(2) at most O(lx|) time and space if a bounded depth

parse stack is assumed.

(3) at most O(]x|) time and space if a canonical LR(1)

parser is assumed.

Proof : We first note that the preprocessing of the input
string (i.e. the computation of First Occurence and D) takes

linear time and space. We now consider different cases:

(1) In the general case, for each of O0O(lx|) possible
errors, it may take O(|x|) time to restore the parse stack
(Theorem 2.2.1) and O(Ix|) time for every invocation of
LR_Insert (Theorem 2.5.3). Thus we obtain the desired

result.

(2) In the case of a bounded depth parse stack, stack
restoration takes O(lx|) time in all (Theorem 2.5.3) and
every invocation of LR _Insert takes constant time (Theorem

2.5.4). Thus we obtain the desired result.

(3) When a canonical LR(l) parser is used, stack res-
toration is not needed. Moreover, as discussed in the pre-
vious chapter (Theorem 2.5.5), we can guarantee linearity of
LR Insert by wusing the bottom-up stack traversal error

corrector. xXi
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Every invocation of LR _Corrector may require up to IVt!
invocations of LR Insert (line 6). 1In practice, one could
do the preprocessing of the remaining input string

incrementally. That is, one would first compute the cost of

corrections involving @ deletions, then 1 deletion, etc... ,
calling LR Insert at most once for a given terminal symbol.
As soon as the best known correction is no more expensive
than the cumulative deletion cost, processing can be ter-
minated. Since deletion costs are often chosen to be rather
large (to discourage w£olesale deletion of user programs),
we normally expect this incremental approach to be very

effective.

3.3 Implementation Results

The error corrector described above has been imple-
mented in SIMULA 67 on a UNIVAC 1118 computer. It consists
of two programs: an LALR(l) constructor that builds the
parsing table and the error correction tables, and an
LR(]1)-based parser using an implementation of LR Corrector

as an error corrector.
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Error correction tables are built as described in
Chapter 2, with the exception that T values are not expli-
citly computed by the table generator. Rather, closure
graphs (CL(s)) are tabulated. Computation of a T value is
done, as needed, by LR Insert. However, once a T value |is
computed it is saved and need not be recomputed. Using this
method, we can provide faster correction for common syntax
errors while keeping the size of the error correction tables
reasonably small. Error correction tables, which are wused
on an exception basis, can be kept in secondary storage.
The algorithm therefore operates quite efficiently with a

rather small primary storage requirement.

The error corrector was tested on an LALR(l) grammar
for PASCAL t . Table computations (for both parser and
error corrector) require 6 minutes and 40 seconds on the
UNIVAC 1110 for a grammar with 53 terminals, 89 terminals
and 195 productions (the CFSM having 182 states). The total
size of the error correction tables is 138K words in the
case the T table file is empty. (This size includes S and E
tables and closure dgraphs represention.) Although not
negligeable, this size is not beyond the capability of com-

mon secondary storage.

t  The cfg that is suggested in [JW 75] had to be
modified to remove some ambiguities.
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The problem of assigning insertion and deletion costs
is subject to some heuristic considerations. The cost func-
tions used for PASCAL are given in Appendix A.4. Deletion
costs have‘ been set higher than insertion costs. 1In this
way we encourage corrections that build wupon the existing
input strings. This weighting also allows greater effi-
ciency of the correction process. For insertion costs, we
assigned a higher cost to symbols that announce a complex
syntactic structure (e.g., "if", "[", etc...) as opposed to
symbols terminating such a structure (e.g., ";", "I",

etc...). Test cases were used for tuning correction costs.

The following program provides examples of the kind of
corrections effected by LR Corrector. This example has
been previously presented by Graham and Rhodes [GR 75],- Tai
[Tai 78], Poplawski [Pop 78] and Penello and DeRemer [PD 78]
to illustrate their respective methods as well as the opera-
tion of the Cornell PL/C compiler [CW 73] and the Zurich

PASCAL compiler [JW 75].

Example 3.3.1 : We first present the input program
itself. A "T" is used to mark symbols considered erroneous.
This listing would correspond to the output listing in the
case LR _Corrector is wused for the sole purpose of error
recovery. Next, the corrections effected by LR Corrector

are  included. Insertions are wunderlined by *'s and



deletions are commented out by {}.

l: program example(input, output);

2: var

3: a, b : array[l..5 1..18] of integer;
4: i, 3, k, 1 : integel;

5: begin

6: 3: 1 ; j>k+1* 4

7: then go 2
l 7
8: else k is 2 ;
T 11
9: a 1, 2 :=Db[3*(i+4 , F* /k ]
T ) 1 T
19: i = 1 then then goto 3 ;

if
T T

11: 2: end.

83
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1: program example (input, output);

2: var
3: a, b : array[l..5 , 1..18] of integer;
- *
4: i, 3, k, 1 : integer;
5: begin
6: 3: 1 :=+ 3>k +1%* 4 ;
* %k *
7: if CONSTANT then go := 2
kkkkkhkkhkkiik * %
8: else k := is[2] ;
* % * *
9: a:=1{,} +2; ID := b[3*%(i+4) , J*CONSTANT/k ] ;
* % * *kkkikk * khkkkkkkk *
10: if i = 1 then if CONSTANT then goto 3;

kkkkkkhhkkkk

Figure 3.3.1 : PASCAL test program

First considering the error recovery aspect, we can
see that 14 errors are detected and the position of the
T-markers allows for prompt correction of all errors by a
knowledgeable programmer. The cascading effect is fairly

limited.

Now considering the error correction aspect, we can see
that most of the corrections effected by LR_Corrector are
quite reasonable. However some probléms do arise. For

example, it is most 1likely that "“a[l,2] := b..." was
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intended in line 9. This correction is indeed the choice

made by other correctors using a "forward move" algorithm

[GR 75], [PD 78], where part of the remaining input string
is parsed before correction (in this case "]1,2" appears to
be a subscript list rather than an expression). Instead of
parsing ahead, which can have some undesirable effects on
the overall translation process, we propose another approach
to solve this problem. In the given context, "a := I..." is
illegal (in a context-sensitive sense) since "a® 1is an
array. Therefore "[" is the only legal insertion. Although
the techniques of Chapters 2 and 3 do not allow for such

considerations, since they apply solely to context-free

parsing, we will show in the next chapter how we can take
them into account. There we develop a locally least-cost

corrector for a context-sensitive parser.

Another problem occurs in line 6 where the insertion of
"if" immediately after "3:" would be preferred. In fact,
other correctors make this choice rather than ours. However

they obtain this correction by using a "backward move"

[GR 75], where modification of the left-context is con-
sidered. Following Fischer et al. [FMQ 77] and Watt
[Wwat 761, we find backward moves highly wundesirable in a
one-pass compiler where input symbols have to be accepted at

some point so that they can be used for translation pur-
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poses. Moreover, it has been noted by Watt that most syntax
errors can be satisfactorily corrected by transformation of

the remaining input string only. D4

In summary, the LR corrector that we have presented
above has both theoretical and practical significance.
Theoretically, the algorithm can be shown to operate
correctly on any input string. A least-cost correction is
guaranteed and in cases of special interest (bounded depth
parse stack), linearity can be established. On the practi-
cal side, preliminary experience indicates that our correc-
tor can be used satisfactorily with most LR-driven com-
pilers. 1In particular it allows an error recovery Oor error
correction capability to be added automatically with little,

if any, impact on the overall structure of the compiler.

As noted above, our definition of a least-cost correc-
tion is a very local one since it is concerned with finding
an insertion that allows the first non-deleted input symbol
to be accepted by the parser. In some cases, other methods
obtain more plausible corrections by using more global
schemes. We will present results that suggest that compar-
able (and in many cases superior) corrections can be
obtained if a local minimization model can include context-

sensitive information in the correction process.
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Chapter 4 :=: CONTEXT-SENSITIVE ERROR CORRECTION

4.1 Introduction

Context-free grammars permit the specification of the
context-free syntax of programming languages. This specifi-
cation (BNF) can be used to generate efficient parsers.
However, not all aspects of the syntax of programming
languages are of a context-free nature (e.g., correspondance
between declaration and usage of identifiers in PASCAL).
Traditionally, such context-sensitive restrictions have been
stated informally in (for example) English. During compila-
tion they are enforced by hand-coded semantic routines that

are invoked by the context-free parser.

Attributed grammars were introduced by Knuth [Knu 68]
as a simple mechanism for extending context-free gfammars to
include context-sensitive information. Informally, each
grammar symbol posesses a set of attribute positions. For
example, a terminal CONSTANT might have two attribute posi-
tions: one for its type, one for its value. Also, attribute
evaluation rules are associated with context-free produc-
tions. As shown by Lewis et al. [LRS 76], Watt [Wat 77a]l,

Milton [Mil 77] and others, attributed grammars can be used
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to generate context-sensitive parsers automatically. This
construction has the advantage of providing the compiler
writer with a way of specifying the £flow of context-

sensitive information in a non-procedural manner.

As a natural extension to the work of the previous
chapters, we now explore the possibility of generating
locally least-cost error correctors for context-sensitive
parsers. The possibility of using context-sensitive infor-
mation in choosing corrections was mentioned by Feyock and
Lazarus [FL 76]. However, they did not present any formal
way of making the context available to the error corrector.
When an error is detected, there is a wealth of information
available in the values of the attributes. For example, in
the case of an undefined identifier, the entire symbol table
is available. 1In order to make use of this information we
will incorporate attributes into the error correction pro-

cess.

4.2 Attributed Grammars

We first define attributed grammars. Different formal-

isms have been presented to specify how attribute values are
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to be evaluated. The definition we present uses action
functions to specify evaluation rules other than simple
transfers of attribute values. It is very similar to the

definitions given in [Wat 77a]l and [LRS 76].

Definition 4.2.1 : An attributed grammar (ag) is a

mmipmntn

vV, is a finite set of nonterminal symbols.

Vt is a finite set of terminal symbols, disjoint from

v,

Q is a finite set of primitive predicate symbols, dis-

joint from V, U V, .

S is a distinguished element of V,, the start symbol;
it does not appear on the right-hand side of any

production in P.

A is a finite set of attribute variables.

AD is a finite set of attribute domains.

R is a mapping from A to AD, the range function.

IS is the control of AG, a collection of 4-tuples IS

= (Mx, Nx’ i(x), s(x)) for egch x € vV, u Vt u Q.

M >0 is the number  of inherited  attribute
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positions of x, N > @ is the number of synthesized

attribute positions of x, i(x) is an Mx—tuple of

attribute domains in AD which are the domains of the
inherited attribute positions of x and s(x) is an
Nx—tuple of attribute domains in AD which are the
domains of the synthesized attribute positions of x.
For each x € Vt' we require M, o= g (that is, termi-
nal symbols do not have inherited attribute posi-

tions).

is a finite set of productions of the form

@ ) ]
A&a oo-‘ba Tb .'ch
1 Mg 1

)
Ng

1

1 1 1
Y Ul\bal...\LaMlTbl...Tle

N

u_daT...ya® 1bT...1p"
mvye] ‘ M 1 m

NA
My = MUk, Ny = NUk for k = l,ee.,m . Inherited
attribute positions are prefixed by "{", synthesized
positions by "T". Each ag or bg is either an attri-
bute variable or a constant attribute value. (The

ag's and bﬂ's will be used to specify how attribute

values are to be assigned to attribute positions.)
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F. is a finite set of action functions. For each X € Q

Q
there exists fX € FQ such that
fX : i(X) —> s(X) X {true, false}.
f, is total recursive over i(X). BXi

X

Attributed grammars will be augmented in the same way
as context-free grammars. “S" is a terminal symbol which

does not have any attribute positions.

We now explain how the evaluation of attributes is
specified by an ag. Informally, the definition of attribute
values is specified by the use of attribute variables and
constant attribute values. The role of a‘primitive predi-
cate is twofold. Given values for its inherited attribute
positions, it evaluates its synthesized attribute positions.
It can also be used to perform checks on the validity of the
application of a production. Whenever it returns false, the
presence of a context sensitive error is detected. This
corresponds to an "illegal" application of a production and

thus blocks a derivation under the rules of the ag.

Considering the application of a production, we distin-
guish two kinds of attribute positions: a defining position
that is used as a source in copying an attribute value and

an applied position which is used as a sink in copying an

attribute value.
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Definition 4.2.2 : A defining attribute position 1is an

inherited attribute position of the left-hand side of a
production or a synthesized attribute position of a
symbol on the right-hand side of a production. &an

applied attribute position is a synthesized attribute

position of the left-hand side of a production or an
inherited attribute position of a symbol on the right-

hand side of a production. DX
Consider the following production of an ag:
<expression>{symtab -—> identifierlTtag declared{symtabytag

It could be used to check thaf an identifier has been
declared (i.e. tag € symtab). The use of identical attri-
bute variables implies a copy of attribute values. For
example, symtab appears in a defining attribute position of
<expression> and in an applied attribute position of
"declared”. This indicates that the primitive predicate

"declared"” uses the <expression>'s symbol table.

'Explaining the above definitions in terms of a deriva-

tion tree, we can see that values of synthesized attribute

positions of a symbol X are defined in terms of attribute
positions of the direct descendants of X; values of
inherited attribute positions of X are defined in terms of

attribute  positions of its parent or siblings. The
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inherited attribute positions of the start symbol are given

values in advance. Terminal symbols are not allowed to have

inherited attribute positions since there is no subtree to

which context can be transmitted. And, during parsing, the

synthesized attribute values of terminal symbols are sup-

plied by the scanner.

We now state two conditions that are necessary for an

ag to be usable.

Definition 4.2.3 : An attributed grammar AG is

well-formed if and only if

(1)

(2)

every defining attribute position in a production
is occupied by an attribute variable whose domain
includes the domain of the attribute position and
every applied attribute position is occupied by
an attribute variable whose domain is a subset of
the domain of the attribute position or by a con-
stant attribute value in the domain of the attri-
bute position.

each attribute variable occuring in a production
occurs in exactly one defining attribute position
in that production. X

1)

Condition (1) guarantees that, during parsing, every

attribute

value is within the domain of the attribute posi-
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tion it occupies. Condition (2) ensures that, during pars-
ing, every attribute position is assigned a value exactly
once. Also note that, during parsing, once an attribute
position 1is defined, its value is immediately available for

use in applied positions.

The instance of a symbol X in a derivation together
with its attribute values will be denoted by XViTs where i
is an Mx—tuple of values, each value in the corresponding

domain of i(X), and s is an N,-tuple of values, each value

X

in the corresponding domain of s(X). The notation i € i(X)

means i = (v, AL ), 1(X) = (dy, ""dM ) and v € dy, k
X X

= 1, eoers MX (s € s(X) is similarly defined). We now con-

sider the following sets:

av, = {abils | A e ¥, i € i(A) and s € s(R)]}
AV, = {als | a € ﬁt and s € s(a)}

AQ = {q¥iTls | g € Q, i € i(q) and s € s(q)}

AV = AV, U AV u AQ

t

Symbols in AV are termed attributed symbols. At times,

we will consider a symbol together with inherited attribute

values only. For this case, we define

AVI= (Abi | ae @, and i€ i) :

Av: = U, (since M, = B for all a € Gt)

t
{q¥i | g € Q and i € i(q)}

L ]

AQ
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I _ .1 . I
AV- = Avy u ¥ u Ao,

We now formally define the concept of an attributed

derivation in a well-formed attributed grammar AG.

*
Definition 4.2.4 : Assume d, B € AV and

4] ] ] a
Ayal...¥a, Tbj...Tb
1 Mg 1 Ng
1

1 1 1
D Ul¢a1...¢aMlTbl...Tle

m

Um¢aT...¢a$meT...TbN

m

is a production in P. Then we have
dA&igTSﬂy = dUl¢i]TSl...Um¢imTSmy
if and only if for k = 1,...,m

(1) iy € i(A).

(2) Sk € S(Uk).
(3) iy is a value (i¥,...,i§ ) such that (i) i% = a%
" k
if ag is a constant attribute value (ii) otherwise
i§ is the value of the unigue defining attribute
position where ag appears.
. 0 ] . 9 _ .0
(4) SQ is a value (sl,...,sNg) such that (1) sj = bj
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if bg is a constant attribute value (ii) otherwise

J
sg is the value of the unique defining attribute
' position where bg appears.

(5) for any Uy € Q it is the case that

ka(ik) = (sk, true).

We also have dqiTsp => dB for any qlifs € AQ such

that fq(i) = (s, true). Da

Informally, conditions (1) and (2) say that every
defining attribute position has a value which is in its
domain. Conditions (3) and (4) say that every applied
attribute position has a value which is determined by the
production that is used. Condition (5) says that the action
functions associated to the primitive predicates on the
right-hand side return the primitive predicates synthesized
attribute values and the value true (i.e., they do not block

the derivation).

As in the context-free case, we will use the notations

*
=, ==$, =T> and *;>. The language generated by a well-

formed attributed grammar AG is

*
L(AG) = {w € AV} | s{alb S :

for some a € i(S) and b € s(8)}
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Example 4.2.1 : We now illustrate the above defini-
tions using a small example. The following productions
might be part of an attributed grammar AG, defining the

evaluation of constant expressions

FTV3 e FTVI / PTVZ diV\l'Vl\l'VzTVB (pl)
Plv; —> constlv, (p2)
FTv, —> Plv, (p3)

where the primitive predicate div has the following action
function associated to it

div(vy, vjp) = (integer, boolean)
=i§v2=ﬂ
then return(0, false)

else return(vl/vz, true)
fi

The following is an example of a leftmost derivation of
FT3 in AG,. (The production that is applied to obtain a

sentential form is indicated next to it.)

F13 = F16 / P12 divi6y213 (pl)
=> P16 / P12 div{6{213 (p3)
=> constl6 / P12 div{6y213 (p2)
=> constl6 / constl2 div{6y2T3 (p2)
=> constl6 / constl2 4]

Since we are interested in guiding an error-correcting
parser by context-sensitive information, we need schemes in
which the evaluation of attributes can be interleaved with

the parse.- Such schemes are models for typical one-pass
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compilers. The class of ag we now consider is suitable for
on-the-fly evaluation of attributes during a single left-
to-right scan of the input string. This class is termed L-
attributed grammars as defined by Lewis et al. [LRS 76] and

has received considerable study.

Definition 4.2.5 : An attributed grammar AG is

L-attributed if and only if

(1) it is well-formed.

(2) for each production Y —> 2 ...2, € P, it 1is the
case that an attribute variable which appears in a
synthesized attribute position of Zj does not
appear in any inherited attribute position of

Zl,oo.'ch N

Condition (2) simply says that no attribute value Iis

used to the left of the symbol which defines it.

A left-to-right parser for an attributed grammar AG is

a context-free parser augmented by an attribute stack which

is used for keeping track of "attribute values as parsing
progresses. The parser is constructed from the head grammar

of AG.
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Definition 4.2.6 : The head grammar H of AG is a cfg that

is obtained as follows:

(1)

(2)

(3)

(4)

the terminals of H are AG's terminals.

the set of nonterminals of H includes AG's nonter-
minals and primitive predicates, and a set of copy
symbols. Each copy symbol is associated with a
sequence of operations on the attribute stack.

Allowable operations are

top(t) which copies the top attribute stack
element into t.
pop which pops the top attribute stack ele-
ment.
push(t) which pushes the value of t onto the

attribute stack.

the set of productions P' of H is obtained from
the productions of AG by removing attribute vari-
ables and constant attribute values. Copy symbols
are added in the right-hand sides of these produc-
tions. Let I be the set of copy symbols. A pro-
duction of the form s —> € is added to P' for

each s € Q u I,

the start symbol of H is AG's start symbol. [Xi
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Attribute stack manipulations are activated by the
application of productions of the form s —> € where
s €I ugqQ. If s € Q, the associated action function finds
its inéut ~arguments on top of the attribute stack and
returns its value on top of the attribute stack. If s € I,
the associated sequence of operations is executed. Also,
the synthesized attribute values of an input symbol are

pushed on the attribute stack as it is scanned.

Copy symbols are added in the right-hand sides in a way
that guarantees that

(1) before a production is applied (in the LL case,
this is before a right-hand side is predicted), the inher-
ited attribute values of the left-hand side are on top of
the attribute stack.

(2) after a production is applied (in the LL case, this
is after a right-hand side has been recognized), the inher-
ited and synthesized attribute values of the left-hand side
are on top of the attribute stack. (That is, all other
attribute values which were used during the application of

the production are popped off.)

A head grammar with the above properties can be

obtained automatically £from AG. This construction is

detailed in [Wat 77a; pp. 18-19]. The ' algorithm that 1is

presented also tests if AG 1is L-attributed. We now
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illustrate the above definition.

Example 4.2.2 : Reconsider example 4.2.1 . It is easy
to verify that AG, the fragment of grammar that was

presented, is L-attributed. The head grammar of AG, is as

follows:
F—> F / P div <#1I> (pl")
P —> const (p2")
F—> P (p3')
<#1> —> € (p4d"')
div —>» € (p5"')

where <#1> = (top(t); pop; pop; pop; push(t)) xi

The head grammar can then be used to construct an LL
(or LR) parser. An attributed grammar is AF-LL(l) (respec-
tively AF-LR(1)) if its head grammar is LL(l) (respectively
LR(1)) [wat 77al. AF - stands for attribute-~free; this is
because the parser is controlled entirely by the head gram-
mar. The only syntactic role of the attributes is to signal
context-sensitive errors via application of the action func-
tions. The attributes never influence the flow of control
of the parser other than making it detect a context-
sensitive error. This technique is indeed very powerful.
Watt was able to write an AF-LR(1) grammar specifying the

complete syntax of PASCAL [Wat 77b]. ’
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However attributed grammars, as defined above, have a
major disadvantage when they are to be used with locally
least-cost correctors. It is often too late to do a correc-
tion by the time an action function evaluates to false. For
example, we want to check that an identifier has been
declared before doing a shift move which consumes it (so
that we may delete the identifier or insert a string to its
left). This is not possible with the scheme that was
presented (because the identifier's synthesized attribute
values are not available until after it is consumed). 1In
the next section we consider how the above scheme can be

modified slightly to allow earlier error detection.

4.3 Attribute-Free LL(l) Parsing

While we retain the separation of parsing and'attribute
evaluation by requiring the head grammar to be LL(l), we now
allow inherited attribute values of the top stack symbol A
and synthesized attribute values of the lookahead u to con-
dition a prediction move of the AF-LL(l) parser. This 1is
done by adding (by hand) shift-predicates to the grammar

specification.
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Definition 4.3.1 : Assume AG is an L-attributed grammar

and production Pj is of the form
A\l'aﬂTbﬂ — fTbl Uz\baszz oo Um\Lamem

where f € ﬁt‘ Then a shift-predicate for P; is a total

recursive function s : i(a) X s(f) —> {true, false}

and is used in the following way: P; may be applied in
a derivation only if s;(vgr wy) = true where vy is the
MA—tuple of inherited attribute values of A and wy is

the Nf—tuple of synthesized attribute values of f.

In the case the right-hand side of a production
does not start with a terminal symbol (or an s-
predicate does not specify a value for certain attri-

bute values), a default value of true is assumed. Da

The L-attributed restriction and the definition of the
head grammar guarantee that the inherited attribute values
of A can be found on top of the attribute stack when needed.
The synthesized attributes of the lookahead are always
available as they are supplie§ by the scanner. The class of
AF-LL(1) grammars which are augmented by s-predicates is
termed SAF-LL(l). An SAF-LL(l) parser is presented in

Appendix A.5 .
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Example 4.3.1 : Consider the following SAF-LL(l) gram-
mar AG,, which will be used in all the examples that follow.
This grammar defines a skeletal language in which identif-
iers may be "declared" and "used", in which no identifier
may be declared more than once and in which no identifier
may be wused without being declared. Further, the set of
allowable identifiers is {x, y}. For example, "dcl x dcl vy

use x end" is in L(AG,), but "use y end" is not (x and y

really are abbreviations for identfx and idently).

Attribute Domains: 1ID = {x, y}; SyMTAB = 2P

Attribute Variables and their Domains

symtab, symtabl,symtabz, symtaby : SYMTAB

id : ID

Terminals Domains of Inherited Domains of Synthesized
Attribute Positions Attribute Positions

ident - ID

use - —

end - -

dcl - -

g —— ) —

Non-Terminals

{program> — —_

<dec list> SYMTAB SYMTAB

<var dec> SYMTAB ID

<stmt list> SYMTAB -

{var> SYMTAB -

Primitive Predicate and Associated Action Function.

declare SYMTAB, ID SYMTAB



declare (symtab : SYMTAB, id : ID) : (SYMTAB, boolean)

= return( symtab u {id}, true )

Productions and s-predicates

(p1)

(p2)

(p3)

(p4)

(p5)
(p6)

(r7)

{program> —> $
<dec list>{gTsymtab
{stmt list>ysymtab
end

$

<dec list>{symtab,Tsymtaby
—> del
<var dec>{symtab;Tid
declareysymtab;}idTsymtab,
<dec list>{symtab,Tsymtab,

S, (<dec list>¢symtab, dcl) = (symtab # {x, y})
<dec list>ysymtabTsymtab
—> €

<var dec>{}symtabTid
—> identTid

s4(<var dec>{symtab, identTid) .= (id ¢ symtab)
<stmt list>{symtab —> €

<stmt list>{symtab
<var>y{symtab
<stmt list>{symtab

sg(<stmt list>ysymtab, use) = (symtab # @)
<var>ysymtab —> identTid

s7(<var>¢symtab, ident1id) = (id € symtab)

185
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Note that s, prevents a declaration when the symbol
table is full and sg prevents using a variable when the sym-

bol table is empty.

Head Grammar (obtained automatically from the above

for purposes of generating a parser)

(pl') <program> —> $<#1> <dec list> <stmt list> end $ <#2>
(p2') <dec list> —> dcl <var dec> <declare> <dec list> <#3>
(p3') <dec list> —> <#4>

(p4') <var dec> —> ident

(p5') <stmt list> —> €

(p6') <stmt list> —> use <var> <stmt list>

(p7') <var> —> id <#5>

(p8') <declare> —> €

(pk') <#k> —> €, k = l,...,5

where <#1> = (push(gd))
<$2> = (pop; pop)
<#3> = (top(t); pop; pop; pop; push(t))
<$4> = (top(t); push(t))
<$5> = (pop)

The following is a parse of "$ use x end $" by the
SAF-LL (1) parser corresponding to AG,. A configuration of
an SAF-LL(1) parser is a triple (o, T, w) where o is the
parse stack, T is the attribute stack and w is the remaining

input string.
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l. 0 = § <#1> <dec list> <stmt list> end $ <#2>
T = ()
w =5 use x end $
2. o = <#1> <dec list> <stmt list> end $ <#2>
T = ()
w = use x end 3
3. o = <dec list> <stmt list> end $ <#2>
T = (g)
w = use x end §
4, o = <#4> <stmt list> end § <#2>
T = (@)
w = use x end $
5. 0 = <stmt list> end $ <#2>
T = (g, 2)
w = use x end §
This is an error configuration since
M(<stmt list>, use) = predict 6' and sg(<stmt list>¥@, use)

= false. At this point the error corrector is invoked. This

will be illustrated in the next section. Da

4.4 +%The Error Corrector

We are now ready to present a locally least-cost error
corrector for a restricted but nevertheless interesting

class of SAF-LL(l) parsers. We make the fundamental
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assumption that all attribute domains are finite. (In prac-

tice, any infinite attribute domains would be mapped into
finite attribute classes.) The correction model we use is
similar to the one of Definition 1.3.3, with the exception
that symbols in terminal strings are now attributed. For
this reason, the insertion and deletion costs are defined

for attributed terminal symbols.

Error Correction Tables

We first consider the definition of (attributed) S and
E tables. We now have S : AV —> AV:, where 5(A}yiTs) is an
optimal solution to
min { IC(y) | abils = y }

*

y € AVt

~ %
We also consider E : (Avi u Vt) X AVt — Avt where

E(A¥i, als) is an optimal solution to

min { IC(y) | AVifs® -5 y als ... and s' € s(A)}
*

y € AVt

Note that the synthesized attribute values of A are not
included in the domain of the E table since, as in the
context-free case, an E value will constitute the final

(i.e., rightmost) part of an inserted string. Algorithms
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for computing both the attributed 5 and E tables are given

in Appendix A.6 .

Error Correction Procedure

As in the context-free case, we need a parser that has
the IEDP. A technique similar to the one presented in Sec-
tion 2.2 can be used. 1In this case, we want to restore both
the parse stack and the attribute stack to the state they
were in at the time the erroneous symbol was first encoun-
tered. This restoration can be done by buffering the
transformations of both stacks in the auxiliary stack and
later wusing a procedure "restore(o, t)" to undo parser

moves.

/

A better way of obtaining the IEDP for the set of

nonnullable SAF-LL(1) grammars has been developed by Fischer

et al. [FTM 78]. An SAF-LL(l) grammar is nonnullgble if and
only if each production of its head grammar is of the form A
—> X|...% (k > 1) where X|...X, =% € or A —> €. In this
case, it is possible to check in advance if predicting an
€-production is correct. Since only predictions of
g-productions can possibly be erroneous, it is easy to con-
struct an SAF-LL(l) parser which has - the TIEDP. Moreover,

any SAF-LL(l) grammar can be algorithmically transformed
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into a nonnullable SAF-LL(l) grammar. This transformation
is detailed in [FTM 78]. This second procedure has the
advantage that linear time and space can be preserved even
in the case the parse stack 1is not of bounded depth

[FTM 78].

Assuming the IEDP is guaranteed, we first consider a
function SAF-LL_Insert which computes a least-cost insertion

string corresponding to error symbol als € AVt.

Before we exhibit the procedure let us introduce the

notion of an SAF-LL(l) error correction tree. We process

the parse stack o = xl...xp in a top-down fashion and as we

consider Xy € Vn u ¥, u Q, we create the nodes at level k+l

t
in the tree. While processing X, we have to consider its
attribute values. The inherited attribute values of X, will
be at the top of a local attribute stack N.©v attached to
node N of the tree. We assume inh(Xy, N.T) is a function

which returns these values. Also, we have to consider all
possible synthesized attribute values of Xy which might be
computed while expanding Xg, creating a node at level k+l
for each different choice (see Figure 4.4.2, lines 18-25 for

Xk e Vn u ¥ and lines 35-40 for Xk € Q). Note that dif-

t
ferent least-cost expansions for X, will be obtained for
different inherited and synthesized attribute value combina-

tions. The contents of a node N at level k+l is a pair
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(N.LC, N.T) where

*
N.LC € AV, is a least-cost insertion string which is
derivable from xl"'xk and which satisfies all con-

straints imposed by primitive and shift predicates.

N.¢ is a local attribute stack which takes into account
the attribute stack manipulations which would take
place assuming N.LC is inserted to the 1left of the

error symbol. T

The error correction tree is built in such a way that
all possible combinations of attribute values which might

lead to a least-cost insertion are followed.

t A careful implementation of SAF-LL Insert would not
generate a separate local stack for each node. Rather, it
would maintain a global tree structure of different attri-
bute stack alternatives. ©N.T being a pointer to a node in
this tree.
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X
level k-1 K (LC, T) .o level k+l

node at level k cee

Figure 4.4.1 : the SAF-LL(l) error correction tree

The root of the error correction tree is (€, t) where T
is the restored attribute stack. The while loop in lines
5-44 creates the nodes in the tree until all nodes have an
LC cost which is greater or equal to the cost of the lowest
cost known insertion (Insert), or the bottom of the parse
stack is reached. It also checks for possible insertions in

lines 13-17.

o ¥

function SAF-LL_Insert(c, T, als) : AV
o = xl...xp, the parse stack;
(* X, is the top element in o *)
©, the attribute stack;
als : AV, ,
type Node = record

the error symbol;

*
LC : AVt, least-cost insertion;
¥, local attribute stack corresponding to LC;
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ction inh(x : V¥, u ¥

fun
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end Node;
Level, NextLevel : set of Node;
N, N' : Node;
SV, EV , Insert : AVE
' : attribute stack;
U Q, T : attribute stack) :

Mx—tuple of attribute values;

(* returns the inherited attribute values of X from T,

t

as outlined above *#*)

begin ({(* SAF-LL_Insert ¥)

1

X N O U W N

11
12
13
14
15
16
17
18
19
20
21
22

(* initialization *)
Insert := 2?2 ; k =1
Level := {(€, T©)}; NextLevel := g ;
(* main loop *)
while 3 N € Level such that IC(N.LC) < IC(Insert)
and k < p do
for all N € Level such that IC(N.LC) < IC(Insert) do
let N.T = cj...c.; |
(* that is, the ci's are stacked attribute values;
c, is the top element *)
case X, of

Terminal, NonTerminal:
(* check local correction ¥)
EV := E(XpVinh (X, N.T), als)
if IC(N.LC cat EV) < IC(Insert)
then Insert := N.LC cat EV
fi;
(* build next level in tree ¥*)
for all v € s(xk) do
SV := S (X ¥inh (X, N.©)1v);
if IC(N.LC cat SV) < IC(Imsert) then
NextLevel := NextLevel
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23 u {(N.LC cat sV, cl...crv)}
24 £i
.25 od;
26 ) CopySymbol:
27 | let X, = <#r>; T := <4r>(N.T);
28 (¥ i.e. T' is obtained by applying <#r> *)
29 if g N' € NextLevel such that N'.w =1'
30 then ig IC(N.LC) < IC(N'.LC)
31 then N'.LC := N.LC
32 £i
33 else NextLevel := NextLevel u {(N.LC, Tt')l}
34 fi;
35 PrimitivePredicate:
36 (v, pass) := ka(inh(xk, N.T)):
37 if pass then '
38 NextLevel :=
39 NextLevel u {(N.LC, cl...crv)}
49 fi
41 esac
42 od;
43 Level := NextLevel; NextLevel := g ; kK := k + 1

44 end while;
45 return(Insert)
end SAF-LL Insert.

Figure 4.4.2 : function SAF-LL_Insert
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Deletions can be implemented in the same way as in the
LR(l) case (Chapter 3, Figure 3.1.1), with the difference

that First_Occurence now ranges over AV, . We therefore have:

procedure SAF-LL_Corrector (o, T, W);

o, the parse stack;

v, the attribute stack;

W = aj...ap$, the (preprocessed) remaining input string;
begin

1 restore(o, T); (* if necessary ¥*)

2 y =72 ; i :=0;

3 for all c € AV, do

4 if First_Occurence (c) # absent then
5 j := First_Occurence(c);

6 z := SAF-LL Insert(o, T, C);

7 if D(j) + IC(z) < D(i) + IC(y)
8 then y := z

9 i=3

19 fi

11 fi

12 od;

14 (* that is, delete aj...a
end SAF-LL Corrector.

i-1 and then insert y ¥*)

Figure 4.4.3 : procedure SAF-LL_Corrector




116

Note that stack restoration (line 1) applies to both
the parse stack and the attribute stack. Also note that, in
practice, the same incremental approach that was presented

in Section 3.2 would be used to advantage.

Example 4.4.1 : Reconsider grammar AG, given in Exam-
ple 4.3.1 and assume all attributed terminal insertion
costs are set to one. Further assume an SAF-LL(l) parser
using SAF-LL Corrector as an error corrector processes "s
use x end $". The parser detects an error when sg fails
(step 5 in Example 4.3.1). After stack restoration, the

error configuration is

o = <#1> <dec list> <stmt list> end § <#2>
Tt = ()
w = use x end $

This configuration corresponds to step 2 in Example
4.3.1 . SAF-LL Corrector first invokes SAF-LL Insert(o, T,
use). The error correction tree is given below (we indicate

the parent of a node in parenthesis).

level @: create the root of the tree

1. (e, ()

Insert := ? (* initialization *)

level 1: X1 <EDD>



2. (&, (&)

level 2: X, = <dec list>

3. (8cl x dcl vy, (8, {x,¥})) (2)
since S(<dec list>{#T{x,y}) = dcl x dcl vy

4. (dcl x, (4, {x})) (2)

since S(<dec list>ygT{x}) = dcl x
5. (dcl y, (8, {y})) (2)
since S(<dec list>ygT{y}) = dcl ¥y

6. (€, (8, 8)) (2)

since S(<dec list>{gld) =

M

level 3: X3 = <stmt list>

Insert := dcl x dcl y
since E(<stmt list>}{x,y}, use) = €
and N3.LC = dcl x dcl y
Insert := dcl x
since E(<stmt list>{{x}, use) = €
and Ny.LC = decl x

7. (&, (8, 8)) (6)

since S(<stmt list>V#) e

level g: Xy = end

8. (end, (8, &) (7)

since 5(end) = end

117
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At this stage a least-cost correction isw obtained by
" insertion of "dcl x". SAF-LL_Corrector then considers
deleting use and invokes SAF-LL Insert(o, ©, x). The reader
may easily verify that the optimal insertion of "dcl" does
not yield a lower cost correction. Since deleting "use x"

costs 2, we know that an insertion of "dcl x" is optimal.

We finally have corrected "$ use x end $" into "$ dcl x use

x end $". 1A

4.5 Properties of the Error Corrector

As mentioned in Section 1.3, a 1locally 1least-cost
corrector can correct and parse any input string only if
the parser has the correct prefix property. It 1is clear
that an SAF-LL(l) parser has the correct prefix property if
and only if any attributed symbol in AV tha£ can be
predicted can derive an attributed terminal string. The
follpwing definition and theorem present a procedure that

decides if the correct prefix property holds.

Definition 4.5.1 : Let AG be an s-predicated attributed

grammar with finite attribute domains. We define 6 as

a relation on AV, such that Ajufv 8 By{wlx if and only
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if qabulvp = dyBlwlxpp. XN

Note that the fact that we restrict ourselves to finite
attribute domains guarantees the above definition is effec-

tive.

Theorem 4.5.1 : An SAF-LL(l) parser based on an SAF-LL(l)
grammar AG with finite attribute domains has the
correct prefix property if and only if for each ayufv €

*
AV. such that S¢tTw 8§ Alulv for some t € i(S) and w €

n
s(S) it is the case that S(Ayulv) # 2 .

Proof : (If part) Assume that for any Ayulv which can be

predicted, we have s(ayuflv) =y # "2". Then we have, by
*

definition of S, Ayulv = y and therefore the correct pre-

fix property can be guaranteed.

(Only if part) Assume S{tTx " alulv and s(Alulv) = ?2
then we can be in a situation where Alufv is predicted and
no attributed terminal string can be generated from it.
Therefore the correct prefix property cannot be

guaranteed. Da

Example 4.5.1 : Reconsider grammar AG, of Example
4.3.]1 and assume the s-predicate Sg is removed (s6 prevents
the prediction of use when the symbol table is empty). Then

we can have .the following attributed leftmost derivation:
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<program> => $ <dec list>{g1g <stmt list>{g end $
=> § <stmt list>y# end $
=> use <var>{g <stmt list>{g end $

%
Therefore we have <program> & <var>¢g. Further, we
have S(<var>{g) = ? . So that AG, does not guarantee the

correct prefix property if Sg is omitted.

It should be noted that the presence or absense of sg
does not change the language that is accepted by AG,. It
merely changes the point of error detection by an SAF-LL(1)
parser. The above test can be helpful to a grammar designer
to indicate when the specification of such s-predicates is
needed. It is left to the reader to show that AG,, as
presented in Example 4.3.1, does in fact guarantee the

correct prefix property. Da

We now prove tﬁe correctness of SAF-LL Corrector and
examine 1its efficiency in the general case and in the case
of a bounded depth parse stack. The reader 1is invited to
note the similarity between the following proofs and the
corresponding proofs for the LL(l) case ([FMQ 77]) and the

LR(l) case (Chapters 2 and 3).

Lemma 4.5.1 : Assume that during the execution of SAF-

LL Insert, a node N = (N.LC, N.7T) is added at level k
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of the error correction tree. Then it 1s the case
that, if restarted in configuration (o, T, N.LC ...),
the parser can accept N.LC giving an attribute stack of

Nﬁ‘c L]

Proof : By induction on the number of levels that have been

processed by SAF-LL_Insert.

Basis step: the Lemma trivially holds for (€, T), the

root of the error correction tree.

Induction step: assume Lemma true at level k. Now con-
sider a node N' at level k+!. N' can be added at level k+l

in one of three ways.

(1) If N' is added in lines 22-23 we have N' = (N.LC
cat S (Xgbinh (X, N.©)Tv), ¢j...cv) where N = (N.LC,
cl...cr) is the parent node of N', at level k. By induction
hypothesis, we know that N.LC can be accepted by the parser,

giving an attribute stack of Clee-C Now assume

r o

S(Xk¢inh(xk, N.t)lv) =y (the condition in line 21 guaran-

tees it is not "?"). There exists an attributed deriva-
*

tion of the form Xylinh(Xy, N.T)lv = y . Therefore

N.LC cat y can be accepted by the parser, giving an attri-

bute stack of c¢j...c v, and the Lemma holds for N',
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(2) If N' is added in line 33, we have N' = (N.LC,
<#r>(N.t)) where N = (N.LC, N.r) is the parent node of N',
at level k and <#r> is the attribute stack transformation
corresponding to «copy symbol X;. 1In this case, we merely
simulate the transformation that would be done on the attri-
bute stack by the parser. Therefore the Lemma holds for N'

since it holds for N.

(3) If N' is added in lines 38-39, X is a primitive
predicate and the proof that the Lemma holds for N' paral-

lels the proof of case (l).

It follows immediately that the Lemma is true for all

nodes in the error correction tree. i

Lemma 4.5.2 : Assume that after reading and processing

*
some input prefix Sy € Avt an SAF-LL(l) parser invokes

SAF-LL Insert with an error symbol of als. During the
execution of SAF-LL Insert, wherever Insert contains a
string z # ?, it is the case that z als can be accepted

by the parser if it is restarted.

Proof : Aside from the initialization to "?" in 1line 2,
Insert is assigned a value in only one place (line 16) and
only when the new value has a cost 1less than the current

value (and thus a cost < IC(?)). Insert is assigned a
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value N.LC cat E(XpVinh(X,, N.v), als) where N = (N.LC, N.T)
is a node in the error correction tree. By definition of E,
we know E(X,Vinh(X,, N.v), afs) = y 1is such that there
exists an attributed derivation X, linh(X,, N.T)Ts' >
y als... . By Lemma 4.5.1, we know that N.LC can be
accepted by the parser and will yield an attribute stack T
such that X&s inherited attribute values are inh(xk, N.T) .

Therefore N.LC cat y als can be accepted by the parser. a

Theorem 4.5.2 : Consider some SAF-LL(l) grammar AG with
finite attribute domains. Assume that, after reading
and processing some input prefix $x € AV*, the
corresponding SAF-LL (1) parser invokes SAF-LL Insert
with error symbol als as soon as als 1s encountered.

+

Then SAF;LL_Insert will return a string y € AV, u {2}

such that y is an optimal solution to

min { IC(y) | ($xyaTls can be accepted by the parser)

y €AV. u {2}  or (y=7?) }

Proof : By Lemma 4.5.2, we know any string # ? assigned to
Insert is correct and a new value is assigned to Insert only
if it is of a lower cost than the current value. We need
only therefore show that at some point an attempt to assign
a string of cost IC(y) must be madef If y =7?, Insert |is

assigned value "?" (line 2) and will never be assigned a
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different value since y is least-cost. Otherwise we will
show how SAF-LL Insert traces the various ways y als may be

recognized once parsing is restarted.

Assume y = y|Yp. The induction hypothesis here is that
if y; 1is generated from Xj...Xy and if processing has not
halted yet then at level k we have a node N = (LC, T) such
that IC(LC) = IC(y;) and T would be the attribute stack

after y;| was recognized from X;...Xy.

Initial step: write y als as y;y,; als and assume
Y| = €. Then it is the case that N; = (€, T©), the sole node
at level 1, is such that 1IC(y;) = IC(Ny.LC) and that an
attribute stack of © is obtained if y| is inserted and later

parsed.

Iterative step: assume y als is written as y;y, als and
we have Jjust completed processing Xk—l creating nodes at
level k. By induction hypothesis we know that there exists
a node N = (N.LC, N.r) at 1level k such that IC(yl) =
IC(N.LC) and Y] can be generated from some
XpvayTby...X _,Va,_;Tb,_; producing an attribute stack of
N.©. We continue by tracing how y, als might be recognized.
It may be the case that y, als 1is fully generated by
Xk¢inh(xk, N.¢)lv where v € s(Xk) and N is a node aat level

k. ‘Then it must be that IC(yy) = IC(E(Xg¥inh(Xg, N.©)Tv,
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als)), else y is not least-cost. In this case 1Insert is
- assigned a string of cost IC(y;)+IC(yjp) = IC(y) since y,
must be least cost (line 16). Otherwise write y, als as

. *
z1z, als and  assume z| € AV is generated from

t
X Vinh (X, N.v)Tv where N is a node at level k and v €
s(Xg) . We now consider three different cases:

(1) If Xy = <#r>, a copy symbol, then we have z; = €. 1In
this case we create a node N''= (N.LC, <#r>(N.Tr)) at
level k+1 (lines 26-34).

(2) If X € Q, it must be the case that ka(inh(xk, N.7))
= (v, true) since, by Lemma 4.5.1, N.LC is correct and
we create a node N' = (N.LC, N.t v) at level k+l
(lines 38-39).

(3) If X, € ﬁt u ¥, we create a node N' = (N.LC cat
S(Xp¥inh(X,, N.©)Tv), N.©v) (lines 22-23) where
IC(S(Xk$inh(Xk, N.t)lv)) = IC(z;) since z; is assumed

least~-cost.

In all cases, we created a node N' = (LC', ©') at level
k+1 such that IC(LC') = IC(y; zy) and ©' is the attribute
stack which would be obtained by processing y; zj. 1f
IC(Insert) > IC(LC') this step is repeated for level k+l
with y;z; renamed y; and 1z, als renamed vy, als. If
IC(Insert) < IC(LC') the algorithm may terminate but a

least-cost Insert must already have been found since IC(LC')
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< IC(y) .

The iterative step is repeated until the symbol which
finishes the recognition of vy als is processed or until
IC(Insert) is less or equal to the cost of all LC values.
In either case a simple induction on the number of iterative
steps executed establishes that an Insert value of cost

IC(y) must be obtained. Ba

Theorem 4.5.3 : Consider some SAF-LL(l) grammar AG with
finite attribute domains and such that the correct pre-
fix property can be guaranteed. Assume that for some
input string z = $xaj...a¥ € AV*, $x... € L(AG) but
$xaj... £ L(AG). Further assume that while attempting
to parse z an SAF-LL(l) parser invokes SAF-
LL_Corrector as soon as a; is encountered. Then SAF-
LL Corrector will delete aj...a; and insert y such that

(i, y) is a solution to

min  { min { DC(aj...a;,)+IC(y")
|n$xy'ai.+l... € L(AG)]} }

*
B<i'<n  y'eAV,

Proof : similar to proof of Theorem 3.2.1 . [} 4]
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Before we examine the complexity of SAF-LL_Corrector,
we state a result concerning the complexity of SAF-

LL_parser.

Theorem 4.5.4 : Given an  SAF-LL(!l) grammar, the
corresponding SAF-LL(1) parser requifes O(n) time to
parse a correct input string of length n if we assume
each evaluation of a s-predicate or action function

takes no more than a constant time.

Proof : Follows directly from the 1linerarity of LL(1l)
parsers [AU 73; Volume 1] and the fact that the modifica-
tions only block (but do not otherwise change) the actions

of a normal LL(l) parser. t Da

Lemma 4.5.3 : The number of nodes created in a given

invocation of SAF-LL Insert at any level k in the error
correction tree is bounded by a constant depending

solely on the grammar.

Proof : Let o = Xj...Xy...X be the parse stack and C; be

p
the number of distinct tuples' of synthesized attribute

values over any s(X) for X € V. We know that C; is finite

t If the evaluation of s-predicates and action func-
tions cannot be done in constant time, we can still guaran-
tee that the number of parser moves is O(n).

i
i
i
i
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since we assume finite attribute domains. Now consider two

cases.

(1) First assume ). o8 terminates the recognition of the
right-hand side of some production P; = (Y —> Z)...% )
(that is 2, = Xpba,Tb,). All nodes at level k+l have a
local attribute stack configuration of the form (...,
inh(Y), syn(Y)) where inh(Y) is a tuple of inherited attri-
bute values of Y and syn(Y) is a tuple of synthesized attri-
bute values of Y. We note that, by construction of the head
grammar (Section 4.2), (..., inh(Y)) is the unigue sequence
of attribute values that was already present on the attri-
bute stack o at the time SAF-LL Insert was invoked. (...,
inh(Y)) was fixed at the time P; was predicted, before the
error was detected. Therefore the number of nodes at level
k of the tree is bounded by C; since local attribute stacks
can only differ in their syn(Y) part and there cannot be two

nodes with identical attribute stacks at the same 1level in

the tree.

(2) Now consider a level k' which does not correspond
to the above category (i.e. such that Xk' does not complete
the recognition of a right-hand side). We can clearly have
no more than maxrhs symbols of this class before a stack
symbol which terminates a right-hand side 1is encountered.

Now copy symbols and primitive predicates do not increase



129 -

the number of nodes at the next level. Grammar symbols can

add at most C| new nodes for a given node (i.e., each possi-

ble tuple of synthesized attribute values for a given tuple

of inherited attribute values). Thus each level can

increase by at most a factor C; nodes and therefore we have
maxrhs

at most C;.Cj distinct nodes before a stack symbol of

class (1) is encountered. Xa

Lemma 4.5.4 : Assume an SAF-LL(l) parser using SAF-

LL Corrector as an error corrector processes $x$ and
corrects it into $x'S. Then it 1is the case that

Ix'| = O(lxl).

Proof : We need only show that each symbol inserted during
error correction can be charged to some input symbol and
that each input symbol is charged for at most a constant

number of insertions.

For charging purposes we associate each parse stack
symbol with the input symbol which caused it to be pushed on
the parse stack. It is easy to show that, during normal
parsing, the number of stack symbols so charged to a given

input symbol is bounded by a constant.

Now assume SAF-LL Corrector is invoked with error sym-

bol als and a parse stack of o = x,...xp. Consider the par-
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ticular invocation of SAF-LL Insert which yields the optimal
insertion. Starting with X;, stack symbols are examined and
each stack symbol either generates a least-cost string or a
least-cost prefix string. 1In either case the length of the
insertion string associated with a given symbol can be
bounded by a grammar-dependent constant. Now considering
the fact that, when parsing is resumed, those stack entries
which generate least-cost strings are effectively deleted,
we can charge these portions of LC strings to their
corresponding stack symbols. Further, that stack symbol
Xj¢aijj which derives als is in effect replaced by w € AV*
where xj$aijj =T; P A&iATsA q => px als yq, w = yq and px
is the least-cost prefix to be inserted. Since w is deter-
mined solely by xj¢aj and als, its size can be bounded by a

grammar-dependent constant and we can associate these stack

symbols to als. X

Lemma 4.5.5 : Assume a bounded depth parse stack SAF-

LL(1) parser using SAF-LL Corrector processes $x$S.
Then stack restoration requires at most O(|xl) time and

space in all.

*
Proof : Let o € V be the stack symbols just before buffer-

ing begins. As in normal LL(l) parsing, the number of moves

induced by an error symbol and a given parse stack symbol is
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bounded by a constant. Thus since |d| is bounded by a con-
stant, so is the total number of moves buffered in the auxi-
liary stack AS. Since attribute stack and parse stack mani-
pulations can be undone in constant time, procedure restore
requires only a constant time per invocation and at most

Oo(lx!) time in all. The O(lx|) space bound is trivial. Da

Theorem 4.5.5 : Assume we are given an SAF-LL(l) grammar
AG that satisfies the following conditions:
(1) all attribute domains are finite.
(2) the correct prefix property can be guaranteed.‘
(3) each evaluation of a s-predicate or action func-
tion takes no more than a constant time.
Then processing the input $x$ with the correspond-
ing SAF-LL(]1) parser and SAF-LL_Corrector requires
(1) at most O(lez) time and O(lx]) space in the gen-
eral case.
(2) at most O(lx!|) time and space if a bounded depth

parse stack is assumed.

Proof : (1) In the general case, for each |x| possible
errors it may take O(lx|) time and space to restore both the
parse stack and the attribute stack (the same argument used
in Theorem 2.2.1 applies to both stacks). We now show that

every invocation of SAF-LL_Insert takes O([x|) time. Con-
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sider the while-loop in lines 5-44. The numbef of times it
is executed is bounded by O(lol) = O(lx]|) and, given a care-
ful implementation of local attribute stacks and LC strings,
each execution takes at most constant time. This is because
any node at a given level can be processed in no more than a
constant time and, by Lemma 4.5.3, we know that there are at
most a constant number of nodes at a given level. Since
SAF-LL_Insert is invoked for each a € AV, , at most, it fol-
lows immediately that SAF-LL Corrector takes time o(lxl)
for each correction and therefore time O(lez) in all. The
O(lx|) space bound is trivial and the desired result follows

immediately.

(2) In the case of a bounded depth parse stack, one
invocation of SAF-LL_Insert can process the entire (bounded
depth) parse stack in constant time, using an amount of
space bounded by a constant. Therefore one invocation of
SAF-LL Corrector requires constant time and space. Moreover
stack restoration takes O(lx|) additional time and space in

all (Lemma 4.5.5). P
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Chapter 5 : CONCLUSIONS

5.1 Summary

A goal of this research was to extend the FMQ LL(1)
error corrector [FMQ 77 and FM 77] to be usable with a large
class of practical parsers (viz, the LR!/1)-based class).
Although the problem of error correction has previously
received much attention, most of the other techniques suffer
very serious drawbacks. Very often, they fail when faced
with certain syntax errors and are forced to skip ahead in
the input stream, completely ignoring portions of 1it.
Further, in most of the cited work, the issue of time and
space complexity is ignored. Indeed many published tech-

niques exhibit non-linear behavior.

The work presented in this thesis has both theoretical
and practical significance. Tﬁe error correction model
introduced by Fischer et al. [FMQ 77 and FM 77] @as been
presented and extended to the LR(1) and SAF-LL(l) parsers.
For all of these technigues, a locally least-cost correction
is guaranteed and, in cases of special interest (e.g.

bounded depth parse stack), linearity can be established.
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On the practical side, preliminary experiénce with the
- LL(1) and LR(l) correctors indicate that these can be used
to advantage with most LL- or LR-driven compilers. Both
correctors . can operate satisfactorily with a rather small
primary storage reguirement. Although the SAF-LL(l) correc-
tor has not yet been implemented, there is good reason to
believe that context-sensitive information can help in pro-

viding the user with highly plausible corrections.

All of the techniques developed heré have the funda-
mental advantage that the introduction of error correction
in the translation process has very 1little impact on the
overall structure of a compiler. This is a direct conse-

quence of the locality of our correction model.

5.2 Directions for Future Research

This research presents a structured approach to error
correction for a number of practical parsers. It seems very
likely that locally least-cost correctors can be developed

for other classes of parsers.

The generalized 1left-corner (GLC)- parsing technique

described by Demers [Dem 77] subsumes the LL and LR
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technigues. By combining the FMQ algorithm and the LR
corrector of Chapter 2, one can hope to develop an error
corrector for GLC parsers, which would certainly require

smaller tables then the LR corrector.

The techniques of Chapters 2 and 4 could be combined to

generate an error corrector for AF-LR(1l) parsers.

Attributed error correction in the presence of infinite
attribute domains needs to be fully investigated. It is
our feeling that infinite (or large) domains are used in a
rather restricted manner in the definition of common pro-
gramming languages (e.g. for keeping track of identifiers in
a symbol table and for counting the number of elements in a
linear 1list). An approach that may prove fruitful is to
delay some of the computations of the S and E values until

parse time.

In a recent Ph.D. thesis, ‘Poplawski [Pop 78] has
extended the FMQ LL(l) corrector to the LL-regular parsing
technique which uses a regular lookahead to make parsing
decisions. Parsing is done in two passes: in a first pass
the input program is processed in reverse by a generalized
sequential machine, and in a second pass the modified text
is processed by a top-down parser. This allows the intro-

duction of non-local information via the regular lookahead
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into a locally least-cost error correction scheme. A syntax
error such as a missing "if" (Example 3.3.1) can then be
reported and corrected without backing up. It seems 1likely
that the LR(l) corrector of Chapter 2 can be extended to

work with LR-regular parsers.

Finally, it is our belief that syntactic error correc-
tion applies to more than just compilers. For example,
tools for high-level programming might include a special-
ized text editor that understands the syntax of the program-
ming language on which it is based. For such a text editor,
good diagnostic and correction capabilities are of much
interest. 1In this case costing could be used as a basis for

providing a list of plausible corrections to the user.
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Given an augmented cfg G, the following procedures com-

pute the S and E tables as defined
Correctness and efficiency of STable and

cussed in [FMQ 77].

procedure STable;

begin

1 (* initialization ¥*)

2 for all a € ¥_ do S(a) := a 0d;
3 for all a € VU, do s(a) := ? od;
4 (* main loop *)

5 repeat
6 NoChange := true;

7 for all (A —> Xj..-X,) €P do

8 if IC(X)...Xy) < IC(R)

9 then S(A) := S(Xj...Xp)
10 NoChange := false;
11 fi
12 od
13 until NoChange

end STable.

in Section 1.4 .

ETable are dis-
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procedure ETable;
begin
1 (* initialization *)

2 for all A € V do '

3 .~ for all a € Vt do E(A,a) = ? od

4 od;

5  for all a € ¥_ do E(a,a) := € od;

6 (* main loop *)

7 repeat

8 NoChange := true;

9 for all a € V_ do

19 for all (A —> X;...X,) € P do

11 cost := min (IC(XI...Xi_1)+IC(E(Xi,a))) H
12 1 <i<n

13 (* j is the value giving the above min *)

14 ~ if cost < IC(E(A, a))

15 then E(A,a) := S(Xl"'xj-l) EEE'E(Xj,a);
16 NoChange := false

17 fi

18 od

19 od

20 until NoChange
end ETable.
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A.2 CFSM Construction Algorithm

Given an augmented cfg G, CF3SM constructs the charac-

teristic finite state machine [DeR 711].

grocedure CFSM(G);

begin
1 sg : {[s' —> $#5511}; marked[sﬂ] := false;

while 3 s € & such that not marked([s] do
let s € S such that not marked[s];

marked[s] := true;

for all I = [A —> (@BY] € s do

2

3

4

5 (* compute closure of s *)
6

7 for all B —> & € P' such that [B —> 68] £ s do
8

s u [B —> 68]

s :=

9 od

10 od;

11 (* compute transitions out of s *)

12 for all X € V do

13 T := {[A —> dXeY] | [A —> doXY] € s}
14 if T #¢ and (V¥ s' € 8, T # basis(s'))
15 then basis(s") := T ;

16 marked[s"] := false ;

17 GOTO(s, X) := s" ;

18 fi

19 od

20 end while

———

end CFSM.
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A.3 Bottom Up Stack Traversal LR Error Corrector

The following function computes an insertion string
having the same properties as the one computed by LR Insert
in Section 2.4 . However it computes the insertion from
right to left while examining the parse stack in a bottom up

fashion.

function BU_LR Insert (o, a) : TerminalString;
o = fg"'sp' the parse stack;
a € Vt' the error symbol;

begin
1 CURSTAGE := STAGE(SE);

2 for all i such that I; € basis(sy) do

3 CURSTAGE.ISi 1= 2

4 od;

5 for k :=1 to p do

6 PREDSTAGE := CURSTAGE; CURSTAGE := STAGE(sk);

7 for all n such that I, € basis(sy) do

8 (* link I, to predecessors in basis(sk_l) *)

9 CURSTAGE.ISn 1= ? 3

10 let m be such that (m, sk-l) e Pred(In);

11 if I, € closure(s,_;)

12 then (*follow back-ptrs to basis items *)
13 for all (b(i),y;) € B(Iy) do

14 if IC(y; cat PREDSTAGE.ISb(i))

15 < IC(CURSTAGE.IS[)

16 then CURSTAGE.IS

17 2= y; cat PREDSTAGE.OISb(i);

18 fi
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19 od;

20 (* check for local insertion *)

21 if IC(T(I,, a)) < IC(CURSTAGE.IS,) then
22 CURSTAGE.ISn = T(Im, a)

23 : fi

24 else (* we have I € basis(sk_l) *)

25 iﬁ IC(CURSTAGE.ISn) > IC(PREDSTAGE.ISm)
26 then CURSTAGE.ISn = PREDSTAGE.ISm
27 fi

28 fi

29 od

30 od;

31 INSERT := ? ;
32 for all i such that [Ai — qiapi] e basis(sp) do

33 if IC(INSERT) > IC(Insert(B;, a)) then
34 INSERT := Insert(pi, a)

35 fi;

36 if IC(INSERT) > IC(S(B;) cat IS;) then
37 INSERT := S(B;) cat IS;

38 fi

39 od;

4 return( INSERT )
end BU_LR_Insert.

Correctness of this function can be obtained in the
same way as that of LR Insert. Simply notice that IS; in
the stage corresponding to stack state S5 is a 1least-cost
terminal string that can be used to the left of error symbol

"a" if item I; € basis(sj) is to be used during the parse of
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the string to be inserted. Also note that this function

uses the same tables as LR_Insert.



A.4 PASCAL IC ard DC Functions

The following insertion and deletion

costs

for testing LR Corrector using PASCAL programs.
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A.5 The SAP-LL({1) Parser

The following procedure is an SAF-LL(l) parser as

described in Section 4.3 .

procedure SAF-LL_Parser(options t . i(s")) :
var o = Xl"'xp' the parse stack;

T, the attribute stack;

synxl : S(x1)7

(* M is the LL(1) parsing table of H, the head grammar *)
M : array[l..|¥, uQu Il, 1..|vt|]
of Prediction u {error}

begin (* SAF-LL Parser *)
l1 o :=8"'; T := (options);
2 repeat
3 let aTs be the attributed lookahead;
4 case X of
5 NonTerminal:
6 if M(Xy, a) = predict j
7 and sj (X ¥inh (X}, ©), als)
8 then o.pop; G.push(RHSj)
9 else SAF-LL Corrector
)

1

t The inherited attributes of the start symbol are
usually equivalent to options in a typical compiler.
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12
13
14
15
16

17
18
19

20
21
22
23
24
25
26
217
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Terminal:
if X} = a
then o.pop; T.push(s);
shift to next input symbol;
else SAF-LL_Corrector
£i;

CopySymbol:
let Xl = {$r>;
T := L¥r>(T);

PrimitivePredicate:
(synX;, pass) := fxl(inh(xl, T));
if pass
Eggg'c.push(synxl)
else SAF-LL Corrector

fi

esac

until o= ¢

end SAF-LL_Parser.
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A.6 Attributed S and E Tables Calculations

The following procedure STable computes the attributed
S table as defined in Section 4.4 . The main procedure is
similar to the STable procedure given in Appendix A.1 for
the context-free case. ReEvalS(P;, s;) considers the
reevaluation of S(LHSi¢uTv) for all u € i(LHS;) and v €
s(LHS;) , using production i. SearchProdS is a recursive
procedure whih assigns values to attribute positions of the
symbols in RHS; by doing a depth-first search of a tree
which can be built by considering all possible combinations

of attribute values.

The attribute values of a prefix of a production P; are
kept in the arrays vy and wy, which are used as stacks in

the depth-first search.
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procedure STable (AG);
AG, an SAF-LL(l) grammar;
function ReEvalS; (* see next page *)

begin (* STable *)

1 (* initialization *)
for all Alils € AV, do S(AViTs) := ? od;
for all als € AV, do S(als) := als 0d;
for all gq¥iTs € AQ do y

S(g¥ifs) := if fq(i) = (s, true) then € else ? fi

S U W N

od;

7 (* main loop *)

8 repeat

9 NoChange := true;

19 for all (Pj, sj) € P do

11 NoChange := NoChange and not ReEvalS(Pj,sj)
12 od

13 until Nochange
end STable.

—p——




function ReEvalS (Py, Si) : boolean ;
Pi = (A\];aﬂTb@ —3 Bl\l'alTbl eee Bm\bamem)

sy = s-predicate;

-e

k

)
My

(* assume aj (a?,...,a

k
by = (bf,...ka) for k = B,...,m *)

var Change : boolean;
Vi 3 domains (ay) , k= 0,;¢0.,m;
B;000,m;

W ¢ domains(bk), k

(* where domains(ay) is a tuple of domains defined

as
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fol-

lows. 1If ag is an attribute variable then the j's component

J

of domains(ay) is i(ag), otherwise it is {a?}; domains(bj)

ijs defined in a similar manner (i.e., it is either s(bg) or

k *
(b3} *)
procedure SearchProdS; (* see next page *)

begin (* ReEvalS ¥*)
] Change := false;

2 for all vy € domains (ag) do

3 if m = @ then (* €-production *)

4 copy wy from defining position;

5 S (AdvyTwy) := €;

6 Change := true

7 else copy v from defining position;
8 SearchProdS(l, €)

9 £l

18 od;

11 return(Change)
end ReEvalsS.
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procedure SearchProds (j, LC);
j : l..m, level in the tree;
*
LC : AV,, least-cost string derivable from Bj...B. ,;

o j-1
T : Avt;
begin
1 for all wj € domains(bj) do
2 if j =1 and B} € U_ then
3 (* check s-predicate ¥*)
4 if not s, (Ayvg, B;Tw;) then goto continue fi
5 fi;
6 T := S(Bj¢vawj);
7 if T # ? then
8 LC := LC cat T;
9 if j < m then copy vj+1 from defining position;
10 SearchProds (j+1, LC)
11 else copy wp from defining position;
12 if IC(LC) < IC(S(AdvyTwy))
13 then S (A{vyTwy) := LC ;
14 Change := true
15 fi
16 fi;
17 continue : od

end SearchprodsS.
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The following procedure ETable computes the attributed
E table as defined in Section 4.4 . The main procedure is
similar to the ETable procedure given in Appendix A.l for
the context-free case. ReEvalE(P;, sj, als) considers the
reevaluation of E(LHSi¢u, aTs) for all u € 1i(LHS;). Sear-
chProdE is a recursive procedure which assigns attribute

values in the same way as SearchProdSs.

procedure ETable (AG);
AG, an SAF-LL(1) grammar;
function ReEvalE; (* see next page *)

begin
1 (* initialization *)
2 for all AVi € Avy,
3 all als € AV, do
4 E(AVi, als) := 2
5 od;
6 for all als € AV, do
7 E(a, als) := €
8 od;
9 (* main loop *)
10 repeat
11 . NoChange := true;
12 for all afs € AVt,
13 all (Pj, sj) € P do
14 NoChange := NoChange and not ReEvalE(Pj' S5 atls)
15 od

16 until Nochange
end ETable. .
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function ReEvalE(P;, s;, als) : boolean;

Pi = (A‘l'aﬂTbg — BI\}alTbl e Bm\bamem)
s; = s-predicate;
als : AV_, the error symbol;

tl
var Change : boolean;

Vi @ domains(ay) ., k Byaee,m;
Wy 3 domains(bk), Kk = B,400,m;
(* as defined in ReEvalS ¥*)

procedure SearchProdE; (* see next page ¥)

begin (* ReEvalE *)
1 Change := false;
if m > 0 then
for all vy € domains(ag) do
copy v from defining position;
SearchProdE(l, €)
od
return (Change)

2
3
4
5
)
7 f£i;
8
end ReEvalE.
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procedure SearchProdE(j, LC);

: l..m, level in the tree;

*
LC : AVt, least-cost string derivable from B)...B._,7
*

j-1
T : AVt;
begin
1 (* check for a local correction ¥*)
2 T := LC cat E(Bylvy, als);
3 if IC(T) < IC(E(AVvy, als)) then
4 if 3 # 1 or By € U, or s;(Agbvy, AFirst(T))
5 (* where AFirst(T) returns the first
6 attributed symbol in T ¥*)
7 then E(AVvy, als) := T;
8 Change := true
I
18 £i;
11 (* recursively invoke procedure at next level *)
12 if j < m then
13 for all wj e domains(bj) do
14 if 3 # 1 or By € V_ or s;(Aglvy, B Twy)
15 then T := LC cat S(BjyvyTwy)
16 if IC(T) < IC(E(Advy, als))
17 then copy vj+l from defining position;
18 SearchProdE (j+1, T)
o £i :
20 fi
21 od
22 fi
end SearchProdE.

i
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